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Estimates for character sums in number fields.

B.Z2. Moroz

Introduction.
Let pj , lxj<r , be a (continuous) complex finite dimensional
representation of the Weil group of an algebraic number field k

of finite degree over the rationals and let

L(s,p.) = ) a(n,o.)lnl-s , 123=r ,
3 t J

be the Artin-Weil L-function associated to pj . Here n ranges

over the integral ideals of k and 1| .= Nk/ﬂ? . Let
. r
am,p) = [ a(m,py)
j=1
and let
A(x,P) = a(n,?) - (1)
|nl<x

The purpose of this article is to give an asymptotic estimate

for A(x,?) as X»o with effective numerical constants in the
error term. In the absence of Artin conjecture the error term will
depend, of course, on the location of exceptional Siegel zeros. As .
a by-product of our investigations we thain'estimates generalising
results discussed by several authors [25]; (61; (71, [191; 121,

Appendix ; [18] (cf. also [1], (221), [(27]1) .

Notations and conventions. As usually, @ , R , € , Z denote the
fields of rational, real and complex numbers, and the ring of

rational integers, respectively; R+ stands for the multiplicative




group of positive real numbers. Let F be a number field of
degree n(F) = [F:Q] over @ . We denote by I(F) and C(F) the
idéle group and the id&le-class group of F , respectively.

Embed IR+ diagonally in I(F) and write

~

C(F) = Cl(F)x JR+ , (2)

where Cl(F) is the subgroup of C(F) consisting of id&le-classes
having unit volume. Let § , S1 ’ 82 be the sets of all places,
all real places and all the complex places of F , respectively;

let ?p denote the completion of F at p in S and let

rj=card sj » J=1,2 , so that n(F)=r. +2r Let gr(F) be the

1 2
group of characters of Cl(F) - Any x in gr(F) may be regarded
as a character of I(F) trivial on ]R+ and on the subgroup of
principal idéles; write

x =[] x

, (3)
€s P

where xp is a (continuous) character of F; for each p , and
let

it (x) an (x)
= P 2P
Xp@) =la] (a7 ; a€F: (3)

for p ESlU 52 with tp(a)ER , ap(x)EZ and, moreover,

ap(x)€{0,1} when pESl .Let

[t_(x)|+]|a (x)
a, 00 =T e cop¥? [ (2s—B | +1a, ', (4)
PES, E pes, 2

Let D and F(x) denote the discriminant of F "and the conductor

of x , respectively, and let

b(x) = VlDlNF/Q F(x)



Given a finite normal field extension E[F , one denotes by
G(E|F) and W(E|F) its Galois and Weil groups, respectively.
It follows from the definition of a relative Weil group} [26] ,

(23], that parallel to (2) we have a decomposition
W(E|F) = W (E|F)x R, (5)

Where Wl(ElF) is a compact group obtained as an extension

of G(E|F) by Cl(E) . The (absolute) Weil group W(F) of F
is defined as the projective limit of W(E|F) , where E varies
over finite normal extensions of F (cf. [231). If follows from

the definitions that any continuous representation
p: W(F) — GL(4,C) (6)

factors through W(EIF) for some ElF ; if, moreover, Zm¢‘Kerp R
so that o factors through Wl(ElF) , we say that 0 is
normalized. An one-dimensional normalised representation of W(F)
may be identified with a grossencharacter in gr(F) . We recall
+hat the L-function associated to © is defined by an Euler
product:

—s)-l

Ls,p) = [T det(z- o(cp)\pl ' (7)

PES,)

where SO=S\(81U Sz) is the set of finite places, OT prime
divisors of F ; to define o(Op) we fix an element Tp in the
Frobenius class Gp and denote by p(GP) the restriction of
the operator p(Tp) to subspace of the representation space
consisting of the vectors fixed by the elements of the inertia

group at p . If x=tr? is the character of p we write, for




brevity,

x(P) = trxp (op) ’ pES0 . (8)

If o 1is normalised and factors through W(EIF) » then there are
number fields Ej » 1Isjsv , such that EEEjsE for each j, and

grossencharacters wj ,in gr(Ej)) satisfying the condition

J L.
Ls,o) = MLtsip )™ 3, g.=41, lsisy , (9)
i, J J =
j=1
where L(s,wj) is the Hecke L-function associated with wj..

In notations of (9), 1let
v v
a(x) = Maw.) , bx) = Mbe.) , x:=trp .  (10)
j=1 j=1 ]
For an integral divisor n of F and yegr(F) the value p (n)

is defined in a usual way (see, e.qg., [3,§9]1); in particular,

v (n)=0 when (n,F ()l , We write, for brevity,
!nl = NF/QH

The implied by the O-symbols constants are effectively computable
non-negative real numbers; other numerical effectively computable
constants are denoted by €17 C5r-.. . We denote by ¢ (s) and
CF(s) the Riemann zeta-function and the Dedekind zeta-function

of F , respectively'(so that z (s) (s)) .

§1. Statement of the main results.

Let k be a number field of degree n=n(k) over Q . A represen-

tation

0t W(k) — GL(d,c)

is said to be of AW type if the function



s » L(s,p)
is holomorphic in €\{1l} . We fix a decomposition (9) and let

m= J n(E;) . (11)
=1

Define the coefficients afn,x) , x:=trpo - by

L(s,p) = atn,)|n|™® , Res>1,
n

where n ranges over all the integral divisors of k .

Theorem 1. Suppose that p 1is of AW type and let & denote the
multiplicity of the identical representation in o.

There is a polynomial P?(t) of degree %-1 when £>0 and
equal to zero when 2=0 such that, for ¢€¢>0 , x=g ,

P —
2+m )

] a(m,x)=x B (Logx)+0(C (c) (a(x)bx)) 2 (Logx) ™x , (12)

‘1’(|<x
where Cl(€) is a positive valued exactly computable function of
e . Let

pj : W(k)> GL(djrC) , 1l=&r

be a representation of degree d. , let

3
p=p®..80
and let
. .
a=[a, .
j=1 -

We say that ? is of AW type if o is of AW type

Theorem 2. Suppose that '3 is of AW type and let % be the




multiplicity of the identical representation in p . There is a
polynomial Pa(t) of degree 2-1 when >0 , equal to zero

when 2=0 and such that, for >0 , xz2q ,

1-—2te

A(x,P)=x P3(logx)+0(C, () (a(x)b(x))x *0 ) & (13)
where Cz(a) may depend on n and d (being as Cl(e) a
positive valued effectively computable function of € ),
Making no assumption about p we can assure only a much

weaker estimate for the error term in (13).

Theorem 3. There are aj, Bj’ Yj » 1=jsv , and Cqv c2 such
that, in notations of Theorem 2,
’ AV I B .
A(x,P) = x Ps (logx)+ J x J(logx) Jyj+R(B',X) v (14)
j=1
and aj<l for each 3j , cl>0 ’
-1 — €2
R(p,x)=0(x exp(—clm /logx)(a(x)b(x)) C3(d,k,m) (15)

with an exactly computable C3(d,k,m) .

Remark 1. The constants aj' Bj' yj depend on the location of

Siegel zeros of L(s,wj) r l<disy .

Theorem 4. Let, in notations of Theorem 1, g2=g(y) . We have
T au v
Lox®I=g00 [ -4 0(] x T, Ry (X, x) (16)
Ipl<x 2 g j=1

where aj, 1=jsv , denotes the possible exceptional zero of

L(s,wj) and p ranges over the prime ideals of k ;) moreover,

v
x) = V% _ logx
Ry (X ,x)=0(m x)+O(xj£1 exp ( c, log(a(wj)b(wj))+/37§;)lOgX)) (17)

for some c3>0



Let kjlk be a finite extension of degree dj=[kj:k] and let

xjegr(kj) , 1Isj=<r ; let

be the representation of W(k) induced by Xj and let

p= pl®...®or , X:= trp .
Let
Jk)=lala=(@yr...0a) Nkl/kal=...=Nkr/kar} ,
where aj varies over integral ideals in kj , Isj<r , and let
: Y
> = = = )
=[xty 131N g lag| » lsisT (18)
]
for ae€d(k) .

Theorem 5. In notations of Theorem 2, the following estimate holds

-y l-4f‘m € :
X (a)=x P.ps(logx)"'o(cz(s) (a(y)b(x)) x )y » (19)

|a] <x

where 3 ranges over J(i) .

Remark 2. The polynomial Pﬁ(t) in (19) is exactly computaple
and in the course of the proof detailed information on its shape
is given.

Let

- - - .
Jo(k)={p|§eJ0(k) ,'§=(nl,--.,pr) ' pjeso(kj) y l=isr} ,

where So(kj) denotes the set of prime divisors in kj

Theorem 6. In notations of Theorem 4, we have

I OR@=1  x(R+O(dE +C,(K)) (20)
|g|<x lp|<x

with an exactly expressible in terms of '? constant C4(f) .




-
Here ?i ranges over the elements of Jo(k) » while p varies

over prime divisors of k .

We give also the following conditional result.

Theorem 7. Suppcse that, in the above notations,

L(s,yj)#o for Re s>% y 1lgj<V; (21)

then the following estimates hold:

AGxPr=x Py (log+oie, (O)x "/ E@mbpr)fe @m) (22

-
and the estimate of the same shape for';Z: X (o9 ;
1) < x

X
=30 210x2m logxtlogamb@)))). (23)
ipIe X > logu

Here Cs(e) is an exactly computable function of & which may
depend on m and 4 .

The proof of these results follows the pattern of classical analytic
number theory as developed in fSJ, [9] (cf. also [20]); therefore

some of the details will be omitted (cf., however, [l?]).

§2. Proof of Theorem 1 and Theorem 2.
We recall briefly the properties of the scalar product of Artin-

Weil L-functions defined.by the following Dirichlet series:
L(s,p) =Za#,p) %™ | Res>1 , (24)
%

where n varies over the integral ideals of k

Theorem 8. There are a finite set 80(3) and a system of poly-

nomials
d-1
¢ (t) = 1+ ) b_(p)t®
P m=2 m



d
such that so(a‘)cso , 2 (t)—r‘l (10 (P)t) Iaj(pHE{o,l} ,
j=1

and

nedrenee e (el ™ (1 edpl™), e, (29

P€S, o)
where p—pi&...®p and
my My r m,
b, (p)= ) (-1) “trh e 0,(6,)) r] tr(s o.(ép)) . (26)
m,+m =m j=1 1P j=1

12
Here A and S denote the exterior power and the symmetric power

of a matrix; m m vary over positive integers.

1’ 72
Proof. See [13], (161, (4,51, {17, in preparation], [151].

Lemma 1. In the half-plane Res>% we have an estimate

L(s,B)|se,(20-1)8 | Lis,p)| . o:=Res (27)

where d‘=—dd+3n ; n:=[k:Q] .

Proof. It follows from (25) that

|L(s,8) |<|L(s,0)l M ole (el ™1, Res>-§- . (28)
pES0 p

By (26), |bm(p)|s(m+l)dm (since P is equivalent to an unitary

representation). Therefore

a-3
ER (6 [s1+a8* 21 €] 2 T || s 1+4a%31¢)2 for |E[<l .
j=0
Hence
| e (|Pl )lsﬁk(Zc)_d'/n for c>% . (29)

PGSO
Inequality (27} follows from (28), (29) and elementary inequalities:

Ck(o)s z;(c)n for o>1 (30)
and

;(1+n)sl+n'l for n>0 . (31)
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Definition 1. Given formal Dirichlet series over k

£.(s) =Ja.(m)|n|™% , 1<4<r ,
J n J
we define their scalar product by

(£, %, +£)(s)=] lnl Sjﬂla (n) .

Definition 2. Let £(s)=Ja(m)|n[® and g(s)=J8 () |n| S
n n
If !a(n)lss(n) for each integral ideal n of k r We write

£(s)L g(s) .

Lemma 2.We have

dr

L(s,p)<<g ‘S)*---*Ckr(s’<<ck‘s’d*..-*Ck‘s’ : (32)

ky

Proof. It follows from the definitions.

Lemma 3. Suppose that o is of AW type and let 0<n<%

In notations of Theorem 1, the following estimate holds:

|L(s,0) |s5™ !%——! s (1 ™ (241 eD™2 a0bx)Y, (33

where s=0+it , t€RrR y Jg2=n

Proof. It follows from the functional equation for L(s,p) and

convexity theorems of Phragmen-Lindelsf type (cf. [él], where a

detailed proof of (30) has been given when eegr(k))

Lemma 4. Suppose that the Dirichlet series

f(s) = Z ann-s
n=1

converges absolutely for Re s>1 and satisfies two conditions:

I laIn™ = 0((o-1)"% for o>1 ,
n=1
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with 0>0 independent of o , and there is a monotonely non-

decreasing function b:R+ - R+ such that
lanls b(n) for each n .

If x 1lies in the interval N+%<X<N+% , N>0 , NEZ and c>1 ,

then

c+iT

Xa = 5T Xw
iem o 2m [ f£w= dw + Of
c-iT T (c-1)

C
X

)+O(b(2x%xlog§). (34)

Proof. It is well known (see, e.g.,[24],p.53-55, lemma 3.12 ).
d d
Let Cﬁ(s)=€k (s) 1* _*Ck(s) ¥  rThe following lemma is

elementary.

Lemma 5. There is a sequence of polynomials {hp(t)[peso} such
that hp(t)Ec[t] , hp(t)sl(mod t?) , the degree of by is not
higher than d-1 and
_ d r1 — 1
p(s) = gy (s) hp(IPl ) for Re >3 . (35)
PES,
Proof. It is a special case of Theorem 8 with pj=de , where

I denotes the identical representation of W(k) .

Lemma 6. There is an effectively computable constant Cl(e) such

that

o -

ci(s)«i (Cl(s')ne)n's for each €>0 . (36)
n=1

Proof. It follows from the definitions.

Remark 3. The function Cl(e) depends, of course, on the

k_ .

sequence of the fields kl""’ r
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Theorem 1 and theorem 2 follow from lemmas 1-6 and Cauchy?t*s
theorem on residues. To prove (12) let f(w)=L(w,p) in (34);

take c=1+(logx) 1 and apply Cauchy's theorem to the contour of

integration consisting of the lines:
{s|Res = c,|Im s|<T} , {s|Re s=(logx)-l s | Im slsT} ’
-1
{s| (logx) "<Re s<c , Im s= +T} .

Calculating the residue at s=1 and making use of (33) and (32),

(36) with r=1 , kl= one obtains (12) when T is chosen to be

equal to x . To prove (13) one moves the contour of inte-
gration to the line Re s=—;-+(logx)-l and takes again c=1+(1ogx)—l
in (34) with f(w)=L(w,§) . The estimate (13) fol%ows then from

(27)y, (32), (33), (35) and (36) when we let T=xﬁ:2

§3. Zero free region for a Hecke function and proof of

Theorem 4.

For grossencharacters estimate (33) takes the form:
'3

1+ -
(L0 k™ 7221 am) ™ (2+ e D™2 agnbo )0, (37
* 1 X=1 1
h € L= ! . - - ; N <=
where Xxegr(k) ., {O , otherwise @ 97N , s=0tit , R, 0<T]<2 -

Classical reasoning (cf., e.9.,[20,Ch.7]) leads now to the following

proposition.

Proposition 1. There are c and ¢ such that L(s,x)#0 in

5 6
the region

1-c log(a(x)b(x) (2+] £])™/2yy~1L , ltl>c

6
2..-1
I, s

Re s > (38)

l-(c5 log(a(x)b(x) (2+c6)
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save for a possible exceptional zero, when X2=1 , which must

be real and simple. Here c5>0 p CG>0 , t:=Im s .

Proof. If x2=1 , then X 1is a character of finite order and
the assertion follows from Lemma 2.3 in [7, p.277]. Suppose that
xz#l and let L(a+it0,x)=0 ' tOGR ,(12%+B ’ 0<B$% .

=]1+B+it

Let s, 0’ sl=l+8+21t0 . One writes

C [} L}
3 Re <K (1+8)+ 4 Re 2 (s,,X)+ Re L' (s.,x%) <0 . (39)
T, t %o T 51

A classical argument making use of (37) and a fungtion theorétical
lemma of E.Landau (cf., e.g.,[ 20, p.384], Satz 4.4 and Satz 4.5)
allows to estimate the three terms in (39) from below. These
estimates when substituted in (39) lead to the assertion of
Propostition 1.

Let w(t,x)=cf'6'1[log(a(x)b(x)(2+lt|)’“/2)]'l . Choose c. 1in

such a way that CG>W(06) and the circle
{s|s€c , ls-(l+%¢(t)+it)|<w(t)} , t:=Im s ,

is contained in the region (38) when |tl5c6 . A simple calcu-
latiod making use of a classical function theoretical lemma (see,
e.g., Satz 4.3 in [20, p.383]) allows to deduce from Proposition 1
and (37) the following statement.

Lemma 7. There is C in the interval 0<C7<1 such that the

7
LV ) VY (x)
function f(s)=log(L(s,X)(§§£) 1 (E—l) 2 ) , where

)
VZ(X)= 0,X#1 and
1,x=1
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-1 when L(a,x)=0 and l-c7w(c5,x)sasl
\)l(X) =

J
0 when there is no such «
is regular in the region
l-c.y (t,x) when |tl>c6
Re s =2 7 t=Im s | (40)
l-cop (cg,x) when |[tfsc

6

Moreover, in the region defined by (40) the following estimates

hold:

£(s) = o0 , Lis) = owiex)7?) . (41)

If ]t|>c6 and Re s z1l-coy(t,x) , then

£(s) = 0(n log(5(1+n™ )+ (n+eh (£,x)) log (a )b (x) (2+] £))™2 y)
(42)

for each n in the interval 0<n<%

Theorem 4 is a formal consequence of Proposition 1, Lemma 7 and
identity (9) . Suppose first that ¥€9r (k) . Applying lemma 4

3 ’ L'
to the function S » E(S’X) one deduces from Proposition 1 and

(41) an estimate

X
du o logx
Xx{P)=v, ( T——+0 +0 (x -
p%<x‘ P)=v, (x) £ TogutO {(¥7) +0(x exp( °8Tog (a0 b (O aToss))
(43)
where c8>0 and & denotes °“the possible exceptional zero of

2
L(s,x) when x“=1 ; here P varies over prime divisors of k

Taking the logarithmic derivative in (9) one obtains, after an

easy calculation, an estimate

Vv
Loox® = [ e T y.(@) + o) (44)
|pl<x 3=1 7 |g|<x ?
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with m defined by (11); here g varies over prime divisors of
Ej . Relations (16) and (17) follow from (44) when one applies
(43) to each of the sums Y (@) 4 lsisv . This proves

|8 <x
Theorem 4.

§4. Proof of Theorem 3.
We return to notations of Theorem 1 and observe that (42) and
(9) imply, after adjusting n, the following assertion.

Lemma 8. There are c8 and c9 such that

C.
IL(s,0) | (m+l) 8" a ()b (x) (2+] €)1/ (45)

c
for Re 521—(—1) L . | tl=e

5 10galy)bix) {1+ t])™

9; t:=Im s .

We make now a few remarks concerning summatory properties of the

coefficients of Dirichlet series representing a meromorphic

function in the region of the shape (38). Let f(s) Dbe a function

meromorphic in the region

€10

log (by (2+]£[)™)

g={s=u+it| u=l- , terR 1,
where blzl ' clogl, and suppose that the following conditions

hold:
(i) for Re s>1 this function is given by an abso;utely con-
vergent Dirichlet series :
-s

£(s) = } amn , Re s>l (46)

(ii) there is ¢4 such that for s€B and |[t|zcy , t:=Im s,

we have an estimate

£(s) = O(b2(2+|t|)Y) with 0<y<l , b.21

5 (47)

-
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(iii) the function f(s) has no singularities in B save for a
finite number of real poles in the interior of B H
let gizl be the multiplicity of the pole a, of f(s) ,

a,€B . Let, for =x>1 , x¢Z ,

A(x) = § a .

Proposition 2. Assume (i)-(iii). Then the following estimate

holds:
%i
A(x) = ) x P, (logx)+ R(x) , (48)
i

where Pi is a polynomial of degree gi-l exactly computable in

(v)

terms of £ (ai) ’ Osngi—l ;

in particular, Pi coincides with the residue of f(s) at s=ai

when gi=l . Moreover, there is «c¢..>0 such that

11

R(x)=0(b;b, x exp(cllm-l/jggz))+( ) W) (49)
X< n< xB

where 8=l+exp(-cllm-l/logx) . If anzo for each n , then
_l__
R(x)=0(blb2 X exp(-cllm vylogx )) . (50)

Proof. Let

1(x) = 7 a, log(xn-l) .

n<x

A

In view of (46) and (47), one obtains from the identity

1 C+ico xs
Ay (x)= 5= f. —5 f(s)ds , 1 , 1 , x€Z ,
c-ieo s

an estimate

a .,
A, (x)= g x * Pi(logx)+0(blb2x exp(-(l;X) l2/logx)) (51)
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with c12>0 and '31 satisfying the conditions mentioned in
Proposition 2.
Let 1<B8<2. Then

AG)=(a, (Bx)-A, () (1ogd) "0 ( 2 lag]) - (52)
‘ x<n<xB

Estimates (51) and (52) imply (49). If aﬁzo for each n ,
then

Al(x>-Al(xs'l)sA(x) Logs < Ay (x8)-A, (X) . (53)

Estimate (50) follows from (51) and (53). This proves the

Proposition.
Lemma 9. Write gp(s)= Y azl_s . We have
=1
a/2 1ot
I a= xP (Logx) +0 (C,, (¢) | D] x 8oy, (54)
<X~

where D denotes the discriminant of k and P 1is a poly-

nomial of degree d-1 .
Proof. It follows from Theorem 2 and lemma 5 .

Corollary 1. Let 1<8<2 . We have

) la(n,0)| =of8-1)x (logx) ™+ C(k,d)) (55)
x<|n|<xB

with an exactly computable C(k,d) depending on k and d

only.

Proof. It follows from (54) and (32).
In view of lemma 1 and lemma 8 the function

£ : s L(s,?)
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satisfies conditions (i)-(iii). Therefore the assertion of

Theorem 3 follows from (48), (49) and (55).

§5. Conclusion of the proofs.

Let us return to notations of Theorems 5 and 6, so that

W(k)
. = I <, Xa . =0.®...80_ .

Being a product of monomial representations, © can be decomposed
in a direct sum of monomial representations (cf.[11]1), so that
(9) holds with ej=l for each Jj (cf.[13, Proposition 21). In
particular, p is of AW type. Therefore (19) foilows from (13).
Moreover, in this case one can exactly compute wj » 1=jsr (cf.
[15, p.24-271); since the polynomial P?(t) is obtained by

computing the residue of the function

S
X
s = = L(s,0) ,
its shape is determined by (25) and (9) as soon as wj are known.,

This completes the proof of Theorem 5. To prove (20) let

B(YIX) = 2 a(P,B) ’
p|<x

where p ranges over prime divisors of k and a(p,?) is defined
as in (1) with pj » l<j=r , given by (56). Obviously,

d
172 1 ) XE (57)

L Xtm = BXx)+ §
7] <x lp | <x

-
where g ranges over Jo(f) and we let

- -
Nﬁ/ka = Nkl/k al for a=(al,...,ar) in J(k) .



- 19 -

Identity (57) implies an estimate

I%‘\ X (@ = BE,x)+0(d/x) . (58)
<x

On the other hand, one observes from (25) that in C[[t]] the

following identity holds:

- -l
2 X)) = - o} 2 ’
p(t X) det (I p(Op)t) p(t) p(t) (59)

- - ’ -2
where lp(lpl ,X) denotes the local factor of L(s,p) , so that

o0
-—h - 21
L (63 = ) a@ e . (60)

since 1 (t)=1 for péso(b‘) and ®p(t)51(mod £2) , we deduce

from (59) and (60) the following relations:

a(p,X) = X(p) for psy ) (61)
and

a(pX) =Xx(p)+0(d) for each p . (62)
Estimate (20) with c4(>‘<‘)=d\s0(5‘)l , where |so(p")| denotes the

cardinality of So(a) , follows from (58), (60) and (61) . This
proves Theorem 6.

We turn now to the proof of conditional estimates (22) and (23).
While (23) requires the full strength of the Riemann Hypothesis
(21), estimate (22) follows from the (generalised) Lindeldf
conjecturé: for Re s)%+ol with fixed positive ¢, , W€ have

m

ol = e
stl Q.Sma(x)b(x)(%-ltl)z] ] (63)

TR =

where o€{-1,1} , >0 , t=Im s , while m and & have the same
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meaning as in (33). A classical argument, [10](cf.[24, §14.2]) ,
shows that (63) follows from the Generalised Riemann Hypothesis

(21) or, alternatively, one can deduce (63) from two assumptions

(cf£.[19]):

L(s,p) # 0 for Re s>% ’ (64.1)

and o 1is of AW type; moreover, the second assumption may be

weakened to:

) .
L(s,p) (-Z’“_L—i) is holomorphic for Re s>% ) (64.2)

Obviously, (21) implies (64).

Lemma 10. Suppose that £(s) is holomorphic for Re s> L

E and

the following two estimates hold:

£ (s) < B(f)(2+lt|)m for Re s>% , (65.1)

and

logf (s)=0(m log(2+n_l)) for Re s>1+n , n>0 , (65.2)

where t=Im s , m>0 , B(f)>1 . Then

Z(i-o)+€

log £(s)=0_(m[log (B(£) (2+ |t )™ ] ) (66)

1
whenever 5<O’Sl ' g:= Re s ; €>0 .

The proof of lemma lo mimics the classic argument going back

to Littlewood (cf.[24, §14.2]) and may be omitted.

Corollary 2. In notations and under conditions of lemma 10, we

have
£(sf' =0 _((B(E) (2+[eH™™F , e>0 , (67)

where q€{-1,1} ,oz%+ol r 0y is a fixed positive real number.
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Assume that (64) holds. Let

L

s-1
£(s) = L(s,P) (537

and let

B(£) = 15Ta(x)b(x) -

In view of (3) and (33), the function £(s) satisfies conditions
of lemma 10. Therefore (67) holds, and we obtain (63). To prove
(22) one remarks that conditions (64) and Theorem 8 allow to move
the contour of integration on (34) , with f(s)=L(s,p) , tO the
line Re s=%+00 for any positive 0O4 - Estimate (22) follows
then from (63), (27) and (32). Since

I X@ = amp)
|3 <x

with 3 defined by (56), the Generalised Riemann hypothesis (or
(64)) implies an estimate of the shape (22) for this sum. Moreover,
as it has been already remarked, the polynomial Ps(t) can be

precisely evaluated in this case.

Lemma 11. Let £ be an entire function satisfying the following

condition:
|£(o+it) | <P (I €])  for —%so,ss , t€R , (68)

where \pf: R>R 1is a non-decreasing function and (ff(u)zl for
uz0 . Let N(f,T) denote the number of zeros of f(s) in the

rectangle O<Re ssl , [Im s|sT ; T>0 . Then
N(f,T+1l) = N(£,T) + 0(10g4%(T+3)) . (69)

The proof of this lemma is compeltely analogous to the proof
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of Theorem 9.2 in [24, p.178] and may be omitted. One applies

this lemma to estimate the number of zeros N(X,T) of the function
s L{s,X) , X€gr(k) , in the rectangle 0=<Re s<1 , IIm s|ST .

Let

n

A =5
X

£(2) albx) .
Estimates (33) and (69) with £(s)=L(s,¥x) (1-s)9%) | uhere

g(x)=1 when x=1 and g(x)=0 when x#1 , give
N(x,T+1) = N(x,T) + O(log(AX(2+T)n)) . (70)

On the other hand, a classical argument (cf.,e.g.,[20, Ch.VII§4])
leads to an exact formula:

(& x[n(logx) 2,10g% (A (2+T) Y]
I x(@Mloglpl=g()x+]" 0K = X
s

p|Mex

) (71)

where p ranges over prime divisors in k and m ranges over
the natural integers subject to the condition .lp|m<x ; in the

right hand side o ranges over the zeros of L(s,X) in the

critical strip O0=<Re s<l . The proof of this exact formula makes
use of the functional equation for L(s,x) and estimate (70).

The, (generalised) Riemann Hypothesis gives, in view of (70)
2

/

XOL

L= o(x’

; .
<1ogT)(1og(AX(2+T>n))) . (72)
a

By partial summation in the left hand side of (71) , taking T=x

one deduces from (71) and (72) an estimate

X
;E: x(P)=g(x) [ _du

1/2
P | <x 5 IBEE + 0O(x (logAX+n logx)) , (73)

where XE'grUQ - To prove (23) it is enough to apply (73) to each
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of the sums Y wj(ﬂ) , l<j=v , in (44).
|| <x

§6. Final remarks and acknowledgements.

It is known classically that

I x(a) = ghou x + O (74)

|a|<x

o
=

|

'—-I

for ye€gr(k) , where ®p denotes the residue of Ck(s) at s=1 ;

moreover, if
(@) = gl ox + 0(x")
\a|<x

(75)

. -1 .
with y€gr(k) , then Y>E§; ‘(Cf-[3]r[2])- Imitating the argument

of E. Landau,[8], one should be able to obtain an estimate
2
. l-'l+m
a(n,x) = xPp(logx) + O(x ) (76)

|| <x
for representations o of AW type, slightly improving on (12);
although in (74)-(76) the implied by O-symbols constants depend
on X in a non-specified way. It is tempting to conjecture that
actually if p 1is of AW type, then

Y a(n,x) = xPp(logX) + 0(x")

| n|<x

(77)

with Y<% (in view of Q-theorem (75) , we have Y>‘%'-%H when

. 1 . .
p€gr(k) ). conversely, (77) with Y<E implies the holomorphy

of L(s,p) in c\{1} . In this context Professor P. Deligne has

asked me about the error term in the estimate for 2 a(n,X)
|n}<x

when one doesn't know whether L(s,p) 1is holomorphic or not.

To answer this question we have written a short paper, [14] (cf.
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