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Introduction

As is weil known since Deuring's pioneering wo~k [5], there is a elose relationship between

the theory of elliptic curves in positive characteristic p, and the arithmetic of the definite

quaternion algebra H(p) over ~ ramified at p. Deuring's results relied heavily on

Eichler's elass number formula for H(p) [8], proved shortly before by analytical means.

A more geometrical interpretation (and independent proof) of these results has later been

given by Igusa [16], and in particular by Deligne and Rapoport [2]. The main feature is

that supersingular elliptic curves (i.e., special points on a certain modular scheme) are in

1-1 correspondence with the set of left ideal classes in a maximal order of H(p) . That

correspondence may be used to derive properties of the modular scheme from those of

H(p) , but also vice versa.

Now the question anses whether the same type of relationship holds if one replaces

Ilelliptic curves" by objects that in many other respects behave similarly, namely by

IlDrinfeld modules". In this case, instead of H(p), one considers division algebras

D = D(r,.,A,m) of dimension r2 over their center K (a global field of positive

characteristic), and that ramify at precisely two places /l, m of K , with invariants l/r,

-1/r , respectively.

* supported by a Heisenberg grant of DFG
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Let A be the subring of K of elements regular away from m. It turns out that

(definitions to be given below) t1supersingular Drinfeld A-modules of rank r in

characteristic /J-"

(i) have maximal A-orders B in D as their endomorphism rings;

(ii) th~r isomorphism dasses correspond to the left ideal dasses of a fixed A-order B .

In some cases, enough is known about the modular schemes for Drinfeld modules to be able

to count the number of supersingular points. This way, we arrive at dass number formulas

for D(r,/J-,m) that could not be obtained otherwise. This is notably the CaBe if r = 2

[14] , or if K is a rational function field IFq(T) and 11 CD" is the usual place at infinity.

The latter case will be treated in detail. In partiGular, we shall describe the associated

modular scheme and its supersingular locus. The principal result, Theorem 5.13 , is an

explicit expression for the number of ideal classes with a fixed weight. We also obtain the

Mass formula 5.11 I which generalizea Deuring's fonnula

]:1/# (Aut(E)) = (p-1)/24 .

Recall that the surn on the left hand eide is over the supersingular classes of elliptic curves

in characteristic p, and (p-1)/24 is one half the value of the Riemann zeta function at

-1 , deprived from its Euler factor at p.

Besides the relationship with Drinfeld modules mentioned above, our proof reHes on

(a) the transfer principle (3.5)j

(b) the reducedness of the supersingular locus (4.3)j

(c) some calculations (see section 6) special to the case of a polynomial ring A.



-3-

From (b) and (c) we derive the Mass formula, which, combined with (a), yields the

theorem. But note that both (a) and (b) do not depend on specific assumptions on A.

In principle, our Drinfeld module interpretation of the division algebra D should also

allow to determine its type number (= number of conjugacy classes of maximal orders). At

least, Proposition 7.5 yields a geometrical description of the set of types. As an example,

we present the case r = 2 , which is quite analogous with the elliptic curve case. However,

for r > 2 , further research is needed for a numerical evaluation through zeta values and

commutative class numbers.

Some of the results of this paper (e.g. Thm. 5.13) have been announced in the C.R.

note [13].

1. Notations

Throughout, K will denote a function field in one variable over the finite field IFq qith q

elements, of characteristic p. We assume thai (fq is the exact constant fjeld of K. We

fix, onee for all, a place 11 m 11 of K , and let A be the aubring of elements of K regular

away from (1). The placea of K different from (I) are in 1-1 correspondence with the

maximal ideals ("primestl) of A. We will not distinguish between the two conceptsj for /t

such a prime, (f/J. is the fjeld AI/J.· Associated with (1), we have the normalized

absolute value 11 I? I 11 and the degree function tI deg 11 on K defined by

deg x = logq Ix I . The basic example is gjven by
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K = IF (T) a rational function fjeld,
q

(D the uaual place at infinity, and

A = IFq [T] the polynomial ring.

Then deg x agrees with the degree of the polynomial x E A .

For any rEIN and prime .tt, the central division algebra D = D(r,.tt) over K is

determined. up to isomorphism by the foUowing data:

(1.2) (i)

(ii)

(üi)

(iv)

dimK(D) = r
2

inv.tt(D) = l/r

inv (D) = -l/r
(D

invv(D) = 0 , if v *.tt,CD'

(" inv " is the loeal invariant at the place v of K, cf. [17].) We caU these algebras ofv

Drinfeld typej as we will see, their ideal theory is rehited to Drinfeld A-modules.

(1.3) An order in D wiU be a maximal A-order in D, Le., a aubring B of D that (i)

contains A; (ii) is finitely generated as an A-modulej (iii) satisfies KB = D , and is

maximal with these properties. A left ideal of B is an A-lattice 0 f 4 (D that satisfies
, *

B 4 ( ~ . Two left ideals ~, 4' are in the same class if there exists f E D such that

~' = .I f . The right order of ~ is B 4 = {f E D 1.1 f ( 4} . For the convenience of the

reader, we coUeet the most important properties (which are weil known and hold in much

greater generality):

(1.4) (i) the type number t(D) of conjugacy classes of orders in D ia finite.

(ii) Fix an order B in D. The number of left ideal classes of B ia finite and independent

of B , therefore an invariant of D . It ia called the dasS number h(D).
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(iii) Each order B I in D is the right order of B J' of some left ideal J' of B. In

particular, t(D) ~ h(D) .

*All the orders B I in D contain the unH group IF q of A , which "generically" is

the full unH group of B'. We define the weight w( L) of a left ideal J' of B as

(1.5) Finally, we let 'K(s) be the zeta function of K [18]. It isa rational function

P(q-B)/(l--q-B)(l--q1-B) in q-B . The polynomial P(X) has integral coefficients, degree

2g (where g is the genus of K ), and satisfies P(l) = class number of K . For a finite set

S of places of K , we put

( (s) = TI (1-q-{deg v)s), (s)
K,S vES K

In practice, S will be {,A,m} I 80

(1.6)

where d and d
(J)

and S aB above,

-ds --d s
, (s) = P(q-B) (1=;9. )(1-q m)
K,S (l--q-5)(l-ql-S)

are the degrees of tf and m, respectively. Thus for the example (1.1)
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2. Review oI DrinIeld modules

In positive characteristic p, the additive group scheme Ga has non-trivial module

structures, due to the existence of non-scalar endomorphisms. More precisely, let T be
P

the Frobenius endomorphism x~ xP . For any field L o{ characteristic p J the ring o{

L-endomo~hisms EndL(Ga) is the non-eommutative polynomial ring L{ T p} with the

commutator rule T x = XPT {or constants x E L . We put T = T = T
f ,if q = p{ .

p P q P
Let now L be equipped with an A-structure 7: A --+ L ,Le., L is an extension oI K or

of some IF!" .

(2.1) A Drinfeld A-module of rank r over L is a structure of A-module on Ga IL ,

given by a ring homoIDorphism

n...........-.t/Jn

(necessarily taking its values in L{ T} ), such that for 0 *n E A, tPn = l ~(~,n)Ti , the

following conditions are satisfied:

(i)

(ii)

go( tP,n) = 7(n)

deg
T

t/Jn = r· deg n

The characterlstic of ; (or of L) is !'" if 0=ft ( L J and m if K ( L . Morphisms of

Drinfeld modules are morphisms of group schemes compatible with the A-actions. We put

EndL( t/J) for the ring of L-endomorphisms of t/J, Le., for the centralizer of tP(A) in
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L{ T} . Further, for 0 *n E A , we denote by n; the seheme in A-modules ker rPn .

Conditions (i) and (ii) imply that it is flat and finite of degree Inl r . For an ideal n of

A , we put n' = n n; ,n running though n. 1t is etale if and only if n is relatively

prime with the charaeteristie of L. In- this latter ea8C, the abstract A-module of points of

, over the algebraic closure L of L is isomorphie with (AI n)r . Also, one may definen

Drinfeld modules, morphisms, the schemes rp •.. over arbitrary A,ehemes. Thus onen

has level struetures, modular sehemes ... for Drinfeld modules. For all of this, see [6] I

[11], [1].

2.2. Example: If A = IF q [T] as in (1.1), a rank r Drinfeld A-module f/J is determined

by 'T' whieh must have the fonn

with the single eondition Ar t- 0 .

(2.3) Let now I" be a prime of A. A Drinfeld module rp in eharacteristie I" is called

Bupersingul.ar if /l; ia loeal, or equivalently , /" rp(L) = 0 . This is also equivalent with

End( rp) being projeetive oI rank r2 as an A-module [7] [12]. Therefore, rank one

Drinfeld modules are always supersingular. Also, in the situation 01 (2.2), the module f/J in

eharaeteristie (T) determined by f/JT = Ar T
r is s.s.. All the 8.S. Drinfeld modules in

eharacteristie I" may be defined over.some finite extension L 01 the "prime field ll IF1'"

If m ia the order oI I" in the dass group Pie A oI A I one may aetually take the

extension L of IFI" 01 degree m ' = m· r ([12], Prop. 4.2). In particular, the set

E(r,,tt) of IF/,,--isomorphism classea of supersingular Drinfeld modules oI rank r is finite.

The connection with D(r,l") is through the next theorem, which is similar to

Deuring's theorem on elliptic curves:
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2.4. Theorem ([12], Theorem 4.3): Let (6 be a supersingular Drinfeld module of rank r

over the A-field L of eharaeteristie ji, and suppose that L is large enough such that

EndL(~) = End:r;(;) .

(i) The K-algebra End(~) ~ K is isomorphie with D(r,jl).

(ii) B := End(~) is an order (i.e., maximal) in End(6) ~ K .

(iii) There is a eanonical bijection !rom the set LI(B) of left ideal c1asses of B to

We briefly deseribe the bijeetion: For bEB, let b(6 be the subscheme ker b of Ga'

and for a left ideal 4 ( B, fl = n b~ (b E 4) . The lat ter is the kerne! o~ some

morphism ~ ---4;4 of Drinfeld modules, where ~tl is uniquely determined up to

isomorphism. Moreover, ;4 is supersingular, its class depends only on the left ideal c1ass

of 4, and the indueed map (~...-.-..... (;4) from LI(B) to U:r,p) is bijeetive.

Thus LI(B) may be deseribed through ~r,~). Our strategy will be to identify

U:r,ji) with a eertain set of geometrie points on a suitable modular scheme. Classieal

geometrie arguments will then lead to the determination of its eardinality. The

corresponding modular sehemes are sufficiently well known for that purpose in the eases (at

least):

(a) r = 2 ,

(b) A = IFq [T] .

In case (a), i.e., if D is the quaternion algebra ramified in /t and m, all the ingredients

for a diseussion ala Deligne-Rapoport are available [10], [11]:

Drinfeld module analogues MO(/t) of Hecke modular eurves with conductor jl ;

strueture of the special fiber (only ordinary double points on MO(jl))( Irjl , and

these agree with the supersingular points);

calculation of the genus of MO(fl) .

Some complications arise, however, from the existence of non-principal ideals in A. Using
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this approach, one ean prove the following result (for details, see [14]):

2.5. Theorem: Let B an order in D = D(2,,ti) .

(i) The weight w( L) 01 a left ideal tI of B is 1 or q+l. Let h1 (h2) be the number

01 ideal classes (4) with w(.I) = 1 (w( L) = q+l) , respectively.

(ii) 11 at least one of the degrees d of ~ and dm of m is even, we have

If d and d are odd, we have
m

d d
Q

_ (q -1)(q m_1)
- 2'

(q-l)(q -1)

(iii) In any'ease, the mass formula holds:

2: w( J)-1 = dmP(I)P(q)Q

LELI(B)

Note that by (1.5) and (1.6), d P(l) is the order of the dass group Pie A , whereas
m

P(q)Q = 'K S(-l) . Dur mass Iormula therefore "agrees tl with Deuring's (see also (5.11)).
I

In case (b), if the rank r is strietly greater than two, th~se arguments do not apply.

In what folIows, we will develop what is needed to handle that case.
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3. Transfer principle

In this section, all the Drinfeld modules ~ are defined over the A-field L = IF~ ' and

End( 4J) = EndL( 4J) . The automorphism group Aut(;) is the finite subgroup of elements

*of L that commute with all the operators !Pn , n E A . As is easily seen, this is the

multiplicative group of some extension of !Fq of degree s , say. We call s = s( 4J) the size

and w = w(4J) = (qS-l)/(q-l) the weight of 4J. Since Aut(4J) generates a commutative

subfield of End( 4J) , it follows that

(3.1) s(~) is a divisor of r = rank( t;6) •

(3.2) The map .11---+ f/JL of (2.4) induces an isomorphism of the right order B.I of .I

with End( ; ci) [12, 3.8]. In particular, the unit group (B.I)* is isomorphie with

Aut( ; ci) . Therefore, w( J) aB defined in (1.4) agrees with w( f/J.I) .

3.3. Lemma: The size of a supersingular Drinfeld module ; over L is always relatively

prime with d and dm . (Recall that d and dlJ) are the degrees of ~ and m,

respectively.)

Proof: By ~sumption, the constant field extension Ks of K of degree s = s( f/J) embeds

into D = End(;) ~ K . As is well known [17], this means that the ramified places ft

and CD ext~nd uniquely to Ks . This in turn implies (s,d) = 1 = (s,d
m

) .

In what follows, t will be a divisor of s = size( f/J) . Let At and Kt = Quot(At ) be the

constant fjeld extensions of degree t of A and K, respectively. As stated above, there
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are unique extensions to Kt of /t and m, denoted by ~t and m. Having elosen an

embedding ·of IF~t = At/.ttt into L, the rank r Drinfeld A-module (I: A ---+ L{ T}

has a unique extension to a Drinfeld At-module ,': At ---+ L{ T} . Since fJn = ,~

(n E A) ,and IF t is the exact constant fjeld of Ki '
q

(3.4) (i)

(ii)

(iii)

r ' = rank(,/) = r/t

s1 = size( ~ I) = sIt

" is supersingular if and only if ; iso

We put I;(r,,,A,q,s) for the set of L-isomorphism elasses of supersingular Drinfeld

A-modules 'of rank r and size s over L = [F~ • Thus ~r,~) is the disjoint union of the

I;(r,~,q,s), B running through the divisors of r coprime with d and d
m

. FurtherIDore,

the lift t/J~ (11 defines a map

3.5. Proposition: tt ia bijective.

Proof: The inverse of tt is given by restricting ;1 to A.

Clearly I the decomposition according· to sizes and the above 11 transfer principIe11 also

apply to the study of ideal classes of D(r,~). It would be interesting to know to what

extent this generalizes to division algebras not necessarily of Drinfeld type. In our case J

considering simultaneously A and all its extensions At, we will TIse an induction

procedure to calculate
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u(r,,tt,q,s) = # E(r,~,q,s) .

Let Mr be the coarse modular scheme for rank r Drinfeld modules in characteristic ~

[6] [1] . 1t is the :6ber product with L = Ir~ of ihe A-fieheme called Mr(l) in [11].

The L-valued points of M r eorrespond bijectively to the L--classes of rank r Drinfeld

modules. Recall that d is the degree and m the order of ~ in Pie A ,i.e., ,ttm = (f)

with f E A . For i = 1. .. r-1 , let

idm(4.1) Hi(;) = eoefficient of T in the polynomial ; f in T.

This ia a modular form of weight qidID_1 ([15], [11]), the i-th Hasse invariant.

(Clearly, it depends on the choice of the generator f of ~m, but this doesn't matter).

We have the trivial equivalencea

(4.2) rdm; aupersingular ~ ;f a monomial const.T in T ~ Hi(;) = 0 ,

i = 1,... ,r-1 .

Therefore, we de:6ne the suoersingular locUB ~ = ~r,~) in MI as the zero loeus of the

r-1 forms Hi(;). It ia a finite subseheme of Mr with the set ~r,~) of (2.3) as its

L-valued points. The double use of the symbol ~r,~) ia justified by the next proposition.

4.3. Proposition: The scheme ~r,ti) ia redueed.

Proof: This ia more or less a restatement of (a special case of) the resulta given in [6],
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sections 4 and 5. We show how (4.3) follows from loc. cit., using the terminology gjven

there. Also, the next few referenees are with respect to loe. cit .. Let ~ eorrespond to

x E~r,~)(L) , and let , be an infinitesimal. deformation, i.e., a Drinfeld module over the

dual numbers L [€] ,where €2 = 0 . Now the deformation theory of ; agrees with that

of its .,A-divisible module (Prop. 5.4), and, sinee tP is supersingular, with that of its

formal A.,A-module (Prop. 4.5, A.,A = completion of A at /t). Let 1r E A be a prime

element, and write ; ,,, for the corresponding formal module operators derived from
1r 1r

;, ", respectively. The supersingularity condltion translates to ~ 7( = eonst. rrd + higher

terms. Proposition 4.2 implies that " is isomorphie with som~ formal module , given by

(t. E L) .
1

Let " eorrespond to the L [€] -valued point ~ of M
r

, and suppose that

f\J

X ractors through ~r,/t)

(i.e., " supersingular, too). If m = 1 , we may take 1r =f, and (*) says ti = 0 ,

i = l ...r-l . It ia not hard to see that also for m > 1 , (*) implies the vanishing of the ti .

That means, ea.ch deformation ~ of x in ~r,/t) ia eonstant, whieh gives the assertion.

4.4. Remark: The analogous result in the elliptie eurve ease states that Deuring's

polynomial

(p f 2 prime, s = (p-l)/2)
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has only simple roots (see [16]). It is also equivalent with the fact that the two irreducible

components of the Hecke modular eurve XO(p) )( [Fp intersect transversally in

supersingular points [2].

5. The ease pf a polynomial ring

From now on, we assume that A is the polynomial ring IFq [T] . Let the prime ideal /t

be generated by the monic irreducible polynomial p of degree d. ( p = ehar IFq will not

further be used.) All our Drinfeld modules will be defined over L = IF"A . Two such, r/J,

;1 , given by the eoeffcients <1\, ~ i of ;T' ;T' respectively (eompare (2.2)), are

*isomorphie if and only if there exists e E L such that

(5.1)
i

A~ = cq -1~. (i = l. ..r = rank(;) = rank(;/)) .
1 1

Now eonsider~. as an indeterminate of weight e. = (qi_1)J(q-l) . Let 'M" = Mr be the
1 1

scheme Proj L [Al""'~r] and M = Mr
c • Jl the open subscheme defined by

~r :f. 0 . From (5.1) it follows that M ia the modular seheme considered in the last section.

(The "natural" weight for the indeterminate A. would be ql_l. Dividing through the
1

ged q-l doesn't of course change the resulting M.) Later on, we will need the following

observation:

(5.2) For natural numbers i, j , we have

i Ij M (qi_1) I(qj-1) M e·1 e·
, 1 J
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This implies that the greatest common divisor of ei and ej is ek , where k = gcd (i,j) .

Next, we specify the supersingular locus E = E(r,tt) on M. If rP is given by

J. = (~l""'~r) E L
r

, i.e.,

tPp may be written

where ~(.d) depends polynomially on d. More precisely, ~Cd.) is an isobaric polynomial

of weight ei , and

(5.3)

of weight f. = (qid_1)/(q_l) , is the i-th Hasse invariant.
1

5.4. Lemma: The Y-locus VW Hl'... ,Hr_ l ) of H1,... ,Br_ 1 is contained in M.

Proof: Let A= (Al""'~i'0""'O) EL
r

with ~i f 0, 0 < i < r. Then Bi(.!) is the

leading coefficient of tPp ' where tP is the rank i Drinfeld module defined by .!.

Therefore, Hi(.J.) f 0 , i.e., VWBl' ...,Hr_l'~r) = 0.

Let N be the projective (r-l)-space over L with projective coordinates tl' ... ,tr ,

e·
and let 1r: N ---+ Y be defined by r(t l : ... :tr) = (Al: ... :~r) ,where ~i = t i

1
. We

further let jJ(eil be the group of ei-th roots of unity in L,
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* *G = TT J.l(e.), G = G x J4.e) .
l~i<r 1 r

G acts effectively on N through (..ci")(.. :ei: .. ) = (.. :ciei: .. ) , and !" is the associated

quotient morphism. If N = Spec L [tl'".,tr_ 1l denotes the complement of vwtr) in

* *N , the quotient N = N/G is the affine space Spec L [.tl1'".,.tl r_ 1] , and

* ~. *
where c E J.l(er) acts on N by c(.. ,.tli,.. ) = (.. ,c 1~\, .. ) • Define the schemes ~ and ~

aB the fiber products

* *E = ~ x N
M

respectively. Hence in the diagram

~ c ~N c ~N

1* 1* 1:l"1 }G*
* *(5.5) E

red
c ~~ c ~N c ~ N/G

1 1 1:l"2 } J' (er)

~ c ~M c ~Jl

all the rectangles are cartesian, where the upper (lower) vertical arrows are quotients by

*G (J.l(er)) , respectively. In what follows, "points" of these schemes are points over

L = IF;ß'
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*5.6. Lemma: Let x E N (L) and tP be the Drinfeld module associated with ""2(x). The

stabilizer of x in p(er) has order w( tP) .

Proof: Let x = (Al' ... ,Ar- 1) . Then

8 = s(tP) = max{t IAi =F 0 ~ t li, i = 1. ..r-1}. The

e.
{c Ep(e ) IA. =F 0 =* C 1 = 1, i = 1...r} , which has orderr 1

latter equals w( tP) , as follows from (5.2).

w(tP) = (qS-1)/(q-1) with

stabilizer ia the aubgroup

*In particular, ~ is in general not reducedj from (4.3) and the above we see that its points

*occur with multiplicity w(x) = w( tP) . Next, for i = 1...r-1 , we define the functions Bi

*on N by·

* * *It ia clear that their common zero locus X = V *(H1,···,H ·1) is contained in ~ and
N r-

*agrees set-theoretically with ~ .

* *
5.7. Proposition: X is the reduced scheme ~red underlyjng ~ .

1t has. to be shown that X is reduced. Since the proof is somewhat technica1 and

doesn't connect with the present material, it will be given in the next section. Note

however that the reducedness in points of size 1 results direct1y from (5.6).

Finally, we define the polynomial Iti (i = l ...r-l) by
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. ej ~ id
where .l. = t. . Then .tI.. is homogeneous of degree f. = (q -1) / (q-1) , and from (5.4)

J J 1 1

and (5.7),

1ts degree (number of points counted with multiplicity) is ther,efore given by

(5.8) deg(~) = n fi .

1~i<r

On the other hand, (5.6) implies that the multiplicity of y E~ in the fiber

*~ )( N = ~ x * N is w( 'if{y)) times its multiplicity in ~. Together with (4.3), this
M N

yields

(5.9) deg(~) = deg(~) l w(x)-1

xE~

with

deg(x-) = TI ei
1~i~r

Let r1 be the largest divisor of r coprime with d, so the possible sizes of supersingular

rank r Drinfeld modules over L are the divisors of r1 . Putting 8 = 8(r,~,q) for the

measure of ~ = ~r,tf) ,
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8 = (q_1)-1 1: w(x)-l = l q(r zf ,%8)

xE~ si r
1

q-1

and comparing with (1.6), we arrive at the

5.11. Mass formula:

Since this depends only on d = deg t! ' we will also denote it by 8(r,d,q) .

5.12. Remark: The number 8 is in fact the Haar measure of a certain adelic double coset

associated With the algebra D [3]. The ward "mass" is an erroneous but commonly used

translation of the german word "Maßll = "measure" [9].

Now it ia easy to calulate the class number q(r,,.A,q,s). Recall it is the number of classes

of supersingular Drinfeld A-modules of rank r and size s in characteristic jt, or,

equivalently, the number of left ideal classes of size s in a maximal order B in D(r,,ti).

Let ,u(i) be the Möbius function: ,u(i) = (_l)n if n is a product of n different prime

factors, and ,u(i) = 0 if a square divides i.

5.13. Theorem: u(r,jt,q,s) = u(r,d,q,s) depends only on the degree d oI jt. It is given by

8 1 qjd-l
u(r,d,q,s) =7 l ,u(i) TT

q-1il(r1/s) O<j<r qLl

j:O(is)
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Proof: First note that in the situation of (3.5), we have

t
u(r,~,q,s) = u(r/t,~t,q ,s/t)

If r1 = 1 ,only s = 1 contributes to the measure in (5.10), so (5.11) gives the result. Now

let r1 > 1 . For s > 1 , the inversion formula reads

1 = - 1: Jl(i) .
1f i Is

Therefore,

8(r,d,q) - u(r,,,A,q,l)/(q-l) = l
11s 1r1

u(r, ~ ,q,8)
q8_1

q(r, ft ,g,s)
g8_1

= - 1: Jl(i) 1:
1f i lr1 81 r1

s::O( i)

u(r/i '!'- i ,gi ,s/i)

ql ( s7l)_1

= l Jl(i)El(r/i,tiiJqi), Le.,

11 i 1r1

u(r,,,A,q,1) = (g-l) 1: Jl(i)B(r/i,d,qi) .

i 1r 1
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The right hand side depends only on the degree d of ~. Hence (5.11) yields the wanted

formula for s = 1 and, tagether with (*), for general s.

6. Proof of (5.7)

Let ,p be the Drinfeld module over L = [F~ defined by

where ~O = r(T) and ~r = 1 . Write

Then go = ;(p) = 0, ~d = 1 and ~d = Hi (i = l. ..r-l). We will show the

nonsingularity of the functional matrix

[ ; J.. _ in super llpur jOints A=)
J 1,J - l. ..r-l

First, we have ,pp 0 ,pT = tPT 0 t/Jp in L{ r} . Equating the .rk-<:oefficients yields

(6.1)
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k
Here, k is any non-negative integer I [k] is the residue of Tq -Tin IF/I CL and

~i = 0 if i ~ {O, ... ,r}, ~ = 0 if i ~ {O,... ,rd} , respectively. Note that

(6.2) [k] = 0 if and only jf k is divisible by d.

We abbreviate Ogkl 8~j by ak,j' Applying 81 8~j to (6.1) gives

1:
qn qj

[k] ak . + a '~k - gk . = 0,J n,J -n -J
n<k

since go == 0 . Now, if J. is as above and supersingular, gk-j = 1 if k-j = rd and

gk . = 0 otherwise, i.e.,-J

o
(6.3)

~ qn
[k] ~,j + L &n,j ~k-n - 1

k-r<n<k

(k "* rd+j)

(k = rd+j) .

Put for the moment h. = ~d+' .I or I-r

6.4. Lemma: Let 0 < i,j < r . Then

[
Oh. ] 0-"f (~) -

J 1

In particular, the matrix is nonsingular.

(j < i)

(j = i) .

Proof: Since ~ = 1 , (6.3) gives a linear recursion for ak . in terms of a . withr -r,J n,J

n > k-r. Trus shows that ak . = 0 aB long as k > rd+j, and ak . = 1 for-r,J -r,J
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k = rd+j . Putting k = rd+i gives the assertion.

6.5. Lemma: Consider ~. as indeterminate and the gk as elements of the polynomial
J "

ring L [~l'''''~r-l] . If id ~ k < (i+l)d t gk lies in the ideal generated by Hl'. OolHi .

Proof: If k = id, gk = Hi . If k > id, [k] =F 0 by (6.2). Now use (6.1) and induction.

End of the proof of (5.7): By the above, the functions hi may be written hi = 1: ui,kHk

k

with some (r-l,r-l)-matrix (ui k) in L [~l''''J~r-l] . Thus
J

Evaluating at a supersingular .J. (Le., where the Hk vanish) shows that the nonsingular

matrix (ahiJIJ~ j)(JJ is the produet of (ui,k)( ~ ) and (8~ j)(A) . Hence the lat ter is aIso

nonsingular.

Again, the result generalizes the squarefreeness of Deuring's polynomial (see (4.4)).

7. Examples and Complements

Reeall that ~r,~,q,s) eorresponds bijectively to the subset of those left ideal classes (J')

of a fixed order B in D = D(r,~) for whieh w( J) = (qS-l)J(q-l) , or, equivalently, for

whieh the order B 4 has a unit group isomorphie with (lF s)* . In such situations, one
q

usually doesn't know which unit groups actually oeeur. In our ease, the answer is given by
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7.1. Corollary: Let d = deg.ti > 1 . Then for each divisor s of r1 , there exists a

*(maximal) A-order B in D(r,ti) whose unit group is isomorphie with (IF ) .
qS

Proof: From the above, we have to show that u(r,ji,q,s) is positive. This follows by an

easy estimate from (5.13).

7.2. Example: In the missing case d = 1 , our formula gives u(r,.ti,q,s) = 0 if s < r and

1 if s = r , so the class number h(D) is one. Of course, this ean be seen directly, using a

weIl knOWD construction. Assume, without restrietion, that /t is the ideal (T). Then D

may be constructed as the full quotient ring B e K of B = L{ T} J where L is the

extension o.f degree r of IFji = IFq . A ia embedded in B by rnapping T to T
r , which

makes B into a projective A-module (left or right) of rank r2 . Moreover, B is a

maximal A-order in B e K . Sinee L{ T} is left euclidean, its dass number is one.

7.3. Example: Let rl = l, i.e., each prime divisor of r divides d. Then

h(D(r,,ti)) = (q-l)8(r,,ti,q) = n 'K S(-4) .,
l~i<r

7.4. Example (see also [4]): If r ia prime then

h(D(r,~)) -
(q-l)8(r,,A,q) (d == O(r))

(q-1)B(r,ji ,q)+(qr-q)/(qr_1) (d ~ O(r)) .

In principle, the Drinfeld module description of D(r,;A) also allows the determination of

the type number. Namely
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7.5. Propo~ition ([12], Prop. 4.6): (i) Eaeh element of ~r,.,tt) is isomorphie to one

defined over the extension L of degree r of (f.,tt . (ii) The bijeetion of (2.4) (iii) induces a

bijeetion of the set of conjugacy classes of maximal orders in D with the set of orbits of

~r,~) nnder Gal(L I(f~).

This latter set may be studied geometrieally, using the deseription give~ in the last section.

Its cardinality is related to class numbers of certain abelian extensions of K. We limit

ourselves to give the result in the least complicated case where r = 2 and char(1Fq) f 2 .

Here, D(r,~) ia the quaternion algebra over K ramified in .,tt and m.

7.6. Theorem ( [12], see also [10]): Let the characteristic be different !rom 2. The type

number of D = D(2,~) is given by

(d odd)

(d. even) .

Here, hl' h2, h are the dass numbers of the rings of A-integers in the quadratic field

extensions of K , namely:

the two extensions ramified in ~ and m j

the unique extension ramified in ~ and inert at m .

Note that i(D) is less stahle than h(D) in that it depends effectively on /t and not only

on its degree d.

(7.7) In determining the dass number of D, our basie ingredients were the transfer

principle 3.5 and the mass formula 5.11 (or 2.5. (iii)). It seems possible that one can prove

similar mass fonnulas in the general case, where A is any ring as described in section 2,
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Le., a func~ion ring with one place at infinity. Having both ingredients available, the proof

scheme of Thm. 5.13 could be applied. Also, the transfer principle might turn out to hold

for a larger dass of algebras D than those of Drinfeld type. Together with the properties

of the zeta function of D [3], [4], this would yield a method to attack the dass number

problem for that larger dass.
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