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1 Introduction

We consider here a quadratic RIT algebra given by the following presentation:
R = k〈x, y〉/(xy − yx − y2). This algebra appeared in different areas of
mathematics and physics. First of all it is a kind of a quantum plane: one
of the two Auslander regular algebras of global dimension two in the Artin–
Shelter classification [7]. There were considered and studied, deformations
of GL(2) analogues to GLq(2) related to this algebra in Manin’s school [8],
[9], where this algebra appeared under the name ”Jordan algebra”. This
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algebra is also a RIT algebra of type (1, 1). The class of relativistic internal
time (RIT) algebras has a physical origin, it appeared and was investigated
in papers [10], [11], [12]. It could be seen from there that the the class of
RIT algebras arises from deformations of the Poincare algebra of the Lorenz
group SO(3,1) by means of introducing the relativistic internal time.

We are going to describe here all finite dimensional representations of
algebra R, to prove some structural results on the images of these represen-
tations in the endomorphism rings and on this basis to start a classification
of reps considering the quiver equivalence of their images.

The intermediate results state that our algebra is residually finite dimen-
sional. At the same time we show that in any fixed dimension it has an
infinite representation type.

We suggest to consider some interesting families of representations defined
by the type of the partition of n, for example a union by n of subvarieties
{(X, Y ) ∈ mod(R, n) | rkY = n − 1}. While R is wild, we occur to be able
to show that this families can be completely classified by parameters.

We also study the properties of affine varieties of R-module structures
on kn. For example, we could state that the subvariety of n-dimensional
representations which form our family of representations after taking union
by n is an irreducible component of mod(R, n).

Thus we get results in three different approaches to the classification of
representations of this infinite dimensional algebra: vertical classification,
horizontal classification for some interesting families of representations and
classification by quivers appearing from the images of representations in the
endomorphism ring.

Let us mention that our RIT algebra is a subalgebra of the first Weyl
algebra A1.The latter has no finite dimensional representations, but the RIT
algebra occurs to have quite a rich structure of them.

Category of finite dimensional modules over RIT mod R contains for
example as a full subcategory mod GP (n, 2), where GP (n, 2) is a Gelfand–
Ponomarev algebra [3] with the nilpotency degrees of variables x and y, n
and 2 respectively.

We are interested here in complex representations, hence we fix once and
for all a field k = C. Let Mod R be the category of all R-modules, mod R —
category of finite dimensional R-modules and ρn ∈ modR — n-dimensional
representation of R.

In §2 we derive some structural properties of the images An of ρn. For
any n there is a finite number of equivalence classes of images defined by a
finite number of quivers. These classes contain for example all isomorphic
algebras: quiver is an isomorphism invariant of an algebra. We are interested
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in the question which quivers could be realized by these images. Since we
intend to consider here, first of all, the family of representations defined by
the special type of partition related to the Jordan form of Y , we clarify the
question above for this family. It turns out that only one quiver appears
from this family (independently of the dimension n of representation).

These could be shown on the basis of structural results obtained in the
first part of §2. We prove that the semisimple parts of all images An are direct
products of fields, that is all images ρn are in fact basic algebras. Hence there
exists a complete system of orthogonal idempotents in An/J consisting of m
elements, where m is a number of different eigenvalues of ρn(x). We are able
to describe them explicitly in terms of polynomials. It is also possible to
lift them to An and to construct a quiver with vertices corresponding to the
idempotents ei and mij = dim k ei(J/J2)ej arrows from ei to ej, where J is
a Jacobson radical of An.

In §3 we describe the set of all n-dimensional reps of R and in §4 we shall
construct the sequence εn of finite dimensional representations with zero in-
tersection of their kernels. This shows that R is residually finite dimensional.

In §5 we give some series of examples of simple infinite dimensional mod-
ules over RIT algebra. As a consequence of the Cohen–Macaulay property
possessed by RIT algebra, which we derive from [6] in [13] we can state that
there are no infinite dimensional holonomic modules.

In §6 we prove an analog of the Gerstenhaber theorem on the dimensions
of images of representations of two-generated commutative algebra. It turns
out that we are able just to list all possible values of dimensions.

In §7 we consider a variety of R-module stuctures on kn. We solve the
classification problem (horizontal, i.e. by parameters) in the family of repre-
sentations appearing as a union by n of subvarieties of mod(R, n) defined as
{(X, Y ) ∈ mod(R, n)|rkY = n − 1}.

In §8 we mention that our investigation of the finite-dimensional represen-
tations of RIT algebras have lead to the discovery of surprising connection
between this theory and problems around the Milnor’s conjecture of 70th
about the existence of left-invariant affine structures on solvable Lie groups.

2 Structural properties of the images of rep-

resentations and quivers

Let us consider now the algebras An which are the images of all above de-
scribed representations in dimension n. We derive here some structural prop-
erties of these algebras and then will be able to classify them. In this section
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we fix the dimension n and sometimes omit it in the notation (will write A
instead of An, Y instead of Yn etc.).

Let J(A) = J be the Jacobson radical of the algebra A = ρ(R). We
describe now the semisimple part of A and show that A is basic (the quotient
by radical A/J(A) is a direct product of division rings). Since we consider
as a basic field the algebraically closed field C over which there are no other
finite dimensional division ring besides itself, we can call by basic those rings
for which quotient by radical is a product of fields.

Hence we show that our algebra R is a basic object from the categorical
point of view. Namely, due to the Wedderburn-Artin theorem (and equiva-
lency of categories MR and MRn) any finite dimensional semisimple algebra
is Morita equivalent to some basic semisimple one, that is their categories of
modules are equivalent.

Theorem 2.1. Let A = ρn(R) be the image of R = k〈x, y〉
/

[x, y] = y2,
with respect to an n-dimensional representation ρn, generated by X = ρn(x)
and Y = ρn(y). Then A/J is a commutative one-generated ring k[x]/q(x),
where q(x) = (x− λ1) . . . (x− λk) and λ1, . . . , λk are all different eigenvalues
of the matrix X.

Lemma 2.1. Let Y = ρn(y). Then the matrix Y is nilpotent.

P r o o f. Suppose that matrix Y is not nilpotent and hence has a nonzero
eigenvalue. We take a projector P on the subspace corresponding to this
eigenvalue. It is obviously commute with any matrix, particularly with Y :
PY = Y P , and is an idempotent operator: P 2 = P . Hence multiplying our
relation XY −Y X = Y 2 from the right and from the left side by P and using
above two notices we can observe that operators X ′ = PXP and Y ′ = PY P
also satisfy the same relation: X ′Y ′ − Y ′X ′ = Y ′2. Taking into account that
Y ′ has a form ofone or more Jordan blocks with the same nonzero eigenvalue
λ, we get that traces of right and left parts of the relation can not coincide.
This contradiction complete the proof.

Lemma 2.2. Let X = ρn(x). Then the matrix Q = (X −λ1I) . . . (X −λkI)
is nilpotent.

P r o o f. Note that Spec p(X) = p(Spec X) for any polynomial p. Spec X
in our case is {λ1, . . . , λk} and hence Spec Q = {0}. Therefore the matrix Q
is nilpotent.

Lemma 2.3. Any nilpotent element of the algebra A = ρ(R) belongs to the
radical J(A).

P r o o f. Let Q ∈ C[x] and Q = Q(X) ∈ A be a nilpotent element with
the degree of nilpotency N : QN = 0. We show first that Q ∈ J(A). We
have to show that for any a ∈ C〈x, y〉, 1 − a(X, Y )Q(X) is invertible. It
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suffices to verify that a(X, Y )Q(X) is nilpotent. By Lemma 1 Y is nilpotent.
Denote by m the degree of nilpotency of Y : Y m = 0. Let us verify that
(a(X, Y )Q(X))mN = 0. Present a(X, Y ) as u(X) + Y b(X, Y ). If then we
consider a word of length not less then mN of letters α = u(X)Q(X) and
β = Y b(X, Y )Q(X) then we can see that it is equal to zero. Indeed, if there
are at least m letters β then using the relation XY − Y X = Y 2 one can
represent our word as a sum of words having a subword Y m. Otherwise our
word has the subword αN = u(X)NQ(X)N = 0. Thus, Q(X) ∈ J(A).

Note now that if we have an arbitrary nilpotent polynomial G(X, Y ),
we can separate the terms containing Y : G(X, Y ) = Q(X) + Y H(X, Y ).
To obtain nilpotency of any element a(X, Y )G(X, Y ) it suffices to verify
nilpotency of a(X, Y )Q(X), which was already proved because the relation
[X, Y ] = Y 2 allows us to commute with Y , preserving the degree of it.

Corollary 2.1. The Jacobson radical of A = ρ(R) consists precisely of
all nilpotent elements.

Corollary 2.2. Let Y = ρ(y). Then Y ∈ J(A).

From Corollary 2 we can see that A/J is an algebra of one variable x:
A/J ≡ k[x]/I and we have to find now the generator of the ideal I.

First of all by Lemmas 2 and 3 Q ∈ J(A). Let us show now that Q
divides any element of J(A). If some polynomial P ∈ C[x] does not vanish
in some eigenvalue λ of X then P (X) /∈ J(A). Indeed the matrix P (X)
has a non-zero eigenvalue P (λ) and hence E − 1

p(λ)
P (X) is non-invertible.

Therefore P (X) /∈ J(A). Thus, Q is the generator of I. This finishes the
proof of Theorem 1.

Theorem 2.2. The system ei = Pi(X)/Pi(λi), where Pi(X) = (X −

λ1)... ̂(X − λi)...(X − λk) and λi is a different eigenvalues of X = ρ(x) is a
complete system of orthogonal idempotents of A/J .

P r o o f. Orthogonality of ei is clear from the presentation of A/J as
k[x]/(q) proven in theorem 1.

Theorem 2.3. The semisimple part of A is a product of a finite number
of copies of the field k and radical splits:

A = J ⊕

k
∏

i=1

ki,

where k is the number of different eigenvalues of the matrix X = ρ(x).

P r o o f. We shall construct an isomorphism of A/J and

k
∏

i=1

ki using the

system ei, i = 1, . . . , k of idempotents constructed in Theorem 2. Clearly ei
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form a linear basis in A/J considered as a linear space over k. From the pre-
sentation of A/J as a quotient k[x]/q given in Theorem 1 it is clear that the
dimension of A/J is equal to the degree of q, which coincides with the number
of different eigenvalues of the matrix X = ρ(x). Since the idempotents ei are
orthogonal they are linearly independent and therefore form a basis of A/J .
The multiplication of two arbitrary elements a, b ∈ A/J , a = a1e1+. . .+akek,
b = b1e1 + . . .+ bkek is given by the formula ab = a1b1e1 + . . .+ akbkek due to
orthogonality of the idempotents ei. Hence the map a 7→ (a1, . . . , ak) is the

desired isomorphism of A/J and
k
∏

i=1

ki.

In this case the radical splits. Theorem is proved.
Now we can construct for the basic algebra A/J =

∏k

i=1 ki, an associated
quiver by a standard way (see for example [1]). The vertices will correspond
to the idempotents ei or by theorem 2 equivalently, to the different eigen-
values of matrix X. The number of arrows from vertex ei to the vertex ej

is the dimk ei(J/J2)ej. There are a finite number of such quivers in fixed
dimension n (the number of vertices bounded by n, the number of arrows
between any two vertices roughly by n2). Now we can define an equivalence
of representations using their images (which are basic algebras).

Definition. Two representations ρ1 and ρ2 of the algebra R are quiver-
equivalent if the quivers associated to algebras ρ1(R) and ρ2(R) coincide.

Let us clarify the question on how many quiver-equivalence classes appear
in the family of representations

M =
⋃

n

{(X, Y ) ∈ mod(R, n)|rk Y = n − 1}

and which quivers are realised.

Theorem 2.4. The whole family of representations M belongs to one quiver-
equivalence class. Corresponding quiver consits of one vertex and two loops.

3 Description of all finite dimensional repre-

sentations.

Let us construct first a sequence ρn : R → Mn(C) of representations of R
for any n ∈ N. We can assume that the image of one of the generators
Y = ρn(y) is in normal Jordan form. Let us first find all possible matrices
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X’th (X = ρn(x)) in the case when Y is just one Jordan block: Y = Jn.
We have to find matrices X = (aij) satisfying the relation [X, Y ] = Y 2. Let
B = (bij) be [X, Y ] = [X, Jn] = B, then bij = ai+1,j − ai,j−1. From the
condition B = Y 2 it follows that bij = 0 if i 6= j − 2 and bij = 1 if i = j − 2.
For convenience we use the following numeration of diagonals: main diagonal
has number 0, upper diagonals have positive numbers 1, 2, . . . , n−1 and lower
diagonals have negative numbers −1,−2, . . . ,−n + 1:

















• n−1

@@@ ...@@@@
@@@@@ 2

@@@@ 1

@@@ 0• . . .
−n+1 −2 −1

















Note that bij is the difference between neighboring elements in the diag-
onal under the diagonal where bij appears. Hence, the first condition above
means that in the matrix X elements of any diagonal with number k for
k 6= 1 coincide and are zero for k < 0. From the second condition it follows
that the elements of the first upper diagonal form an arithmetic progression
with difference 1: a + 1, . . . , a + n − 1.

Therefore we have the following sequence of representations:

Yn =





0 1 0. . .
. . .. . .

. . .
0

. . . 1
0



 , Xn =













. . . •

@@@@@ ...@@@@@
@@@@@

0 @@@@
@













(1)

Here and below we will draw a diagonal as a continuous line if all its
elements coincide and as a thick line if its elements form am arithmetic
progression with difference one.

Note that this family of representations can also be obtained by the fol-
lowing way. One can mention that the matrix

X0 =



















0 1
0 2 0

0 3
. . .

. . .

0 0 n − 1
0



















(2)
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satisfies the relation [X0Y ] = Y 2 for Y = Jn. On the other hand a matrix
X = X0 + M satisfies the relation [X, Y ] = Y 2 if and only if M commutes
with Y = Jn. Any matrix having only one non-zero diagonal with equal
elements on it commutes with Y = Jn. Hence we obtain the same family of
representations.

Consider now the general case when the Jordan normal form of Y contains
several Jordan blocks:

Y =

















J1 0

J2

0
. . .

Jm

















Let us cut an arbitrary matrix X into the square and rectangular blocks of
corresponding size:

X =



























A11 A12 A1m

A22

. . .

Am1 Am2 Amm



























Then we can describe the structure of the matrix B = [X, Y ] = XY −Y X
by the following way:

B =































[A11] [A12] [A1m]

[A22]

. . .

[Am1] [Am2] [Amm]































, where [Aij] = AijJi − JjAij.

From the condition B = Y 2 we have that [Ai, Ji] = J2
i and hence Ai is the

same as in the previous case when Y was just a Jordan block and AijJi −

8



JjAij = 0 for i 6= j. The latter condition means that Aij has the following
structure.













•

@@@ ...
@@@

0 @@@
@@

@













or































•

@@@ ...
@@@

@@@
@@

0

@































The elements of any diagonal here are equal and they are equal to zero below
the upper diagonal of maximal length (the matrix is non-square in general).
As a result we have the following family of representations:

Yn =

















J1 0

J2

0
. . .

Jm

















, Xn =

































@@@@@
@@@@@

@@@@
@

0

@@@
@@@

@@
@

0

@@@
@@

@0

@@@
@@@

@@
@0

@@@@@
@@@@@

@@@@@
@@@@

@

0

@@@
@@

@0

. . .

@@@
@@

@
0

@@@
@@

@
0

@@@@@
@@@@

@
0

































.

(3)
We mean that the elements of each diagonal marked as a strip are equal

to each other while the elements of different diagonals can be different.
We have proved the following theorem

Theorem 3.1. There exist a finite dimensional representations of RIT
of any dimension. Description of the complete set of them (subject to the
Jordan form of Y ) are given by (3).

From this description it immediately follows:

Lemma 3.1. All irreducible representations of R are one-dimensional and
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have form Y = 0, X = a ∈ C; all completely reducible representations are

Yn = 0, Xn =











a1

a2 0

0
. . .

an











.

4 Residually finite dimensionality of R

Let us consider now the main sequence of representation constructed in §2:

Yn =





0 1 0. . .
. . .. . .

. . .
0

. . . 1
0



 , X0
n =



















0 1
0 2 0

0 3
. . .

. . .

0 0 n − 1
0



















.

Denote it by εn. As was actually shown in §2, all representations (1)
corresponding to Y th with one Jordan block could be obtained from εn by
the following automorphism of R, ϕ : R −→ R : x 7→ x + a, y 7→ y where
a ∈ R such that [a, y] = 0.

In addition to the usual equivalence relation on the representations given
by simultaneous conjugation of matrices from which one obtains the isomor-
phism classes of modules, we introduce here one more equivalence relation.

Definition 4.1. We say that two representation of the algebra R ρ′ and
ρ′′ are equivalent more precisely, let us introduce the following equivalence
relations on the representations of R ρ′ ∼ ρ′′ ⇐⇒ ∃ϕ ∈ Aut(R, R) : ρ′ϕ =
ρ′′.

Then we can state that any representation of the type (1) corresponding
to Y th with one Jordan block is equivalent to εn for some n.

We will prove now that the sequence of representations εn asymptotically
is faithful.

Theorem 4.1. Let εn be the sequence of representations of R as above.
Then ∩∞

n=0 ker εn = 0.

Let us divert first and describe the computation of a linear basis of R.

Lemma 4.1. The system of monomials ynxm form a basis of algebra R as
a linear space over k.
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P r o o f. We shall use here the method of construction of the linear basis
of an algebra, given by relations based on the construction of a Gröbner
(standard) basis of an ideal.

Let A = k〈X〉/I. The first essential point is to fix an ordering on the
semigroup ß = 〈X〉. We fix some linear ordering in the set X. Then we
have to extend it to an admissible ordering on ß, i.e. it has to satisfy the
conditions:

1) if u, v, w ∈ ß and u < v then uw < vw and wu < wv
2) the descending chain condition (d.c.c.): there is no infinite properly

descending chain of elements of ß.
We shall use the degree-lexicographical ordering in the semigroup ß, namely

∀u = xi1 . . . xin , v = xj1 . . . xjk
∈ ß we say u > v, when deg u > deg

or deg u = deg v and ∃l, for which xim = xjm
∀m < l and xil > xjl

.

This ordering is admissible.
Denote by f̄ the highest term of polynomial f ∈ k〈X〉 with respect to

introduced above order.
Definition 4.2. Let say that subset G ∈ I, I / k〈X〉 is a Groebner basis

of ideal if the set of highest terms of elements of G generates an ideal of
highest terms of I : id{Ḡ} = Ī.

Definition 4.3. We will say that monomial u ∈ 〈X〉 is normal if it does
not contain as a subword any highest term of element of the ideal I.

From these two definitions it is clear that normal monomial is a monomial
which does not contain any highest term of element of Groebner basis of ideal
I.

It is easy, but useful fact that k〈X〉 is isomorphic to the direct sum
I ⊕ 〈N〉

k
, as a linear space over k, where 〈N〉k is the linear span of the set

of normal monomials from 〈X〉 with respect to the ideal I. We claim here
also that the set of normal words form a linear basis. Hence given a Gröbner
basis G of an ideal I, we can construct a linear basis of A = k〈X〉/I as a set
of all irreducible (with respect to G) monomials.

We say that algebra is standard finitely presented if it is presented by its
Gröbner basis.

P r o o f. (of the theorem 4.1.)
We are going to show that εn(f) 6= 0 for n > 2 deg f . Suppose that n

is sufficiently large and εn(f) is zero and get a contradiction. Denote deg f
by l, and let f = f1 + ... + fl be a decomposition of f on the homogeneous
components of degrees i = 1, ..., l respectively. Let us compute first the
matrix which is the image of an arbitrary monomial ykxm. Image of the
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monomial xm, ε(xm) is a matrix with vector [1·2·...·m, 2·3·...·(m+1), ...] on the
upper diagonal number m at the above numeration and zeros elsewhere, ε(yk)
acts on matrix by the moving up all rows on k steps. We can see from here
that matrix corresponding to the polynomial ykxm can have only one nonzero
diagonal, in above numeration it is the upper diagonal number m + k, and
vector in this diagonal is following: [(k+1)...(m+k), (k+2)...(m+k+1), ...].

Hence for

f = fl =
∑

k+m=l

ak,mykxm =
l
∑

r=0

ary
l−rxr

we shall have the sum of matrices

l
∑

r=0

arMr, where Mr has the vector (P (0), ..., P (j):

(

r
∏

i=1

(l − r + i),

r
∏

i=1

(l − r + i + 1), . . . ,

r
∏

i=1

(l − r + i + j), . . .

)

on the diagonal number l (all other diagonals are zero). The number standing
on the j-th place of this diagonal is the value in j of a polynomial

P (j) = (l − r + j) · ... · (l + j − 1)

of degree exactly r. Therefore the sum

l
∑

r=0

arMr has a polynomial of j of

degree N = max{r : ar 6= 0} on the diagonal number l. Since any polynomial
of degree N has at most N zeros we arrive to a contradiction in the case when
lth diagonal has length more than l. Hence for any n > 2 deg f , εn(f) 6= 0.

Let recall that an algebra R residually has some property P means that
there exists a system of equivalence relations τi on R with trivial intersection,
and such that in the quotient of R by any τi property P holds.

From theorem 1 we get the following corollary considering equivalence
relations modulo ideals ker εn.

Corollary 4.1. Algebra R is residually finite dimensional.

5 Infinite dimensional simple modules

Using the above results on finite dimensional modules over R we give here
a description of infinite dimensional simple modules. It happens that infi-
nite dimensional simple modules of finite length over R do exist. The most
important step to investigate them is a description of simple modules.
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First we will give just an example of infinite dimensional simple module.

Proposition 5.1. (Left) ideal generated by polynomial 1 + y in R is
maximal and has an infinite codimension.

P r o o f. If one suppose that the left ideal I = idL(1 + y) generated by
1 + y has a finite codimension, than by lemma 1 yn have to be contained in
I for some degree n. Indeed, for any finite dimensional representation ρn,
ρn(y) have to be nilpotent, for the representation on the R/I it means that
we have to had ynR ⊂ I. Since R contains the unit, yn ∈ I. But 1+y and yn

together generate all R (there exist u, v ∈ k[y] such that u(1 + y) + vyn = 1)
and we get contradiction with maximality of I.

Now we will give some kind of description of all infinite dimensional simple
modules.

Theorem 5.1. An ideal I is maximal (left) ideal in R of infinite codi-
mension if and only if it contains some element of the form 1 + ry, r ∈ R.

P r o o f. We divide the proof of the theorem for two lemmas which cor-
respond to ’if’ and ’only if’ parts. Only nuance is that in lemma 1 we need
not maximality of an ideal, we use only infinite codimension condition.

Lemma 5.1. Let I be a left ideal in R and I 3 1+ry for some r ∈ R. Then
I has infinite codimension.

P r o o f. We intend to show that the row (1 + ry, yn) is left unimodular
in R for any n ∈ N and r ∈ R or equivalently R〈1 + ry, yn〉 = R. Denote
J = R〈1 + ry, yn〉. Let us prove that yn−1 ∈ J . Indeed since 1 + ry ∈ J
we have that yn−1(1 + ry) = yn−1 + yn−1ry ∈ J . Since yn−1ry has form syn

for some s ∈ R and yn ∈ J , we have that yn−1ry ∈ J and therefore yn−1 =
yn−1(1 + ry) − yn−1ry ∈ J . Repeating these arguments for R〈1 + ry, yn−1〉,

R〈1+ry, yn−2〉 etc. we consequently obtain that yn−1, yn−2, . . . , 1 ∈ J . Hence
J = R.

Therefore yn /∈ I for any n = 0, 1, . . . since I 6= R. As we have shown
above finite codimension of a left ideal K in R implies the inclusion yn ∈ K
for some n ∈ N. Thus the codimension of I is infinite.

Lemma 5.2. Let I be a maximal left ideal in R of infinite codimension.
Then I contains an element of the form 1 + ry for some r ∈ R.

P r o o f. Any element u ∈ R admits a unique representation of the form
u = pu + vuy, where pu ∈ k〈x〉 and vu ∈ R. Consider the set of polynomials
pu for u ∈ I. A priori two cases are possible:

Case 1: p = GCD{pu : u ∈ I} 6= 1;
Case 2: p = GCD{pu : u ∈ I} = 1.

13



Let us show that only Case 2 is possible. In Case 1 there exists a poly-
nomial p ∈ k〈x〉 of degree > 1 such that p

∣

∣pu for any u ∈ I. Then any u ∈ I
can be rewritten in the form wp + vy for some w, v ∈ R. Therefore I ⊂ J ,
where J = R〈p, y〉. One can easily verify that codimension of J is equal to
the degree of p and therefore is finite. Hence I is contained in a maximal
left ideal of finite codimension (e.g. in any maximal left ideal containing
J). Since I is itself a maximal left ideal of R, we obtain that I has infinite
codimension, which is a contradiction.

In Case 2 there exist u1, . . . , un ∈ I and α1, . . . , αn ∈ k〈x〉 such that
α1pu1

+ . . . + αnpun
= 1. Consider the corresponding linear combination of

uj: u = α1u1 + . . . + αnun ∈ I. If we substitute uj = puj
+ vuj

y, we get
u = 1+(α1vu1

+ . . .+αnvun
)y. Hence u ∈ I has the form 1+ ry for r ∈ R.

Lemmas 1 and 2 immediately imply Theorem 1.

6 Analogue of the Gerstenhaber theorem for

commuting matrices

In this section we intend to prove an analog of the Gerstenhaber theorem
about the dimensions of images of representations of two-generated algebra of
commutative polynomials. Theorem of Gerstenhaber says that any algebra
generated by two matrices A, B ∈ Mn(k) of size n which commute AB = BA
has dimension not exceeding n. We consider instead of commutativity the
relation XY − Y X = Y 2 and prove the following

Theorem. Let X, Y ∈ Mn(k) be matrices of the size n over the field k,
satisfying the relation XY − Y X = Y 2 and Y has in Jordan normal form
one full block. Denote A the algebra generated by X and Y . Then for odd

n = 2m + 1, dimA = (n+1)2

4
and for even n = 2m, dimA = n(n+2)

4
.

Proof. In the proof of Theorem 1 we already computed the matrices,
which are images of monomials ykxl, in case when Y has one block in the
Jordan form, ε(ykxl) in the above notation. Now we should calculate the
dimension of the linear span of matrices ε(ykxl). Let us recall how they
look like. The matrix ε(yl−rxr) on the l-th upper diagonal has a vector
(P (0), P (1), . . . , P (j), . . . ), where

P (j) = (l − r + j) . . . (l + j − 1) =
r
∏

i=1

(l + j − r + i)

and zeros elsewhere. In the j-th place of the l-th diagonal we have a value
of a polynomial of degree exactly r. Those diagonals which have number
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less then then the number of elements in it give the impact to the dimension
equal to the dimension of the space of polynomials of corresponding degree.
When the diagonals become shorter (the number of elements less then the
number of the diagonal) then the impact to the dimension of this diagonal
equals to the number of the elements in it. Thus, if n = 2m + 1, dimA =

1 + · · ·+ m + (m + 1) + m + · · ·+ 1 = (m + 1)2 = (n+1)2

4
. When n = 2m, we

have dimA = 1 + · · ·+ m + m + · · ·+ 1 = m(m + 1) = n(n+1)
4

.

7 Tameness results for families of represen-

tations

Let us consider the variety of R-module structures on kn and denote it by
mod(R, n). Each such structure corresponds to a k-algebra homomorphism
R → Mn(k), or equivalently to a pair of matrices (X, Y ), X, Y ∈ Mn(k), sat-
isfying the relation XY − Y X = Y 2. The group GLn(k) acts on mod(R, n)
by simultaneous conjugation and orbits of this action are exactly the isomor-
phism classes of n-dimensional A-modules. Denote this orbit of a module M
or a pair of matrices (X, Y ) as O(M) or O(X, Y ) respectively. Consider also
the following strata. Let U(Y, P ) be the set of all pairs (X, Y ) satisfying the
relation, where Y has a fixed Jordan form. Here P is a partition of n, which
defines the Jordan form. We will write U(Y, n) for the stratum corresponding
to Y with one Jordan block.

Clearly
U(Y, P ) = ∪X; Y with fixed Jordan formO(X, Y ).

Our goal now is to show that for any fixed dimension n there are infinitely
many orbits O(X, Y ) in the stratum U(Y, n). This will mean that for any
dimension n there are infinitely many non-isomorphic indecomposable rep-
resentations, i.e. in any dimension R has infinite representation type.

Moreover we will be able to state that the representation type is tame

for the family of reps corresponding to Y with full Jordan block. Namely we
will prove that in the stratum U(Y, n) isoclasses of indecomposables could
be parameterized by two parameters (for any fixed n). Since number of
parameters does not depend of n, this family of representations corresponding
to the stratum ∪n∈NU(Y, n) is tame, i.e. could be parameterized by the finite
number of parameters.

Concerning any stratum U(Y, P ) for arbitrary partition P of n we could
say that it should be tame but the number of parameters growth with n and
hence complete family of reps is wild.
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We will consider here the case of the simplest partition P = (n), that is
the case of one full block in the Jordan form of Y .

We can restrict ourself by consideration of the action of GLn on the
section of stratum U(Y, n) consisting of pairs (X, Y ), where Y is fixed (and
has as a Jordan form the full block). Denote this subset of U(Y, n) by WY .
Corresponding section of the orbit O(X, Y ) denote by OY (X) = O(X, Y ) ∩
WY .

Consider the induced action on WY of the subgroup G = SLn ∩ Z(Y ),
where Z(Y ) is a centralizer of Y : Z(Y ) = {C ∈ GLn|CY = Y C}. For the
section of the orbit of X OY (X) we will also write OY (X, G). Group G can
be presented as

G = {E + α1Y + α2Y
2 + ... + αn−1Y

n−1},

due to our description of the centralizer of Y in §3. This group acts on
the affine space of the dimension n:

WY = {λE + X0 + c1Y + c2Y
2 + ... + cn−1Y

n−1}

here λ is the eigenvalue of X and X0 is the matrix defined in §3:

X0 =







0 1

0 2 0
0 3

.
.
.

.
.
.

0 0 n − 1

0







Let fix first the eigenvalue λ (λ = 0), we get then the space of dimension
n − 1:

W ′

Y = {X0 + c1Y + c2Y
2 + ... + cn−1Y

n−1}.

We intend to calculate now the dimension of the orbit OY (X, G) of X
with fixed eigenvalue λ = 0 under G action.

Let us consider the map ϕ : G −→ W ′

Y defined by this action: ϕ(C) =
CXC−1, then Imϕ = OY (X, G). We will calculate now the rank of Jacobian
of this map and show that it is constant on G and equal to n − 2.

7.1 Calculation of the rank of Jacobian

Theorem 7.1. Let G be an intersection of SLn with centralizer of Y .
Consider the action of this group on the affine space W ′

Y = {X0 + c1Y +
c2Y

2 + ... + cn−1Y
n−1} by conjugation. Then the rank of the Jacobian of the

map ϕ : G −→ W ′

Y is equal to n − 2 in any point C ∈ G.
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P r o o f. Consider dϕ(C)(∆) = (C + ∆)−1X(C + ∆) − C−1XC, where

C = E + α1Y + α2Y
2 + ... + αn−1Y

n−1,

X = X0 + c1Y + c2Y
2 + ... + cn−1Y

n−1,

∆ = β1Y + β2Y
2 + ... + βn−1Y

n−1.

Let us present (C + ∆)−1 by the following way:

(C + ∆)−1 = (E + ∆C−1)−1C−1 =

(E − ∆C−1 + lower order terms of∆)C−1.

Then

(C + ∆)−1X(C + ∆) − C−1XC =

(E − ∆C−1 + lower order terms of∆)C−1X(C + ∆) − C−1XC =

−∆C−2XC + C−1X∆ + lower order terms of∆ =

(−∆C−1 · C−1X + C−1X · ∆C−1)C + lower order terms of∆.

Denote ∆̃ := ∆C−1 and X̃ := C−1X. Obviously multiplication by C
preserves the rank and rank of linear map dϕ(C)(∆) is equal to the rank of
the map T (∆̃) = [∆̃, X̃].

Here again ∆̃ has a form

∆̃ = γ1Y + γ2Y
2 + ... + γn−1Y

n1.

Let us compute commutator of X̃ with Y k, taking in account that C−1

is a polynomial on Y , hence commute with Y k and also the relation in the
RIT algebra:

XY k − Y kX = kY k+1.

We get X̃Y − Y X̃ = C−1XY k − Y kC−1X = C−1(XY k − Y kX) =
C−1kY k+1. Hence
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X̃p(Y ) − p(Y )X̃ = C−1Y 2p′(Y )

for arbitrary polynomial p. Applying this for the polynomial ∆̃ we get

T (∆̃) = [∆̃, X̃] =

n−2
∑

k=1

γkkC−1Y k+1,

hence this linear map has rank n − 2.
Now by the theorem on locally flat map ([5]) we have that locally Imϕ

has rank n − 2, that is for any point of G there exists a neighborhood σ of
this point such that ϕ(σ) has dimension n − 2.

Since the affine space G is separable, we can choose countable covering
from all ϕ(σ), and hence cover the orbit by countably many spaces of dimen-
sion n − 2.

The space W ′

Y = ∪X,λ=0OY (X, G) could not be covered by countably
many spaces of dimension n − 2, hence there are uncountably many orbits
OY (X, G) and we get

Corollary 7.1. Let Y be the matrix with fixed Jordan structure consist-
ing of one full block. Then there are uncountably many isomorphism classes
of indecomposable modules in the stratum U(Y, n). Hence for any fixed n
algebra R has an infinite representation type.

From the theorem 1 we could also deduce the following statement con-
cerning parameterization of isoclasses of indecomposable modules.

Corollary 7.2. Let U(Y, n) be the stratum as above. Then the set
of isomorphism classes of indecomposable modules from U(Y, n) could be
parameterized by two parameters.

Particularly number of parameters does not depends of n in this case.

Proposition 7.1. Parameters µ amd λ are invariant under the action of

G on the set of matrices

















λ µ + 1

λ µ + 2 *
λ µ + 3

.

.

.

.

.

.

0 λ µ + n − 1

λ

















.

P r o o f. Direct calculation of ZMZ−1 for Z ∈ G shows that elements in
first two diagonals of M will be preserved.

Hence from the corollary 2 and proposition 1 we have the following clas-
sification result for the family of reps with one full Jordan block for Y , or
equivalently with the condition n − rkY = 1.

Theorem 7.2. Let Pλ,µ denotes the pair (Xλ,µ, Y ), where
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Xλ,µ =







λ µ + 1

λ µ + 2 0
λ µ + 3

.

.

.

.

.

.

0 λ µ + n − 1

λ






, Y =







0 1

0 1 0
0 1

.

.

.

.

.

.

0 0 1

0






.

Every pair X, Y is conjugate to Pλ,µ for some λ, µ. No two pairs Pλ,µ with
different (λ, µ) are conjugate.

These two parameters λ, µ for reps of any dimension gives the following
tameness result.

Theorem 7.3. The subset of all finite dimensional representations corre-
sponding to Y with full Jordan block, or equivalently defined by the condition
n− rkY = 1 is tame (dimension of representations supposed to be not fixed
here).

We conjecture here that there exist tameness results also for the families
of representations with other fixed type of block structure. It could be proved
when for fixed ’type of partition’ the number of parameters does not growth
with n.

8 Consequences for the Milnor conjecture

The above investigation of the finite-dimensional representations of RIT al-
gebras lead to the discovery of surprising connection between this theory
and Milnor’s conjecture of 70th about the existence of left-invariant affine
structures on solvable Lie groups. Knowledge on representations of RIT al-
gebras presented here gives a solution of series of question related to Milnor’s
problem. More precisely it will be discussed in a separate paper.
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