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THE GROUP OF UNITS
AND
ABELIAN TOTALLY RAMIFIED EXTENSIONS
OF A COMPLETE DISCRETE VALUATION FIELD

fvan B. Fesenko

We consider a description of abelian totally ramified p-extensions of a complete
discrete valuation field with residue field of characterisitic p > 0. The exposition shows
that there exists a certain theory (Theorem (1.6), Proposition (1.8)) very similar to the
classical one. The main result is that there is a reciprocity isomorphism between the
group (Gal(L/F)**)™ = Homg, (Ga.l(f'/F), Gal(L/F)*") of continuous homorphisms
from the profinite group Gal(F'/F) of the maximal unramified abelian p-extension to
the abelian part of the Galois group Gal(L/F} of a totally ramified p-extension L/F
considered as a discrete group and the subquotient group Ul,pﬂNE/‘;;.Ul‘z/NL/pUl,L
of the group of principal units of F. Although we consider in this paper p-extensions,
the whole theory can be extended on arbitrary totally ramified extensions.

Comparing this theory with higher dimensional class field theories, one can briefly say
that the latter ones cover all extensions including nonseparable residue field extensions
but only for a specific type of residue fields; the former one covers the general case of
residue fields but describes only totally ramified extensions. |t seems more convenient to
work with subquotients of the group of principal units than with topological K-groups.

Another specific feature of the theory is that, in fact, one can develop many class
field theories for a given complete discrete valuation field depending on the choice of
an unramified extension (see Remark 2 in (1.6) and Proposition (1.9)).

The second section deals with extensions for which a fixed prime element is a norm.
We deduce from the theory of section 1 that the compositum of two such extensions is
a totally ramified extension (in the case of perfect residue fields the prime element even
is a norm for the compositum). Then we prove that for a complete discrete valuation
field F* with non-algebraically-p-closed residue field norm groups Ny ,pL* in F* are in
one-to-one correspondence with abelian totally ramified p-extensions L/F.

The third section contains discussions on the existence theorem. In the general
case of imperfect residue field with respect to the perfect residue field case one needs

A part of this work has been performed during a stay of the author in Max-Planck-Institut
fir Mathematik in 1994. The author aknowledges hospitality of the MPIM.
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additional information about the structure of norm subgroups (i.e. Eisenstein polyno-
mials). The existence theorem in general form is established only for fields of positive
characteristic and fields with small absolute ramification index (< p — 1). It implies a
connection between Witt vectors and cyclic p-extensions which was discovered earlier
by Kurihara [K] by employing a very different approach.

When the first and second sections of this work had been completed, | found a
twenty-years-old work of Miki [M] (see Remark 1 in (1.6)) several results of which may
be considered as predecessors of this theory.

1. Reciprocity map

Let F' be a complete (or Henselian) discrete valuation field with a residue field F of
characteristic p > 0. It will be assumed that F has a nontrivial separable p-extension.
(lf'I': is separably p-closed, then class field theory of F' is the limit of the theories for
subfields F, with non-separably-p-closed residue fields when F, tends to F'). Denote
by F the maximal unramified abelian p-extension of F, i.e. the unramified extension

, ) . . —ab ) — .
corresponding to the maximal abelian p-extension F™'" of the residue field F. It is
—ahp
known that Gal(F'
generators, where p(X)} = X? — X. Then there is a non-canonical isomorphism
Gal(F/F) ~ [[.Z,. Let Ur be the group of units of the ring of integers of F
and let U; r denote the subgroup of principal units = 1 mod ©} with a prime element
mF of F.

/F) is a free abelian profinite p-group on & = dimg, F/p(F)

1.1. Let L/F be a Galois totally ramified j-extension. Then Gal(L/F) can be iden-
tified with Gal(L/F), and Gal(L/F) is isomorphic with Gal(L/F) x Gal(L/L). Let
Gal(L/F)™ = Homg, (Ga.l(ﬁ/F),Ga](L/F)) denote the group of continuous homo-
morphisms from the profinite group Gnl(ﬁ‘/F) which is a Z,-module (¢ -0 =0°%, a €
Z,) to the discrete Z,-module Gal(L/F). This group is isomorphic (non-canonically)
with &, Gal(L/F).

Now let L/F be of finite degree. Let x € Gal(L/F)™ and I, be the fixed field of
all 7, € Gal(L/F), where r¢|f, = ¢, T,plb = x(¢) and ¢ runs a topological Z,-basis
of Gal(F/F). Then Z/Ex is unramified and ¥, /F is a totally ramified p-extension.

For a prime element 7, of ¥, put

Yi/r(X) = Ng jpnyNienp' mod Ny pUp,

where 7 is a prime element in L. T, is called to be a generalized Neukirch's map
(as a generalization of constructions in [N1]).

1.2. Lemma. The map Tp;p: Gal(L/F)™ = Up/NyrpUyL is well defined.

Proof. T, ,r does not depend on the choice of m;: let M be the compositum of X,
and L. Then M/Z, is unramified and any prime element in X, can be written as
KXNM/EXS for a suitable ¢ € UM Then NM/F“S = NL/F‘(NM/LE) € NL/FUL. O
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Note that if ¢ = Nz/ﬁﬂ with 8 € Uy, then one can write § = fpwith 6 € Uy, n €
U, g and then &' = Ni,pn € Ur O N, pU, 1 is uniquely defined mod Ny ,rU; 1.
Thus, the quotient group Ur N Nz/ﬁUz/NL,FUL is mapped isomorphically onto
UI,F N NE/}?‘ULZ/NL/FUI.L by e — e'. Put

Uryp = U,r NNy, 5U, £ /NLypU L

and denote the map Gal(L/F)™ — Uy F by the same notation Ty ,p.

1.3. Proposition.
(1) Let L/F, Li/F, be totally ramified galois p-extensions, and F\/F, L\/L be
totally ramified. Then the diagram

Toyr

Gal(L/F)” —— UL, /r,

l ‘lNFI,p

Gal(L/F)~™ —“T% Uyp

is commutative, where the left vertical homomorphism is induced by the natural
restrictions Gal(L,/Fy) — Gal(L/F) and Gal(Fy/F1) = Gal(F/F).

(2) Let L/F be a totally ramified galois p-extension, and let ¢ be an automorphism.
Then the diagram

Gal(L/F)~ —2% Upp

Cal(oL/oF)™ 2225 Uy rop

is commutative, where (0~ x)(ocpo™!) = ax(p)o~!.

Proof. Apply the arguements of the proof of Proposition (1.8) of [F1] together with
the following commutative diagram

Upl nNEI/F‘lUEI/Nh/F:ULI e UL'I/Fl

leF lNP./F

UFONE/}?UE/NL/FUL ———b UL/F
Ll

1.4. Recall the behavior of the norm map. Let L/F be a cyclic totally ramified exten-
sion of degree p. Let 7/, be a prime element in L. Then mp = Ny, pmy, is prime in F.
Let o be a generator of Gal(L/F),

onyf

—= =147 +...
L + oy +
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with 8y € Up, s = s(L|F) > 0. Then it is well known that

Npp(l+6m)) =1+ 6Prp + ... fori<s, 6elUp
Npp(l40m3) =14+ (0P - 5 ' O)np+... for8eUr
Npp(l+0nitPy =168 onsti g . fori>0, 8¢ Up.

From this it follows that in a fixed Galois totally ramified p-extension M/F for
any index i there exists an integer r = r(i,M/F) > 0 such that 1 + Gprfr}} €

r=—1

Uipr, #5750, 57 for any 6 € Up and 1+ 067 T & Uppr 7317V, 57 for any

1

0 cUpwithfgF.
1.5. Denote by F an extension of F such that ¢(F/F) = 1 and the residue field of

—per . P =P . .
F is the perfection F' " of the residue field of F,ie. =UF (F isn't uniquely
defined). Let L/F be a finite totally ramified Galois p-extension. For ¢ € Gal(L/F)
put

c(o) =n " ory mod I(L|F),

where 7, is a prime element in L, and /(L|F) is the subgroup of U, ; generated by
the elements e 1o (¢) with € € Uy L7, 0 € Gal(L/F). Then the sequence

N-— -
1= Gal(L/F)™ S U, p/I(LIF) =5 Ny 5U, p — 1

is exact (this follows from the case of a perfect residue field, see [F1], [H, section 4],
[t (2.2))).

Now we introduce the map inverse to T;,p. Let e € Uy pN NE/ﬁULE and ¢ €
Gal(F/F). Let 1 € U, f be such that Ny 5 = e. Since N, z(n"'@(n)) = 1 for
an extension @ € Gal(L/F) of ¢, it follows that 5='¢(n) = mro(r;') mod I(L|F)
for a suitable ¢ € Gal(L/F)®, where 7 is a prime element in L. Set y(¢) = o.
Then it is easy to verify that x(¢1p2) = 0,102, This means x € (Gal(L/F)*™)™. Put
Vi r(e) = x
Lemma. The map Wy p: Uy p O Ny 5U, 5 /Nyyplh L — (Gal(L/FY*™")™ is well

defined and a homomorphism.

Proof. If N, pp =€, then for ji = 17 p the element i~ 'o(s) belongs to [(L|F). If
£ = £,£,, then one may assume 1 = u;7,, consequently 0 = o,0, in Gal(L/F)*".
Thus, ‘I/L/F(é?l{:'g) = ‘I’L/F(El)‘I’L/F(EQ). O

W,/ r is called to be a generalized Hazewinkel’s homomorphism (as a generalization
of constructions in [H]).
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1.6, Theorem. Let L/F be a Galois totally ramified p-extension. The map Y| p
induces an isomorphism T}‘J}F: (Gal(L/F)*®)™ > Uy p N NE/ﬁUlj/NL/FUl,L and
the map W p is the inverse one.

Proof. First we verify that W; p o T?.h/F = id. Indeed, let 7, = 7.7 with n € U;.
Let ¢ = @|z € Gal(F/F) with ¢ € Gal(L/L) and 7, € Gal(L/F) be such that
rv,|‘a = ¢, T¢|L =0 = x(p). Put 7= 8y with § € Up, ;1 €U, ;. Then

1= =7 = %1 mod I(L|F)

and Ni g = Ny /pmy Ny p(87)~'. Therefore, x = \IIL/F(T‘E}’/F(,\')). Thus, the
homomorphism ¥,z is surjective and the map T‘;}'/F is injective.
According to Proposition (1.3) the following diagram is commutative:

I —— Gal(L/M)” —— Gal(L/F)” —— Gal(M/F)” —— 1

J'TL/M lTLjF lTM/F

Nmyr .

UL/M — UL/F E— UM/F — 1
where M/F is a cyclic subextension of degree p in L/F. The low sequence is exact
by the first part of the proof of Proposition (1.7) below (it doesn't depend on (1.6)).
Now we are going to verify that ¥, - is injective for a cyclic extension of degree p.
Then this immediately implies that T, is surjective for a cyclic extension of degree
p. Since Gal(L/F) is solvable, one deduces using the diagram that T, is surjective
for an arbitrary totally ramified p-extension. Then W, is injective.

In order to show that W, , is injective for a cyclic extension of degree p it suffices to
show keeping in mind (1.4) that if ¢ = Ni pn=1+6r] +... with 6 ¢ 8Lp(F) (that is
€ € NpypUy L), where 5,60 are as in (1.4), then ¥, p(e) # 1. Asp=148'm; +...
with 7 — Eg_lb_’ = @, one deduces that the condition W, () = 1 implies that
9 €ULU,, ;and B € Gop(F). O
Remark 1. /n [M] Miki has shown without explicit introduction of reciprocity maps
that for a totally ramified cyclic extension F'|/F of degree m and for a finite abelian

unramified extension E/F of exponent 1n the group
FONgpgUgp [NppUp

is canonically isomorphic to the character group of Gal(E/F).

Remark 2. In our description of the Galois group of a totally ramified p-extension
L/F one can take instead the maximal unramified abelian p-extension F/F any its
infinite profinite subextension F/F: then Homzp(Gal(F/F),Ga,I(L/F)) is not so
large, NL/FULL isn't the possible largest subgroup and isn’t too far from N ,pU .
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Remark 3. A corollary of the theorem: the pairing
Urr NNz Uy £/NiyeUse X Gal(F/F) — Gal(L/F),  (e,9) = Y1/r(€) ()

is nondegenerate.

Remark 4. There is a functorial property of T, additional to those of (1.3). Let
L/F be a Galois totally ramified p-extension and M/F be its subextension. Then the

diagram
(Gal(L/F)™)™ —— Uy

] l

(Gal(L/M)**)” —— ULim

is commutative, where Ver ~ is induced by Ver: Gal(L/F)*® — Gal(L/M)2". A proof
is the same as in the case of perfect residue field: Letc = Nz/ﬁq and n¥~1 = ﬂ}f"*y for
a prime element wy, in L, 0 € Gal(L/F), v € I(L|F). Then o = x(¢), x = ¥ r(e).
Let ; € Gal(L/F) be a set of representatives of Gal(L/F) over Gal(Z/M). Then
€= Ng,zm with my = [[ 97 and g8 = [[xl " [Iy7. Let o7 = ruhi(o) with
hi(o) € Gal(L/M). Now one deduces
Hﬂ_g—a)n - H ﬁz."(l_"-'(”)) = ﬂ_[]jI(l-h.-(rr)) — ﬂ_Ll—-Ver(n) mod [(LlM)
1-Ver(s)

Since [[y™ € I(L|M), one concludes that n¥~' = =, mod [{L|M), as
desired.

1.7. Proposition. Let L/F be a Galois totally ramified p-extension, M/F be its

abelian subextension. Then

Nayp(Uim N N 55U, 1) = NayprUrm NN U, 7

Proof. One needs to verify the inclusion of the right hand side expression into the left
hand side.

First the case of [M : F| = p will be considered. Let o € Ny plUy pr N NZ/FUl,Z
and o = Npg/pfl with § = 5NZ/EA'7' §=p°! where o is a generator of Gal(M/F).
One can assume without loss of generality that p = 1+ 8'%}, + ... with ¢ prime to
p f6 € Uﬁ\ Uap and p~1 = 1 + i()’G’OTr;}"’ +--- ¢ NE/E?UL,Z' wlfe 00_,3_:-.\re as
in (1.4), then denote by F} the unramified extension of F' such that F| = F(#); let
W € Gal(E/L) be such that B(8") # 8. Since (p?~1)¥~! = NE/M-('YI“*’) one deduces
using (1.4) that 8,(@(8") — §") = E”r € F;pr and 88, ¢ -F}-pr for r = r(i 4+ s, L/M).
Then Trﬁﬁ;gp = (Trey 7 €)*" =0 and £ = () — X for some X € Fy, where F,
is the fixed field of @ in F|. Therefore 88, € F;’ + F3, and continue in this way we
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obtain 8, € —F_lpr + F. This implies that § = p{ ™' p5 = p5 =" with p{ ™! € ker Nag/p,
Pg_l = Nz/ﬁ‘)’l. Pg_l € U;.,.;ji- Thus, o = Nuyrb with 8, = 51Nz/ﬁ(771)
and & = p~'. Since Ui C NgyzUy g for a sufficiently large 7, we conclude
a € Npyyp(Urm N NE/K?UI,Z)‘

Now the assertion of the proposition in the general case will be proved by induction on
the degree of I/ F. Let E/F be a Galois subextension in L/F of degree p, E C M. Let
a= Ny pf € NZ/FULZ’ Then o € NE/FUI.EnNz/ﬁUlj_‘, and by the previous part
of the proof Nuy/p8 = Ng/py for some v € Uy g N Ng,zU, ;. Then yNpy 87" €
ker Ng/pN N3z, 5U, 7. Applying part (1) of Proposition (1.3) and Theorem (1.6) one
deduces that YNy 8™ = Nyygd and v = Npgyp(896) € NpgyplUi NNz s, 1
The inductional assumption implies that v € Ny (U p N NZ/F?UI.Z)' Thus, o €
NA{/F‘(UI.M M NE/EULE)' a
1.8. Proposition. Let L,/F, Ly/F, L Ly/F be abelian totally ramified p-extensions.
Put Ly =LiLs, Ly = LyNLy. Then

NiypUiLy = NyypUrn, O Ny pUr, ONg 85U 7
NeypUi, N 5U g0 = (NLypUvn Ny pUr ) O N 5U 7
NLl/FULLx C NLQ/FUI.LQ ifand only if Ly D Ly.

Let M/F be the maximal abelian subextension in a Galois totally ramified p-
extension L/F. Then

NappUy v O Np Uy 1= NyypUs L.
Proof. Put H; = Gal(L3/L;), i = 1,2. Then by Proposition (1.3), Theorem (1.6) and
Proposition (1.7)

NL,:,/FUI,L;, = ‘I’Z:/F(Hl M Hg) = ‘I’Z:/F(Hl) ﬂ'IJZj/F(Hg)
= NpypUr, ONg 2, U 2 ) O NLyr(Uh, ONg 7,04 7,)
=NpyrUrp, N Np,yrlh . N Arf.a,lf‘Ul.l.,a;
and similarly
NL‘I’FUI'L‘! 0 NZg/'FH'Ul,Ea
= (NpLyyrUre, O Np 5 2 Y (N e, N 85U 1)
C (NpyyrUr L, NiyyeUs L) N Ng 7 iy

and the inverse inclusion is obvious.
Further, if NLl/FUl.Ll C NLQ/FUI,LQn then

NLIIF‘UI.Ll n Nza/ﬁ.U]'za = NL;,/F'UI.L;,-
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Now by Proposition (1.3} and Theorem (1.6) one deduces that L, C L;.

Finally, the last assertion of the proposition follows from Proposition {1.3) and The-
orem (1.6) O

Remark. If the residue field F is perfect, then one can omit NZ;/FUI,Z;, and NZ/I:HUIVE
in the assertions of the proposition (see [F1, (1.8)]). In the general case this can’t be
made: let, for instance, L,/F, Lo/F be totally ramified Galois extensions of degree
p such that p < s(L\|F) < s(L2|F). Assume that LLy/F is totally ramified and
m™ € Np,1,/r(L1Ly)" is a prime element of . Then (1+-8m)P = 14-6Px?+-. .. belongs
to Np,,rUr,L, and Ny pUy L, and for6 ¢ F* doesn’t belong to Ny FUr Ly Ly
since r(p, L1La/F) = p* in terms of (1.4).

1.9. Assume that the residue field F is a formal power series field of n—1 indeterminates
over a-perfect field & which is not algebraically p-closed. Denote a lifting in F' of a
system of local parameters of F by t,_y,...,t;,. Then m ty_1,...,t; form a system
of local parameters of F as of an n-dimensional local field over k. In what follows
notations of [F3] will be used.

Proposition. Let L/F be a Galois totally ramified p-extension with respect to the
discrete valuation of rank 1. Then the following diagram is commutative

Homy, (Gal(F/F), Gal(L/F)) =55 Uy p ANz, 5U, 1/Nijrli s

1 l

Homg, (Gal(F/F), Gal(L/F)) =" UyK'?(F)/Ny/pUy I (L)

where U (P (F) is the subgroup of the topological K-group K" (F) generated by
Ur € K;"’"(F), Ny, at the right bottom corner is the norm map on the topological
K-groups. The homomorphism Y/ is the inverse to the reciprocity map for the
extension L/F of n-dimensional local fields, the left vertical map is induced by the
surjection Gal(ﬁ'/F') — Gal(ﬁ‘/F) given by

Gal (k((TamD) - . (@)™ /6 (Famr)) - (D)) =
Gal (K" (B) - (()/K((FmD)) - . (D))

the right one is induced by
£ = {E,t"_l, . ..,tl}.

In addition, the following diagram is commutative

Homg, (Gal(F/F), Gal(L/F)) —55  Uyp 0Ny, 2U, 1 /NyyeUis

l !

Homgz, (Gal(F7/F), Gal(L/F)) 255 Uy, K9 (F) /Ny, pUy K27 (L)
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where T, /F is taken for the extension F /F (see Remark 2 of (1.6)). In this case the
left and the right vertical homomorphisms are isomorphisms.

Proof. Follows immediately from the description of the reciprocity map in sections 1
and 3 of [F3], and Remark 2 of (1.6). O

2. Extensions with a fixed prime element as a norm

2.1. Proposition. Let F be a complete discrete valuation field with arbitrary residue
field of characteristic p. Let Ly/F, Ly/F be abelian totally ramified p-extensions and
® € Np,pLi O Ny, pLi for a prime element m of . Then LiL,/F is a totally
ramified extension,

Proof. If F is algebraically p-closed, then the assertion is evident. If F is perfect and
not algebraically p-closed, then L;L,/F is totally ramified by (3.3) of [F1]. If F is
imperfect, then one can construct a henselian discrete valuation field § = h_}m F' for

-h

which e(F/F) = 1, and the residue field of which is U, 7 . In the case of positive
characteristic of F' the field § can be chosen as a purely inseparable extension of F,
and then LiFNLyF = (LiNLy)F. If Fis of characteristic 0, then for any [X= -ﬁ\f:'—’p
there exists o € Up such that @ = 6 and L L F'(0y) # Ly Ly F' with ol = a.
Indeed, otherwise one would deduce that U, & C (L, L2F')? which is impossible,
since Ly Lo F'/F" is of finite degree and Ul'Fr/Ulp‘F, is of infinite order. Assume that
Ly\F'O Ly F' = (Ly N Ly) F', then if Ly F'(a) )N LoF' (o) # (L F' N Ly F')(ay), one
would have Ni{a;) = Ny(«;) for a suitable extensions Ny /(LiN L} F' in Ly F' /(L1
Lo)F and No/(Ly N Ly)F' in Ly F'/(Ly N Ly} F' of degree p. Then it would be
Ni(e)) = NiN2 C L Ly F', contradiction. Thus, proceeding in this way, one can
construct §/F with the property L, 50 LyF = (L1 N Ly)F.
Now, L, L,F/F is totally ramified (as the residue field of F is perfect) of degree

|L1L232 (L] 0L2)3| |(L| N Lg);f . {s’|
= |L132 (L] 0L2)3| |L23 : (Ll N L2)3| I(Ll M LQ);} : S'l
= lLlZL]ﬂLQ”LgZLlnLZHLlﬂLz2F|=|L1L2 Fl

Therefore Ly L,/ F is totally ramified. [

Remark. If the residue field of F is perfect, then under assumptions of the proposition
T € Np,1,/FUv L, L, (see [F1, section 3]). When the residue field is imperfect this
doesn't hold in general. Indeed, in terms of Remark (1.8) the prime element (1 +
Om)* € N, yrLi NNy, pL;, and € Np 1 pLy L3,

2.2, Theorem. Llet F be a complete discrete valuation field with a residue field of
characterisitic p which isn't separably p-closed. Let L\/F, Ly/F be totally ramified
abelian p-extensions. Then Ny, ,pL} = Ny, pL; if and only if Ly = L.
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Proof. According to the previous proposition L;L./F is totally ramified. Proposi-
tion (1.8), (3) implies now that L, = L,. O

Remark. A weaker assertion (for the case when the residue field if contained in an
extension of fields of type k({t,))...((tn))/k with a perfect not-p-closed field k) has
been proved in [F2] by using higher local class field theory. Note that if one replaces
the words "totally ramified abelian p-extensions” by either "totally ramified abelian
extensions”, or by "abelian p-extensions”, or by "totally ramified p-extensions”, then
the assertion of the theorem doesn't hold in general (see [F2)).

3. On existence theorem
Let F be a complete discrete valuation field with residue field of characteristic p.

3.1. In the general case of imperfect residue field it seems that to describe norm
subgroups of totally ramified p-extensions of [ isn’t easy (for the perfect case see [F1,
section 3]).

For example, in the case of a Galois totally ramified extension L/F of degree p
take a prime element 7y, of L and 7p = Ny pm, and let s, 6y be as in (1.4). Let
vr be the discrete valuation of F. Let e;(X)} = XP 4 ap_y XP~! 4 .-+ ag be an
irreducible polynomial of 7} over F for i prime to p. After some calculations one

deduces that m(i) = minggicp vr(w) = vr(a;) with i = —s mod p and a; =

is=1g0 et e lsHidl/P L Moreover, one can show that there exists an element

o= 1'rfL + - - € L satisfying the equation g;(«) = 0, where ¢;(X) = X? + ijj + bg,
vr(b;) = vr(a;), ve(be) = 7 (see, for instance, [A]). This implies that

Npp(l=680) = 1466777 + 0o, wp(b;) = m(), vp(bo) =1

for 8 in the ring of integers of F'. In the case of the perfect residue field these formulas
show that there is a polynomial ¢;(X) such that

1+ 81k + gi(8)7% € Ny jplUs o

for any @ in the ring of integers of [ (see sect. 3 Chap. V of [FV]).
If the absolute ramification index of F'is 2 p — 1, this isn't the case for imperfect
residue field: one can’t expect that there is a polynomial ¢;(X) such that for all 8

14+ f’piﬂ‘}y -+ g,'(ﬂ)ﬂ';:» € NL/F'UI.L-
Certainly, instead of this one can take an expression of the form
146" nh 4 hi(8)7 € Nyyply g

with some n(z) (even with n(i) < 2). As a direct generalization of the description of
norm subgroups in the perfect residue field case {see (3.1) of [F1}), one would have
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expected the following: let m be a prime element of F'. Then subgroups A in U; g which
are norm groups of cyclic totally ramified extension L/F of degree p with 7 € N ,pL”
are characterized as
(1) A is open;
(2) for any i > 0 there exists a polynomial f;(X) with coefficients in the ring of
integers Op of F such that its residue f; is non-zero F-decomposable and
14 fi(67"")ni C N for 8 € OF;
(3) for any i > 0 the image of (U; r N N)U;4y,F under the projection

Ui,F — Ui,F/Ui+l.F e f, 1+ or' — 9-,

is equal to p;(F'), where p;(X) = X? for i < s, pi(X) = X for 1 > s, and
ps(X) = X? - @g'lX.
Unfortunately, there exist subgroups A/ satisfying these properties which are not
norm subgroups. For example, for e = 3, p = 3, s = 4, and an imperfect residue field
the subgroup A € U, g determined by relations

1+6”7r*€N, for i<s, 8€0Of
14+ (7 -7 ') e N, for i=s, 6€OF
l+8n €N, for i>s, 8€Op

isn’t a norm subgroup of any extension L/F with 7 € N ,pL” (in this case ¢;(X) =
X34+ 73X 41, vp(r') = 1).

The conclusion is that an additional information arising from Eisenstein polynomials
should be involved in the description of the norm subgroups — this is the imperfect
phenomenon which is hidden in the perfect residue field case.

Note that if F'is as in (1.9}, then one can show that ¢ € Ny ,pU) j, is equivalent to
{e,tacrs. o 1} € NpypUi KPP (L) for any system of local parameters tn_1,...,¢;.
Since the description of N U, K}°P(L) is known, one can try to apply this to describe
norm subgroups in U g — however, this is too unexplicit.

3.2. There is a complete description of the norm subgroups of cyclic totally ramified
p-extensions when p > 2 and the absolute ramification index e(F) is < p—1 or = 400,

Introduce a function

Enre: WalF) @ - @ W, (F) = UpLp /UL

~~
ep tines

by the formula
Enmr ({@0,5) -y o1 jl1giger) = II E@!, Tl
0gign—1,1g ger
where E(X) = exp(X + X?/p+ X7t 4 .} is the Artin-Hasse function. é; ; is
a lifting of a; ; € F in the ring of integers of an inertia subfield Fy of F (ef, = 1,
Fo = F) in the case of char(F) = 0 and &; ; = «; ; in the case of char(F) = p.
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Theorem. Let F' be a complete discrete valuation field with residue field of character-
istic p. Cyclic totally ramified extension L/F of degree p™, such that np € Ny pL"
are in one-to-one correspondence with subgroups

Enar PWu(FY® - @ (ah ..., JpWa(F) @ Wo(F)® ... ) U,

inU, r, where 1 < j < ep, (ao,j, ... @n_1,;) is invertible in W,.(F), p=P -1, and

P(ag,...,an-1) = (af,...,ah_)).

Proof. First, let L/F be a cyclic totally ramified extension of degree p*. Let 7p =
Ny pmp with a prime element m of L. For a generator o of Gal(L/F) put s; =
vL(aT"(rrL)/'.'rL -1),0< ! <n—1 Ifchar(F) = 0, then the Eisenstein polynomial
ei(X) = XP" 4+ apn 1 XP" "L 4o 4 ag of 7} for (i,p) = 1 satisfies the property:
vr(as) 2 51+ (n— 1 —v,(t))er, where v, is the p-adic valuation. This implies that

NZ/FUl,E coincides with

—=abp

Enne PWA(F" - @ W (T o ...),

where W, (Fﬂl)") stand at the places starting from the s, th one. A similar observation in
the case of char(F} = p shows that the same assertion holds there. Now as Ng gl pn
Ui, r/NpyrUy L is isomorphic to @, Gal(L/F) according to Theorem (1.6) one obtains
that Ny, rU; L is of the type described in the assertion of the theorem.

Second, for the case of perfect residue field F it follows from the existence theorem
{Theorem (3.5) of [F1]) that any subgroup of U r of the type indicated in the assertion
of the theorem is N, ,rU, . for some cyclic totally ramified p-extension L/F' with
mr € Nyypl™.

Thus, it remains to treat the case of imperfect residue field. Denote by N the
subgroup in Uy r indicated in the assertion of the theorem. For an extension [£/F with
e(E|F) = 1 denote by N the subgroup in the group of principal units of E of the
form

n

enar (PWoa(BY® - & (u(’;'j,...,(Lf‘_l'j)pﬂfn(f) OW.E)D .. U g

According to the previous considerations there exists a totally ramified p-extension
F'/F (with F as in {1.5) — the residue field of F is the perfection of ) such that
NpyrlUy s = Nr and mf € N]:f/;r}"". In fact this extension F'/F is defined
over a finite extension of F, so it is sufficient to treat without loss of generality the
case when F' = E'F, E'/E is a totally ramified cyclic extension of degree p and
E=F(),0=6€ F, ECF.

One has Ngi/gUy g C Ny N Uy, g, and the description of Nr together with injec-
tivity of the homomorphism UI'E/UI”;; - Ul_,r/Uf"“}- imply that NrN U, g = Ng.
Therefore Npi gU| g = Ng by using Theorem (1.6).



13

Let char(F) = p. Then there is an abelian totally ramified extension F’'/F such
that £’ = EF'. Then by the previous arguements N = N/ pUy pr.

Let char(F) = 0. Denote the degree of the extension F((,)/F by I.

There exists a prime element of F({,) such that ﬂ‘;;.(cp) = mp. Then mp(,) €
NE‘((,)/E((,)E'(CP)" In addition, 1l'p((’) € NO’E'(CF)/E((F)(UE'(CP))‘ for any imbed-
ding o of E'({,) in E'(C,)™® over F((,)}. This permits one to conclude referring to
Proposition (2.1) that E'((,)0 E'(,)/E(C,) is a totally ramified extension. Since the
extension E'((,)/E is abelian, and the norm map Ng((,),e maps U) g(¢,) onto Uy E,
it follows from (1.3) and (1.6) that Nei(¢,)/E(¢,)U1.E'(¢p) = NE(I(,)/E(NE)‘ Keeping
in mind specific structure of Ng one obtains £°~! ¢ NEg«¢,)/E¢,)Ur E(¢,) Tor any
€€ NET(E:}/E(?,—}ULE‘_E) N Uy k(). The last conclusion together with (1.3), (1.6)
imply that E’((,)/F((,) is an abelian extension. It isn't cyclic, since otherwise easy
calculations show that

e = (Tege,) T = Nee) e (777D # 1,

(where mp(cy = Nei,)/E(¢,)(T)) for a generator o of Gal(E'((,)/F((,) which is
impossible. Hence, there exists a cyclic totally ramified extension F''/F((,) such that
F"E((,) = E'(¢p). One gets also

NenpieUrpe € Nede,) e Ui ene) 0 F(G) = N, e (N),

and the inclusion can be replaced by equality.

FH i

‘ /E (¢p)
F! E’

F —{-—-E )
\ /(Cp) — (C)
F E

Again, by (1.3) and (1.6) one deduces that F''/F is an abelian extension, and
there exists a cyclic totally ramified extensions F'/F such that F'' = F'((,). Finally
NF"/FUI.F' =N, nfr € NF'/FF" as desired. O

3.3. The correspondence between Witt vectors of fength n and cyclic totally ramified
extension of degree p™ for the case ep = 1 has been established by Kurihara ([K]):
there exists an exact sequence (here there is a canonical prime element 7 g = p)

1 = HY(E,Z/p") e — H'(F,Z/p") = W (F) = 1

with nice functorial properties. This approach is based on study of the sheaf of the
etale vanishing cycles on the special fiber of a smooth scheme over the ring of integers
of F' and of filtrations on Milnor's K{-groups of local rings.
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One can ask, generalizing a question established in [K], what is an explicit description
of the extension L/F corresponding to

Ennr PWL(F)® -+ @ (af;,....a_, JoWn(F)®W,(F) & ...).
The answer is known for n = 1:
L=F(a) with p(a)=aP - a= (@} n})~!

(see e.g. sect.2 Chapt.lll [FV]).
There is a nice answer in the case of char(F') = p for arbitrary n:

L=Fp™ (@, a2, )7 @E, 0,0 ),
where (ug:'j, cen aﬁ"_l,j)‘l(ﬂ;j, 0,...) is an element of W, (F). This has been proved
for the case of quasi-finite residue field by Sekiguchi [S], the same arguements and p-
class field theory of [F1] provide the proof for the case of perfect residue field. Finally,
the arguements in the fourth paragraph of the proof of the theorem show that in the
case of imperfect residue field the situation is the same.

Now let char(F) = 0 and n > 1. Then, first of all, it isn't true that L/F can be
defined as a Witt extension. Some information can be produced by using the theory of
fields of norms due to Fontaine and Wintenberger (see [FW], [W], or sect. 5 Chap. Il
of [FV]):

Consider a tower of fields F; = Fi_,(#;) with 77 = m;_;, 7o = 7p. Let M be
the union of all F;. Then M/F for F asin (1.5} and M = MF is an arithmetically
profinite extension (see [FW]).

Denote by M the corresponding field of norms. The preimage N in Uy m of N is

equal to

bp —ab al)n n
gnﬂ'm(PW (_a])e9 $("’OJ!' A} u-—l;)pw (F p)®w"l( ')e"’)Ulp,M’
where mpy = (m;) is a prime element of M. By the previous considerations N =

Ny ymUr me for a cyclic extension

M =M(p™ (@bl )7 (73 0,--)))-

This cyclic extension corresponds to a cyclic extension M'/AM of the same degree
according to the general theory of fields of norms. Even more, by the theory of field
of norms (e.g. see the proof of Theorem 5.7 in Chapter Il [FV]) it originates from an
extension F!/F; for a sufficiently large 1.

The preimage of Ny Uy g in Uy m coincides with N, since class field theory
is compatible with the theory of fields of norms (for the case of a finite residue field
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see [L] or sect. 6 Chapt. IV [FV]). Hence Np/p Uy p: = NEI/F(N). By using similar
arguements with ones of the proof of the theorem, one can deduce that F}/F; originates

from a cyclic extension F'/F and Npi,pU;  coincides with N.

AT

M———M

Fi—1r—F
F""—;— ]_‘J
amvd
F F

Note, that F! = Fi(p~! ((&g;, L )"l(w,-_j,O,...))). In other words, ex-

' i n—~1,3

tensions F!/F; are Witt extensions for i 2> i(n). For instance, i(1) = 0 (Artin=Schreier

extensions in characteristic 0), and i(2) = 1 (see section 3 of [VZ]).

By using the previous description cone can develop an analogue of Witt duality for

complete discrete valuation fields of characteristic 0.

(Al
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