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Abstract. We prove that continuity properties of bounded analytic functions in bounded
smoothly bounded pseudoconvex domains in two-dimensional affine space are determined by
their behaviour near the Shilov boundary. Namely, if the function has continuous extension to
an open subset of the boundary containing the Shilov boundary it extends continuously to the
whole boundary. If it is e.g. Hölder continuous on such a boundary set, it is Hölder continuous
on the closure of the domain. The statements may fail if the boundary is not smooth.

1. Introduction

It is a classical observation that properties of analytic functions can be often directly read off from
respective properties of their boundary values. The close relation between functions and boundary
values has played a big role in complex analysis and its applications, for instance in operator
theory modeled on function spaces, scattering theory and others. One side of this relation, the
idea to study objects by considering canonical extensions, has been successfully applied in many
other situations, as harmonic extension of functions, extension of elements of Kleinian groups to
hyperbolic space or a respective recent construction in conformal geometry. One of the aspects
of the relation of properties of analytic functions and their boundary values is comparison of the
respective continuity properties.

Investigation of problems of this kind was initiated by a classical theorem of Hardy and Littlewood
about contour and solid Hölder continuity. Recall that a function f on a subset E of R

n is Hölder
continuous of order α ∈ (0, 1] if there is a constant C such that

(1) sup
z,z′∈E

|z−z′|<δ

|f(z)− f(z′)| ≤ Cδα.

The smallest constant C for which (1) holds is called the Hölder seminorm of f .

For a domain G in Cn (n ≥ 1) we denote as usual by A(G) the algebra of analytic functions in
G which extend continuously to the closure Ḡ. The result of Hardy and Littlewood concerns the
case when G equals D, the unit disc in the complex plane [7].

Theorem HL. If f ∈ A(D) and its restriction to the unit circle is Hölder continuous of order α,
α ∈ (0, 1), then f is Hölder continuous of the same order in the closed disc D̄.

It was proved later by Sewell [15] that actually the Hölder seminorms of the function on D̄,
respectively on ∂D, coincide.

In the sequel more general results on contour and solid continuity were proved. Results were
obtained for very general domains in the complex plane and arbitrary quality of continuity instead
of Hölder continuity. The quality of continuity is measured by the modulus of continuity. We call
a continuous non-negative, non-decreasing function µ on the positive half-axis [0, +∞) a modulus
of continuity if µ(0) = 0 and µ is subadditive, i.e.

µ(δ1 + δ2) ≤ µ(δ1) + µ(δ2) for δ1 ≥ 0, δ2 ≥ 0.
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Note that for any continuous function g on a compact convex set E ⊂ Rn the function µg(δ) =
sup

z,z′∈E
|z−z′|<δ

|g(z) − g(z′)| is a modulus of continuity.

For any continuous function f on an arbitrary compact subset E of Rn there exists a modulus of
continuity µ such that

(2) sup
z,z′∈E

|z−z′|<δ

|f(z) − f(z′)| ≤ µ(δ) for all δ ≥ 0.

Indeed, it is enough to extend f to a continuous function on a large closed ball and apply the
preceding argument.

For unifying statements it will be often more convenient to use the following more general no-
tion instead. Call a non-negative, non-decreasing function µ on the positive half-axis [0, +∞) a
generalized modulus of continuity if

(3) µ(nδ) ≤ nµ(δ)

for all integers n ≥ 0 and δ ≥ 0. We do not require here that µ(0) = 0. If

(4) sup
z,z′∈E

|z−z′|<δ

|f(z) − f(z′)| < Cµ(δ) for all δ ≥ 0

for a generalized modulus of continuity µ, then we call f µ-continuous on E.

The more general point of view allowed to understand the underlying mechanism. It has a local
and a global aspect. The local aspect is of potential theoretic nature and based on the existence
of local barrier functions. Local results hold for domains which are at a given point fat enough
in a potential theoretic sense. The global aspect is based on the maximum principle for analytic
functions.

The problem becomes more subtle for analytic functions of several variables. Moreover, natural
questions arise which do not exist in dimension one. Already the afore mentioned global aspect is
more subtle for analytic functions in multi-dimensional domains. Indeed, for a bounded domain
G ⊂ Cn, n > 1, any function in A(G) attains its maximum on the Shilov boundary S(G) of
the domain (The definition of Shilov boundary will be recalled below). Notice that S(G) may
be considerably smaller than the boundary ∂G of the domain. The question arises whether the
continuity properties of functions in A(G) can be read off from those of their restrictions to a
much smaller set than the boundary of the domain.

Moreover, the question arises whether one can weaken the a priori requirement f ∈ A(G). Will
an analytic function in G be automatically in A(G) if it extends continuously to a smaller subset
of the boundary? This question has no analogue in dimension 1. Here are the precise questions
which emerge from a paper of Glicksberg [5] although they are not asked there explicitly. We
restrict ourselves to the case n = 2.

Question 1. For which bounded domains G ⊂ C2 any continuous function on G ∪ S(G) that is
bounded and analytic on G extends to a continuous function on the closure Ḡ?

Question 2. For which bounded domains G ⊂ C2 the previous question has an affirmative answer
if S(G) is replaced by any relatively open subset V of ∂G with V ⊃ S(G)?

Glicksberg himself gave sufficient conditions on a domain to ensure a positive answer to the
question 1. Unfortunately, the conditions are difficult to verify and are only sufficient, which
motivates the search for more geometric criteria. For a statement of his theorem we refer to the
original paper [5].

In [9] it is proved that for regular Weil polyhedra in C
n, n > 1, question 1 has a positive answer.

Glicksberg’s condition needs not to be satisfied for regular Weil polyhedra. Weil polyhedra are
defined in the following way.
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Let fj , j = 1, . . . , N be analytic functions in an open subset U of Cn. Suppose the set G
def

= {z ∈
U : |fj(z)| < 1, j = 1, . . . , N} is connected and relatively compact in U . Then G is called a
Weil polyhedron. Weil polyhedra are pseudoconvex domains. The polyhedron is regular if the
level sets {|fj | = 1} of any k-tuple (k ≤ n) of different functions fj intersect in general position.
Note that polydiscs are regular Weil polyhedra. Moreover, e.g. polynomially convex sets can be
approximated from the outside by regular Weil polyhedra. The Shilov boundary of regular Weil
polyhedra has a simple description (see [2]). It has real dimension n.

In [9] it is also shown that for G being any regular Weil polyhedron and µ being any generalized
modulus of continuity, µ-continuity on S(G) for a function as in question 1 implies µ-continuity
of the function on the whole closure Ḡ of G.

On the other hand Glicksberg showed that for the “Hartogs triangle” G
def

= {(z1, z2) ∈ C2 : |z1| <

|z2| < 1} ⊂ C2 even the answer to question 2 is negative. The Hartogs triangle does not have
smooth boundary. It turns out that this is the only obstruction for a positive answer to question
2. We prove here the following theorem. The formulation was proposed as a conjecture in [10].

Theorem 1. Let G ⊂ C
2 be a bounded pseudoconvex domain with C∞ boundary. Let V ⊂ ∂G

be relatively open and contain the Shilov boundary S(G). Then for any continuous function f on
G ∪ V that is bounded and analytic in G the following two statements hold.

1. f extends to a continuous function on the closure Ḡ.
2. If f is µ-continuous on V for a generalized modulus of continuity µ then f is µ-continuous

on Ḡ. The respective µ-seminorms are related by a multiplicative constant depending only
on G and V .

It follows that if in addition f is of class C∞ on G ∪ V then f extends to a C∞ function on the
closure Ḡ.

We do not know whether in theorem 1 one can replace the neighbourhood V of the Shilov boundary
by the Shilov boundary itself. We do not know either in which way the latter would be related
to the still open problem whether biholomorphic mappings between bounded smoothly bounded
pseudoconvex domains have smooth extension to the boundary.

2. Proof of the theorem

We start with recalling some known results and notions. The first two statements extract the local
and the global aspect of the relation of solid and boundary continuity of analytic functions. They
hold in arbitrary dimensions. We refrain from formulating the more subtle results that are known
in dimension one and refer to the original literature (see e.g. [14]).

We start with the following global statement.

Lemma I. Let G be a bounded domain in Cn and let f ∈ A(G). Then for every δ > 0 the
supremum

sup{|f(z)− f(z′)| : z, z′ ∈ G, |z − z′| < δ}

is attained when one of the points z or z′ is contained in the boundary.

The lemma is well-known (see for instance [14]). For convenience of the reader we present the
short proof.

Proof of the Lemma. Denote z′ = z + h. Both points z and z + h are contained in G iff z ∈
G

⋂

(G− h). Fix the complex vector h and apply the maximum principle to the analytic function
z → f(z + h)− f(z) in G

⋂

(G−h). Since the boundary of the set G
⋂

(G− h) is contained in the
union of the boundaries ∂G and ∂(G−h), the supremum sup{|f(z+h)−f(z)| : z ∈ G

⋂

(G−h)} is
attained if either z ∈ ∂G or z ∈ ∂(G−h). The second inclusion is equivalent to z ′ = z+h ∈ ∂G. �

Here is a version of the local statement suitable also in the multi-dimensional setting. In the multi-
dimensional setting it can be obtained from one-dimensional results by slicing. For an outline of
the proof see [9].
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Theorem I. Let G be a domain in Cn with z ∈ ∂G. Assume that there is an open frustrum of
a cone K with vertex at z lying in Cn\Ḡ. Let µ be a generalized modulus of continuity. Then
there exists a constant C > 0 depending only on the size of the cone, such that for any function
f ∈ A(G) the relation

sup
z′∈∂G

|z−z′|<δ

|f(z) − f(z′)| ≤ µ(δ) for any δ ≥ 0

implies the relation
sup
z′∈Ḡ

|z−z′|<δ

|f(z) − f(z′)| ≤ Cµ(δ) for any δ ≥ 0.

The lemma and the theorem imply the statement on the relation between solid and boundary
continuity for a wide class of multi-dimensional domains, in particular for those with C2 boundary.

Recall that the notion of the Shilov boundary was introduced in the general frame of Banach
algebras. Here we consider only the case of the algebra A(G) for an arbitrary domain G ⊂ Cn. In
this case the Shilov boundary S(G) is the intersection of all closed subsets S of Ḡ for which

|f(z)| ≤ max
S

|f | for all z ∈ Ḡ and for all f ∈ A(G).

A set S with the described property is called a boundary for A(G). Note that ∂G is a boundary,
hence S(G) ⊂ ∂G. Moreover S(G) is a boundary itself, i.e.

|f(z)| ≤ max
S(G)

|f | for all z ∈ Ḡ and for all f ∈ A(G).

For more detailed information we refer to the book [4].

Bremermann [2] initiated research on a geometric characterization of the Shilov boundary. He
conjectured that the Shilov boundary S(G) of a pseudoconvex domain G in Cn with boundary of
class C2 is equal to the closure of the set Ψ+(G) of strictly pseudoconvex boundary points. The
first theorem in this direction was proved by Rossi.

Theorem II. [13] If G is a bounded pseudoconvex domain in Cn with C2 boundary and Ḡ admits
a Stein neighbourhood basis, then

S(G) = Ψ+(G).

For one of the inclusions it is enough to require that the domain has C2 boundary.

Theorem III. [1] Let G be a bounded domain in Cn with C2 boundary. Then the Shilov boundary
is contained in the closure of the set of strictly pseudoconvex boundary points, i.e.

S(G) ⊂ Ψ+(G).

Note that the domain G need not be pseudoconvex.

As for the other inclusion the condition of existence of a Stein neighbourhood basis of Ḡ can be
removed, provided the boundary is of class C∞ instead of C2.

Theorem IV. [12] Let G ⊂ C
n be a bounded pseudoconvex domain with C∞ boundary. Then

Ψ+(G) ⊂ S(G).

Theorem 1 can be extended to arbitrary bounded domains in C2 with C3 boundary. Denote by
Ψ−(G) the set of strictly pseudoconcave boundary points. Note that the set ∂G\(Ψ+(G)∪Ψ−(G))
is foliated into one-dimensional complex manifolds.

The following theorem holds.

Theorem 2. Let G ⊂ C2 be a bounded domain in C2 with C3 boundary. Suppose V+ ⊂ ∂G is

relatively open in ∂G and contains Ψ+(G). Let f be any continuous function on G ∪ V+ which is
bounded and analytic on G. Then

1. f extends to a continuous function on Ḡ.
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2. If f is µ-continuous on G ∪ V+ for a generalized modulus of continuity µ then it is µ-
continuous on Ḡ. The µ-seminorms on G∪V+ and on Ḡ differ by a multiplicative constant
depending on G, V+ and the supremum norm of f on G.

In general, for non-pseudoconvex domains G the Shilov boundary may be strictly smaller than

Ψ+(G). We do not know whether in theorem 2 the set Ψ+(G) may be replaced by the Shilov
boundary itself.

The following lemmas relate theorem 2 to theorem 1.

Lemma 1. Let G be as in theorem 2 and p ∈ Ψ−(G) \ Ψ+(G). Then there is a neighbourhood Up

of p in C2 which depends only on G and p such that each bounded analytic function in G extends to
an analytic function in Up. The extension does not increase the supremum norm of the function.

Lemma 2. There exists a neighbourhood V of Ψ(G)
def
=Ψ+(G) ∪ Ψ−(G) such that each function

f as in theorem 2 has continuous extension to G ∪ V . Moreover, f is µ-continuous on V with
µ-seminorm differing from that on V+ by a multiplicative constant depending on G, V and the
supremum norm of f on G.

Proof. Indeed, choose for each Up as in lemma 1 two open subsets V ′
p and V ′′

p of ∂G, p ∈ V ′
p b

V ′′
p b Up ∩ ∂G. Let

o

V + be an open subset of ∂G, Ψ+(G) ⊂
o

V + b V+. Cover the compact set

Ψ−(G)\
o

V + by a finite number of V ′
pj

, j = 1 . . . , N . Denote by V the union V =
o

V + ∪
⋃N

j=1 V ′
pj

.

On each V ′′
pj

the extension of f is Lipschitz continuous with Lipschitz seminorm depending on the

supremum norm of f and the distance of V ′′
pj

to the complement of Up. Since any generalized
modulus of continuity exceeds const · δ, δ ≥ 0, for some positive constant const, f is µ-continuous

on each V ′′
pj

. It is also µ-continuous on V+ and
o

V + b V+. Notice, that for small δ > 0 two points

z and z′ in ∂G belong both to one of the sets V ′′
pj

or to V+. It follows that f is µ-continuous on
V with µ-seminorm depending on G, V+ and the supremum norm of f on G. �

Proof of Lemma 1. By the conditions of the lemma, p is a minimal point of ∂G in the sense that ∂G

contains no analytic curve that passes through p. For a small ball Bp around p the neighbourhood
Wp = ∂G ∩ Bp of p on ∂G is pseudoconcave from the side of G. Denote the pseudoconvex set
Bp\Ḡ by Ωp. Let W ′

p b Wp be a smaller neighbourhood of p on ∂G. By a theorem of Trepreau
[16] (see also the more general result of Tumanov [17]) analytic functions on a neighbourhood of
W ′

p have analytic extension to a one-sided neighbourhood Op of p (i.e. to one of the connected
components of bp\∂G for a small ball bp around p). The one-sided neighbourhood Op depends only
on W ′

p and the extension preserves the supremum norm of the function. The set Op is contained
in Ωp. Indeed, take a vector v so that for all sufficiently small positive numbers ε the translates
W ′

p +εv are contained in Ωp. Analytic functions in Ωp extend to Op +εv for all small ε > 0, hence
Op + εv ⊂ Ωp for all such ε. It follows that Op ⊂ Ωp, and therefore G ∪ ∂G ∪ Op covers the ball
bp. Applying Trepreau’s theorem to a small translate W ′

p − εv into G, we obtain the lemma. �

Proof of theorems 1 and 2. To unify notation, put Ψ(G) = Ψ+(G) ∪ Ψ−(G) in both theorems (in

case of theorem 1 Ψ−(G) is empty). We may assume that there is a neighbourhood V of Ψ(G)
in ∂G such that f is bounded and analytic in G, continuous in G ∪ V and µ-continuous on V

for some generalized modulus of continuity µ. (For theorem 2 the present generalized modulus of
continuity differs from the one in the statement of theorem 2 by a multiplicative constant that

depends on G, V and the supremum norm of f). Choose a neighbourhood
◦

V (in ∂G) of Ψ(G),
◦

V b V .

The following lemma is a local statement. It implies immediately continuous extension of the

function f to the set ∂G\
◦

V . Successive application of the lemma allows to increase the quality of
continuity of the function on this set (see Corollary 1).
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Lemma 3. Let G,
o

V and V be as above. For each point p ∈ ∂G\
o

V there is a small ball bp around
p, a positive number τp ≤ 1 and a constant Cp > 1 such that the following holds.

Suppose f and µ are as above and ν ≥ µ is another generalized modulus of continuity. Suppose

(5) sup
z,z′∈G

|z−z′|<δ

|f(z)− f(z′)| ≤ ν(δ) for all δ > 0.

Then

(6) sup
z,z′∈bp∩G

|z−z′|<δ

|f(z) − f(z′)| ≤ Cp ν(δ)1−τp µ(δ)τp for all δ > 0.

Note that any function as in the beginning of the proof satisfies (5) with ν(δ) ≡ c sup
G

|f | for any

constant c ≥ 2. Redefining µ(δ) to be constant for δ > diam(Ḡ) the constant c may be chosen so
that ν ≥ µ.

We postpone the proof of the lemma. The lemma has the following corollary.

Corollary 1. Suppose f is as above and satisfies (5) for a function ν as in the lemma. Then f

has continuous extension to ∂G. Moreover, there exists a positive constant τ ≤ 1 and a constant
C > 1 (depending only on G and V ) such that

(7) sup
z,z′∈Ḡ

|z−z′|<δ

|f(z) − f(z′)| < Cν(δ)1−τµ(δ)τ .

Proof of the corollary. Inequality (6) implies that for each p ∈ ∂G\
o

V the function f extends
continuously to bp ∩ Ḡ, being uniformly continuous on the dense open subset bp ∩ G. Since f

extends continuously to V ⊃
o

V , continuous extension to the whole boundary ∂G follows.

Put Vp
def

= bp∩∂G and choose an open subset
o

V p of ∂G, p ∈
o

V p b Vp. Cover the compact set ∂G\
o

V

by finitely many of the V̊p. Let τ be the smallest of the respective constants τp. Notice, that for
small δ > 0 two points z and z′ in ∂G belong both to one of the sets Vp or to V if |z − z′| < δ.
Since µ(δ) ≥ ν(δ) for δ ≥ 0, and τ ≤ τp, the inequality

(8) sup
z,z′∈∂G

|z−z′|<δ

|f(z) − f(z′)| ≤ max Cp · ν(δ)1−τ µ(δ)τ

holds for small δ > 0. Increasing the constant, we get (8) for arbitrary δ > 0. Theorem I and
lemma I imply (7) after further increasing the multiplicative constant. The corollary is proved. �

We will now finish the proof of the theorems by successively applying the corollary.

End of proof of the theorems. Let f be as in the beginning of the proof of the theorems. Put
µ0(δ) ≡ A for δ ≥ 0, where A = c supG |f | for a suitable constant c exceeding 2 so that µ0 ≥ µ.
Let C and τ be the constants of the corollary. Applying the corollary with ν = µ0 we obtain that
f extends to a continuous function in Ḡ and

sup
z,z′∈Ḡ

|z−z′|<δ

|f(z) − f(z′)| < CA1−τµ(δ)τ for all δ > 0.

Put µ1(δ) = CA1−τµ(δ)τ = Cµ0(δ)
1−τµ(δ)τ for δ ≥ 0. Then µ1 is non-negative, non-decreasing,

satisfies condition (3) and is not smaller than µ. We may apply the corollary with ν = µ1.
Repeated application of the corollary gives for any natural number j the following estimate

(9) sup
z,z′∈Ḡ

|z−z′|<δ

|f(z) − f(z′)| < µj(δ) for all δ > 0,

where

(10) µj(δ) = C
Pj−1

l=0 (1−τ)l

A(1−τ)j

µ(δ)τ
Pj−1

l=0 (1−τ)l

, δ ≥ 0.
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Indeed, suppose (9) is true for j − 1 and µj−1 is non-negative, non-decreasing, and not smaller
than µ. Then the corollary gives

sup
z,z′∈Ḡ

|z−z′|<δ

|f(z) − f(z′)| ≤ C (µj−1(δ))
1−τ

µ(δ)τ for all δ ≥ 0.

Denote the function on the right hand side by µj . It is again non-negative, non-decreasing, not
smaller than µ and satisfies (3), since both functions µj−1 and µ have this property. Moreover,
(10) holds for µj . Indeed, since (10) is true for j − 1,

µj(δ) = C
(

C
Pj−2

l=0
(1−τ)l

A(1−τ)j−1

µ(δ)τ
Pj−2

l=0
(1−τ)l

)1−τ

µ(δ)τ

= C
Pj−1

l=0 (1−τ)l

A(1−τ)j

µ(δ)τ
Pj−1

l=0 (1−τ)l

for δ ≥ 0,(11)

what we needed to prove.

Note that
lim

j→∞
µj(δ) = C

1
1−(1−τ) µ(δ)τ 1

1−(1−τ) = C
1
τ µ(δ) for δ ≥ 0.

Since (9) is true for each j, we obtain the theorem with constant C
1
τ . Here C and τ are the

constants in the corollary. The theorems are proved. �

It remains to prove the lemma.

Proof of Lemma 3. Let W be a connected component of ∂G\Ψ(G). W is a Levi-flat hypersurface
and hence it is foliated by 1-dimensional complex manifolds which are embedded or injectively

immersed into W . Recall that
o

V is an open subset of ∂G, Ψ(G) ⊂
o

V ⊂
o

V ⊂ V .

Take a point p ∈ W\
o

V . Let Lp be the Levi-leaf of W through p.

There is a curve γp in Lp, γp : [0, 1] → Lp, which joins p with a point in W ∩
o

V . Otherwise Lp would

be contained in the compact subset W\
o

V of W and the same would apply to its closure L̄p (closure
with respect to Euclidean topology in C2). As a consequence, L̄p would be a compact set which
is the union of injectively immersed complex one-dimensional analytic manifolds (see also [11]),
which is impossible [6]. Removing parts of γp between self-intersection points and approximating,
we may assume that γp is real analytic on a slightly larger interval, in particular it extends to an
analytic diffeomorphism from a neighbourhood of Iε = [−ε, 1] in C to a neighbourhood of γp(Iε)
on Lp. We may keep the condition γp(0) = p. γp(Iε) can be considered as the symmetry axis of
a rectangle in the complex leaf Lp. Our goal is now to foliate a neighbourhood of γp(Iε) in Ḡ by
holomorphic rectangles close to the mentioned one. More precisely, we will define a diffeomorphic
map H(=Hp)

1 of class C1 from a neighbourhood of a closed rectangular box

Q(= Qε,σ) = {(z1, z2) : Rez1 ∈ Iε, Imz1 ∈ [−ε, ε], Rez2 ∈ [−σ, σ], Imz2 ∈ [0, σ]}

onto a subset of Ḡ satisfying the following properties:

(1) Denote by Rz2 , z2 ∈ [−σ, σ] × i[0, σ], the rectangle obtained from Q by fixing z2. The
mapping H is holomorphic on each Rz2 .

(2) The “lower” face of H(Q), H(Q∩ {Imz2 = 0}), is contained in W ⊂ ∂G. Each conformal
rectangle H(Rx2), x2 ∈ [−σ, σ], is contained in one of the leaves of W . In particular,
H(R0) contains γ(Iε).

This is obtained in the following way. Let X and Y be real C2 vector fields defined at points
of Lp close to γ(Iε). Let FY,y, FX,x be their flows. We may choose the vector fields so that
H(x+iy, 0)

def

=FY,y◦FX,x(p) coincides with the analytic extension of γp for x, y in a neighbourhood
of Iε × [−ε, ε]. Extend X, Y to C2 real vector fields in a neighbourhood of γ(Iε) on ∂G which are
complex tangent at each point. Let v : [−σ, σ] → W be a C2 curve which is transverse to the Levi

leaves, with v(0) = p. Put H̃(x + iy, t) = FY,y ◦ FX,x ◦ v(t). For fixed t the mapping H̃ maps

1All further constructions depend on the point p, but we will skip the index p.
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Rt into the Levi-leaf through v(t). The mapping may not be holomorphic in z = x + iy, but it is
C1 close to the holomorphic map z → H(z, 0).

There is a C1 family of reparametrizations ϕt (each ϕt being a map from a neighbourhood of Iε

to a neighbourhood of Iε) such that

H(z, t) = H̃(ϕt(z), t)

is holomorphic for each t. Indeed, denote by H̃j the coordinate functions of H̃. ϕt must satisfy
the equations

(12) ∂̄(H̃j(ϕt, t)) = ∂H̃j(ϕt, t)∂̄ϕt + ∂̄H̃j(ϕt, t)∂ϕt = 0, j = 1, 2.

Each of the two equations (12) gives a well defined non-linear ∂̄-operation on the set where the

respective ∂H̃j does not vanish. Since for fixed t, H̃(z, t) = (H̃1(z, t), H̃2(z, t)) maps into a Levi-
leaf, there is an analytic function Ft with non-vanishing gradient such that

(13) Ft(H̃1(z, t), H̃2(z, t)) = 0

for z in a neighbourhood of Iε. Taking ∂- and ∂̄-derivatives of (13) and taking into account that

H̃(·, t) is C1 close to an analytic diffeomorphism we obtain that if ∂jFt 6= 0 then ∂H̃i 6= 0 for the

other index i and at the set where both derivatives ∂1Ft and ∂2Ft do not vanish, ∂̄H1

∂H1
= ∂̄H2

∂H2
.

This gives a well-defined ∂̄-equation for ϕt in a neighbourhood of Iε which has a solution close to
the identity. Moreover, the solution ϕt depends C1 on t because H̃ is of class C2. The mapping H
is constructed on the lower face Q ∩ {Imz2 = 0}.

To define H on the whole Q we denote for z ∈ ∂G by n(z) the unit inner normal to ∂G. This is a
C2 vector field on ∂G. Approximate n on the compact set γ([−ε, 1]) by an analytic vector field N

in a neighbourhood (in C2) of this set ([8]). Put

H(z, t + is) = FN,s(H(z, t)),

s ∈ [0, σ] for a small positive number σ.

Since N is holomorphic in a neighbourhood of γ(Iε) and H(z, t) is holomorphic in z, the function
H(z, t + is) is holomorphic in z. The construction of H on Q is completed.

Decreasing ε > 0 and σ > 0 if necessary we may assume that the “right” “lower” 2-face of Qε,σ,

Qε,σ ∩{Rez1 = 1, Imz2 = 0}, is mapped into
o

V \Ψ(G). Denote the “right” face Qε,σ ∩{Rez1 = 1}
by Qr

ε,σ .

The following lemma states that at points of H(Qr
ε,σ) the function has the desired continuity

properties. The proof uses the local theorem I and a pluriharmonic measure estimate.

Lemma 4. The estimate

sup
p′,p′′∈H(Qr

ε,σ)

|p′−p′′|<δ

|f(p′) − f(p′′)| ≤ C ′ν(δ)1−τ ′

µ(δ)τ ′def

= µ̃(δ)

holds for a constant τ ′ ∈ (0, 1) and a constant C ′.

Proof. Let p′, p′′ ∈ G be two points in a sufficiently small neighbourhood of H(Qr
ε,σ), |p′− p′′| < δ

for a small δ > 0. Suppose first that one of the points, say p′, has distance to ∂G not exceeding δ.

Then, since H(Qr
ε,σ ∩ {Imz2 = 0}) ⊂

o

V , there is a point p∗ ∈
o

V such that |p′ − p∗| < δ. By the
local theorem I,

|f(p′) − f(p∗)| ≤ const µ(δ).

The same inequality with δ replaced by 2δ holds for p′′. Triangle inequality and properties of µ

yield

(14) |f(p′) − f(p′′)| ≤ C ′′µ(δ)

for this case.
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Let now p′, p′′ ∈ G be contained in a neighbourhood N of H(Qr
ε,σ), |p′ − p′′| < δ and both have

distance bigger than δ to the boundary ∂G. The function

(15) q → f(q) − f(p′ − p′′ + q)

is analytic in the intersection N ∩{dist(q, ∂G) > δ}, satisfies (14) on its boundary part contained
in {dist(q, ∂G) = δ} and has supremum norm not exceeding ν(δ). Pluriharmonic measure of the
latter boundary part with respect to N ∩ {dist(q, ∂G) > δ} computed at points of H(Qr

ε,σ) ∩
{dist(q, ∂G) > δ} has an estimate from below by a positive constant τ ′ (This can be seen by
slicing with complex lines). Hence, on H(Qr

ε,σ) ∩ {q ∈ G : dist(q, ∂G) > δ} the absolute value of
the function (15) does not exceed

(C ′′µ(δ))
τ ′

ν(δ)1−τ ′

.

The value of the function (15) at the point q = p′ ∈ H(Qr
ε,σ) ∩ {dist(q, ∂G) > δ} equals

f(p′) − f(p′′). This proves the required inequality in the second case. Lemma 4 is proved. �

End of proof of lemma 3. Let ε′ ∈ (0, ε) and consider the rectangular box Qε′,σ obtained from
Qε,δ by shrinking in the z1-direction. We will prove that estimate (6) of the lemma holds on the
set H(Q0

ε′,σ), where Q0
ε′,σ is the intersection of the interior of Qε′,σ with {|Rez1| < ε′} in C2,

Q0
ε′,σ

def
= {(z1, z2) : z1 ∈ (−ε′, ε′) + i(ε′, ε′), z2 ∈ (−σ, σ) + i(0, σ)}.

The set H(Q0
ε′,σ) is contained in G and contains the intersection of G with a ball around p. (Recall,

that H(0, 0) = p.)

Let p′, p′′ ∈ H(Q0
ε′,σ), |p′−p′′| < δ with δ > 0. The diffeomorphism H and its inverse H−1 preserve

distance up to a multiplicative constant. Hence

|H−1(p′) −H−1(p′′)| ≤ c′δ, |H(z′) −H(z′′)| ≤ c′′δ.

Write H−1(p′) = (z′1, z
′
2) ∈ Qε′,σ , H−1(p′′) = (z′′1 , z′′2 ) ∈ Qε′,σ and consider the function

(16) z → (f ◦ H)(z, z′
2) − (f ◦ H)(z + (z′′

1 − z′1), z
′′
2 ).

If δ > 0 is small, this function is in A(R) for the rectangle R = [−ε, 1] + i[−ε, ε]. (Note that
Imz′2 > 0, Imz′′2 > 0). The value of the function (16) at z′

1 equals

(f ◦ H)(z′
1, z

′
2) − (f ◦ H)(z′′

1 , z′′2 ) = f(p′) − f(p′′).

The supremum norm of the function (16) does not exceed ν(c′c′′δ). On the right side {1}× i[−ε, ε]
of the rectangle R its absolute value does not exceed µ̃(c′c′′δ). Therefore on the relatively compact
part {(−ε′, ε′) + i(−ε′, ε′)} of R, in particular at the point z′

1, its absolute value does not exceed

Cpν(δ)1−τpµ(δ)τp .

Here we used property (3) of µ, the fact that ν ≥ µ, and harmonic measure estimate on R.
Lemma 3, and hence theorems 1 and 2, are proved. �

�

We do not know whether in theorems 1 and 2 one needs to require that the function f is bounded
in G.

Under additional hypothesis this condition can be removed.

Lemma 5. Let G ⊂ C2 be a bounded domain with C2 boundary. Suppose any compact subset

of ∂G\Ψ(G) has a Stein neighbourhood basis. Then any analytic function in G that extends

continuously to a neighbourhood of Ψ+(G) in ∂G is bounded in G.

Proof. Let V+ be a neighbourhood of Ψ+(G) in ∂G and f a continuous function on G ∪ V+ that
is holomorphic in G. By lemma 2 f extends to a continuous function on G ∪ V for an open set

V ⊂ ∂G with Ψ(G) ⊂ V . Let
o

V be open in ∂G and Ψ(G) ⊂
o

V b V . There is a compact subset

K ⊂ G ∪ V which contains a one-sided neighbourhood of each point of
o

V (i.e. the intersection of
G with a small ball around the point). The function f is bounded on K.
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The set ∂G\
o

V is a compact subset of ∂G\Ψ(G) and therefore it has a Stein neighbourhood basis.
Since any pseudoconvex domain can be exhausted by smoothly bounded strictly pseudoconvex

domains, there exists a neighbourhood basis Un of ∂G\
o

V consisting of smoothly bounded strictly
pseudoconvex domains. Consider G\Un and smoothen its boundary part which is contained in

a small neighbourhood of ∂Un ∩ ∂G ⊂
o

V . We may assume that the changed boundary part is
contained in K and the thus obtained domain Gn has C2 boundary.

The function f is continuous on Ḡn ⊂ G ∪ V . The part of the boundary ∂Gn which is outside K

is strictly pseudoconcave hence does not meet Ψ+(Gn). By theorem III

max
Ḡn

|f | ≤ max
K

|f |.

This is true for all n and the Gn exhaust G. The lemma is proved. �

Necessary and sufficient conditions for the existence of a Stein neighbourhood basis of a Levi-flat
hypersurface are not known. See [3] for an account.
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