Max-Planck-Institut für Mathematik Bonn

Abelian ideals of a Borel subalgebra and root systems, II

by

Dmitri I. Panyushev

Max-Planck-Institut für Mathematik
Preprint Series 2018 (27)

Abelian ideals of a Borel subalgebra and root systems, II

Dmitri I. Panyushev

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Institute for Information Transmission Problems of the R.A.S.
Bolshoi Karetnyi per. 19
127051 Moscow
Russia

ABELIAN IDEALS OF A BOREL SUBALGEBRA AND ROOT SYSTEMS, II

DMITRI I. PANYUSHEV

Abstract

Let \mathfrak{g} be a simple Lie algebra with a Borel subalgebra \mathfrak{b} and $\mathfrak{A b}$ the set of abelian ideals of \mathfrak{b}. Let Δ^{+}be the corresponding set of positive roots. We continue our study of combinatorial properties of the partition of $\mathfrak{A b}$ parameterised by the long positive roots. In particular, the union of an arbitrary set of maximal abelian ideals is described, if $\mathfrak{g} \neq \mathfrak{s l}_{n}$. We also characterise the greatest lower bound of two positive roots, when it exists, and point out interesting subposets of Δ^{+}that are modular lattices.

Introduction

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}, with a triangular decomposition $\mathfrak{g}=\mathfrak{u} \oplus \mathfrak{t} \oplus \mathfrak{u}^{-}$. Here \mathfrak{t} is a Cartan and $\mathfrak{b}=\mathfrak{u} \oplus \mathfrak{t}$ is a fixed Borel subalgebra. The theory of abelian ideals of \mathfrak{b} is based on their relationship, due to D. Peterson, with the minuscule elements of the affine Weyl group \widehat{W} (see Kostant's account in [6]; another approach is presented in [2]). In this note, we elaborate on some topics related to the combinatorial theory of abelian ideals, which can be regarded as a sequel to [11]. We mostly work in the combinatorial setting, i.e., the abelian ideals of \mathfrak{b}, which are sums of root spaces of \mathfrak{u}, are identified with the corresponding sets of positive roots.

Let Δ be the root system of $(\mathfrak{g}, \mathfrak{t})$ in the vector space $V=\mathfrak{t}_{\mathbb{R}}^{*}, \Delta^{+}$the set of positive roots in Δ corresponding to \mathfrak{u}, Π the set of simple roots in Δ^{+}, and θ the highest root in Δ^{+}. Then W is the Weyl group and (,) is a W-invariant scalar product on V. We equip Δ^{+} with the usual partial ordering ' \succcurlyeq '. An upper ideal (or just an ideal) of (Δ^{+}, \succcurlyeq) is a subset $I \subset \Delta^{+}$such that if $\gamma \in I, \nu \in \Delta^{+}$, and $\nu+\gamma \in \Delta^{+}$, then $\nu+\gamma \in I$. An upper ideal I is abelian, if $\gamma^{\prime}+\gamma^{\prime \prime} \notin \Delta^{+}$for all $\gamma^{\prime}, \gamma^{\prime \prime} \in I$. The set of minimal elements of I is denoted by $\min (I)$. It also makes sense to consider the maximal elements of the complement of I, denoted $\max \left(\Delta^{+} \backslash I\right)$.

Write $\mathfrak{A b}$ (resp. $\mathfrak{A d}$) for the set of all abelian (resp. all upper) ideals of Δ^{+}and think of them as posets with respect to inclusion. The upper ideal generated by γ is $I\langle\succcurlyeq \gamma\rangle=$ $\left\{\nu \in \Delta^{+} \mid \nu \succcurlyeq \gamma\right\}$. Then $\min (I\langle\succcurlyeq \gamma\rangle)=\{\gamma\}$. A root $\gamma \in \Delta^{+}$is said to be commutative, if $I\langle\succcurlyeq \gamma\rangle \in \mathfrak{A b}$. Write $\Delta_{\text {com }}^{+}$for the set of all commutative roots. This notion was introduced

[^0]Key words and phrases. Root system, Borel subalgebra, abelian ideal, modular lattice.
This research is partially supported by the R.F.B.R. grant № 16-01-00818.
in [9], and the subset $\Delta_{\text {com }}^{+}$for each Δ is explicitly described in [9, Theorem 4.4]. Note that $\Delta_{\text {com }}^{+} \in \mathfrak{A d}$.

Let $\mathfrak{A b}{ }^{\circ}$ denote the set of nonempty abelian ideals and Δ_{l}^{+}the set of long positive roots. In [8, Sect. 2], we defined a mapping $\tau: \mathfrak{A b}^{o} \rightarrow \Delta_{l}^{+}$, which is onto. Letting $\mathfrak{A b}{ }_{\mu}=\tau^{-1}(\mu)$, we get a partition of $\mathfrak{A b}{ }^{o}$ parameterised by Δ_{l}^{+}. Each $\mathfrak{A} \mathfrak{b}_{\mu}$ is a subposet of $\mathfrak{A b}$ and, moreover, $\mathfrak{A b}_{\mu}$ has a unique minimal and unique maximal element (ideal) [8, Sect.3]. These extreme abelian ideals in $\mathfrak{A b}_{\mu}$ are denoted by $I(\mu)_{\text {min }}$ and $I(\mu)_{\text {max }}$. Then $\left\{I(\alpha)_{\text {max }} \mid \alpha \in \Pi_{l}\right\}$ are exactly the maximal abelian ideals of \mathfrak{b}.

In this article, we first establish a property of $\left(\Delta^{+}, \succcurlyeq\right)$, which seems to be new. It was proved in [11, Appendix] that, for any $\eta_{1}, \eta_{2} \in \Delta^{+}$, there exists the least upper bound, denoted $\eta_{1} \vee \eta_{2}$. Moreover, an explicit formula for $\eta_{1} \vee \eta_{2}$ is also given. Here we prove that the greatest lower bound, $\eta_{1} \wedge \eta_{2}$, exists if and only if $\operatorname{supp}\left(\gamma_{1}\right) \cap \operatorname{supp}\left(\gamma_{2}\right) \neq \varnothing$. Furthermore, if $\eta_{i}=\sum_{\alpha \in \Pi} c_{i \alpha} \alpha$, then $\eta_{1} \wedge \eta_{2}=\sum_{\alpha \in \Pi} \min \left\{c_{1 \alpha}, c_{2 \alpha}\right\} \alpha$. This also implies that $I\langle\succcurlyeq \eta\rangle$ is a modular lattice for any $\eta \in \Delta^{+}$, see Theorem 2.4. Another example a modular lattice inside Δ^{+}is the subposet $\Delta_{\alpha}(i)=\left\{\gamma \in \Delta^{+} \mid \mathrm{ht}_{\alpha}(\gamma)=i\right\}$, where $\alpha \in \Pi$ and $\mathrm{ht}_{\alpha}(\gamma)$ is the coefficient of α in the expression of γ via Π.

Using properties of ' V ' and ' \wedge ' and \mathbb{Z}-gradings of \mathfrak{g}, we prove uniformly that if Δ is not of type \mathbf{A}_{n}, then $\Delta_{\mathrm{nc}}^{+}:=\Delta^{+} \backslash \Delta_{\text {com }}^{+}$has the unique maximal element, which is $\lfloor\theta / 2\rfloor:=$ $\sum_{\alpha \in \Pi}\left\lfloor\mathrm{ht}_{\alpha}(\theta) / 2\right\rfloor \alpha$, see Section 3. In particular, $\lfloor\theta / 2\rfloor$ is a root. (Note that if Δ is of type \mathbf{A}_{n}, then $\lfloor\theta / 2\rfloor=0$ and $\Delta_{\mathrm{nc}}^{+}=\varnothing$.) We also describe the maximal abelian ideals $I(\alpha)_{\max }$ if $\mathrm{ht}_{\alpha}(\theta)$ is odd.

In Section 4, we study the sets of maximal and minimal elements related to abelian ideals of the form $I(\alpha)_{\min }$ and $I(\alpha)_{\max }$ with $\alpha \in \Pi_{l}:=\Pi \cap \Delta_{l}^{+}$.

Theorem 0.1. If $S \subset \Pi_{l}$ is arbitrary and Δ is not of type \mathbf{A}_{n}, then there is the bijection

$$
\eta \in \min \left(\bigcap_{\alpha \in S} I(\alpha)_{\min }\right) \stackrel{1: 1}{\longmapsto} \eta^{\prime}=\theta-\eta \in \max \left(\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }\right) .
$$

Our proof is conceptual and relies on the fact θ is a multiple of a fundamental weight if Δ is not of type \mathbf{A}_{n}. For \mathbf{A}_{n}, the same bijection holds if S is a connected subset on the Dynkin diagram. The case in which $\# S=1$ was considered earlier in [11, Theorem 4.7]. This has some interesting consequences if $S=\Pi_{l}$ and hence $\bigcup_{\alpha \in \Pi_{l}} I(\alpha)_{\max }=\Delta_{\text {com }}^{+}$, see Proposition 4.6.

In Section 5, we describe the interval $[\lfloor\theta / 2\rfloor, \theta-\lfloor\theta / 2\rfloor]$ inside the poset Δ^{+}.

1. Preliminaries

We have $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, the vector space $V=\oplus_{i=1}^{n} \mathbb{R} \alpha_{i}$, the Weyl group W generated by simple reflections $s_{\alpha}(\alpha \in \Pi)$, and a W-invariant inner product (,) on V. Set $\rho=$
$\frac{1}{2} \sum_{\nu \in \Delta^{+}} \nu$. The partial ordering ' \preccurlyeq ' in Δ^{+}is defined by the rule that $\mu \preccurlyeq \nu$ if $\nu-\mu$ is a non-negative integral linear combination of simple roots. Write $\mu \prec \nu$, if $\mu \preccurlyeq \nu$ and $\mu \neq \nu$. If $\mu=\sum_{i=1}^{n} c_{i} \alpha_{i} \in \Delta$, then $\operatorname{ht}_{\alpha_{i}}(\mu):=c_{i}, \operatorname{ht}(\mu):=\sum_{i=1}^{n} c_{i}$ and $\operatorname{supp}(\mu)=\left\{\alpha_{i} \in \Pi \mid c_{i} \neq 0\right\}$.

The Heisenberg ideal $\mathcal{H}:=\left\{\gamma \in \Delta^{+} \mid(\gamma, \theta) \neq 0\right\}=\left\{\gamma \in \Delta^{+} \mid(\gamma, \theta)>0\right\} \in \mathfrak{A} \mathfrak{d}$ plays a prominent role in the theory of abelian ideals and posets $\mathfrak{A b}_{\mu}=\tau^{-1}(\mu)$.

Let us collect some known results that are frequently used below.

- If $I \in \mathfrak{A d}$ is not abelian, then there exist $\eta, \eta^{\prime} \in I$ such that $\eta+\eta^{\prime}=\theta$, see [8, p. 1897]. Therefore, $I \notin \mathfrak{A b}$ if and only if $I \cap \mathcal{H} \notin \mathfrak{A b}$.
- $I=I(\mu)_{\min }$ for some $\mu \in \Delta_{l}^{+}$if and only if $I \subset \mathcal{H}$ [8, Theorem 4.3];
- $\# I(\mu)_{\min }=\left(\rho, \theta^{\vee}-\mu^{\vee}\right)+1$ [8, Theorem 4.2(4)];
- For $I \in \mathfrak{A b}^{\circ}$, we have $I \in \mathfrak{A b}_{\mu}$ if and only if $I \cap \mathcal{H}=I(\mu)_{\text {min }}$ [11, Prop.3.2];
- The set of (globally) maximal abelian ideals is $\left\{I(\alpha)_{\max } \mid \alpha \in \Pi_{l}\right\}$ [8, Corollary 3.8].
- For any $\mu \in \Delta_{l}^{+}$, there is a unique element of minimal length in W that takes θ to μ [8, Theorem 4.1]. Writing w_{μ} for this element, one has $\ell\left(w_{\mu}\right)=\left(\rho, \theta^{\vee}-\mu^{\vee}\right)$ [8, Theorem 4.1].
- Let $\mathcal{N}(w)$ be the inversion set of $w \in W$. By [12, Lemma 1.1],

$$
I(\mu)_{\min }=\{\theta\} \cup\left\{\theta-\gamma \mid \gamma \in \mathcal{N}\left(w_{\mu}\right)\right\} .
$$

For each $\eta \in \mathcal{H} \backslash\{\theta\}$ there is a unique $\eta^{\prime} \in \mathcal{H} \backslash\{\theta\}$ such that $\eta+\eta^{\prime}$ is a root, and this root is θ. It is well known that $\# \mathcal{H}=2\left(\rho, \theta^{\vee}\right)-1=2 h^{*}-3$, where h^{*} is the dual Coxeter number of Δ. Since $\# I(\alpha)_{\min }=\left(\rho, \theta^{\vee}\right)=h^{*}-1$ for $\alpha \in \Pi_{l}$, the ideal $I(\alpha)_{\min }$ contains θ and exactly a half of elements of $\mathcal{H} \backslash\{\theta\}$, cf. also [11, Lemma 3.3].

Although the affine Weyl group and minuscule elements are not explicitly used in this paper, their use is hidden in properties of the posets $\mathfrak{A} \mathfrak{b}_{\mu}, \mu \in \Delta_{l}^{+}$, and ideals $I(\mu)_{\text {min }}$ $I(\mu)_{\max }$. Important properties of the maximal abelian ideals are also obtained in [3,16].

We refer to [1], $[4, \S 3.1]$ for standard results on root systems and Weyl groups and to [15, Chapter 3] for posets.

2. THE GREATEST LOWER BOUND IN Δ^{+}

It is proved in [8, Appendix] that the poset $\left(\Delta^{+}, \succcurlyeq\right)$ is a join-semilattice. i.e., for any pair $\eta, \eta^{\prime} \in \Delta^{+}$, there is the least upper bound (= join), denoted $\eta \vee \eta^{\prime}$. Furthermore, there is a simple explicit formula for ' V ', see [8, Theorem A.1]. However, Δ^{+}is not a meetsemilattice. We prove below that under a natural constraint the greatest lower bound (= meet) exists and can explicitly be described. Afterwards, we provide some applications of this property in the theory of abelian ideals.

Definition 1. Let $\eta, \eta^{\prime} \in \Delta^{+}$. The root ν is the greatest lower bound (or meet) of η and η^{\prime} if

- $\eta \succcurlyeq \nu, \eta^{\prime} \succcurlyeq \nu$;
- if $\eta \succcurlyeq \kappa$ and $\eta^{\prime} \succcurlyeq \kappa$, then $\nu \succcurlyeq \kappa$.

The meet of η and η^{\prime}, if it exists, is denoted by $\eta \wedge \eta^{\prime}$.
Obviously, if $\alpha, \alpha^{\prime} \in \Pi$, then their meet does not exist. But as we see below, the only reason for such a failure is that their supports are disjoint.

Lemma 2.1 (see [14, Lemma 3.1]). Suppose that $\gamma \in \Delta^{+}$and $\alpha, \beta \in \Pi$. If $\gamma-\alpha, \gamma-\beta \in \Delta^{+}$, then either $\gamma-\alpha-\beta \in \Delta^{+}$or $\gamma=\alpha+\beta$ and hence α, β are adjacent in the Dynkin diagram.

Lemma 2.2 (see [13, Lemma 3.2]). Suppose that $\gamma \in \Delta^{+}$and $\alpha, \beta \in \Pi$. If $\gamma+\alpha, \gamma+\beta \in \Delta^{+}$, then $\gamma+\alpha+\beta \in \Delta^{+}$.

Let us provide a reformulation of these lemmata in terms of ' \vee ' and ' \wedge '. To this end, we note that in the previous lemma, $(\gamma+\alpha) \wedge(\gamma+\beta)=\gamma$.

Proposition 2.3. Let $\eta_{1}, \eta_{2} \in \Delta^{+}$.
(i) If $\eta_{1} \vee \eta_{2}$ covers both η_{1} and η_{2}, then either $\eta_{1} \vee \eta_{2}=\alpha+\beta=\eta_{1}+\eta_{2}$ for some adjacent $\alpha, \beta \in \Pi$, or η_{1} and η_{2} both cover $\eta_{1} \wedge \eta_{2}$;
(ii) If $\eta_{1} \wedge \eta_{2}$ exists and η_{1} and η_{2} both cover $\eta_{1} \wedge \eta_{2}$, then $\eta_{1} \vee \eta_{2}$ covers both η_{1} and η_{2}.

For any two roots $\eta=\sum_{\alpha \in \Pi} c_{\alpha} \alpha$ and $\eta^{\prime}=\sum_{\alpha \in \Pi} c_{\alpha}^{\prime} \alpha$, one defines two elements of the root lattice, $\min \left(\eta, \eta^{\prime}\right)=\sum_{\alpha \in \Pi} \min \left\{c_{\alpha}, c_{\alpha}^{\prime}\right\} \alpha$ and $\max \left(\eta, \eta^{\prime}\right)=\sum_{\alpha \in \Pi} \max \left\{c_{\alpha}, c_{\alpha}^{\prime}\right\} \alpha$. Recall that the poset $\left(\Delta^{+}, \succcurlyeq\right)$ is graded and the rank function is the usual height of a root, i.e., $\operatorname{ht}(\eta)=\sum_{\alpha \in \Pi} c_{\alpha}$. We also set ht ${ }_{\alpha}(\eta):=c_{\alpha}$.

Theorem 2.4.

1) For any $\gamma \in \Delta^{+}$, the upper ideal $I\langle\succcurlyeq \gamma\rangle$ is a modular lattice;
2) the meet $\gamma_{1} \wedge \gamma_{2}$ exists if and only if $\operatorname{supp}\left(\gamma_{1}\right) \cap \operatorname{supp}\left(\gamma_{2}\right) \neq \varnothing$. In this case, one has $\gamma_{1} \wedge \gamma_{2}=\min \left(\gamma_{1}, \gamma_{2}\right)$.

Proof. 1) By [8, Theorem A.1(i)], the join always exists in Δ^{+}and formulae for ' V ' show that $\gamma_{1} \vee \gamma_{2} \in I\langle\succcurlyeq \gamma\rangle$ whenever $\gamma_{1}, \gamma_{2} \in I\langle\succcurlyeq \gamma\rangle$. Therefore, $I\langle\succcurlyeq \gamma\rangle$ is a join-semilattice with a unique minimal element. Hence the meet also exists for any $\gamma_{1}, \gamma_{2} \in I\langle\succcurlyeq \gamma\rangle$, see [15, Prop.3.3.1]. That is, $I\langle\succcurlyeq \gamma\rangle$ is a lattice. Note that, for $\gamma_{1}, \gamma_{2} \in I\langle\succcurlyeq \gamma\rangle$, the first possibility in Proposition 2.3(i) does not realise. Therefore, using Proposition 2.3 with $I\langle\succcurlyeq \gamma\rangle$ in place of Δ^{+}and [15, Prop.3.3.2], we conclude that $I\langle\succcurlyeq \gamma\rangle$ is a modular lattice.

Yet, this does not provide a formula for the meet and leaves a theoretical possibility that $\gamma_{1} \wedge \gamma_{2}$ depends on γ.
2) If $\operatorname{supp}\left(\gamma_{1}\right) \cap \operatorname{supp}\left(\gamma_{2}\right)=\varnothing$, then there are no roots ν such that $\gamma_{1} \succcurlyeq \nu$ and $\gamma_{2} \succcurlyeq \nu$. Conversely, if $\operatorname{supp}\left(\gamma_{1}\right) \cap \operatorname{supp}\left(\gamma_{2}\right) \neq \varnothing$, then $\gamma_{1}, \gamma_{2} \in I\langle\succcurlyeq \gamma\rangle$ for some γ. Using again [15, Prop.3.3.2], the modularity of the lattice $I\langle\succcurlyeq \gamma\rangle$ implies that $\operatorname{ht}\left(\gamma_{1} \vee \gamma_{2}\right)+\operatorname{ht}\left(\gamma_{1} \wedge \gamma_{2}\right)=$
$\operatorname{ht}\left(\gamma_{1}\right)+\operatorname{ht}\left(\gamma_{2}\right)$, where $\gamma_{1} \wedge \gamma_{2}$ is taken inside $I\langle\succcurlyeq \gamma\rangle$. It is clear that $\gamma_{1} \wedge \gamma_{2} \preccurlyeq \min \left(\gamma_{1}, \gamma_{2}\right)$. Moreover, in this situation, the formulae of [8, Theorem A.1(i)] imply that $\gamma_{1} \vee \gamma_{2}=\max \left(\gamma_{1}, \gamma_{2}\right)$. Therefore, $\operatorname{ht}\left(\min \left(\gamma_{1}, \gamma_{2}\right)\right)=\operatorname{ht}\left(\gamma_{1} \wedge \gamma_{2}\right)$ and thereby $\min \left(\gamma_{1}, \gamma_{2}\right)=\gamma_{1} \wedge \gamma_{2}$.

Remark 2.5. A special class of modular lattices inside Δ^{+}occurs in connection with \mathbb{Z} gradings of \mathfrak{g}. For $\alpha \in \Pi$, set $\Delta_{\alpha}(i)=\left\{\gamma \in \Delta \mid \mathrm{ht}_{\alpha}(\gamma)=i\right\}$. It is known that $\Delta_{\alpha}(i)$ has a unique minimal and a unique maximal element, see Section 3. It is also clear that $\gamma_{1} \wedge \gamma_{2}$ and $\gamma_{1} \vee \gamma_{2} \in \Delta_{\alpha}(i)$ for all $\gamma_{1}, \gamma_{2} \in \Delta_{\alpha}(i)$. Hence $\Delta_{\alpha}(i)$ is a modular lattice. (It was already noticed in [8, Appendix] that $\Delta_{\alpha}(i)$ is a lattice.)

Remark 2.6. In what follows, we have to distinguish the \mathbf{A}_{n}-case from the other types. One the reasons is that θ is not a multiple of a fundamental weight only for \mathbf{A}_{n}. In all other types, there is a unique $\alpha_{\theta} \in \Pi$ such that $\left(\theta, \alpha_{\theta}\right) \neq 0$. For the \mathbb{Z}-grading associated with α_{θ}, one then has $\Delta_{\alpha_{\theta}}(1)=\mathcal{H} \backslash\{\theta\}$ and $\Delta_{\alpha_{\theta}}(2)=\{\theta\}$. That is, $\mathcal{H} \backslash\{\theta\}$ (or just \mathcal{H}) has a unique minimal element, which is α_{θ}, if and only if Δ is not of type \mathbf{A}_{n}. This provides the following consequence of Theorem 2.4:
If Δ is not of type \mathbf{A}_{n}, then for all $\eta_{1}, \eta_{2} \in \mathcal{H} \backslash\{\theta\}$, the meet $\eta_{1} \wedge \eta_{2}$ exists and lies in $\mathcal{H} \backslash\{\theta\}$. This is going to be used several times in Section 4.

3. \mathbb{Z}-GRADINGS AND NON-COMMUTATIVE ROOTS

If $\gamma \in \Delta_{\text {com }}^{+}$, then γ belongs to a maximal abelian ideal. Since $I(\alpha)_{\max }, \alpha \in \Pi_{l}$, are all the maximal abelian ideals in Δ^{+}, we have

$$
\Delta_{\mathrm{com}}^{+}=\bigcup_{\alpha \in \Pi_{l}} I(\alpha)_{\max }
$$

Set $\Delta_{\mathrm{nc}}^{+}=\Delta^{+} \backslash \Delta_{\text {com }}^{+}$. In this section, we obtain an a priori description of Δ_{nc}^{+}. Let us introduce special elements of the root lattice

$$
\lfloor\theta / 2\rfloor=\sum_{\alpha \in \Pi}\left\lfloor\mathrm{ht}_{\alpha}(\theta) / 2\right\rfloor \alpha \text { and }\lceil\theta / 2\rceil=\sum_{\alpha \in \Pi}\left\lceil\mathrm{ht}_{\alpha}(\theta) / 2\right\rceil \alpha .
$$

Hence $\lfloor\theta / 2\rfloor+\lceil\theta / 2\rceil=\theta$. Note that $\lfloor\theta / 2\rfloor=0$ if and only if $\theta=\sum_{\alpha \in \Pi} \alpha$, i.e., Δ is of type \mathbf{A}_{n}.

Lemma 3.1. Suppose that Δ is not of type \mathbf{A}_{n}, so that $\lfloor\theta / 2\rfloor \neq 0$.
(1) If $\gamma \in \Delta_{\mathrm{nc}^{\prime}}^{+}$then $\mathrm{ht}_{\alpha} \gamma \leqslant\left\lfloor\mathrm{ht}_{\alpha}(\theta) / 2\right\rfloor$ for all $\alpha \in \Pi$, i.e., $\gamma \preccurlyeq\lfloor\theta / 2\rfloor$.
(2) If $\gamma_{1}, \gamma_{2} \preccurlyeq\lfloor\theta / 2\rfloor$, then $\gamma_{1} \vee \gamma_{2} \preccurlyeq\lfloor\theta / 2\rfloor$.

Proof. (1) Obvious.
(2) By [8, Theorem A.1], if $\operatorname{supp}\left(\gamma_{1}\right) \cup \operatorname{supp}\left(\gamma_{2}\right)$ is connected, then $\gamma_{1} \vee \gamma_{2}=\max \left(\gamma_{1}, \gamma_{2}\right)$ and the assertion is clear. Otherwise, $\gamma_{1} \vee \gamma_{2}=\gamma_{1}+($ connecting root $)+\gamma_{2}$. Recall that if the union of supports is not connected, then there is a (unique) chain of simple roots
that connects them. If this chain consists of $\alpha_{i_{1}}, \ldots, \alpha_{i_{s}}$, then the "connecting root" is $\alpha_{i_{1}}+\cdots+\alpha_{i_{s}}$. Here we only need the condition that $h t_{\alpha}(\theta) \geqslant 2$ for any α in the connecting chain. Indeed, the roots in this chain are not extreme in the Dynkin diagram, and outside type \mathbf{A}_{n} the coefficients of non-extreme simple roots are always $\geqslant 2$.

Remark. For $\mathbf{A}_{n},\lfloor\theta / 2\rfloor=0$ and hence $\Delta_{\mathrm{nc}}^{+}=\varnothing$.
Set $\mathcal{A}=\left\{\gamma \in \Delta^{+} \mid \gamma \preccurlyeq\lfloor\theta / 2\rfloor\right\}$. Then $\mathcal{A} \neq \varnothing$ if and only if Δ is not of type \mathbf{A}_{n}. It follows from Lemma 3.1 that

- $\Delta_{\text {nc }}^{+} \subset \mathcal{A}$;
- \mathcal{A} has a unique maximal element.

Our goal is to prove that $\Delta_{\mathrm{nc}}^{+}=\mathcal{A}$ and $\max (\mathcal{A})=\{\lfloor\theta / 2\rfloor\}$. The latter essentially boils down to the assertion that $\lfloor\theta / 2\rfloor$ is a root.

For an arbitrary $\alpha \in \Pi$, consider the \mathbb{Z}-grading $\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{\alpha}(i)$ corresponding to α. That is, the set of roots of $\mathfrak{g}_{\alpha}(i)$ is $\Delta_{\alpha}(i)$, see Remark 2.5. In particular, $\alpha \in \Delta_{\alpha}(1)$ and $\Pi \backslash\{\alpha\} \subset \Delta_{\alpha}(0)$. Here $\mathfrak{l}:=\mathfrak{g}_{\alpha}(0)$ is reductive and contains the Cartan subalgebra \mathfrak{t}. By an old result of Kostant (see [7] and Joseph's exposition in [5, 2.1]), each $\mathfrak{g}_{\alpha}(i), i \neq 0$, is a simple l-module. Therefore, $\Delta_{\alpha}(i)$ has a unique minimal and a unique maximal element. The following is a particular case of Theorem 2.3 in [7].

Proposition 3.2. If $i+j \leqslant \mathrm{ht}_{\alpha}(\theta)$, then $0 \neq\left[\mathfrak{g}_{\alpha}(i), \mathfrak{g}_{\alpha}(j)\right]=\mathfrak{g}_{\alpha}(i+j)$.
Once one has proved that $\left[\mathfrak{g}_{\alpha}(i), \mathfrak{g}_{\alpha}(j)\right] \neq 0$, the equality $\left[\mathfrak{g}_{\alpha}(i), \mathfrak{g}_{\alpha}(j)\right]=\mathfrak{g}_{\alpha}(i+j)$ stems from the fact that $\mathfrak{g}_{\alpha}(i+j)$ is a simple \mathfrak{l}-module. We derive from this result two corollaries.

Corollary 3.3. For any $\mu \in \Delta_{\alpha}(i)$, there is $\nu \in \Delta_{\alpha}(j)$ such that $\mu+\nu \in \Delta_{\alpha}(i+j)$.
Proof. Let $e_{\mu} \in \mathfrak{g}_{\alpha}(i)$ be a root vector for μ. Assume that the property in question does not hold. Then $\left[e_{\mu}, \mathfrak{g}_{\alpha}(j)\right]=0$. Hence $\left[L \cdot e_{\mu}, \mathfrak{g}_{\alpha}(j)\right]=0$, where $L \subset G$ is the connected reductive group with Lie algebra \mathfrak{l}. Since the linear span of an L-orbit in a simple L-module is the whole space, this implies that $\left[\mathfrak{g}_{\alpha}(i), \mathfrak{g}_{\alpha}(j)\right]=0$, which contradicts the proposition.

Set $d_{\alpha}=\left\lfloor h t_{\alpha}(\theta) / 2\right\rfloor$, and let $\mu_{d_{\alpha}}$ be the lowest weight in $\Delta_{\alpha}\left(d_{\alpha}\right)$.
Corollary 3.4. $\mu_{d_{\alpha}} \in \Delta_{n c}^{+}$.
Proof. By Corollary 3.3, there is $\lambda \in \Delta_{\alpha}\left(d_{\alpha}\right)$ such that $\mu_{d_{\alpha}}+\lambda$ is a root in $\Delta_{\alpha}\left(2 d_{\alpha}\right)$. Since $\mu_{d_{\alpha}} \preccurlyeq \gamma$, the upper ideal in Δ^{+}generated by $\mu_{d_{\alpha}}$ is not abelian.

This allows us to obtain the promised characterisation of Δ_{nc}^{+}.
Theorem 3.5. If $\lfloor\theta / 2\rfloor \neq 0$, i.e., Δ is not of type \mathbf{A}_{n}, then $\lfloor\theta / 2\rfloor$ is the unique maximal element of $\Delta_{\text {nc }}^{+}$. Furthermore, $\lfloor\theta / 2\rfloor \in \mathcal{H}$.

Proof. It was noticed above that $\Delta_{\text {nc }}^{+} \subset \mathcal{A}, \mathcal{A}$ has a unique maximal element, say $\hat{\nu}$, and $\hat{\nu} \preccurlyeq$ $\lfloor\theta / 2\rfloor$. By Corollary 3.4, for any $\alpha \in \Pi$, there is $\mu_{\alpha} \in \Delta_{\mathrm{nc}}^{+}$such that ht ${ }_{\alpha}\left(\mu_{\alpha}\right)=d_{\alpha}$. Therefore $\bigvee_{\alpha \in \Pi} \mu_{\alpha} \succcurlyeq\lfloor\theta / 2\rfloor$. On the other hand, $\mu_{\alpha} \preccurlyeq \hat{\nu}$ for each α and hence $\bigvee_{\alpha \in \Pi} \mu_{\alpha} \preccurlyeq \hat{\nu} \preccurlyeq\lfloor\theta / 2\rfloor$. Thus, $\lfloor\theta / 2\rfloor=\hat{\nu}$ is a root. If α_{θ} is the unique simple root such that $\left(\theta, \alpha_{\theta}\right) \neq 0$, then $\mathrm{ht}_{\alpha_{\theta}}(\theta)=2$. Therefore $\lfloor\theta / 2\rfloor \in \mathcal{H}$ whenever Δ is not \mathbf{A}_{n}.

The fact that $\lfloor\theta / 2\rfloor$ is the unique maximal non-commutative root has been observed in [9 , Sect. 4] via a case-by-case analysis.

Example 3.6. If Δ is of type \mathbf{E}_{8}, then $\theta=\begin{gathered}2345642 \\ 3\end{gathered}$ and $\lfloor\theta / 2\rfloor=\begin{gathered}1122321 \\ 1\end{gathered}$.
Remark 3.7. In the proof of Corollary 3.4 and then Theorem 3.5, we only need the property, which follows from Proposition 3.2, that $\left[\mathfrak{g}_{\alpha}\left(d_{\alpha}\right), \mathfrak{g}_{\alpha}\left(d_{\alpha}\right)\right]=\mathfrak{g}_{\alpha}\left(2 d_{\alpha}\right)$.

For $\alpha \in \Pi$ with $\mathrm{ht}_{\alpha}(\theta)=2$ or 3 , this means that $\left[\mathfrak{g}_{\alpha}(1), \mathfrak{g}_{\alpha}(1)\right]=\mathfrak{g}_{\alpha}(2)$, which is obvious. This covers all classical simple Lie algebras, \mathbf{E}_{6}, and \mathbf{G}_{2}. For $\mathbf{E}_{7}, \mathbf{E}_{8}$, and \mathbf{F}_{4}, there are $\alpha \in \Pi$ such that $\mathrm{ht}_{\alpha}(\theta) \in\{4,5,6\}$. Then the required relation is $\left[\mathfrak{g}_{\alpha}(2), \mathfrak{g}_{\alpha}(2)\right]=\mathfrak{g}_{\alpha}(4)$ or $\left[\mathfrak{g}_{\alpha}(3), \mathfrak{g}_{\alpha}(3)\right]=\mathfrak{g}_{\alpha}(6)$. This can easily be verified case-by-case. However, our intention is to provide a case-free treatment of this property.

Another consequence of Kostant's theory [7] is that one obtains an explicit presentation of some maximal abelian ideals.

Proposition 3.8. Suppose that $\mathrm{ht}_{\alpha}(\theta)=2 d_{\alpha}+1$ is odd. Then $\mathfrak{a}:=\bigoplus_{j \geqslant d_{\alpha}+1} \mathfrak{g}_{\alpha}(j)$ (i.e., $\Delta_{\mathfrak{a}}:=$ $\bigcup_{j \geqslant d_{\alpha}+1} \Delta_{\alpha}(j)$ in the combinatorial set up) is a maximal abelian ideal of \mathfrak{b}.

Proof. Obviously, \mathfrak{a} is abelian. Let $\lambda \in \Delta_{\alpha}\left(d_{\alpha}\right)$ be the highest weight. It follows from the simplicity of all l-modules $\mathfrak{g}_{\alpha}(i)$ that λ is the only maximal element of $\Delta^{+} \backslash \Delta_{\mathfrak{a}}$. Therefore, it suffices to prove that the upper ideal $\Delta_{\mathfrak{a}} \cup\{\lambda\}$ is not abelian. Indeed, there is $\nu \in \Delta_{\alpha}\left(d_{\alpha}+1\right)$ such that $\nu+\lambda$ is a root (apply Corollary 3.3 with $i=d_{\alpha}$ and $j=d_{\alpha}+1$.)

This prompts the following question. Suppose that $\mathrm{ht}_{\alpha}(\theta)=2 d_{\alpha}+1$. Then $\mathfrak{a}=I(\beta)_{\max }$ for some $\beta \in \Pi_{l}$. What is the relationship between α and β ? We say below that $\alpha \in \Pi$ is odd, if $\mathrm{ht}_{\alpha}(\theta)$ is odd.

Example 3.9. 1) If $h t_{\alpha}(\theta)=1$, i.e., $d_{\alpha}=0$, then \mathfrak{a} is the (abelian) nilradical of the corresponding maximal parabolic subalgebra. Then $\beta=\alpha$. This covers all simple roots and all maximal abelian ideals in type \mathbf{A}_{n}.
2) For Δ of type \mathbf{D}_{n} or \mathbf{E}_{n}, there are exactly three odd simple roots α.

- For \mathbf{D}_{n}, these are the endpoints of the Dynkin diagram and $d_{\alpha}=0$. That is, again $\alpha=\beta$ in these cases.
- For \mathbf{E}_{n}, there are also odd simple roots with $d_{\alpha} \geqslant 1$ and then $\beta \neq \alpha$.

Nevertheless, the related maximal abelian ideals always correspond to the extreme nodes
of the Dynkin diagram! Moreover, one always has $\operatorname{ht}_{\beta}(\theta)=d_{\alpha}+1$. (Similar things happen for \mathbf{F}_{4} and \mathbf{G}_{2}.) It might be interesting to find a reason behind it.

Below is the table of all exceptional cases with $d_{\alpha} \geqslant 1$. The numbering of simple roots follows [4, Tables]. In particular, the numbering for \mathbf{E}_{8} is ${ }^{1234567}$ and the extreme nodes correspond to $\alpha_{1}, \alpha_{7}, \alpha_{8}$.

	\mathbf{E}_{6}	\mathbf{E}_{7}		\mathbf{E}_{8}		\mathbf{F}_{4}	\mathbf{G}_{2}
α	α_{3}	α_{3}	α_{5}	α_{2}	α_{4}	α_{8}	α_{3}
α_{1}							
d_{α}	1	1	1	1	2	1	1
β	α_{6}	α_{7}	α_{6}	α_{1}	α_{8}	α_{7}	α_{4}
α_{2}							
$\boldsymbol{h t}_{\beta}(\theta)$	2	2	2	2	3	2	2

4. Bijections related to the maximal abelian ideals

In this section, we consider abelian ideals of the form $I(\alpha)_{\text {min }}$ and $I(\alpha)_{\max }$ for $\alpha \in \Pi_{l}$, and their derivatives (intersections and unions).

The following is Theorem 4.7 in [11].
Theorem 4.1. For any $\alpha \in \Pi_{l}$, there is a one-to-one correspondence between $\min \left(I(\alpha)_{\min }\right)$ and $\max \left(\Delta^{+} \backslash I(\alpha)_{\max }\right)$. Namely, if $\eta \in \max \left(\Delta^{+} \backslash I(\alpha)_{\max }\right)$, then $\eta^{\prime}:=\theta-\eta \in \min \left(I(\alpha)_{\min }\right)$, and vice versa.

It formally follows from this theorem that $\min \left(I(\alpha)_{\min }\right)$ and $\max \left(\Delta^{+} \backslash I(\alpha)_{\max }\right)$ both belong to \mathcal{H}. This is clear for the former, since $I(\alpha)_{\min } \subset \mathcal{H}$. And the key point in the proof of Theorem 4.1 was to demonstrate a priori that $\max \left(\Delta^{+} \backslash I(\alpha)_{\max }\right) \subset \mathcal{H}$.

Below, we provide a generalisation of Theorem 4.1, which is even more general than [11, Theorem 4.9], i.e., we will not assume that $S \subset \Pi_{l}$ be connected. Another improvement is that we give a conceptual proof of that generalisation, while Theorem 4.9 in [11] was proved case-by-case and no details has been given there.

The following is a key step for our generalisation of Theorem 4.1.
Theorem 4.2. Suppose that $S \subset \Pi_{l}$ and $\gamma \in \max \left(\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }\right)$. If Δ is not of type \mathbf{A}_{n}, then $\gamma \in \mathcal{H}$.

Proof. Here we have to distinguish two possibilities: either $\gamma \in \Delta_{\text {nc }}^{+}$or $\gamma \in \Delta_{\text {com }}^{+}$.
(1) Suppose that $\gamma \in \Delta_{\text {nc }}^{+}$and assume that $\gamma \notin \mathcal{H}$. Then there are $\eta, \eta^{\prime} \succ \gamma$ such that $\eta+\eta^{\prime}=\theta$, see [8, p. 1897]. Here both η and η^{\prime} belong to $\mathcal{H} \cap\left(\bigcup_{\alpha \in S} I(\alpha)_{\max }\right)=\bigcup_{\alpha \in S} I(\alpha)_{\min }$. Since Δ is not of type $\mathbf{A}_{n}, \mathcal{H}$ has a unique minimal element ($=$ the unique simple root that is not orthogonal to θ). Therefore, $\mu:=\eta \wedge \eta^{\prime}$ exists and belongs to \mathcal{H}. (The existence of $\eta \wedge \eta^{\prime}$ also follows from Theorem 2.4(1).) Since $\eta, \eta^{\prime} \succcurlyeq \mu$, we have $\mu \in \Delta_{\text {nc }}^{+}$. This implies
that $\mu \notin \bigcup_{\alpha \in S} I(\alpha)_{\min }$ and hence $\mu \notin \bigcup_{\alpha \in S} I(\alpha)_{\max }$. By the definition of meet, $\gamma \preccurlyeq \mu$. Furthermore, $\gamma \notin \mathcal{H}$ and $\mu \in \mathcal{H}$. Hence $\gamma \prec \mu$ and γ is not maximal in $\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }$. A contradiction!
(2) Suppose that $\gamma \in \Delta_{\text {com }}^{+}$. Consider the abelian ideal $J=I\langle\succcurlyeq \gamma\rangle$. By the assumption, $J \backslash\{\gamma\} \subset \bigcup_{\alpha \in S} I(\alpha)_{\max }$. On the other hand, since $J \not \subset I(\alpha)_{\max }$ for each $\alpha \in S$, we conclude that

$$
J \cap \mathcal{H} \not \subset I(\alpha)_{\max } \cap \mathcal{H}=I(\alpha)_{\min }
$$

see [11, Prop.3.2]. For each $\alpha \in S$, we pick $\eta_{\alpha} \in(J \cap \mathcal{H}) \backslash I(\alpha)_{\min .}$. Then $\eta_{\alpha} \succcurlyeq \gamma$. Since Δ is not of type \mathbf{A}_{n}, the meet $\eta:=\wedge_{\alpha \in S} \eta_{\alpha}$ exists and belong to \mathcal{H} (Remark 2.6) and also $\eta \succcurlyeq \gamma$. Note also that $\eta \notin I(\alpha)_{\min }$ for each $\alpha \in S$. (Otherwise, if $\eta \in I\left(\alpha_{0}\right)_{\min }$, then $\eta_{\alpha_{0}} \in I\left(\alpha_{0}\right)_{\min }$ as well.) Therefore, $\eta \notin \bigcup_{\alpha \in S} I(\alpha)_{\min }$ and hence $\eta \notin \bigcup_{\alpha \in S} I(\alpha)_{\max }$ (because $\eta \in \mathcal{H}$). As γ is assumed to be maximal in $\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }$, we must have $\gamma=\eta \in \mathcal{H}$.

Remark. For \mathbf{A}_{n}, this theorem remains true if we add the hypothesis that $S \subset \Pi_{l}$ is a connected subset in the Dynkin diagram, see also Example 4.4.

Theorem 4.3. If $S \subset \Pi_{l}$ is arbitrary and Δ is not of type \mathbf{A}_{n}, then there is the bijection

$$
\eta \in \min \left(\bigcap_{\alpha \in S} I(\alpha)_{\min }\right) \stackrel{1: 1}{\longmapsto} \eta^{\prime}=\theta-\eta \in \max \left(\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }\right) .
$$

Proof. (1) Suppose that $\eta \in \min \left(\bigcap_{\alpha \in S} I(\alpha)_{\min }\right)$. As Δ is not of type \mathbf{A}_{n}, there is a unique $\alpha_{\theta} \in \Pi$ such that $\left(\theta, \alpha_{\theta}\right) \neq 0$. Then $\theta-\alpha_{\theta} \in \mathcal{H}$ is the only root covered by θ. Therefore, $\theta-\alpha_{\theta} \in I(\alpha)_{\min }$ for all $\alpha \in \Pi_{l}$. Hence $\eta \neq \theta$ and hence $\eta^{\prime}=\theta-\eta$ is a root (in \mathcal{H}). Since $\eta \in I(\alpha)_{\min }$, we have $\eta^{\prime} \notin I(\alpha)_{\min }$, see [11, Lemma3.3]. And this holds for each $\alpha \in S$. Hence $\eta^{\prime} \notin \bigcup_{\alpha \in S} I(\alpha)_{\text {min }}$ and thereby $\eta^{\prime} \notin \bigcup_{\alpha \in S} I(\alpha)_{\max }$.

Assume that η^{\prime} is not maximal in $\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }$, i.e., $\eta^{\prime}+\beta \notin \bigcup_{\alpha \in S} I(\alpha)_{\max }$ for some $\beta \in \Pi$. Again, $\eta^{\prime} \prec \theta-\alpha_{\theta}$, hence $\eta^{\prime}+\beta \in \mathcal{H} \backslash\{\theta\}$. Then $\theta-\left(\eta^{\prime}+\beta\right)=\eta-\beta \in \mathcal{H}$ and arguing "backwards" we obtain that $\eta-\beta \in \bigcap_{\alpha \in S} I(\alpha)_{\min }$, which contradicts the fact that η is minimal.
(2) By Theorem 4.2, if $\eta^{\prime} \in \max \left(\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }\right)$, then $\eta^{\prime} \in \mathcal{H}$. Under these circumstances, the previous part of the proof can be reversed.

Example 4.4. Suppose that Δ is of type \mathbf{A}_{n}, with the usual numbering of simple roots. Then $I\left(\alpha_{i}\right)_{\max }=I\left\langle\succcurlyeq \alpha_{i}\right\rangle$ for all i and $\mathcal{H}=I\left(\alpha_{1}\right)_{\max } \cup I\left(\alpha_{n}\right)_{\text {max }}$, where

$$
\begin{aligned}
& I\left(\alpha_{1}\right)_{\min }=I\left(\alpha_{1}\right)_{\max }=\left\{\varepsilon_{1}-\varepsilon_{2}, \ldots, \varepsilon_{1}-\varepsilon_{n}, \varepsilon_{1}-\varepsilon_{n+1}=\theta\right\}, \\
& I\left(\alpha_{n}\right)_{\min }=I\left(\alpha_{n}\right)_{\max }=\left\{\varepsilon_{n}-\varepsilon_{n+1}, \ldots, \varepsilon_{2}-\varepsilon_{n+1}, \varepsilon_{1}-\varepsilon_{n+1}\right\} .
\end{aligned}
$$

If $S=\left\{\alpha_{1}, \alpha_{n}\right\}$, then S is not connected for $n \geqslant 3, I\left(\alpha_{1}\right)_{\min } \cap I\left(\alpha_{n}\right)_{\min }=\{\theta\}$, and $\max \left(\Delta^{+} \backslash\right.$ $\left.\left(I\left(\alpha_{1}\right)_{\max } \cup I\left(\alpha_{n}\right)_{\max }\right)\right)=\left\{\varepsilon_{2}-\varepsilon_{n}\right\}$. That is, Theorems 4.2 and 4.3 do not apply here. However, both remain true if S is assumed to be connected and $S \neq \Pi$. For instance,
suppose that $S=\left\{\alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{j}\right\}$ with $1<i<j<n$. Then $\min \left(\bigcap_{\alpha \in S} I(\alpha)_{\min }\right)=$ $\left\{\varepsilon_{1}-\varepsilon_{j+1}, \varepsilon_{i}-\varepsilon_{n+1}\right\}$ and $\max \left(\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }\right)=\left\{\varepsilon_{1}-\varepsilon_{i}, \varepsilon_{j+1}-\varepsilon_{n+1}\right\}$.

If $S=\Pi$, then $\bigcap_{\alpha \in \Pi} I(\alpha)_{\min }=\{\theta\}$ and $\Delta^{+}=\bigcup_{\alpha \in \Pi} I(\alpha)_{\max }$.
As a by-product of Theorem 4.3, we derive a property of maximal abelian ideals outside type A. Given $S \subset \Pi_{l}$, let $\langle S\rangle$ be the smallest connected subset of Π_{l} containing S.

Theorem 4.5. Let $S \subset \Pi_{l}$. Then
(i) $\bigcap_{\alpha \in S} I(\alpha)_{\text {min }}=\bigcap_{\alpha \in\langle S\rangle} I(\alpha)_{\text {min }}$;
(ii) if $\Delta \neq \mathbf{A}_{n}$, then $\bigcup_{\alpha \in S} I(\alpha)_{\max }=\bigcup_{\alpha \in\langle S\rangle} I(\alpha)_{\max }$.

Proof. (i) By [11, Theorem 2.1], $\bigcap_{\alpha \in S} I(\alpha)_{\min }=I(\gamma)_{\min }$, where $\gamma=\bigvee_{\alpha \in S} \alpha$. It remains to notice that $\bigvee_{\alpha \in S} \alpha=\sum_{\alpha \in\langle S\rangle} \alpha=\bigvee_{\alpha \in\langle S\rangle} \alpha$.
(ii) This follows from (i) and Theorem 4.3. Namely, if Δ is not of type \mathbf{A}_{n}, then

$$
\max \left(\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }\right)=\max \left(\Delta^{+} \backslash \bigcup_{\alpha \in\langle S\rangle} I(\alpha)_{\max }\right)
$$

Hence both unions also coincide.
The equality $\bigcap_{\alpha \in S} I(\alpha)_{\text {min }}=I\left(\bigvee_{\alpha \in S} \alpha\right)_{\text {min }}$ has interesting consequences. By [8, Prop.4.6], the minimal elements of the abelian ideal $I(\gamma)_{\text {min }}$ have the following description:

Let $w_{\gamma} \in W$ be a unique element of minimal length such that $w_{\gamma}(\theta)=\gamma$. If $\beta \in \Pi$ and $\left(\beta, \gamma^{\vee}\right)=-1$, then $w_{\gamma}^{-1}(\beta+\gamma)=w_{\gamma}^{-1}(\beta)+\theta \in \min \left(I(\gamma)_{\min }\right)$. Conversely, any element of $\min \left(I(\gamma)_{\min }\right)$ is obtained in this way.

For any γ of the form $\bigvee_{\alpha \in S} \alpha$, the required simple roots β are easily determined, which yields the maximal elements of $\Delta^{+} \backslash \bigcup_{\alpha \in S} I(\alpha)_{\max }$. We consider below the particular case in which $S=\Pi_{l}$.

Proposition 4.6. Set $\left|\Pi_{l}\right|=\sum_{\alpha \in \Pi_{l}}$. If $\left|\Pi_{l}\right| \neq \theta$, i.e., Δ is not of type \mathbf{A}_{n}, then there is a unique $\hat{\boldsymbol{\alpha}} \in \Pi$ such that $\left|\Pi_{l}\right|+\hat{\boldsymbol{\alpha}}$ is a root. More precisely,

- if $\Delta \in\{\mathbf{D}-\mathbf{E}\}$, then $\hat{\boldsymbol{\alpha}}$ is the branching point in the Dynkin diagram;
- if $\Delta \in\{\mathbf{B}-\mathbf{C}-\mathbf{F}-\mathbf{G}\}$, then $\hat{\boldsymbol{\alpha}}$ is the unique short root that is adjacent to a long root in the Dynkin diagram.

In all these cases, $w_{\left|\Pi_{l}\right|}^{-1}(\hat{\boldsymbol{\alpha}})=-\lfloor\theta / 2\rfloor$.
Proof. If $S=\Pi_{l}$, then $\bigcup_{\alpha \in \Pi_{l}} I(\alpha)_{\max }=\Delta_{\text {com }}^{+}$. Hence $\max \left(\Delta^{+} \backslash \bigcup_{\alpha \in \Pi_{l}} I(\alpha)_{\max }\right)=\{\lfloor\theta / 2\rfloor\}$, see Theorem 3.5. Therefore, by Theorem 4.3, the unique minimal element of $I\left(\left|\Pi_{l}\right|\right)_{\min }=$ $\bigcap_{\alpha \in \Pi_{l}} I(\alpha)_{\text {min }}$ is $\theta-\lfloor\theta / 2\rfloor=:\lceil\theta / 2\rceil$. This means that there is a unique simple root $\hat{\alpha}$ such that $\left(\left|\Pi_{l}\right|^{\vee}, \hat{\boldsymbol{\alpha}}\right)=-1$, i.e., $\left|\Pi_{l}\right|+\hat{\boldsymbol{\alpha}}$ is a root. Since $w_{\left|\Pi_{l}\right|}^{-1}\left(\left|\Pi_{l}\right|+\hat{\boldsymbol{\alpha}}\right)=\theta+w_{\left|\Pi_{l}\right|}^{-1}(\hat{\boldsymbol{\alpha}})=\theta-\lfloor\theta / 2\rfloor$, the last assertion follows.

Clearly, $\hat{\boldsymbol{\alpha}}$ specified in the statement satisfies the condition that $\left(\left|\Pi_{l}\right|, \hat{\boldsymbol{\alpha}}\right)<0$.
The \mathbf{A}_{n}-case can partially be included in the DE-picture, if we formally assume that $\hat{\boldsymbol{\alpha}}=0$ (because there is no branching point).

5. ON THE INTERVAL $[\lfloor\theta / 2\rfloor,\lceil\theta / 2\rceil]$

In this section, we first assume that Δ is not of type \mathbf{A}_{n}. Since $\lfloor\theta / 2\rfloor \in \mathcal{H}$, we have $\lceil\theta / 2\rceil=\theta-\lfloor\theta / 2\rfloor \in \mathcal{H}$ and also $\lfloor\theta / 2\rfloor \preccurlyeq\lceil\theta / 2\rceil$. We consider the interval between $\lfloor\theta / 2\rfloor$ and $\lceil\theta / 2\rceil$ in Δ^{+}. Let h be the Coxeter number of Δ.

Proposition 5.1. Set $\mathfrak{J}=\left\{\gamma \in \Delta^{+} \mid\lfloor\theta / 2\rfloor \preccurlyeq \gamma \preccurlyeq\lceil\theta / 2\rceil\right\}$.

- if $\Delta \in\{\mathbf{D}-\mathbf{E}\}$, then $\mathfrak{J} \simeq \mathbb{B}^{3}$ and $\operatorname{ht}(\lceil\theta / 2\rceil)=(h / 2)+1$;
- if $\Delta \in\{\mathbf{B}-\mathbf{C}-\mathbf{F - G}\}$, then \mathfrak{J} is a segment and $\mathrm{ht}(\lceil\theta / 2\rceil)=h / 2$.

Proof. This can be verified case-by-case, but we also provide some a priori hints. It follows from the definition of $\lfloor\theta / 2\rfloor$, see Eq. (3.1), that

$$
\lceil\theta / 2\rceil-\lfloor\theta / 2\rfloor=\theta-2\lfloor\theta / 2\rfloor=2\lceil\theta / 2\rceil-\theta=\sum_{\alpha: \text { ht }_{\alpha}(\theta) \text { odd }} \alpha
$$

the sum of all odd simple roots. Let $\mathcal{O} \subset \Pi$ denote the set of odd roots. Then $\mathrm{ht}(\lceil\theta / 2\rceil)-$ $h t(\lfloor\theta / 2\rfloor)=\# \mathcal{O}$.

- In the simply-laced case, $\left(\theta-2\lfloor\theta / 2\rfloor,\lfloor\theta / 2\rfloor^{\vee}\right)=1-4=-3$. Therefore, there are at least three $\alpha \in \mathcal{O}$ such that $\left(\alpha,\lfloor\theta / 2\rfloor^{\vee}\right)=-1$, i.e., $\lfloor\theta / 2\rfloor+\alpha \in \Delta^{+}$. On the other hand, for any $\gamma \in \Delta^{+}$, there are at most three $\alpha \in \Pi$ such that $\gamma+\alpha \in \Delta^{+}$[10, Theorem 3.1(i)]. Thus, there are exactly three odd roots α_{i} such that $\lfloor\theta / 2\rfloor+\alpha_{i} \in \Delta^{+}$. Actually, there are only three odd roots in the $\{\mathbf{D}-\mathbf{E}\}$-case. Hence every odd root can be added to $\lfloor\theta / 2\rfloor$. Likewise, $\left(2\lceil\theta / 2\rceil-\theta,\lceil\theta / 2\rceil^{\vee}\right)=3$ and the same three roots can be subtracted from $\lceil\theta / 2\rceil$. This yields all six roots strictly between $\lfloor\theta / 2\rfloor$ and $\lceil\theta / 2\rceil$. If $\mathcal{O}=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$, then \mathfrak{J} is as follows:

- In the non-simply laced cases, there is always a unique odd root and hence $\mathfrak{J}=$ $\{\lfloor\theta / 2\rfloor,\lceil\theta / 2\rceil\}$.

Remark 5.2. If Δ is of type \mathbf{A}_{n}, then $\lfloor\theta / 2\rfloor=0$ and $\lceil\theta / 2\rceil=\theta$. Then $\mathfrak{J}=\Delta^{+} \cup\{0\}$. However, this poset is not a modular lattice.

Acknowledgements. Part of this work was done during my stay at the Max-Planck-Institut für Mathematik (Bonn). I would like to thank the Institute for its warm hospitality and excellent working conditions.

REFERENCES

[1] N. Bourbaki. "Groupes et algèbres de Lie", Chapitres 4,5 et 6, Paris: Hermann 1975.
[2] P. Cellini and P. PAPI. ad-nilpotent ideals of a Borel subalgebra, J. Algebra, 225 (2000), 130-141.
[3] P. Cellini and P. Papi. Abelian ideals of Borel subalgebras and affine Weyl groups, Adv. Math., 187 (2004), 320-361.
[4] V.V. Gorbatsevich, A.L. Onishchik and E.B. Vinberg. "Lie Groups and Lie Algebras" III (Encyclopaedia Math. Sci., vol. 41) Berlin Heidelberg New York: Springer 1994.
[5] A. Joseph. Orbital varieties of the minimal orbit, Ann. Scient. Éc. Norm. Sup. (4), 31 (1998), 17-45.
[6] B. Kostant. The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Intern. Math. Res. Notices, (1998), no. 5, 225-252.
[7] B. Kostant. Root systems for Levi factors and Borel-de Siebenthal theory. "Symmetry and spaces", 129-152, Progr. Math., 278, Birkhäuser Boston, Inc., Boston, MA, 2010.
[8] D. Panyushev. Abelian ideals of a Borel subalgebra and long positive roots, Intern. Math. Res. Notices, (2003), no. 35, 1889-1913.
[9] D. PANYUSHEV. The poset of positive roots and its relatives, J. Algebraic Combin., 23 (2006), 79-101.
[10] D. PANYUSHEV. Two covering polynomials of a finite poset, with applications to root systems and ad-nilpotent ideals, J. of Combinatorics, 3 (2012), 63-89.
[11] D. PANYUSHEV. Abelian ideals of a Borel subalgebra and root systems, J. Eur. Math. Soc., 16, no. 12 (2014), 2693-2708.
[12] D. PANYUSHEV. Minimal inversion complete sets and maximal abelian ideals, J. Algebra, 445 (2016), 163-180.
[13] D. PANYUSHEV. Normalisers of abelian ideals of Borel subalgebras and \mathbb{Z}-gradings of a simple Lie algebra, J. Lie Theory, 26 (2016), 659-672.
[14] D. PANYUSHEV and G. RÖHRLE. Spherical orbits and abelian ideals, Adv. Math., 159 (2001), 229-246.
[15] R.P. Stanley. "Enumerative Combinatorics", vol. 1 (Cambridge Stud. Adv. Math. vol. 49), Cambridge Univ. Press, 1997.
[16] R. Suter. Abelian ideals in a Borel subalgebra of a complex simple Lie algebra, Invent. Math., 156 (2004), 175-221.

Institute for Information Transmission Problems of the R.A.S., Bolshoi Karetnyi per. 19, 127051 MOSCOW, RUSSIA

E-mail address: panyushev@iitp.ru

[^0]: 2010 Mathematics Subject Classification. 17B20, 17B22, 06A07, 20 F55.

