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Abstract

Centralizers of rank one in the first Weyl algebra have genus zero
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Take a ∈ A1 (the first Weyl algebra). Rank of the centralizer C(a) is
the greatest common divisor of the orders of elements in C(a) (orders as
differential operators).

This note contains a proof of the following.

Theorem. If the centralizer C(a) of a ∈ A1 (defined over the field C of
complex numbers) has rank 1 then C(a) can be embedded into a polynomial
ring C[z].

The classical works of Burchnall and Chaundy where the systematic research
of commuting differential operators was initiated are also devoted primarily
to the case of rank 1 but the coefficients of the operators considered by them
are analytic functions. Burchnall and Chaundy treated only monic differen-
tial operators which doesn’t restrict generality if the coefficients are analytic
functions. Situation is completely different if the coefficients are polynomial.

Before we proceed with a proof, here is a short refresher on the first Weyl
algebra.

Definition. The first Weyl algebra A1 is an algebra over a field K gen-
erated by two elements (denoted here by x and ∂) which satisfy a relation
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∂x−x∂ = 1. When characteristic of K is zero it has a natural representation
over the ring of polynomials K[x] by operators of multiplication by x and
the derivative ∂ relative to x. Hence the elements of the Weyl algebra can be
thought of as differential operators with polynomial coefficients. They can
be written as ordinary polynomials: a =

∑
ci,jx

i∂j with ordinary addition
but a more complicated multiplication. If characteristic of K is zero then
the centralizer of any element a ∈ A1 \ K is a commutative subalgebra of
A1. This theorem which was first proved by Issai Schur in 1904 (see [S]) has
somewhat entertaining history which is described in [ML].

Given ρ, σ ∈ Z it is possible to define a weight function on A1 by w(x) =
ρ, w(∂) = σ, w(xi∂j) = ρi + σj, w(a) = maxw(xi∂j)|ci,j 6= 0 for a =∑
ci,jx

i∂j and the leading form ā of a by ā =
∑
ci,jx

i∂j|w(xi∂j) = w(a).
One of the nice properties of A1 which was used by Dixmier in his seminal
research of the first Weyl algebra (see [D]) is the following property of the
leading forms of elements of A1: if ρ+ σ > 0 then [a, b] = {ā, b̄} for a, b ∈ A1

where [a, b] = ab−ba and {ā, b̄} = ā∂ b̄x−āxb̄∂ is the standard Poisson bracket
of ā, b̄ as commutative polynomials (ā∂ etc. are the corresponding partial
derivatives) provided {ā, b̄} 6= 0.

The main ingredient of the considerations below is this property of the
leading forms.

To make considerations clearer the reader may use the Newton polygons
of elements of A1. The Newton polygon of a ∈ A1 is the convex hull of
those points (i, j) on the plane for which ci,j 6= 0. The Newton polygons of
elements of A1 are less sensible than the Newton polygons of polynomials in
two variables because they depend on the way one chooses to record elements
of A1 but only those edges which are independent of the choice will be used.

First case a = ∂n +
∑n

i=1 ai∂
n−i.

Consider the leading form α of a which contains ∂n, is not a monomial,
and has non-zero weight. This is possible if a 6∈ C[∂]. (If a ∈ C[∂] then
C(a) = C[∂].)

Since the leading forms of the elements from C(a) are Poisson com-
mutative with α they are proportional to the fractional powers of α (as a
commutative polynomial). Because the rank of C(a) is 1 we should have
α = c(∂ + c1x

k)n. Hence there exists an automorphism which makes the
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Newton polygon of a smaller (say, area wise), and after an automorphism
ψ : x→ x, ∂ → ∂ + p(x) we have ψ(a) ∈ C[∂]; therefore C(a) = C[ψ−1(∂)].

Second case a = xm∂n +
∑n

i=1 ai∂
n−i, m > 0.

As above, the leading forms of elements of C(a) are proportional to the
fractional powers of α (as a commutative polynomial) as long as α is the
leading form of a relative to weights ρ, σ of x and ∂ provided ρ+ σ > 0 and
the weight of α is not zero. Because of that and since the rank is assumed
to be one n divides m. We have now two possibilities for α of a non-zero
weight: it is c(xd∂ + c1x

k)n and either k ≥ d or k < d− 1. If we picture the
Newton polygon of a on a plane where the x axis is horizontal and the ∂ axis
is vertical then a may have both leading forms with one corresponding to the
right edge containing the vertex (m,n) and another corresponding to the left
edge containing this vertex. In any case a has a non-trivial zero weight form
(which can degenerate to a monomial xm∂n).

Lemma 1. If a has the leading form of weight zero then C(a) is a subring
of a ring of polynomials in one variable.
Proof. Assume that the weights for which a has the leading form of weight
zero are ρ for x and σ for ∂ where ρ, σ ∈ Z and relatively prime (and
ρ+ σ ≥ 0). Then any b ∈ C(a) has a non-zero leading form b̄ of weight zero
(relative to ρ, σ) because a zero weight form and a non-zero weight form
cannot commute i.e. if ρ + σ > 0 then the Poisson bracket of these forms is
not zero and if ρ+σ = 0 then ā ∈ C[x∂] and only elements of C[x∂] commute
with it. Hence the restriction map b → b̄ is an isomorphism. An algebra
generated by all b̄ is a subalgebra of x−σ∂ρ if ρ > 0 (of xσ∂−ρ if ρ < 0). 2

General case. a = a0(x)∂n +
∑n

i=1 ai∂
n−i.

In this case a0 = αn, α ∈ C[x]. We may assume that α 6∈ C and that
α(0) = 0 (applying an automorphism x → x + c, ∂ → ∂ if necessary). The
left leading edge of the Newton polygon containing a point (m′, n) (where
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m′ = ord(a0)) corresponds to either a form of weight zero or c(xd∂ + c1x
k)n

where 0 < k < d− 1 in which case we still have a weigh zero form xm
′
∂n and

the Lemma 1 shows that C(a) is isomorphic to a subring of C[z].

Since the proof of the Theorem turned out to be too simple and too short
we can complement it by an attempt to describe the rank one centralizers
more precisely. In the first case it is already done, the centralizer is isomor-
phic to C[z]. Actually if z = ∂ + p(x) for an appropriate p(x) ∈ C[x] then
C(a) = C[z].

It would be interesting to describe a for which C(a)  C[z] and the second
case will provide us with such examples. Recall that in this case we have two
possibilities for the leading form of a non-zero weight α: it is c(xd∂ + c1x

k)n

and either k ≥ d or k < d − 1 and that the Newton polygon of a on a
plane where the x axis is horizontal and ∂ axis is vertical may have the right
edge containing the vertex (m,n) which corresponds to the leading form
with k ≥ d and the left edge containing this vertex which corresponds to the
leading form with k < d − 1. Let us assume that the zero weight leading
form is xm∂n.

If k ≥ d an automorphism x → x, ∂ → ∂ − c1xk−d makes the Newton
polygon of a smaller and after several similar steps we will obtain the Newton
polygon with the right edge parallel to the bisectrix of the first quadrant. The
leading form which corresponds to this edge cannot be treated as a commuta-
tive polynomial. The leading forms of elements of C(a) are fractional powers
of this form but as an element of A1 (not as a commutative polynomial).

If the left edge of this Newton polygon is not parallel to the bisectrix we
can consider the centralizer of a in C[∂, x, x−1] and proceed with automor-
phisms x → x, ∂ → ∂ − c1xk−d where k − d < −1. Hence there exists an
automorphism x→ x, ∂ → ∂+q(x) of C[∂, x, x−1] such that ψ(a) = xm−np(t)
where t = x∂ (here q(x) is a Laurent polynomial while p(t) is a polynomial).

Of course C(a) = ψ−1(C(xm−np(t)) and the rank of C(xm−np(t)) is one.
Since the rank is 1 we can find an element b ∈ D1 (the skew field of fractions
of A1) commuting with a1 = xm−np(t) of the form xd−1r(t) where r(t) ∈ C(t)
and deg(r) = 1.

If r is a polynomial then C(a1) = C[xd−1r]; if d = 1 then C(a1) = C[t]; if
r is not a polynomial and d > 1 then some powers of xd−1r are polynomials.
In the last case r(t) ∈ C(t) but r(t)r(t+ d− 1) . . . r(t+ (k− 1)(d− 1)) ∈ C[t]

4



since tx = x(t+ 1). We can reduce this to r(t)r(t+ 1) . . . r(t+ k − 1) ∈ C[t]
by rescaling t and r.

By shifting t if necessary we may assume that one of the roots of r(t) is 0
and represent r as a product r0r1 where all roots and poles of r0 are in Z and
all roots and poles of r1 are not in Z. It is clear that r0(t)r0(t+ 1) . . . r0(t+
k − 1) ∈ C[t] and r1(t)r1(t+ 1) . . . r1(t+ k − 1) ∈ C[t]. Since deg(r) = 1 and
deg(ri) ≥ 0 (because k deg(ri) ≥ 0) degree of one of the ri is equal to zero
and ri(t)ri(t + 1) . . . ri(t + k − 1) ∈ C for this ri. But then ri(t) = ri(t + k)
which is impossible for a non-constant rational function. Since r0(0) = 0 and
r 6= 0 we see that r1 is a constant and all roots and poles of r are in Z.

We can assume now that 0 is the largest root of r and write r = ts(t)

where s(t) =
∏p

i=1(t+λi)∏p
i=1(t+µi)

∈ C(t) \ C, λi ∈ Z, µi ∈ Z, and 0 ≤ λ1 ≤ λ2 ≤ · · · ≤
λp, µ1 ≤ µ2 ≤ · · · ≤ µp. If µ1 < 0 then r(t)r(t+1) . . . r(t+k−1) would have
a pole at t = −µ1. Hence µ1 > 0 and all poles of s(t) are negative integers
while all zeros of s(t) are non-positive integers.

A fraction t+λi
t+µi

can be presented as fi(t)
fi(t+1)

if λi < µi or as fi(t+1)
fi(t)

if λi > µi

(recall that λi 6= µi; indeed, t+d
t

= (t+1)(t+2)...(t+d)
t(t+1)...(t+d−1) if d > 0, take the reciprocal

fraction if d < 0). Because of that s(t) can be written as s1(t)s2(t+1)
s1(t+1)s2(t)

, si(t) ∈
C[t]. Write s1(t) = s3(t)s4(t), s2(t) = s4(t)s5(t) where s4(t) is the greatest

common divisor of s1(t), s2(t). Then s(t) = s3(t)s4(t)s4(t+1)s5(t+1)
s3(t+1)s4(t+1)s4(t)s5(t)

= s3(t)s5(t+1)
s3(t+1)s5(t)

.

A polynomial s3(t) cannot have positive roots. Indeed, the largest such root
couldn’t be canceled by a root of s5(t) or s3(t+ 1) and this root would be a
root of s(t).

Now, q(t) = r(t)r(t+ 1) . . . r(t+ k− 1) = t(t+ 1) . . . (t+ k− 1) s3(t)s5(t+k)
s3(t+k)s5(t)

is a polynomial. If s3(t) 6∈ C then all roots of s3(t + k) are less then 1 − k
and the smallest root of s3(t + k) would be a pole of q(t). Hence s3(t) ∈
C, s(t) = s5(t+1)

s5(t)
, and q(t) = t(t+ 1) . . . (t+ k − 1) s5(t+k)

s5(t)
.

We can uniquely write s5(t) =
∏

i∈I φk,pi(t+ i), where φk,p(t) =
∏p

j=0(t+

jk), and all pi are maximal possible. Then s5(t+k)
s5(t)

=
∏

i∈I
t+i+pik+k

t+i
and

t + i1 6= t + i2 + pi2k + k for all i1, i2 ∈ I because of the maximality of pi.
Hence I ⊂ {1, . . . , k − 1} and each i is used only once.

As we have seen, all roots of s5(t) are of multiplicity 1 and since (xr)N =

xN
∏N−1

i=0 (t + i) s5(t+N)
s5(t)

the elements (xr)N ∈ C[x] for sufficiently large N .

Therefore the rank of C(xr) is one. Observe that the rank is not stable
under automorphisms: the rank of C(φ(xr)) where φ(x) = x+ tM , φ(t) = t
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is M + 1.

We understood the structure of C(a) when a = xm−np(t). Are there
substantially different examples of centralizers of rank one for which C(a) 6=
C[a]? Consider the case of an order 2 element commuting with an order 3
element which was completely researched in the work [BC] of Burchnall and
Chaundry for analytic coefficients. They showed (and for this case it is a
straightforward computation) that monic commuting operators of orders 2
and 3 can be reduced to A = ∂2 − 2ψ(x), B = ∂3 − 3ψ(x)∂ − 3

2
ψ′(x) where

ψ′′′ = 12ψψ′ i.e. ψ′′ = 6ψ2 + c1 and (ψ′)2 = 4ψ3 + c1ψ + c2 (a Weierstrass
function). The only rational (even algebraic) solution in this case is (up to
a substitution) ψ = x−2 when c1 = c2 = 0. (If ψ is a rational function
then the curve parameterized by ψ, ψ′ has genus zero, so 4ψ3 + c1ψ + c2 =
4(ψ − λ)2(ψ − µ) and ψ is not an algebraic function of x if λ 6= µ.) The
corresponding operator A = x−2(t− 2)(t+ 1) = (x−1 t

2−1
t

)2 is homogeneous.
In our case we have A = f(x)2∂2 + f1(x)∂ + f2(x). (The leading form

for w(x) = 0, w(∂) = 1 must be the square of a polynomial.) Here are
computations for this case. A = (f∂)2 − ff ′∂ + f1(x)∂ + f2(x) = [f∂ +
1
2
(f1
f
− f ′)]2 − 1

2
(f1
f
− f ′)′f − 1

4
(f1
f
− f ′)2 + f2. Denote f∂ + 1

2
(f1
f
− f ′) by

D. Then A = D2 − 2φ(x) where φ ∈ C(x). Analogously to Burchnall and
Chaundry case if there is an operator of order 3 commuting with A then it
can be written as B = D3 − 3φD − 3

2
φ′f (this follows from [BC] but will be

clear from the condition [A,B] = 0 as well). In order to find an equation
for φ we should compute [A,B]. Observe that [D, g(x)] = g′f, [D2, g] =
2g′fD+ (g′f)′f, [D3, g] = 3g′fD2 + 3(g′f)′fD+ ((g′f)′f)′f . Hence [A,B] =
−3[D2, φD+ 1

2
φ′f ] + 2[D3− 3φD, φ] = −3[(2φ′fD+ (φ′f)′f)D+ (φ′f)′fD+

1
2
((φ′f)′f)′f ] + 2[3φ′fD2 + 3(φ′f)′fD + ((φ′f)′f)′f ] − 6φφ′f = (−6φ′f +

6φ′f)D2 + (−6(φ′f)′f + 6(φ′f)′f)D − 3
2
((φ′f)′f)′f + 2((φ′f)′f)′f − 6φφ′f =

1
2
((φ′f)′f)′f−6φφ′f . Therefore ((φ′f)′f)′ = 12φφ′, (φ′f)′f = 6φ2+c1, (φ′f)′φ′f =

6φ2φ′ + c1φ
′, (φ′f)2 = 4φ3 + 2c1φ + c2 and we have a parameterization

of an elliptic curve. Since f, φ ∈ C(x) this curve must have genus 0, i.e.
4φ3 +2c1φ+ c2 = 4(φ−λ)2(φ−µ). Take z = φ′f

2(φ−λ) . Then φ−µ = z2, φ′f =

2z(z2 − δ2) where δ2 = λ− µ, 2zz′f = 2z(z2 − δ2) and z′f = z2 − δ2.
Assume that δ 6= 0. Since we can re-scale f and z by f → 2δf, z → δz,

without loss of generality δ2 = 1. Then z′f = z2 − 1 and
∫

dz
z2−1 =

∫
dx
f

.

Recall that f ∈ C[x]. Since 2
∫

dz
z2−1 = ln z−1

z+1
all zeros of f have multiplicity
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1 and
∫

dx
f

= ln(
∏

i(x − νi)ci) where {νi} are the roots of f and ci = f ′(νi).

Therefore z−1
z+1

= c
∏

i(x − νi)
2ci and z =

1+c
∏

i(x−νi)2ci
1−c

∏
i(x−νi)2ci

. Now it is time to

recall that 2φ = 1
2
(f1
f
− f ′)′f + 1

4
(f1
f
− f ′)2 − f2 and f 2φ = f 2(z2 + µ) ∈ C[x]

accordingly.

Consequently zf = c1
1+c

∏
i(x−νi)ci

1−c
∏

i(x−νi)ci
∏

(x−νi) ∈ C[x] which is possible only

if the rational function 1 − c
∏

i(x − νi)ci doesn’t have zeros. We can write∏
i(x−νi)ci as

∏
i(x−νi)

c+
i∏

i(x−νi)
c−
i

where c±i ∈ Z+. Then
∏

i(x−νi)c
−
i −c

∏
i(x−νi)c

+
i ∈

C which is possible only if c = 1.

Since z =
∏

i(x−νi)
c−
i +

∏
i(x−νi)

c+
i∏

i(x−νi)
c−
i −

∏
i(x−νi)

c+
i

we see that z ∈ C[x]. So to produce a 2, 3

commuting pair we should find a polynomial solution to f = z2−1
z′

. If f, z are
given then A = (f∂+ψ)2−2(z2−µ), B = (f∂+ψ)3−3(z2−µ)(f∂+ψ)−3zz′f
is a commuting pair for any ψ ∈ C[x] (indeed, fψ ∈ C[x] and ψ2+fψ′ ∈ C[x],
hence ψ ∈ C[x]). Constant µ = −2

3
since we assumed that λ − µ = 1 and

2λ+ µ = 0 because the equation is (φ′f)2 = 4φ3 + 2c1φ+ c2.
Here is a series of examples: z = 1+xn, f = x

n
(2+xn), φ = (1+xn)2+ 2

3
=

xn(2+xn)+ 1
3

which correspond to A = [x
n
(2+xn)∂+ψ]2−2(xn(2+xn)+ 1

3
)

Even the simplest one, A = [x(2 + x)∂]2 − 2[x(2 + x) + 1
3
] cannot be made

homogeneous.
It seems that a complete classification of (2, 3) pairs of rank one is a

daunting task. Our condition on z is that z assumes values ±1 when z′ = 0.
Let us call such a polynomial admissible. We can look only at reduced monic
polynomials z(x) = xn + a2x

n−2 + . . . because a substitution x → ax + b
preserves admissibility. Also λnz(λ−1x) preserves admissibility if deg(z) = n
and λn = 1.

Examples above are just one value case. Say, an admissible cubic poly-
nomial is x3 − 3 · 2−2

3 x. If z = (x − ν)i(x + ν)j + 1 then it is admissible

when νi+j = (−1)i−121−i−j (i+j)i+j

iijj
. If a composition h(g(x)) is admissible

then g′ = 0 and h′ = 0 should imply that h(g(x)) = ±1. Hence h(x) should
be an admissible function. As far as g is concerned g′ = 0 should imply
that the value of g belongs to the preimage of ±1 for h which is less re-
strictive if this preimage is large. Because of that it is hard to imagine a
reasonable classification of all admissible polynomials. On the other hand
z2 ≡ 1 (mod z′) for z = xn + a2x

n−2 + · · · + an leads to n − 1 equations
on n − 1 variables with apparently finite number of solutions for each n.
Say, for n = 4 all admissible polynomials are x4 ± 1; x4 + ax2 + 1

8
a2, a4 =
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64; x4 − 3a2x2 + 2
√

2a3x+ 21
8
a4, 337a8 = 64.

Remark. The number of admissible polynomials of a given degree is
finite. Indeed consider first n− 2 homogeneous equations on the coefficients
a2, . . . , an. They are satisfied if z2 ≡ c (mod z′) where c ∈ C. If one of
the components of the variety defined by these equations is more than one-
dimensional then (by Affine Dimension Theorem) its intersection with the
hypersurface given by the last homogeneous equation will be at least one-
dimensional while condition z2 ≡ 0 (mod z′) is satisfied only by z = xn

(recall that we are considering only reduced monic polynomials).

If δ = 0 then (φ′f)2 = 4(φ− λ)3 and (φ− λ)−1/2 = −
∫

dx
f

.

Lemma 2. If f ∈ C[x] and
∫

dx
f

is a rational function then f is a mono-

mial, i.e. f = a(x− b)d. 1

Proof. If g′ = 1
f

for g ∈ C(x) then g = h
f
, h ∈ C[x] since the poles of g

are the zeros of f and if the multiplicity of a zero of f is d then the corre-
sponding pole of g has the multiplicity d − 1. An equality g′ = 1

f
can be

rewritten as h′f −hf ′ = f . If deg(h) > 1 then deg(h′f) > deg(f). Hence the
leading coefficients of polynomials h′f and hf ′ are the same which is pos-
sible only when deg(h) = deg(f). Therefore there exists a c ∈ C for which
deg(h − cf) < deg(f). Since (h − cf)′f − (h − cf)f ′ = f we can conclude
that deg(h1) = 1 for h1 = h − cf . Changing the variable we may assume
that h1 = c1x and then c1(f − xf ′) = f which is possible only if f = axd. 2

Hence when δ = 0 we may assume that f = xd. Then (φ − λ)−1/2 =
−
∫

dx
xd

= 1
(1−d)xd−1 +b where b = 0 since f 2φ ∈ C[x] and φ−λ = c(x−ν)2(d−1).

Therefore A = (xd−1t + ψ(x))2 − 2cx2(d−1) − 2cλ. Finally an automor-
phism x → x, t → t − x2−dψ makes A + 2cλ homogeneous for the weight
w(x) = 1, w(t) = 0.

These computations show that a description of the structure of central-
izers of rank one in A1 is sufficiently challenging. Can the ring of regular
functions of a genus zero curve with one place at infinity be realised as a
centralizer of an element of A1? Here is a more approachable relevant ques-

1I was unable to find a published proof for this observation. This proof is a result of
discussions with J. Bernstein and A. Volberg
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tion: is there an element of A ∈ D1 \ A1 for which p(A) ∈ A1 for a given a
polynomial p(x) ∈ C[x]?

Remarks. It seems that the definition of rank of a centralizer as the
greatest common divisor of the orders of its elements appeared in a work of
Wilson [W].

There are many papers discussing commuting differential operators, pro-
viding examples of such pairs, and applications of such pairs to PDE. An
interested reader can find a rather exhaustive reference list in the recently
published work [BZ] of Burban and Zheglow.
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