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QUADRATIC HOMOLOGY

HANS-JOACHIM BAUES

ABSTRACT. We describe axioms for n 'quadratic homology theory' which generalize
the classical axioms of homology. As examples we consider quadratic homology
theories induced by 2-excisive homotopy functors in the sense of Goodwillie and
the homology of aspace with coefficients in a square group which generalizes the
homology of aspace with coefficients in an abelian group.
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§ 0 INTRODUCTION

The development of algebraic topology was profoundly affected by the notion of
homology. Originally homology had coefficients in abelian groups and Eilenberg
Steenrod described the axioms of such an ordinary hornology theory. Somewhat
later important examples of generalized homology theories were found which led to
the notion of homology with coefficients in a spectrum. The spectrum-honl0logy
can also be described as a homology theory satisfying all Eilenberg-Steenrod axioms
except the dimension axiom concerning the value of thc homology on spheres. In
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K ey words and phrases. Quadratic funetors, Goodwillie calculus, Steenrod squares, EHP

sequence.
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fact this value characterizes a hOlnology theory in the sense that a natural trans
formation of homology theories which is an isomorphisIll on spheres is also an
isomorphism on all finite CW-complexes.

In his receilt work on the calculus of homotopy functors Goodwillie observed
that a spectrum is equivalent to a linear homotopy functor and spectrum-homology
of aspace X can be equivalently described by the homotopy groups

(1)

where L is a linear homotopy functor. We therefore call spectrum-homology also
a linear homology theory. The non-linear homology theories are then obtained by
the homotopy groups

(2)

where D is any homotopy functor. Hence we again generalize homology by choosing
now homotopy functors as coefficients. Clearly. this is a very far reaching gener
alization since in particular homotopy groups of aspace are the homology groups
with coefficients in the identity functor. It is an old problem to find axioms which
characterize the theory of homotopy groups in a similar way as ordinary homology
theory is characterized by the Eilenberg-Steenrod axiOlllS. However the identity
functor is not linear but is still an analytic functor in the sense that there is a
Taylor tower, n 2:: 1,

(3) X -+ Pn(X) -+ Pn- I (X) --+ ... -+ Pz(X) --+ PI (X) = Q(X)

approximating X. Here PI is linear, Pz is quadratic and more generally Pu is a
reduced and n-excisive homotopy functor; compare [19, 20]. The linear functor PI
yields the homology theory of stable homotopy groups 7r~(X) = Hn(X, PI)'

In this paper we study as a first step outside the linear world the quadratic
homology theories Hn(X, Q) obtained by a quadratic homotopy functor Q. We
introduce axioms of a quadratic homology theory such that Hn(X, Q) satisfies these
axioms. As in the classical case the axioms characterize a quadratic homology
theory in the sense that a natural transformation hetween theories which is an
isolllorphislll on spheres is also an isomorphism on all finite CW-complexes. We
deduce from the quadratic homology axioms various facts like the general EHP
sequence in § 3. For example quadratic homotopy groups

(4)

defined by Pz in the Taylor tower (3) satisfy all the axioms. This is the quadratic
analogue of stahle homotopy groups.

Let Gr be the category of groups. Then allY group functor F : Gr -+ Gr induces
a homotopy functor F~ which carries connccted spaccs to connected spaces. If F is
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linear then F( G) = Gab 0 A is given by an abelian group A and ordinary homology
with coefficients in A can be described by

(5)

If the group functor F is quadratic then we know by (10] that F(G) = G 0 M is
given by a square group M which is the quadratic analogue of an abelian group. We
prove that then F~ is a quaelratic homotopy functor. Hence the square-homology

with coefficients in a square group M is a ql1adratic homology theory which gener
alizes ordinary homology. Using the Taylor tower of Fu we obtain the linearization

(7)

which gives us a linear homology theory

(8) HS(X M) - H (X p,lin)n , - n ,u

termed stable square-homology. Here Fi in corresponds to a spectrurTI EM so that
we get a functor from the category of square groups to the horTIotopy category of
spectra which carries M to EM. We show that EM is always the cofiber of a map
SqM which carries an Eilenberg-Mac Lane spectrum to a product of Eilenberg-Mac
Lane spectra. We call SqM the squaring operation associatecl to M. For example
all Steenrod squares Sq2 , Sq3, . .. can be derived from SqJo.1.

Let r nG anel f'nG be the subgroups of a group G given by the lower central
series and the mod-2 restricted lower central series respectively. Then we obtain
the quadratic group functors

nil2 , nil2 : Gr --+ Gr

which carry G to the quotients G/r3 G and G/f'3G respectively. The corresponding
. square groups are Znil and Z~li~ with

nil2 (G) = G ® Znil

-. 42
nzl2(G) = G 0 Zn'il

We compute the squaring operation SqM for M = Znil and M = Z:l'i~ explicitly
in tenns of Steenrod squares. This determines the spectrum associated to the
linearization of the homotopy functor (nil2 h, resp. (niI 2 ),; see (8.16), (8.17).

The author happily achnowledges helpful conversations with Teimuraz Pirashvili.
He also thanks G. Arone and T. Goodwillie for comments concerning "Calculus".
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§ 1 CW-SPACES, CW-PAIRS AND SPECTRA

We use the foIlowing conventions: Top is the category of topological spaces and
Top· is the category of topological spaces with base point. We obtain cofibrations
in Top by the universal homotopy extension property defined via the cylinder
I X X where I = (0,1] is the unit interval. A homotopy in Top· is a pointed map
I(X) -+ Y where I(X) = I x X/I x {*} is the reduced cylinder. By the inclusion
(io, i1 ) : X V X c I(X) we obtain the cone CX = I(X)/i 1X and the suspension
L;X = CXjioX. Here we use the quotient space X/Y which is defined for any pair
of spaces (X, Y) by the adjunction X/Y = XUy {*}. More generally an adjunction
space X Uy Z is defined by a push out diagram

X XUyZ

Y 9 ) Z

If ()(, Y) is a pair of spaces we call 9 : (X, Y) --+ (X Uy Z, Z) an adjunction map.
Aspace X is a CW-space if there is a CW-complex Y together with a homotopy

equivalence }~ ~ X in Top. This is a finite CW-space if Y can be chosen to
be a CW-colnplex with finitely many cells. Moreover we write dim(X) ::; n if
clim(Y) ::; n. A CW-pair (X, Y) is a pair in Top of CW-spaces X and Y for which
the inclusion Y C X is a cofibration. This is a finite CW-pair if X and Y are
finite CW-spaces. A CW-space X is weIl pointed if the inclusion {*} --+ X is a
cofibration.

Let space C Top· be the full subcategory of weIl pointed C\iV-spaces and
pointed lnaps. Moreover let pair be the category of wen pointcd CW-pairs and
pointed pair maps. We have functors

i • q
space --+ paIr ----=-+ space

where i carries X to the pair (X, *) and q carries (X, Y) to thc quotient space XjY.
We also use the fuil subcategory space r of (r -1) -connected objects in space and
the full subcategory pair r of objects (X, Y) in pair for which X and Y are (1' - 1)
-connected. We point out that the suspension yielcls a functor

L; : space r -+ space r+l

raising the degree of connectedness.
A spectrum E is a sequence of luaps En : ~En --+ En+1 in space, n E Z. A

map f : E -+ E' between spectra is a sequence of lnaps In : En --+ E~ with
fn+l En = E~(~fn). Let spectra be the category of such spectra and maps.

A map f : X --+ Y in Top is a weak equivalence if f induces a bijection of
homotopy groups f. : 1T'nX ~ 1T'nY, n ~ 0, for every basepoint in the dOlnain. A
map in Top· is a weak equivalence if it is one in Top. Clearly a weak equivalence
in space or pair is also a homotopy equivalence. A nlap f : E --+ E' in spectra
is a weak equivalence if it induces an isomorphism f. : 1T'kE ~ 1T'k E'. Here 1T'kE =
colim {1T'n+kEn} is an abelian group for a11 k E Z.
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§ 2 AXIOMS OF HOMOLOGY

To fix notation we recall the following basic properties of a homology theory.

(2.1) Defin ition. Let r 2:: O. A suspension th eory (H, s) is a sequence of covariant
functors, nE Z,

Hn : space r --+ Ab

together with a sequence of natural transformations, n E Z,

such that H n (*) = 0 and H n (fo) = H n (/1) für hümotüpic lnaps fa ~ fl. We also
consider suspension theories which satisfy some of the following axioms.

Exactnes8. For (X, Y) E pair r the sequence

is exact where i : Y --+ X is the indusion and q : X --+ XjY is the quotient map.

Suspension. For X Espace r the natural map

given by the transformation Sn is an isomorphism for all n E Z.

Colimit axiom. For each sequence X o >---+ Xl >---+ ••• of cofibrations in space r the
induced map

is an isomorphism.

A suspension theory (H, s) is termed a homology th eory on s pace r if the exact

ness and suspension axioms are satisfied; compare [29].
Given a supension theory (H, s) we obtain the stable theory (H S , s) associated

to (H, s). Here H~(X) is the colimit of

(2.2)

Clearly one obtains the canonical map

s : H;(X) --+ H~+l (EX)

which is an isomorphism. Hence (HS , s) is a suspension theory satisfying the sus
pension axiom. If (H, s) satisfies the exactness or colimit axiom then so does
(HS,s). Clearly for a homology theory we have (H,s) = (HS,s).

(2.3) Definition. Let r 2:: O. A boundary theory (H,8) is a sequence of covariant
functors, 11 E Z,
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H n : pair r -+ Ab

together with a sequence of natural transformations 8 : Hn+1 (X, Y) -+ Hn(Y) with
(X, Y) E pair r and Hn(Y) = Hn(Y, *), such that Hn(*) = 0 and Hn(/o) =
Hn (/1) for homotopic lnaps /0 ~ 11 in pair,". NIoreover a -exactness is satisfied,
that is

... -+ Hn+dX, Y) ~ Hn(Y) ~ Hn(X) Ä Hn(X, Y) ~ ...

is exact. Here i. and j. are induced by i : Y C X and j : (X, *) c (X, Y). We also
consider boundary theories wi th the following additional property.

Excision. For (X, Y) E pair rand 9 : Y -+ Z E space r the adjunction map 9
induces an isomorphism

for all n E Z.

A boundary theory (H,8) is termed a homology thcory on pair r if excision is
satisfied. Compare [29].

Each boundary theory (H, 8) yields a suspension theory (H, 5) as follows. Let
CX be the cone on X. Then 8: Hn+1(CX,X) ~ Hn(X) is an isomorphism. Hence
we obtain the suspension map

(2.4)

where q : (CX, X) -+ (~X, *) is the quotient map. If (H, 8) is a homology the
ory then q*8- 1 is an isomorphism since excision implies that q* : H l1 (X, Y) -+
Hn(X/Y) is an isomorphism. This leads to the following weIl known lemma. For
this we observe that suspension theories, resp. boundary theories fonn categories.
Morphisms are the natural transformations cOlnpatible with 5, resp. 8.

(2.5) Lemnla. Tbe category oE homology tbeories (H, 8) on pair r and tbe cate
gory oEhomology theories (H, s) on space rare equivalent. The equivalence carries
(H,8) to (H, q* 8-1 ).

These categories actually do not depend on r since the category of homology
theories (H' , s') on space r is equivalent to the category of homology theories (H, s)
on space. The equivalence carries (H', s') to (H, s) with Hn (X) = H~+r(~rX).
This shows that a homology theory on space is determined by its restrietion to the
category space r for arbitrary large r 2::: o. Such a statement will not be true for
quadratic hOlnology theories below.

{2.6} Example. (A) Let A be an abelian group and let Hn(X, Y; A) be the singular
homology cf the pair (X, Y) with coefficients in A. This is the classical homology
theory on pair.
(B) Let 7I"n(X, Y) be the relative homotopy group of the pair (X, V). Then (7I"n, 8)
is a boundary theory on pair2 with 7I"n (X, Y) = 0 for n :s; 1. Here we use (X, Y) E
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pair2 in order to obtain abelian groups 1rn (X, Y), n E Z. The associated stable
theory (1r~, s) is the homology theory on space 2 tenned stable homotopy.

Thc spherical gTOUpS of a homology theory H on pair rare the groups H n (sr), n E
Z, where sr is the r-sphere. The suspension isomorphism H n (sr) '" H n+k (sr+k)
shows that the spherical groups eletermine the value of H on all spheres in space f"

Moreover the following uniqueness-lemma is wen known: Let <p : H --t Hf be a
natural transformation of homology theories on pair r such that <p is an iSOlnor
phisIll on spherical groups; that is, cf; : H n (5'") '" H:1 ( 5 1') for n E Z. Then cf; is an
isomorphism

(2.7) 1> : Hn(X, Y) ~ H:l(X, Y)

for all finite CvV-pairs (X, Y) E pair f' anel n E Z. Compare for exan1pIe (2.12) in
[28]. A similar uniqueness lemma is also true for the quadratic homology theories
below. Moreover we have the following representability theorem of E.H. Brown;
compare for example 1.3.8 in [28]. Let H be a homology theory on space f" Then
there exists a spectrum E and a natural isomorphism

(2.8)

for all finite CvV-spaces X in space r'

Next \ve elescribe the "partial suspension" anel the "cross effect suspension" of a
boundary theory. To this end we have to introeluce the following notation on cross
effects.

(2.9) Notation. Let Gr be the category of groups anel let C be a category with zero
object * and assume that sums (coproducts) XVY exist in C. For objects X, Y E C
one has the unique zero morphisrll 0 : X --+ * --t Y. Maps / : X -t Z, 9 : Y -t Z
determine (/, g) : X V Y --+ Z. We have the retraction Tl : X V }1" --+ X ancl
1'2 : X VY --+ Y with 11 = (1,0) anel 12 = (0,1). Given a functor

F: C --+ Gr

we define the cross effect

(1) F(XIY) = kernel {(Fll, F12) : F(X V Y) --+ F(X) x F(Y)}

This yielels the functor F( 1) : C X C --+ Gr with ineluceel 111apS denoteel by (/19)•.
The indusion i 12 : F(XIY) c F(X V Y) is natural in X anel Y. Moreover wc havc
the natural interchange isomorphism

(2) T : F(XIY) ~ F(YIX)
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induced by T : X V Y = Y v X with T = (iz, id. Let F(X V Yh be the kernel of
Frz : F(X V Y) -t F(Y). Then we have the split short exact sequellce of groups

(3) o-t F(X1Y) ~ F(X V Yh ~ F(X) -t 0

If F is a functor C -t Ab we thus have natural isomorphislns

(4)
(Fi 1 , i 12 ) : F(X) EB F(XIY) = F(X V Yh

(Fil, Fi2 , i1Z ) : F(X) EB F(Y) EB F(XIY) = F(X V Y)

which we use as identifications. The functor F : C -t Gr is linear if F( *) = 0 and
F(XIY) = 0 for all X, Y E C; that is

(5) (Frl, Frz) : F(X V Y) ~ F(X) X F(Y)

is an isomorphism. The functor F : C -t Gr is quadratic if F( *) = 0 and the
cross effect F(X IY) as a bifunctor is linear in each variable X and Y. If F is linear
then the group F(X) is abelian and if F is quadratic then the group F(X) has
nilpotency clegree 2. Moreover for a quadratic functor the subgroup F(XIY) is
central in F(){ V V). Compare [10].

Now let (H,8) be a boundary theory as in (2.3). Then one gets the following
exact sequences from which we derive the partial suspension E. Let GY be the
cone on Y so that Hn(GY V X) = Hn(X). This yields the short exact sequence

and hence the isomorphism

Moreover one gets the short exact sequence

o-t Hn +1 (Y) -t H n +1(~X V Y) Ä H n+1(~X V Y, Y) -+ 0

which shows that j* induces the isomorphisIll

jo : H n+1 (EX V Yh ~ H n +1 (EX V Y, Y)

Dividing out X yields the quotient map q V 1 : (GX V Y,X V Y) -t (~X V Y, V).
Now the partial suspension E is the composition

(2.10)

Compare [2, 3]. If Y = * this is the suspension in (2.4). Moreover the partial
suspension restricts to cross effects yielding the cross effect suspension

8



(2.11 )

such that via (2.9) (4) the partial suspension is the cOlnposite

Hn(X V Yh

11

Hn(X) ID Hn(X!Y)

E

11

.'lffi.'l) Hn+1(EX) ID Hn+l(~XIY)

Hence for each Y the pair (Hn ( -IY), s) is a suspension theory. Using the inter
change map T in (2.9) (2) also (Hn(XI-), s) is a suspension theory where s is the
composite

(2.12)

The surn 01' coproduct in the category space r is obtained by the Olle point union
X V Y of spaces.

(2.13) Lemma. Let H be a hOlnology theory on pair 7'. Tllen H n : space l' --+ Ab
is linear, that is Hn(XjY) = 0 aJld Hn(X V Y) = Hn(X) ID Hn(Y).

Proof. For the CW-pair (X V Y, Y) E pair r we have by exactness the split short
exact sequence

where H n (i2) is injective since we have the retraction H n (1'2)' Moreover excision
shows that Hn(X) --+ Hn(X V Y, Y) is an isomorphism.

q.e.d.

(2.14) Lelnma. Let (H, 8) be a bOllndary theory on pair r' Tl1en tbe suspension
s in (2.4) makes the following diagram commute

( (1't} • I ( 1'2) • \ H n (X) X H n (Y)

l.'lX.'l

This irnplies that the composition

is always trivial, Si 12 = O.

Proof of (2.14). Let 7r : CX --+ EX be the quotient map. Then

C(X V Y) = G(X) V G(Y) 1r~1 EX V GY 1V7rr EX V EY = E(X V Y)

9



is the quotient lnap 7fxvY. Hence we get the following diagram in which the row
is split short exact.

8
Hn+dC(X v Y), X v Y) ~ lfn(X v Y)

1eil" x VI).

o ) H n+I (EX) H n+I (EX V GY, Y)

l(lv::r y ).

Hn+I (EX v EY)

Here we have the isomorphism (id. + (i 2 )*

8 ) Hn(Y) ---tl 0

H n+1(EX) EB H n+1(CY, Y) -=., H n+1(EX V GY, Y)

by the exactness of the row. This yields the result.

q.e.d

§ 3 QUADRATIC HOMOLOGY

In this section we introduce new axioms of a quadratic homology. These axioms
are satisfiecl by various examples which we clescribe in the following sections. We
deal with some consequences of the axionls, in particular we obtain the long EHP
sequence of quadratic hOlTIology and we prove a uniqueness lemlna.

(3.1) Notation. Let F : C --+ Gr be a functor where C is a category with zero
object * and SUITIS and let F(*) = O. V\Te obtain the natural homomorphism

P: F(XIX) ieF(X V X) (~. F(X)

for X E C. Moreover if X is a cogroup in C with structure maps p : X --+ X V X
and v : X --+ X satisfying the usual identities we define the function H, with

F(X) ~ F(XIX) ieF(X V X),

by i 12 H(a) = F(p)(a) - F( iz)(a) - F(iI)(a) where iI, iz are the inclusions of X
in X V X. Clearly H is natural with respect to maps between cogroups. We write
F {X} for the pair of functions

F{X} = (F(X) ~ F(XIX) ~ F(X))

It is shown in 3.6 [10] that F{X} is a square group (see (6.3) below) if F is a
quadratic functor. Clearly H is a homomorphism for a functor F : C --+ Ab.
If C is an additive category then a quadratic functor F : C --+ Ab yields for
X E C a pair of homomorphislTIS F{X} = (H, P) as above with HPH = 2H and
P H P = 2Pj that is F{X} is a q1/,adratic Z -module; compare [5].

(3.2) Definition. Let l' 2:: 0 and consider a boundary theory (Q,8) on pair r with
the following properties (i) anel (ii).

(i) The stable theory QS associateel to Q via the suspension (2.4) is a honl010gy
theory.
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(ii) For each Y E space r the suspension theory of cross effects (Q (-, Y), s) in
(2.11) is a homology theory.

A q'll,adratic homology theory (Q, B, 8) is a boundary theory (Q, 8) which satisfies
(i) and (ii) together with a sequence of homomorphisms, n E Z,

which are defined for all pairs (X, A) in pair rand which are natural in (X, A),
that is: A pair map f : (X, A) --+ (Y, B) E pair r induces a cOIDIDutative diagram

Qn+l(CA UA X,X)

Qn(Cguf)1
Qn+l(CBUBY,Y)

6 ) Qn-l (AIA)

1(gig).

Ii ) Qn-l (BIB)

where 9 : A --+ B is the restriction of f. Moreover the following property (iii) is
satisfied.

(iE) For each pair (X, A), the sequence

is exact. Here the incIusion i :.A --+ X yields the map (i, 1) : A V X --+ X
which defines the adjunction I11ap (i, 1) : (CA VX, A VX) --+ (CA UA X, X)
which induces iu = (i, I). in the sequence. Moreover j_ in the sequence is
the composition

Here Pis the natural map in (3.1) anel - (11 i). is the negative of thc induced
hOl110morphism (11i). = Qn(lli). We call the long exact sequence (ju, i_, 8)
above the quadratic excision sequence.

It follows froI11 (ii) above and (2.13) that all functors

Qn : space 7' --+ Ab

are quadrati c. Moreover one can check that a quadratic homology theory (Q, B, 8)
for which these functors Qn are linear is the same as a homology theory on pair r'

This follows from (i) and (3.5) below.
We now derive frol11 the axiOI11S of a quadratic homology theory SOlne conse

quences. First we observe that the following diagram commutes.
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(3.3)

)1 > Qn+1(CAVX,AVX)

Ci ,1).
>

18

Qn(X)

11

-------------4>-> Qn(X)
d1

where d2 = (P, -(lli)*) and d1 = (i*, P(iI1)*). Here d1d2 = 0 since P is natural;
in fact,

d1d2 = i *P - P (i 11) *(11 i) * = i *P - P (i 1i) * = O.

Clearly d1 d2 = 0 also follows from iujti = 0 and the commutativity of the diagrarn.
Using (3.3) we can equivalently describe the excision exact sequence in (3.2) (iii)
by the exact sequence in the row of the commutative diagram:

(3.4)

-~> ...

Here we set d1 = i u80
1 by (3.4). This is similar to the diagram for metastable

hOlnotopy grollps in 2.4 of [4]. As a consequence of (3.4) we obtain a long exact
sequence which resembles the classical EHP-sequence of James [23].

(3.5) Proposition. Let Q be a quadratic homology tbeory on pair r, T '2: O. Tllen
Olle l1as the following long exact sequence which is natural in A E space 7'.

P s H' P
... --t Qn(AIA) ---t Qn{A) --+ Qn+1 (~A) --+ Qn-1 (A1A) --+ Qn-1 (A) --t ...

Proof. We consider (3.4) in case X = CA is the cone on A. Then the homotopy
axiom shows Qn(AICA) = 0 and Qn(CA) = O. Hence we obtain the isomorphism

i* : Qn+l (CA UA CA) f'V Qn+l (CA UA CA, CA)

where ~A = CA UA CA. Thus (3.4) yields thc COlllIDutative diagraIn

Qn(AIA)
p

) Qn(A) s
Qn+1(~A)

H'
) Qn-1(AIA)

11 11 11 11

Qn(AIA)
d 1

> Qn(A)
d2

> Qn+1(CAUA CA,CA)
a

) Qn-l(AIA)

12



which defines the exact sequence in (3.5).

q.e.d.
Given a natural exact sequence as in (3.5) one obtains the associated sequence

of cross' effects which is also exact. Since Si 12 = 0 by (2.14) this yields the following
commutative diagram with exact rows.

,
_u--+> Qn(AIA') EB Qn(A']A)

1
(I ,T)

)o

H'
Qn(A VA'IA VA')

Qn(AIA')

1
P ) Qn(A VA')

---+> 0

Here the vertical arrows are the inclusions i12 . This shows that (J" induces the
isomorphism

(3.6)

where (J' = (pr'l )(J" is the composition of (J" and the projection pr'l. Clearly (J' is
again natural in A and A'. We da not see that (J' coincides up to sign with the
suspension isomorphisms S S given by (3.2) (ii) and (2.11), (2.12).

(3.7) Proposition. Let A be a. cogroup in space r/ ~, for cXaJnple let A be
a suspension. Tben tlle operator H' in (3.5) and H in (3.1) yield the following
commutative diagram

Qn+J(~A)

H/ ~H'

t::w

Qn+1 (~AI~A) -=-+ Q71-1 (A!A)
u

where (J' is the isomorphisnl in (3.6).

Proof. Let f.L : A ---+ A V A' be the comultiplication of A with A = A'. Then ~I-t is
the comultiplication of the suspension ~A. Now the naturality of H' in (3.5) shows
that the following diagram COffilTIutes

H'
------t) Qn-1 (A V A'IA VA')

i1l.-(i2 ).-(id.

Qn+1 (~A V ~A')

(EIL). -(i 2 ). -eid. i
Qn+] (~A)

H'
Qn-J(AIA)

Here the vertical arrows map to the cross effects; in fact the left hand side is i]2H
by definition of Hand the right hand side is i 12 ( 1, T) by the bilinearity of the cross
effect. This ünplies by the definition of (J" above that 0" H = (1, T)H' and heuce
(J'H = Hf.

q.e.d.
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For the metastable range of homotopy groups one has a cliagraln as in (3.7) where
a is actually the double suspension up to sign; compare A.6.8 in [7] and example
(2.6) (B) above.

Thc next lemma justifies our choice ofaxioms of a quadratic homology theory.
It is the quadratic analogue of the uniqueness lemma in (2.7) above. The spherical
groups of a quadratic homology theory Q on pair rare the groups Qn(sr+k) and
Qn(srlsr), n E Z, k 2: O. Now the following uniqueness lemma holds.

(3.8) Lemnla. Let 4> : Q -t Q' be a natural transformation of quadratic honl010gy
theories on pair r compatible with aand J. Moreover assume 4> is an isomorphisnl
on spherical groups. Tl1en 4> is an isomorpl1ism

cf; : Qn(X, Y) ~ Q~(X,Y)

for a1l finite CvV-pairs (X, Y) E pair r aJ1d n E 7l...

Proof. Since Qn ( I ) is a homology theory in each variable we see that <P induces an
isomorphislll Qn(XIZ) ~ Q~(XIZ) for all finite X, Z. Compare (2.7). This shows
that for k 2: 0 Olle gets the isomorphism 4> : Qn(X) f'J Q~(..\) for all spaces X which
are finite one point unions of spheres sr+k. By exactness it suffices to show that
cf; induces an isomorphism 4>x : Qn(X) ~ Q~(X) for all finite X in space r' V...,Te
proceecl by induction on the dimension of X. If dim(X) = 7' then X is a finite one
point union of spheres S1·. Now asslllue cf; X is an isomorphisru for all finite X with
dim(X) < r + k and let dim(Y) = r +k. Then we may asslune that Y = CA UA X
where (.X", A) is a pair with dim(X) < r + k and A is a finite one point union of
spheres sr+k-l. Hence 4>x and 4>A are isomorphislllS and therefore thc quadratic
excision sequence shows that also

<p : Qn+l (Y, X) ~ Q~+l (Y, X)

is an isolllorphisnl. Hence 8 -exactness shows that cf;y is an isonl0rphism since <px
150ne.

q.e.d.
A Moore space NJ(A, n), n 2: 2, is a silnply conneeted CW-spaee X with homol

ogy Hn(X, Z) = A and Hi(X, 71..) = 0 otherwise. If A is a free abelian group then
A1(A, n) is a one point union of spheres sn, in partieular M (Z , n) = sn. Each
homomorphism t,p : A -t B in Ab admits a realization rp : M (A, n) -t M (B, n)
with Hn(rp) = <po Here rp is unique up to homotopy if A is free abelian. Now let
(Q, 8, J) be a quadratic homology on space rand let n 2:: 1', mEZ. By (3.10) we
obtain the quadratie 71.. -module

(3.9)

whieh describe5 the canonical quadratie structure of the spherieal groups above.
We now recall the following notation eoncerning quadratic Z -lnodulesj eorupare
[5].

(9.10) Definition. Let M = (lI/Je ~ M ee ~ Ale) be a quadratie 71.. -module, i.e.
a pair of homomorphisms H and P with H P H = 2H and P H P = 2P. Then
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M induces functors Ab -+ Ab which carry A to A 0 M, A *' A1 and A *" M
respectively. Here A 0 M is the abelian group with generators a 0 m, [a, b] 0 n for
a, b E A, m E Me, n E M ee and relations

(a + b) 0 n1 = a 0 m + b0 m + [a, b] 0 Hm

[a,a]0n=a0P(n)

where a 0 m is linear in rn and [a, b] 0 n is linear in a, band n. Now let

o-t At ~ Ao~ A -+ 0

be a short exact sequence in Ab where Ao is free abelian. Then we obtain horno
morphisms

Al 0 Al 0 M ee Ä Al 0 M ffi Al 0 Ao 0 M ee Ä Ao 0 M

with dl d2 = 0 as follows:

dI (a 0 m) = (da) 0 rn,

d1 ([a, a'] 0 n) = [da, a'] 0 n,

d1 (a 0 b0 n) = [da, b] 0 n,

d2 (a 0 a' 0 n) = -a 0 da' 0 n + [a,da'] 0 n

for a, a' E Al, b E Aa, m E Me, n E M ee . One can check that cok (d1 ) = A 0 M.
Moreover we set

A *' !vI = ker (dI)/irll (d2 )

A *" M = ker (d2 )

These are the derived functors of the functor Ab -+ Ab which carries A to A 0 M.
An abelian group N E Ab yields the quadratic Z -module 1'-/ = (N -+ 0 -+ l\l)
with N ce = O. In this case A 0 N is thc usual tensor product and A * N = A *' N
is the usual torsion product. Clearly A *" N = o.

We now consider the quadratic homology of a Moore space M(A, n). There is
the natural homomorphism

(3.11)

.\(a 0 u) = Qm(a)(u)

.\([a, b] 0 v) = P Qm{alb)(v)

Let ..\Qm (M(A, n)) be the cokernel of .\.
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(3.12) Proposition. Assume that the quadratic homology (Q, 8, 0) satisnes the
colimit axiOln. Then,,\ above is an isomorphism in case A is a free abelian group.
Moreover for a general abelian group A E Ab there is the natural exact sequence
(n2:: 2,mEZ):

o-+ A *' Qm{sn} ~,\ Qm+l(M(A, n)) ~ A *" Qm-l {sn}
a ,\---+ A<;9 Qm{sn} ---+ Qm(M(A,n)) --+,\ Qm(M(A,n)) -+ 0

This result generalizes 9.3 in [5). If Q does not satisfy the colinut axiom then
proposition (3.12) is still true for finitely generated abelian groups.

Proof. If Ais free abelian we see by (3.6) [5] 01' (6.4) below that ,,\ is an isomorphism.
Now let A E Ab and let

d : X = M (A 1 , n) --+ Y = A1(Ao, n)

be a luap which realizes d in (3.10). Then the Moore space M(A, n) is thc mapping
cone M(A, n) = CX Ud Y. Therefore we get by (3.4) the following comIuutative
diagram in which the column and thc row are exact.

j
----+) Q17l+dM(A, n)) --=---4

Qm(XIX)

1d~

Qm (X) EB Qm (XIY)

la, ~dl
Qm+l (M(A, n), Y) 8) Qm(Y)

1eS 11

Qm-l (XIX)

1d~

Qm-l (X) EB Qm-l (XIY)

---tl Qm(M(A, n)) --+

TA
q. ) A @ Qm {sn}

The map q.. is surjective and the kernel of q. is the image of d]. Moreover using
the definition of d), dz in (3.4) and (3.10) we get for d1 , dz in the diagralu

ker (dd/im (dz) = A *' Qm{sn}

ker (dz) = A *" Qm{sn}

We now define the operators in (3.12) as follows. The inclusion e is induced by d)
where cok (i) = cok (.-\) = -im (j). The map h is the restrietion of O. The map 8
in the proposi tion is induced by 8(0) -1 and i and j in the proposition are derived
froln i anel j in the row of the diagraul.

q.e.d.

16



§ 4 HOMOTOPY FUNCTORS

Following Goodwillie [17, 18, 19, 20, 21] we consider for r ;::: °functors D of the
form

D : space r -+ space or

(4.1) D : space r -+ spectra

We say that D is a homotopy functor if D carries weak equivalences to weak equiv
alences and preserves filtered colimits up to homotopy. That is, for each sequence
of cofibrations Xc ~ Xl ~ ... in space r the induced map

hocolim (DXd -+ D(colilnXd

is a weak equivalence. Here hocolim is the homotopy colimit. We say that D is
reduced if * -+ D(*) is a weak equivalence. We shall consider various exarnples of
such homotopy functors below.

(4.2) Definition. Let D be a homotopy functor as in (4.1). We define the D
homology of aspace XEspace r by the homotopy group

Hn(X; D) = Jrn(D(X)).

Moreover the relative D-homology is the relative homotopy group

Hn +1 (X, Y; D) = 7rn +l (D(X), D(Y))
for (X, Y) E pair r. This yields the natural boundary map

a: Hn+1(X, Yj D) -+ Hn(Y; D).

If D maps to spectra then all such homotopy groups are well defined abelian
groups für n E Z. If D maps to space then these groups are abelian only for n ;::: 2.
For n = 1, resp. n = 0, the D-homology Hn(X, D) and Hn+1 (X, Y; D) is a group,
resp. a pointed set. If D maps to space I we set Hn(X, D) = Hn(X, Y; D) =°for
n ::; 0. If D is a reduced homotopy functor we obtain as in (2.4) the suspension

s = q*a- l
: Hn(X j D) -+ Hn+l (~X; D)

which defines the stable theory H; (X; D) of stable homology groups with coefficients
in D.

(4.9) Remark. We have for a reduced homotopy functor D the linearization Dlin

which is the homotopy functor obtained by the homotopy colimit of

D(X) -+ nD(~X) -+ n2D(~2X) -+ ...
We clearly have the natural isomorphism

HS(X D) = H (X D 1ill
)n' n, .

Goodwillie [17] shüwed that H~(X; D) is a hümülügy theory if D is approximately
1-excisive. This is also true if D is n-excisive für n ~ 1 as follows from 3.2.4 in [20].

The following lemlna is an easy consequence of the definitions.
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(4.4) Lenlma. Let D be a reduced homotopy fUllctor whieb maps to space 2 or
spectra. Thell D-holTIology is a boundary tlleory whieb satisnes the colimit axiom
in (2.1).

Proof. The a -exact sequence is otained by (2.6) (B). Nloreover hOlllOtopic maps
f ~ g induce f. = 9. in D-homology since the projection I(X) -+ X of the cylinder
is ~ homotopy equivalence and hence a weak equivalence.

q.e.d.
By an n-cube of spaces (01' spectra) we will mean the following. Let P(n) be thc

category whose objects are the subsets ]( of {I, 2, ... ,n} and whose morphisms
are the inclusion maps alnong the subsets. An n-cube X in a category C is a
covariant functor X : P(n) -+ C. Goodwillie defines and uses particular n-cubes
in space or spectra, namely Cartesian anel co-Cartesian n-cubes. Let "holim"
be the honl0topy inverse limit and "hocoliln" be the homotopy colimit as defined
in Bousfield-Kan [12J. Let P'(n), I'esp. P"(n), be the full subcategory of P(n)
consisting of all ]( with ]( #- </>, I'esp. ]( =j:. {I, ... ,n}, and let X' ancl X" be the
restrietions of X to P'(n), resp. P"(n). There are maps

a(X) : X(</» = lim(X) ~ holiIn(X) -+ holim(X')

b(X) : hocolim(X") -+ hocolim(X) ~ colim(X) = X( {1, ... ,n})

Now X is Cartesian, resp. co-Cartesian, if a(X), resp. b(X), is a weak equivalence.
An n-cubc is strongly co-Cartesian if each of its 2-faces is co-Cartesian. A Cartesian
2-cube is also calleel a homotopy pull back and a co-Cartesian 2-cube is a hom,otopy
push out. A basic notion in [17, 18] is the following definition.

(4-5) Definition. Let D be a hOUl0tOpy functor as in (4.1). Then D is termed n
excisiue if D(X) is Cartesian for every strougly co-Cartesian (n + 1) -cube X in
space r' We say that D is linear if D is reduced and 1-excisive and we say that D
is quadratic if D is reduced and 2-excisive.

Goodwillie [17] proved the following result:

(4.6) Theorem. Let D be a hOlnotopy functor as in (4.1) wl1ic11 maps to space 1
or spectra and let D be linear. Thell D-homology is a homology theory.

We obtain thc corresponding result for the quaclratic case as follows.

(4.7) Theoreill. Let D be a bomotopy functor as in (4.1) whieb maps to space2
or spectra and let D be Cjuadratic. Tben D-bomology is a quadratic honlology
tbeoryon pair r in tbe sense oE (3.2).

Here we use space 2 since we want all D-homology groups to be abelian.

Proof 0/ (4.7). We obtain (3.2) (i) by (4.3) and (3.2) (ii) by (4.9) below; see also
(4.11). Moreover (3.2) (iii) is proved in (4.12) below.

q.e.d.
We need the following lelnma; compare 1.18 [18}. Let X, Y be n-cubes in space

anel let f : X -+ Y be a map between n-cubes which may be considered to be a
(n + 1) -cube. Let hofib(j) be the n-cube obtained by taking the homotopy fibers
of f(]() : X(K) -+ Y(I(), ]( E P(n).
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(4.8) Lemma. Assume Y(4)) is a connected space. Then f is a Cartesian (n + 1)
-cube if and only if honb(J) is a Cartesian n-cube.

Below we shall also consider quadratic homotopy functors D which map to
space 1 and not necessarily to space 2 as assumed in (4.7). For such homotopy
functors the following two len1mas hold.

(4.9) Lelnma. Let D be a quadratic homotopy functor as in (4.1) which maps to
space 1 or spectra. Tl1en D-honl01ogy dennes for n E Z a quadratic functor

Hn(-;D) : space r --+ Gr

which carries X to Hn(X, D). Moreover the suspension theory of cross effects
Hn(X1Y; D) defined as in (2.11) is a 110mology theory.

The lemma is a consequence of Goodwillie's results. In fact, let D(X V Y)z be
the homotopy fiber of D(T2) : D(X Vy

P

) --+ D(Y) and let D(XIY) be the homotopy
fiber of D(Tl) : D(X V Yh --+ D(X). Then one readily checks that one has

(4.10)

for any reduced homotopy functor D. If D maps to space 1 then D(X V Y)z is
always a connected space. We now repeat an argument of Goodwillie which proves
(4.9).

Pro%/ (4.9). We first show that the functor Dx with Dx(Y) = D(X V Yh is
1-excisive. In fact, let Y be a co-Cartesian 2-cube. Then TZ : X V 1/ --+ Y is
a strongly co-Cartesian 3-cube; compare (A.1). Hence D(T2) = D(X V Y --+ Y)
is a Cartesian 3-cube since D is 2-excisive. Therefore (4.8) shows that D x (Y)
is Cartesian and hence Dx is 1-excisive. Now D(XIY) is the homotopy fiber of
D x (Y) --+ D x (*). Therefore the functor Y r----+ D (X IY) is linear since D x is
1-excisive. This cornpietes the proof of (4.9) by using (4.6).

q.e.d.

(4.11) Remark. Let D be a quadratic homotopy functor as in (4.1) which maps to
space 1. Goodwillie showed that there exists a spectrurn E and a natural iSOlnor
phism

(1) Hn(XIY; D) = 7fn(E 1\ X 1\ Y)

which is compatible with the-suspension S of X and the suspension S of Y; see (2.11),
(2.12). Moreover the isomorphism is compatible with the interchange map on both
sides. Here the interchange lnap T on 7fn (E 1\ X 1\ Y) is introduced by a E 2 -action
ton E and by the interchange Tx,Y : X 1\ Y ~ Y I\X, that is T = 7fn (tI\Tx,y). Let
(E 1\ X 1\ ){)r be the homotopy orbit spectrum given by T. Then the Goodwillie
tower of the quadratic functor D yields a natural fibration sequence

(2) fl':O(E 1\ X 1\ X)T --+ D(X) --+ D1in(X).

Here the linearization satisfies D1in(x) = flOO(E' I\X) for an appropriate spectrum
E'.
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(4.12) Leluma. Let D be a quadratic homotopy functor as in (4.1) whic11 maps
to space1 or spectra. Then for Qn(X, Y) = Hn(X, Y; D) there exists a quadratic
excision sequence a.s in (3.2) (iii) which is natural and exact.

We point out that in the lemma Ql (X, Y) = H 1 (X, y.. ;D) is only a pointed set
if D lnaps to space 1.

Proo/ 0/ (4-12). Let (X, A) be an object in pair rand let f : A -t X be the
inclusion. Then (X, A) yields a 3-cube in space r termed Cube (X, A) which is
obtained as the following map F between 2-cubes

AvX
IV!

AvA X f A( (

(1) (1,1)1 1(1,1) F 1q 1
X A X/A ( *1

Here F is defined by (0,1) : A V X --t X, (0,1) : A V A -t A, q: X -t X/A and
o: A -t *. One readily checks that F = Cube (X, A) is weH defined. Each square
in Cube (X, A) is a homotopy push out so that Cube (X, A) is actually strongly
co-Cartesian. Since D is quadratic this implies that D(Cube (X, A)) is Cartesian
and therefore by (4.8) the following diagraln of homotopy fibers is a homotopy puH
back.

(lvJ).
D(A V Xh)

1(1,1).

I.
) P(q*)

(2)

D(A)

Here P(q*) is the homotopy fiber of q. : D(X) --t D(X/A). Let ]{(A) be the
homotopy fiber of (1, 1). : D(A V Ah --t D(A). Then we get the fiber sequence

(3)

since (2) is a homotopy pull back. This fiber sequence of spaces 01' spectra induces
a long exact sequence of homotopy groups. The definition of J((A) yields for n E Z
the following commutative diagram of short exact sequences of groups.

o -----4) kernel(1, P)

o 7r n ]((A)

I1

(1,1). ( )
-----4) 7rnD A

I1

-----4) 0

Here we use the isomorphism in (4.10) and (2.4) (4) and we point out that for
D : space r -t space 1 the fiber D(A V Xh is connected and that 7rl (D(AIA)) is
central and split in 7r1D(A V Xh. Now an isomorphism of abelian groups
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(4) e : trnD(AIA) ~ kernel(l,P) = 7f I I«(A)

is obtained by mapping y to (Py, -y).

The boundary operator a of the long exact sequence of homotopy groups asso
ciated to (3) yields the natural transformation

This completes the proof of the quadratic excision axiom. q.e.d.

We can use (4.12) for the proof of the following result.

(4.13) Proposition. Let D : space 1 --+ space 1 be a quadratic homotopy functor.
Tllen we obtain by (3.1) alld (4.9) tlJe square group

aJld USillg tlJe tensor product in (6.3) below there is a natural isomorphism

for 2-dimensional CW-complexes Y.

Proof. We Illay assUllle that Y = CA UA X where A and X have the hOIllotopy
type of one point tmion of l-spheres. We now apply (4.12) and a -exactness. This
gives us the exact sequence of groups, Ql (X) = BI (X, D),

Since D preserves filtered colimits up to homotopy we get by [10] with M
H I {SI; D}:

QI (X) = trJ (X) ® M

QI (A V Xh = QI (A) EB QI (AIX)

= trI (A) ~ M EB 7fI (Atb0 7fI (x)ab 0 Mee

and therefore the result follows froln (8.4) [10]. For this observe that trI (A) ~
trI (X) -4 tr) (Y) has the property that q is surjective and the normal closure of
image of d is the kernel of q. q.e.d.

(4.14) Example. It follows from Goodwillie's Calculus [19, 20] that there is a se
quence of fllnctors Pn from pointed spaces to pointed spaces and natural transfor
mations
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x . )-

~

1
Pn(X)

1
Pn - I (X)

1

PI (X) = Q(X) = nOO~OO(X)

Here Pn are homotopy functors satsifying n-th order excision and the maps X --+
Pn(X) are (n + 1)k + 1 connected, where k is the connectivity of X. The functors
Pn are uniquely determined by these universal properties. According to Goodwillie
the tower above is termed the Taylor tower of the identity. Here PI is a linear
homotopy functor and thc homology

coincides with stable hornotopy groups. Therefore the quadratic homotopy functor
P2 yields a canonical quadratic homology which we call quadratic homotopy groups:

Hn(X, P2 ) = 7r~(X)

This is the quadratic analogue of stable homotopy groups. Vve know by (4.7)
that quadratic homotopy groups 7r~ fonn a quadratic homology theory on space 2

satisfying all properties in section 3. The cross effect of 7r~(X) is given by a natural
isomorphism

Jr~ (XIY) = 7r~+1 (~y 1\ Y)

where X /\ Y = X x Y/X V Y, compare [19], [24]. Arone-Mahowald [1] luentioned
that P2(X) also can be constructed by the fiber of the stable James-Hopf map r2
in [13]; that is

P2 (X) --+ Q(X) ..2:.t Q(X /\ X)T

is a natural fiber sequence. Here (X 1\ X)T is the homotopy orbit space of the Z/2
-action on X /\ X given by the interchange map Tx ,x. In the metastable range we
have considered exaruples of the quadratic Z -modules 7T"~+k{sn} in table 2 in 9.9
[5]. Such quadratic Z -modules seern to be the appropriate quadratic analogue of
stable hornotopy groups of spheres.

§5 HOMOTOPY FUNCTORS INDUCED BY

ENDOFUNCTORS OF THE CATEGORY OF GROUPS

Let Gr be the category of groups and let sGr be the category of simplicial
groups. A functor F : Gr --+ Gr induces the functor
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F: sGr -r sGr

which carries the simplicial group X to the simplicial group FoX. We now consider
the following composition of functors F li = ßPo::

(5.1 ) 0' F ß
space 1 ---+ sGr ---+ sGr ---+ space 1

Here we obtain 0' as follows. For a pointed space X let S(X) be the reduced
singular set consisting of all singular simplexes (J' : .ö n -r X with a(v) = * for all
vertices v of the simplex .ön. Then the functor 0: carries X to the Kan-Ioop group
a(X) = GS(X) of S(X); see for eXaInple [15]. Moreover for a simplical group
G let IGI be the realization and let ß(G) = BIGI be the classifying space of thc
topological group IGI. Then 0: and ß induce equivalences of homotopy categories

0'

space 1/ ::: ;:! H o(sGr)
ß

where ß is the inverse of 0:. Here H o(sGr) is the localization of sGr with respect
to weak equivalences.

Let gr be the fuH subcategory of Gr consisting of free groups. Since a(X) above
is actually a free sinlplicial group we see that F~ depends only on the restrietion
Fo : gr ~ Gr of F. On the other hand each functor Fo : gr -r Gr cletermines
a unique extension F1 : Gr -r Gr with the property that F1 preserves cokernels.
Therefore we mayassurne that F in (5.1) preserves cokernels.

Nloreover it is convenient to assume that the behaviour of Fli on infinite CW
cOlnplexes is determined by its behaviour on finite cornplexes. Therefore we assulne
that Fli preserves filtered colimits up to homotopy. Olle reaclily checks that this is
the case if and only if F preserves filtered colirnits. These remarks lead to the

(5.9) Definition. A group functor is an endofunctor F : Gr -r Gr ofthe category of
groups which preservcs cokernels aIld filtered colimits. Hence such a group functor
is determined by its restrietion to the fuH subcategory of finitely generated frec
groups.

(5.4) Lemnla. A group functor F : Gr -+ Gr induces a functor F~ : space 1 --+
space 1 whicb is a reduced homotopy functor.

We point out that the lemma does not imply that the functor F in (5.1) carries
weak equivalences in sGr to weak equivalences in sGr; this in general does not
hold.

Proof 0/ (5.4). Clearly * --+ F Ii (*) is a homotopy equivalence so that F li is reduced.
We have to show that Fli carries homotopy equivalences to weak equivalences .
Let H : 10 ::: 11 be a homotopy in space 1. Then there exists a homotopy Hf :
alo ::: 0'11 since a(X) is a free simplicial group. The functor P carries Hf to a
horllotopy Palo ::: PalI in the category of simplicial sets, see (1.10) and (4.2) in
[15]. This implies that 1fn(Fo:!0) = 1rn(Fa!l) and hence 1rn(F~!o) = 1rn(F~!d for
n E Z. Frorn this one readily derives that F~ carries homotopy equivalences to weak
equivalences. q.e.d.
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(5.5) Definition. Let F : Gr -t Gr be a group functor and let X Espace 1. We
define the F -homology of X,

by the FU -homology of X in (4.2), n E Z. Similarly we obtain the relative F
homology Hn (X, Y; F) of a pair (X, Y) E pair 1 • Clearly F -homology has the
properties of D-homology described in (4.2) and (4.4). In particular H1 (X; F) is
only a group; see (5.11). Moreover we obtain the stable F-homology

HS(X F) - H (X R liTl
)n , - Tl 'ö

COlnpare (4.3). Let F, G : Gr -t Gr be group functors. Then a natural transfor
mation t : F -t Ginduces natural transformations

tu : FU(X) -t GU(X) and

t. : Hn(X, Y; F) --+ Hn(X, Yj G)

where t. is the coefficient homomorphism induced by tU' We obtain tö as follows.
Let t : P --+ G be the transformation induced by F. Then we set tö = ßlaX.
Clearly the coefficient homomorphislll t. is compatible with the boundary map 8
of F -homology.

(5.6) Lemlna. Let (X, Y) E pair 1 be an r-connected pair. Then H Tl (X, Y; F) = 0
for n ~ r. This implies that

depends onl'y on tbe (n + 1) -skeleton of X. Moreover if X is r-connected tben so
is FU(X).

Proof. We l11ay assulne that X is a reduced CW-complex with subcomplex Y and
that X - Y has only cells in dimension > r. By a result of !{an [25] we obtain a
hOlllotopyequivalence

r.p : (Gx, Gy) ~ (aX, aY)

of pairs of free simplicial groups. Here Gx as a free simplicial group has generators
in degree t wmch are exactly the (t + 1) -cells of X, t ~ O. Moreover Gy is the
subobj ect generated by the cells of Y. Hence (GX ) n = (Gy) Tl for n < r and
therefore also (P GX)n = (P GY)n for n < r. Since P carries 'P above to a weak
equivalence we see that H n (X, Y; F) = 0 for 11 ~ 7'.

q.e.d.
Let I be the identity functor of the category Gr. Then Olle has the canonical

natural isomorphism

(5.7)
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whieh we use as an identifieation. For a group G let r k (G) c G be the subgroup of
k-fold eommutators. Then Gjr2G == ab(G) == Gab is the abelianization of G. For
k ~ 1 we ohtain the nilization functors

(5.8) nih : Gr -+ Gr

which carry G to the quotient ni1k(G) == Gjr k+1G. Hence nil1 == ab is the abelian
ization functor. All funetors nilk, k 2:: 1, are group functors in the sense of (5.3).
By the result of Dold-Kan it is weIl known that for (X, Y) E pair 1 one has the
natural isomorphism

(5.9) Hn(X, Y; ab) == Hn(X, Y)

where the right hand side is the singular homology. Moreover the natural transfor
mation I ~ ab given by the quotient map G -+ ab( G) induces the classical Hurewicz
homomoprhism

7rn(X, Y) == Hn(X, Y; I) -+ Hn(X, Y; ab) == Hn(X, Y)

Similarly one obtains by the natural quotient map I ~ nilk(G), the nih -Hurewicz
homomorphism

7rn (X, Y) == Hn(X, Y; 1) ~ Hn(X, Y; ni1k)

The following generalization of the classical Hurewicz theorem is due to Curtis [15].

(5.10) Curtis theorem. Let r 2:: 2 and let X be an (r-1) -conneted space. Tllen
the nih -Hurewicz homomorpllism

7rn (X) ~ Hn(X; nih)

is an isomorphism for n < r +{log2 (k +I)} and is surjective for n == r +{log2 (k +1)}.
Here {a} denotest the least integer 2:: a.

The Hurewicz theorem is the ease k = 1 of this result since {log2 (2)} = {1} = 1.
For k = 2 we have {log2(3)} = 2 since 2 > log2(3) > 1. Hence the ni12 -Hurewicz
homomorphism yields for an (r - 1) -eonnected space X, l' 2:: 2,

(5.11 )

1rr(X) = Hr(X, nil2 )

1rr +l(X) = H r+1(X,niI2 )

7rr+2 (X) -* Hr+ 2 (X, nil2 )

where -* denotes a surjection. Clearly the funetor nil] = ab is linear and the
functor ni12 is quadratic in the sense of (2,9). In the next section we consider all
quadratic group functors Gr ~ Gr. It would be interesting to understand the
stable theory H~(X, ni1k), k 2:: 1, which is a homology theory approximating for
k -+ 00 stable homotopy 7f~(X). We shall determine H~(X,F) for any quadratic
group functor in (8.5). This in partieular yields an explicit spectruln E for which
HJ(X, ni12 ) = Hn(X, E); compare (8.16).

The next result corresponds to (4.13) in case F is a quadratic group functor.
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(5.12) Lenuna. Let F : Gr -t Gr be a group functor. Tben we bave for X E
space 1 tbe natural isomorphism

lvIoreover if S is a one point union oE l-spheres we have

Hn(S, F) = 0 for n 2:: 2.

Proof. The group G = 1rl (S) is a free group for which the constant simplicial group
G with Gn = G for n 2:: 0 is a free simplicial group which is homotopy equivalent
to 0: ( S). Hence one has a weak equivalence F (G) -t F0: (S) where F (G) is again
a constant simplicial group. This shows Hn(S,F) = 1rn-lF(G) = 0 for n 2:: 2 and
H1(S,F) = 1rI F(G) = F(G). Now let H = o:X with 1roH = 1rlX. Then the degree
1 part of the simplicial group H

is a coequalizer. Since F preserves cokernels also

is a coequalizer and therefore 1roFH = F1roH. This shows H1 (X,F) = F(1rlX).

q.e.d.
If F = ab is the abelianization functor we have by (5.9) and (5.11)

This is apart of the classical Hurewicz theorem.

§ 6 SQUARE-HOMOLOGY

We show that the hOIllology theories obtainecl by linear group functors Gr -t Gr
are exactly the classical "ordinary homology theories" of Eilenberg-Mac Lane. This
Inotivates the stucly of homology clefinecl by quadratic group functors Gr -t Gr.
There is the following c1assification of linear functors in [10].

(6.1) Lemlna. The category of linear group functors Gr -t Gr is equivalent to
the category Ab of abelian groups. More precisely for each linear group functor F
tl1ere is an abelian group A and an isomorphism

F(G) = ab(G) 0 A

which is natural in G E Gr. Tl1€ equivalence carries F to A. In particular F admits
a factorization

ab b 0A b GF : Gr -r A ..:.-....t A C r.

As a consequence of this result and the Dold-I<an theorem [16) we get:
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(6.2) Proposition. Let F bc a linear group functor corresponding to A E Ab as

in (6.1). Then one has for (X, Y) E pair 1 the natural isomorpl1ism, n E Z,

Hn(X, Yj F) = Hn(X, Yj A)

where the right hand side is the singular homology with coefflcients in A.

This implies that the homology theories of linear group functors are exactly the
ordinary homology theories in the sense of Eilenberg-Steenrod which satisfy the
classical "diInension axioln". As a next step we consider quadratic group functors.
For this recall from [10] the followillg notation on square groups.

(6.S) Definition. A square group

is given by a group Me and an abelian group Mee . Both groups are written addi
tively. Moreover P is a homomorphism and H is a quadratic function, that is the
cross effect

(alb)fl = H(a + b) - H(b) - H(a)

is linear in a, b E Me. In addition the following properties are satisfied (x, Y E Mee ).

(1)

(2)

(3)

(Pxlb)R = 0 and (alPY)H = 0

P(alb)H =a+b-a-b

PHP(x) = P(x) + P(x)

By (1) and (2) P maps to the center of Me and by (2) the cokernel of P is abelian.
Hence lvIe is a group of nilpotency degree 2. Let Square be the category of square
groups. As an example we have the square group

H 0
Znil = (Z ---7 jE -7 Z)

with H(r) = (;) and P = 0; many other examples are discussed in [9, 10]. A

quadratic Z -module M is a square group for which H is linear and HPH = 2H;
see (3.1).

Let G be a group and let M be a square group. Similarly as in (3.10) we define
the group G 0 M by the generators 9 0 a and [g, h] 0 x with g, h E C, a E Me and
x E M ee subject to the relations

(g + h) 0 a = 9 0 a +h 0 a + [g, h] 0 H(a)

[g, g] ® x = 9 &; P(x)

where 9 0 a is linear in a and where [g, h] 0 x is central and linear in each variable
g, hand x. There are obvious induced nlaps for this tensor product so that one
gets a bifunctor
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o : Gr x Square -+ Gr

Oue has the natural isomorphism

nilz(G) = G 0 Znil.

In [5, 10] we obtain the following classification of quadratic group functors which
is the quadratic analog of (6.1). Let Nil be the category of groups of nilpotency
degree 2.

(6.4) Proposition. The category of quadratic group functors Gr -+ Gr is cquiv
alent to tbe category Square of square groups. More precisely for each quadratic
group fUllctor F one bas tl1e square group M = F{Z} in (3.1) and isomorphisms

F(G) = G 0 M = nilz(G) 0 M

whicb are natural in G E Gr. The equivalence carries F to M and F = nilz corre
sponds to M = Zni/. In particular quadratic group functors admit a factorization

Gr ni/1 Nil~ Nil c Gr

Moreover the quadratic group functors wbich admit a factorization

ab bGr ---+ A ---+ Ab c Gr

correspond cxactly to quadratic Z-modules M.

Using this result we identify square groups M and quadratic grüup functors
Gr -+ Gr; we write M : Gr -+ Gr for the functor which carries G to G 0lvI. As a
quadratic analog üf (6.2) we define für a square grüup M and (X, Y) E pair 1 the
square-homology with coefficients in M, n E Z,

(6.5)

Here Mö is the homotopy functor (5.1) induced by M. The groups Hn(X; M)
and Hn+1 (X, Y j M) are abelian für n 2:: 2 and of nilpotency degree 2 for n = 1.
Moreüver H1 (X, Y; M) is a pointed set. For n ::; 0 all groups (6.5) are trivial.

(6.6) Theorem. Let F : Gr -+ Gr be a quadratic group fUllctor. Then Fö in
(5.1) is a quadratic homotopy fUllctor.

We prove this result in the appendix A. Since for a simply connected space X
also FöX is simply connected we 0 btain by (6.6), (6.4), (4.7) the corollary:

(6.7) Corollary. Square-bomology Hn(X, Y; M) lvitb coefficients in a square grau])
M is a quadratic 1101nology tbeoly on pair z in tbe sense of (3.2).

Using (4.3) wc derive from (6.6) the next corollary which yields the homology
theory 01' spectrum associated to a square group.
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(6.8) Corollary. Stahle square-homologyH~ (X, y .. ;M) with coefflcients in a square
group M is a hOlTIology tbeory on pair 1.

In (6.7) we use the category space 2 in order to 0 btain abelian groups Hn (X, Y; AI).
The next result iInproves (6.7) for the category space 1.

(6.9) Theorenl. Let M be a square group. Then square-homology with coeffl
eients in AI defines a quadratic functor

{
Ab for n 2:: 2

Hn ( -; M) : space 1 -+ Nil for n = 1

with cross effect

Hn(XIY; AI) = Hn +1 (X A Y; Mee )

for n E Z. Here the right hand side is the singular homology of the smash product
X A Y witll coefflcients in the abelian group M ee . The isomorphism is cOlnpatible
up to sign with tbe suspension sand s and the interchange map on both sides.
Moreover for (X, A) E pair 1 one has the natural exact sequence of groups:

11

The operators iu and ju are clefined as in (3.2) (iii). For n :::; 1 the sequence consists
of trivial groups. As in (3.5) we derive froln the quadratic excision sequence in (6.9)
the following long exact sequence.

(6.10) Corollary. Let M be a square group and A E space 1. Tl1en one has the
naturallong exact sequence oE groups, n E Z,

Prool 01 (6.9). In the following proof we do not use (6.6). Let F : Gr -+ Gr
be given by F(G) = G 0 !vI where M is the square group. By [10] we have for
X, Y E Gr the binatural isomorphism

(1) F(XIY) = ab(X) 0 ab(Y) 0lvIee

We now consider the following commutative cubical diagram in Gr which is deter
lnined by the inclusion

(2) f:A-+AVC=X

where X is the sum of A and C in Gr. The pair (X, A) yields the three cube
G = Cube(X, A) as in (4.12):

29



(3)

AvX
IV!

AvA X f A( (

(f,l)1 1(1,1)
G 1q 1

X A X/A ( *f

Here the map G between 2-cubes is given by (0, 1) : A VX --+ X, (0, 1) : A V A --+ A,
q = (0,1) : Ave = X --+ X/A = C and °:A --+ *. One readily checks that Cube
(X, A) is weIl defined. We now apply F to Cube (X, A) and we obtain the following
square consisting of the kernels of all F(g) where g is oue of the arrows in G.

(4)

'F(A V Ah

(1,1)-1

F(A)

(1 V f)-) F(A V Xh

1(1,1)

---+) kernel(F q)
f-

Using the assumption that X = Ave we see by (1) that (1 V f). in (4) ineluces an
isomorphism of the kernels of the vertical arrows in (4). Hence (4) is a pull back
diagram in G r. Now let

(5) f:A--+X

be a cofibration of simplicial groups. Then we know for all n that we can choose
free groups On such that

(6)

Hence f in (4) is of the form (2) for each n. This implies by thc naturality of (3)
and (4) that also (4) with f as in (5) is a pull back diagra1ll in the category of
sinlplicial groups. This yields the 8hort exact sequence of si1llplicial groups

(7)

(8)

°--+ K(A) (1 Vf;- F(A V Xh (/,11- kernel(Fq) --+ 0,

K(A) = kernel{(1, 1). : F(A V Ah --+ F(A)}.

Using Fli in (5.1) we see that Hn(X'; M) = ?Tn-l(FX) where X = aX' is the
simplicial group associated to X' E space r' Hence we get by (1) the cross effect
formula

(9) Hn(X'IY'; M) = ?Tn -1 (F(XIY))

= ?Tn-1 (ab(X) 0 ab(Y) 011/Jee )

= Hn +1(X' 1\ V'; M ee )
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Here the last isomorphism is given by the Eilenberg-Zilber theorem. This shows that
the cross effect formula in (6.9) is satisfied. It only remains to check the quadratic
excision sequence. Now a pair (X', A') in pairt , corresponds to a cofibration A >-t

X in the category of simplicial groups for which we have the 8hort exact sequence
(7). This sequence induees a long exact sequenee of homotopy groups whieh is
isomorphie to the quadratie exeision sequenee for (X', A'). The boundary afor (7)
deternlines the natural operator

(10)

0: Hn+1 (CA'UX';M) = 1rn-1kernel(Fq)~ 7i"n-2I{(A) ~ 1rn-2F(AIA) = Hn- 1(A'IA'; A1)

Here the definition of I((A) in (8) yields the split short exaet sequenee

0 1rnI((A) 1rnF(A V Ah (1,1) •
7TnF(A) ) 0)

I1 11 11

0 ) kernel(1, P) > 7Tn (FA) EB 1rnF(AIA)
C1 ,P)

1rnF(A) ) 0)

where we use the isomorphism in (2.9) (4). Now the isomorphisrll e in (10)

(11 ) e :7i"n(F(AjA)) ~ kernel(l, P) = 1rnI((A)

is obtained by mapping y to (Py, -y). This eorresponds to the definition of j_ in
(3.2) (iii). q.e.d.

The first non vanishing homology with eoefficients in a square group is deseribed
by the following result.

(6.11) Proposition. Let A1 be a square group and let lvladd = cok(P) E Ab be
the cokernel of P : M ee --+ Me. If X is an (1' - 1) -connectcd space OllC has

{

1r1 (X) ® M for l' = 1
Hr(X,M) =

1rr(X) ® lvJadd for r > 1

Proof. For r = 1 this is a consequence of (5.11) 01' (4.13). Now let r 2:: 2. The
EHP-sequence shows that for a one point union S of l-sphcres the sequence

ab(G) e> ab(G) e> Mee ~ G o lvI --+ H2 (L.S; M) --+ 0

is exact where G = 1rr (S). This implies

H2 (L.S; M) = ab(G) (8) M add

Moreover the EHP-sequence shows that H2 (L.S; M) = Hn (En-l Sj M) for n 2: 2.
Now we have
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H (X' M) = H (X r+1
. IvI)r, r ,.

Here X r+1 is the mapping cone of a lnaps f : S' -t S" where S' and S" are one
point unions of r-spheres. Now the a -exactness anel the quadratic excision shows
Hr(X r+1

; M) = 7fr(X) ® lvJadd.

q.e.d.

§ 7 SQUARE HOMOLOGY WITH COEFFICIENTS IN A QUADRATIC Z-MODULE

Let sAh be the category of sin1plicial abelian groups and let Chain be thc
category of chain cOlnplexes C of abelian groups with Ci = 0 for i < O. It is a
result of Dold and I{an that there are isomorphisms of categories (see [9])

(7.1 )
N

sAh ~ Chain
K

where!( is the inverse of the normalization N. Here lV(A) is also termed the Moore
chain complex of A. I(an [26] 15.1 showed that for a reduced sin1plicial set X and
its I(an loop group G(X) one has the isomorphism of chain conlplexes

(7.2)

Here A(}{) = ab G(X) is the abelianization of G(X) and G.X is the reduced
(normalized) chain complex of the simplicial set X. Recall that the suspension sk C
with k E Z is (SkC)n = Cn-k with the differential d(sk x ) = (-l)k sk(dx). We
define for XEspace] the singular chain complex

(7.3) G.X = G.(SX)

where SX is the reduced singular set in (5.1). Given a quadratic Z -module M we
obtain the induced chain functor M~ which is the composite

MU : Chail1~ sAb 0N) sAh~ Chain

The next result is a consequence of (7.1), (7.2) anel (6.4).

(7.4) Proposition. Let M be a quadratic Z -module alld XEspace]. Tllen
tlle square lJolnology H.(X, M) is determined by C.X. More precisely there is a
natural isomorpbism, n E Z,

Proof. Using the definitions we get
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(*)

Hn(X, M) = 1T"n(M~X)

= 7fn -1 ((G5X) 0 M)

= 1T"n-1((G5Xtb0 M)

= 1T"n_1((I(N(G5x)ab) 01\lf)

= 1T"n-1((I( S-1C.X) 0 M)

= Hn- 1N((K S-1C*X) 0 M)

= Hn_1M~(S-lC.X)

In (*) we use the fact that for a group G we have G 0 M = Gab ® lvI if lvI is a
quadratic Z-tllodule; compare (6.4).

q.e.d.

(7.5) Remark. The homotopy type of the chain complex C.X is determined by the
homology H. (X, Z ). This shows by (7.4) that the abelian groups Hn (X, M) are
determined by H* (X, 7l) and M provided M is a quadratic 7l -module. This is not
true if !vI is a square group. For example we obtain by (5.11)

o= H3 (CP2 , Znil) #- H3 (52 V 5\ Znil) = 7l

wi th H. (CP2 , 7l) = H. (52 V 54, 7l). Here CP2 is the complex proj ective plane and
52 V 54 is the one point union of spheres.

(7.6) Remark. The universal coefficient formula in [11] cau be usecl to COtllpute
H*(X, M) if M is a quadratic 7l -tllodule. For exatllple if M ee is torsion free oue
has the natural short exact sequence

o-r (H. 0 M)n-l -r Hn(X, M) -r (H* *' M)n-2 -t 0

where H. = S-1 H.(X,'ll) is the desuspended reduced homology of X. Here we use
the graded tensor and torsion products defined in [11].

Now let M be a square group. Then there is the canonical short exact sequence

(7.7)

in the category Square where Madd = cok (P) is an abelian group and where M
is a quadratic Z-module. Nlore precisely we obtain the commutative diagram

M= (i1n(P) H ) lvfee
p

) irn(P))

1 n 1I n

M= (Me
H ) M ee

p
Me)

1 1 1 lq
M add =(cok (P) 0 > cok (P))
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where q is the quotient map. The definition of a square group shows readily that
the restrietion of H in M to Me = irn (P) is a homomorphism and that M is
a quadratic Z -Illoelule. If G is a free group then (7.7) induces the short exact
sequence of groups

(1)

o ---7) G®il

11

A0A1

-~) G0M -~) G0Madd

11

---+) 0

where A = ab (G). If G is a free simplicial group this sequence is still weIl defined
and short exact. Hence the long exact sequence ofhomotopy groups for G = G(SX)
yields the following lang exact sequence of square homology groups

Here H. (X, Madd) is the usual homology af X with coefficients in the abelian group
Madd = cok (P : M ee --+ Me). Moreover H.(X, M) depends by (7.5) only on thc
hanl0logy H.(X, Z) and NI. In fact H.(X, NJ) can be computed by the universal
coefficient theorem [11] as follows; see (7.6).

Given a square group 111 we obtain the involution

T = HP - 1 : Mee --+ Mee

with TT = 1. This yields the chain complex of groups

M: = (Me +-- M ee +-- M ee +-- M ee +-- ... )
P I-T l+T I-T

where lI/Je is in clegree O. We have 1 - T = 2 - HP and 1 + T = HP so that the
homology of M; is

(7.8)

cok (P)

ker (P)/im (2 - HP)

ke7' (2 - HP)/im, (HP)

ker (HP)/im (2 - HP)

n=O
n=l

n = 2k 2:: 2

n = 2k + 1 2:: 3

Moreover we associate with M the following quadratic Z -modules ZnM., n 2:: 1.

ke7' (P) ~ Alee 2=!!{ ker (P)

(7.9) Zn A1• = ker (2 - HP) ~ Mee !!..!:t ker (2 - HP)

ker (HP) ~ Mee 2=!!{ ker (H P)

n=l

11 = 2k 2:: 2

n = 2k + 1 2:: 3

Here j denotes the inclusion. We now compute the square-homology of a Moore
space Al(A, n) of an abelian group A.
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(7.10) Proposition. Let n ~ 2 and let M be a square group. Tllen the square
11omology oE the Moore space M(A, n), A E Ab, has the following properties. If A
is free abelian there is a natural isomorphism

{

0 for k < 0 01' k ~ n

Hn+k(M(A, n); M) = A 0 HkM: for 0::; k < n - 1

A0Zn-lM. for k=n-l

In the general case one gets for A E Ab tbe following natural isomorphisms and
short exact sequences respectively.

0 for k < 0, k > n + 1

A 0 cokP for k=O
Hn+k(M(A, n); M) =

A *' Zn-1M. for k=n

A *" Zn-l Al. for k=n+l

o--+ A 0 HrM: --+ Hn+r(M(A, n); M) --+ A * Hr- l M: --+ 0

for 0 < r < n - 1.

In (8.4) we shall see that the short exact sequence for Hn+r(M(A, n); M), 0 <
7' < n - 1, is actually naturally split.

(7.11) Remark. We now determine the spherical groups of square homology; see
(3.8). Let M be a square group. For each sphere sn we obtain by (3.1) the square
group (n ~ 1, k E Z)

For k ~ 1 this is a quadratic Z -nlodule as in (3.9). Using (5.11) we see

k=O
otherwise

Moreover by (7.10) we get for n > 1

{

0 for k < 0 or n > 1

Hn+k{sn; M} = HkM: for 0 ~ ~ < n - 1

Zn-1M. for k - n - 1

Hence only H Zn - l {sn; A1} is quadratic and Hn+k{sn; A1} is an abelian group for
k:j=n-I.

Proo/ 0/ (7.10). For k = 0 conlpare (6.11). For k > 0 we have by the exact sequence
(7.7) the formula, X = .i\1(A, n),

35



If A is free abelian the right hand side is conlputed in [11] by

Here H* = 3-
1 H*(X, Z) is concentrated in degree n - 1 so that the result in [11]

yields the formulas of the proposition if A is free abelian. If A is not free abelian
we use the exact sequence in (3.12).

q.e.d.

(7.12) Remark. If M is a quadratic Z-module we can use (7.10) for the computation
of square homology with coefficients in M. For this let X E space1 and let

(1)

be the Moore space of the n - th homology of X. Then there exists a homotopy
equivalence of chain complexes

(2) C*(X) ~ C*(X1 V X 2 V ... )

Hence we get by (7.4) an isomorphism

(3)

Hn(X; M) = Hn(X1 V X 2 V ... ; M)

= E!1Hn (Xi; M) EB E!1Hn+1 (Xi /\ Xj; Mee )

i~l i<j

In the second row we use the cross effect fonnula. Since we know Hn(Xd by (7.10)
we thus get a description for Hn(X; M) as an abclian group. For this we point out
that for A, B, lvJee E Ab

(4)

Hn(M(A, i)/\M(B,j); Mee ) =

o for n < i + j and n > i + j + 2

A ® B ® M ee for n = i + j

Trp( A, B, Mee ) for n = i + j + 1

A *B *M ee for n = i + j + 2

Here Trp is the tripIe torsion product of Mac Lane; see Notcs on page 393 in [27].
Using (3) for M in (7.7) we thus obtain by the exact sequence in (7.7) a possibility
to C0111pute Hn(X, M) for an arbitrary square group M in terms of thc bounclary
a:Hn(X,lI/Jadd ) --+ H n-1 (X, Al). For example we obtain the following vanishing
theoreln.
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(7.13) Proposition. Let X be a. connected CW-space with dim X = N and let
M be a square group. Then

and

Hn(X,M) = 0 for n 2:: 2N

Hn(X,M) = Hn(X,M) for N < n < 2N

§ 8 STAHLE SQUARE-HOMOLOGY AND STEENROD SQUARES

Given a square group M we obtain the square-horllology Hn(X; lvI) and the sta
ble square-homology HJ(X; !vI) which is the stabilization of Hn(X; !vI) as defined
in (2.2). We have seen in (6.8) that the stable square-homology HJ(X; M) is a
homology theory Oll space 1. Hence by (2.8) there is a spectruIll EM associated to
the square group M with

(8.1)

This equatioll also holds if X is not a finite CW-space since both sides of the
equation satisfy the colimit axiom.

(8.2) Remark. The correspondence M t---+ EM yields a functor

E : Square -+ H o(spectra)

where the right hand side is the homotopy category of spectra. To obtain this
fUllctor we use Goodwillie's equivalence (17) between linear homotopy functors and
spectra. Hence the functor E is obtainecl by the functor which carries M to MJin
where the linear homotopy functor MJin determines functorially E M by

Compare (4.3) and (4.11).
For an abelian group A let I{(A) be the Eilenberg-MacLane spectrum with

I{(A)n = K(A, 11,). Let I((A)[i] be the shifted spectrum with J{(A)[i)n = I{(A, n +
i) where i E Z. We clearly have

(8.3)

where the right hand side is the reduced singular homology of X with coefficients
in A.

(8.4) Theorem. Let M be a quadratic Z-module. Then the stable square Jlomol
ogy with coefflcients in M is given by the natural isomorphism, X E space1'

H;(X,M) = Ef:)Hn-i(X, HiM:)
i~O
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where M: is the chain complex in (7.8). Hence by (8.3) the spectrum E M associated
to M is tbe product of shifted Eilenberg-MacLäJle spectra ]((HiM:)[i] witl1 i ~ O.

Proof. We know by (4.11) that there exists a spectrum E with

MJin (X) = nOO(E A X)

Hence E is determined by MJin (sn) where we can use a large dimension n. Now in

the stable range Mj(sn) ---t MJin (sn) is an equivalence. Here MU(sn) is given by
an abelian simplicial group since M is a quadratic Z -module. An abelian siulplicial
group, however, is equivalent to a product of Eilenberg-MacLane spaces. Hence all
k-invariants of J\tIJin (sn) vanish and therefore E is a product of Eilenberg-MacLane
spectra.

q.e.d.

(8.5) Theorem. Let J\tI be a square group and let ll/Iadd = cok P be defined by
!vI. Then the spcctrum E M associated to M is obtained a.s the cofiber of a map
between spectra

Proof. For the proof we apply the Goodwillie calculus of functors which yields the
fihre sequence in (4.11) (2). Applying this fiber sequence to Mu and Mti in (7.7)
gives us the rows in the following commutative diagram of homotopy functors.

n ll/Iadd - ](
ti

1 l~
F M u

MEin
ti

11 1 * 1
F lvlU MEin

U

1
Madd

U

Here the column in the middle is obtained by the fiber sequence in (7.7). Now
(4.11) (2) and (6.9) show that the fihres Fand F coincide so that the subdiagraIn
* is a puH back. Hence the fiber K of MJi71 ---t A1Jin coincides with

]{ = nM;dd = ]((J\tladd )[-1h

Here we denote by EU the homotopy functor giyen by a spectrulll E with

EU(X) = nOO(E A X).

Now J1 in the diagram yields by (8.4) the map SqM in the theorem since a fiber
sequence of spectra is also a cofiber sequence.
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q.e.d.

{8.6} Definition. The map SqM in (8.5) is a (ITIultiple) cohomology operation which
we caU the squaring operation associated to the square group M. For i .2 1 let

Sq~tl : [«(Madd)[_l] --+ ]«(HzA1:)[i] .

be the coordinate of SqM of degree i +1. Below we show that the classical Steenrod
squares

Sqi+l : ]«(Zj2)[-1] --+ j((Zj2)[i]

yield exanlples of such squaring operations. Moreover we compute the operation
Sq'tt for any M E Square in the next section.

It is a classical result that any short exact sequence A >---t B 4t C of abelian
groups induces a long exact sequence of homology groups:

where ß is the Backstein operator. In a silnilar way one has for each short exact
sequence L >---t M -# N of square groups a long exact scquence of square-holnology
groups:

This sequence is obtained in the same way as the special case in (7.7) (2). In
addition the stabilization of (8.7) yields the long exact sequence of stable square
homology groups:

Clearly the sequences (8.7) and (8.8) are natural with respect to lnaps between
short exact sequences in Square. They are also natural in XEspace]. As a
special case we obtain for !VI >---t M -* Madd the commutative diagrarn

H S (X AtJßdd) ß S "
71+1 , ) Hn(X, !v!)

(8.9) 11 I1

H (X !vfadd )
(SqM).

EB Hn-i(X, HiN!;)n+l , )

i;::: 1

Here the bottom arrow is induced by the squaring operation SqM in (8.6). For this
recall that a map 4> : E ---+ E' between spectra induces a map 4>* : H n (X, E) ---+
Hn(X, E') between homology groups. See (2.8) and (8.3).

It is weIl known that the Steenrod square Sq] is obtained as a Bockstein operator;
that is,
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(8.10)

coincides with the Bockstein operator associated to 7l/2 l-+ 7l/4 --+ 7l/2. The
next result shows that all Steenrod squares Sqi, i ~ 1, are actually obtained by a
Bockstein operator of stahle square-homology. For this we use the square group

(8.11)

with H{n} = {n(n -1)/2}. Here {n} E 7l/k denotes the coset of n E 7l. For Znil

in (6.3) oue has a canonical quotient map q : 7l n il --+ Z~li~ given by 7l --+t 7l/4 and
7l --+t 7l/2. There is a short exact sequence in Square

(8.12)

given hy the diagrarn

(Z/2)r = (71/2 -----7) 7l/2

1 I1

1
7l/2 = (71/2

----t) 7l/2

1
o

o ) Z/2)

1
o ) Z/4)

1
----+) 7l /2)

One readily checks that for M = (Z/2)r one has HiM: = 7l/2 for i ~ O. Hence
one gets by (8.4) a Backstein operator ß as in the following theorem.

(8.13) Theoreln. Let ß be tbe Backstein operator afstable squarehomology asso
ciated ta the short exact sequence in (8.12). Tbell the fallawing diagram camnlutes:

H~+l (X, 7l /2)

11

Hn+1(X,71/2)

ß ) H~(X,(71/2)r)

11

Here Sq has the coordinates (XSqi+l). induced by tbe Steenrod squares Sqi+l far
i ~ 0 where X is t}le anti-autolTIorplJism oE the Steenrod algebra; see 27.24 {22}.

Für the prüof üf this theorem we use the mod-2 restricted lower central series
rn(G) which defines the group functor

(8.14)
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This is the restricted version of nil2 in (5.11). For a free group G we have the
following facts (1), (2) and (3).

(1)

is a Z/2 -vector space and

(2)

Here .L2 (V) C V 0 V is generated by [v, w] = v 0 w + w 0 v and v ® v for v, w E V.
L 2 (1/ ) is the degree 2 part of the free mod-2 restricted Lie algebra L(V). Using
7.6 [15] one obtains (1) and (2) above. Hence one obtains the natural short exact
sequence in the top row of the following commutative diagram. The bottoln row is
obtailled by the exact sequence in (8.12) and the quadratic tensor product.

---+) 0

Gab 071/2 ---+) 0

1111

-----+) nil2 (G)

11

G 0 (Z/2)r

o

o

(3)

---+) G ® Z ~'i~

The vertical isomorphisIllS which are natural in Gare induced by G®7l n il = nil2 (G)
in (6.4); see 8.1 [10].

Proof 0/ (8.19). If G = a(X) is the free simplicial group given by X then the exact
sequence of simplicial groups in (8.14) (3) induces the Bockstein operator in (8.13).
The connecting homomorphism

d1 : 1T'n(Cab 0 Z/2) -t 1T'n_lL2(Gab ® Z/2)

is computecl in 8.10 [15] in terms of the Steenrod operations Sqi which act froin
the right on homology since for a finite type space X we have H. (X, 7l /2) =
Hom(H*(X,Z/2),Z/2). The anti-isomorphism X of the Steenrod algebra has the
property that for y E H. (X, Z /2) one has

(XSqi)*(y) = y Sqi

Therefore the stabilization of the differential d l in 8.10 [15] yields the result. q.e.d.

As an application of (8.13) anel (8.5) we obtain the following results which deter
mine explicitly the spectra EM associated to M = Znil and M = Z~'i~ respectively.
Für this we consider the following commutative diagram in Square

(8.15)

o

o

o

7l A
) Znil Z

1 1 1
) (Z/2)A ) Z4,~ ) Z/4ml

1 1 1
) (Z/2)r ) Z4,~ ) Z/2ntl
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Here the rows are exact and the vertical arrows are quotient maps. The top row ancl
the row in the middle are the exact sequences M )---+ M ~ Madd for M = Znil ancl
M = Z~'i~ respectively. We have ZA = (0 -t Z -t 0) and (Z/2)/\ = (0 -t Z/2 -t 0).
Naturality of the Bockstein operator yields by (8.9) a relation of SqM for M = Znil
and M = Z~'i~ with ß in (8.13). Since the maps Il/\ -t (Z/2)/\ -t (Z/2)r induce
injections

H*(ZA): )---+ H*(Z/2 A
): >-+ H*(Z/2 r ):

(see (7.8)) we get the following results.

(8.16) Theorem. For tlle square group M = Il nil we bave tbe spectruln E = E M
witb

H;(X,nil2 ) = H;(X,Znil) = Hn(X,E)

Tbis spectrum E is tbe cofiber oE tbe map

SqM : ]{(Z)[-I] -t x K(Z/2)[i]
i odd

Here tbe coordinate oE degree i + 1 is q*(X Sqi+l) wllere q ; Z ~ 1l/2 is tlle quotient
map and X is tbe anti-autollJOrpbism oE tbe Steenrod algebra.

(8.17) Theorem. For tbe square group M = Z~'i~ we bavc tbe spectrum E = EM
witb

H~ (X, ni12 ) = H7~ (X, Il~'i~) = Hn(X, E).

Tllis spectrum E is tbe cofiber oE the map

SqM : ]{(Z/4)[-I] -+ x j«(Z/2)[i]
i;2: 1

Here the coordinate oE degree i + 1 is q* (X S qi+l) wbere q : Z/4 -+ Z/2 is the
quotient map and X is tbe anti-automorphism oE tbe Steenrod algebra.

§ 9 THE SQUARING OPERATION SqÄt

The squaring operation SqÄ1 associated to a square group lvI is an element in
the following group where 11 is large; see (8.6).

(9.1 )

[]«(AtJadd )[-1], j({H1M:)[I]) =
[j({Madd,n - 1), ]«(H1M:,n + 1)]

H om( Atfadd ® Z/2, H1M:)

Here we have Atfadd = cok(P) and H1M; = ker{P)/im (2 - HP) so that SqÄl is a
homolllophism

Sq'it : cok (P) 0 Z/2 -t ker (P)/illl (2 - HP)
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Vve now consider the following diagram where ( I )H is the cross effect of H in
(6.3) and where ~ is the diagonal with ~(x) = (x,x) for x E Me.

'01
cok (P) ® Z/2

Sq~f
Me q ) ) ker (P)/iIn (2 - HP)

(9.2) 61 Iq

NIe X Me ) Mee ker (P)
)H

Here q is the quotient map and q' : Me -+ cok (P) is the quotient map.

(9.3) Theorem. For a square group M there is a unique 11omomoprhism SqÄ,r such
that dia.gram (9.2) commutes and this hOm0I110rphism coincides with the squaring
operation SqÄ1 by use oE (9.1).

For exarnple for M = Znil the homomoprhism SqÄ1 is the isomorphism SqÄ1 :
7l 0 Z /2 ::: 7l /2. For the proof of (9.3) we have to recall algebraic Inodels of (n - 1)
-connected (n + 1) -types, n ~ 2, obtained in [6].

(9.4) Definition. A reduced quadratic module (w,5) is a diagram

of homolnorphisms between groups such that the following properties hold. The
groups NI, L have nilpotency degree 2 and the quotient map M -+ Mab is denoted
by x f---t {x}. Then for x, y E L, a, b E M we have

ow({a} 0 {b}) = -a-b+a+b

w({ox} o {oy}) = -x-y+x+y

w({ox} 0 {al + {al 0 {ox}) = 0

We say that (w,o) is a stable quadratic module if in addition

w({a} 0 {b} + {al 0 {b}) = 0

A morphism (w, 0) -+ (w', 5') is a commutative diagrarn in Gr

L ) L'

lI/I m) M'

such that lw = w'(m ab 0 mab). This is a weak equivalence if (l, 7n) induces isomor
phisms

ker (0) ::: ker (8'), cok (8) rv cok(0')
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Let rquad (resp. squad) he the categories of reduced (resp. stahle) quadratic
modules and let Ho rquad, Ho squad he the localization with respect to weak
equivalences. There are equivalenees of eategories for which the following diagram
commutes, n 2: 3; see [6] and [8].

(9.5)

types~
A2

---t) Horquad

Ui

types~ An ) Ho squad

Here typesl is the homotopy eatgeory of CW-spaees X for which IriX = 0 for
i < k and i > k + 1. Moreover nn-2 is the iterated loop spaee funetor and i
is the inc1usion funetor. For X E types~ and (w, J) = An(X) we have natural
isomorphisms

IrnX = Irn = eok(8), Irn+l(X) = 1fn+l = ker(8)

Moreover the k-invariant of X is an element

(1)

Here r~ is the functor Ab -t Ab which is Whitehead quadratie functor r for n = 2
and 0 7l/2 für n ~ 3. We can obtain k(X) from (w,8) = An(X) as follows. Givell
(w,8) E rquad there is a unique homomorphism k for which the following diagram
commutes

(2)

q. ) r(cok 8)

w

k ) ker 8

n

L 8 ) M

Here H is the cross effect lnap in (3.1) for the fUllctor r and q* is induced by the
quotient map M -t Mub -t eok J whieh factors through Afab . If (w, J) is stahle
then k admits a factorization

(3)
a e

k: f(cok8) -+ cok(J) ® 7l/2 -+ kerJ

Now the k-invariant k(X) with (w, J) = AnX is k for n = 2 and is k' for n ~ 3.
COlnpare [6, 8].

Recall that Square is the category of square grüups in (6.3). We now define
canonical algehraic functors
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Square
T

) rquad
L

) Horquad

(9.6) U U

Square
T/ in

) squad ) Hosquad

together with a natural transfornlation a : r -7 r 1in . Here L is the localization
functor. The functor r is given by

r(M) = (M;b 0 A1;b~ Mee ~ 1vIe)

where w( {x} lZl {y}) = (XIY)H and 0 = P. Moreover let

r1in(M) = (M: b lZl M: b~ Mee/im (2 - HP) ~ Me)

where w f, resp. 8', are induced by w, resp. 8, in r (M) above. We clcarly have the
natural map a : r(M) -7 r1in(M) which is the identity on NIe and the quotient
map on M ee . One readily checks that the functors r and r 1in are weH definedj for
this we only prove:

(9.7) Lemnla. r1in(M) is a stable quadratic module.

Proof. We have to show that for a, b E ll/Ie we have (alb)H + (bla)H E im(2 - HP).
But we know by 3.5 (4) in [10] that ~ : Me -t Mee with

~(a) = (HP - 2)Ha + (aja)H

is a homomorprusm. Hence we get

(alb)H + (bla)H = (a + bla + b)H - (ala)H - (blb)H

~(a +b) + (2 - HP)H(a +b)

- (~(a) + (2 - H P)H(a) + ~(b) + (2 - HP)H(b))

(2 - HP)(alb)H

This term needs not to be trivial in M ee as the example Znil shows. Hence r(M)
in general is not stable. q.e.d.

We now obtain functors

(9.8) S, slin : Square -t types~

which carry the square group M to S(M) = Mö(S2) anel Slin(M) = 3-type of
]vrJin(S2) respectively. Here (7.10) shows that Mö(S2) E types~. VVe have the
ohvious map

b : S(M) = Mö(S2) -t A1Jin(s2) -t slin(M)

which is natural in Al. V\Te also observe that slin(lvI) is an infinite loop space since
MJin (52) is an infinite loop space.
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(9.9) Theoreill. For the functors in (9.8), (9.6) and (9.5) there exist natural
isomorphisms such tl1at the following diagram commutes.

A2 S(M)

b·l
A2 Slin(M)

LT(lvl)

1a.

Praa/o/ (9.9). One readily checks that Sq'it in (9.2) is the k-invariant of T1in(M).
The k-invariant of T1in(M) coincides with the first non-trivial k-invariant of Jv1rn(S2)
by (9.9). This yields the proposition in (9.3).

q.e.d.

Pra%/ (9.9). We have by (7.10) that

7r2(S(M)) = 7r2M-(S2) = Z e> cok(P).= cok(P)

7f3(S(M)) = 7r31v[1I(S2) = Z 0 ZllvI. = ker(P)

Hence the isomorphisl11 A2 S(M) ~ LT(M) exists on the level of homotopy groups.
An explicit isolllorphislll is given by the result of Conduche [14]. For this let G
be the free simplicial group generated by one element in degree 1. Then we have
G ~ 0(S2) in (5.1) so that M~(S2) ::: EIG 0 MI. Here G 0 M is a Silllplicial group
with only two nontrivial homotopy groups 7r1 and 7f2. Hence the homotopy type
of G 0 M is described by its reduced 2-module in the sense of Conduche (see (2.9)
[14]). But this reduced 2-module of G 0 M coincides with T(lvI). This yields the
isomorphisIll A2 S(M) ~ LT(M). Moreover we know that a* coincides with b* on
the level of homotopy groups since

7f3 (S(M))

b·l
7r3(Slin(M))

= ker(P)

la
ker(P)/in(2 - HP)

commutes. This shows that the k-invariant of Slin(lvI) is actually the k-invariant
of T1in(M). Moreover the natural isomorphism A2 S(M) ~ LT(M) induces the
natural isomorphism A2 Slin(M) r-.J LT1in(lvI). q.e.d.

ApPENDIX A: A CRITERION FOR 2-EXCISIVE FUNCTORS

We describe a criterion for 2-excisive functors which shows that only very special
strongly co-Cartesian diagrams are needed to determine a 2-excisive functors. vVe
use this result for the proof of theorelll (6.6). It would be interesting to obtain a
similar result for n-excisive functors.

Let Y be a 2-cube consisting of spaces Yi, Y2, Y3 , Y4 and let A E space. Then
we define A V Y by
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AVYj

1 1
AVY2 ) AV1'4

This yields the 3-cube (0,1) : A V Y --+ Y. Clearly if Y is co-Cartesian then
(0,1) : AU Y --+ Y is a strongly co-Cartesian 3-cube. Recall the definition of Cube
(X, A) in the proof of (4.12).

(A.l) Theorenl. Let D : space r --+ space 1, r ~ 0, be a }lomotopy fUl1ctor.
Assume that for pairs (X, A) E pair r and all homotopy push outs Y in space r

the 3-cubes D(Cube (X, A)) and D((O, 1) : A V }~ --+ Y) are Cartesian. Then the
hOlnotopy functor D is 2-excisive.

The theorern shows that essentiaHy the 3-cubes Cube (X, A) suffice to deter
mine quadratic homotopy functors. This again shows that the quadratic excision
sequence essentially covers all excision properties of a 2-excisive functor.

Proo/ 0/ (6. 6). Let F he a quadratic coefficient functor so that F = 0 M by (6.4).
Since we can use (5.4) it is enough to prove that F lI is 2-excisive. For this we
can use theorem (A.1) above. Using (1) in the proof of (6.9) above we see that
FlI((O, 1) : A V Y --+ Y) is Cartesian if Y is co-Cartesian. Moreover using the puH
back diagram (4) in the proof of (6.9) we see that FlI(Cube(X', A')) is Cartesian
for (X',A') E pairl' For this we use (4.8). Hence the assumptions of (A.1) are
satisfied and therefore FlI is 2-excisive.

q.e.d

Proo/ 0/ (A.l). Let Y be a cofibrant co-Cartesian 2-cube and let i : Y C A V Y
be the inclusion then D(i) is Cartesian since D(O,1) in (6.8) is Cartesian and
(0,1)i = 1. For this we use the lemlnas in section 1 of [12]. Next let (Y1 , A) be
a pair in pair r' Then we obtain the 3-cuhe q : Y --+ Y / A given by the quotient
maps qi : Yi --+ Yi / A. Clearly q is strongly co-Cartesian. For this we put the cubes
Cube (Yi , A) and the cube (0,1) : A V Y --+ Y together to form a large cube with
bOllndary q : Y --+ Y /A. We apply D to this large cuhe and then we take homotopy
fibers which form the following commutative diagram where Qi is the homotopy
fiber of (qd* : D(Yi) --+ D(Yi/A).

Ql ~ Q2

'" ?

D(A V Y1h ) D(A V Y2 h

(1) 1 1
D(A V Yah ) D(AVY4h

-/ ~

Q3 ) Q4
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Here the inside square is Cartesian sinee D(O, 1) is Cartesian by the assuruption in
(A.1). Moreover, sinee D(Cube(Yi,A)) is Cartesian by the assumption in (A.1) we
see that the four boundary subdiagralus are Cartesian by (4.8). For this we use the
following diagrarn; eompare the proof of (4.9).

K(A) ](' K"

1 1 1
(2) D(A V A)z ) D(A V Ydz ) D(AVYz)z

1 1 * 1
D(A) Q1 Qz

Here the eolumns are fiber sequenees. We know that ]«(A) -r ]{' and ]«(A) -r K"
are homotopy equivalenees. Hence also ](' -r ](" is a homotopy equivalenee and
therefore the subdiagram * is Cartesian. Now all subdiagrarus of (1) being Cartesian
we see that also the boundary diagrarn of (1) is Cartesian. This eompletes by (4.8)
the proof that D(q : Y -r Y IA) is Cartesian. Now let Y U CA be the 2-cube given
by YiUA CA. Since the quotient map YiuCA -r YiIA is a homotopy equivalenee we
see that also the inclusion j : Y C Y U CA is a 3-eube for whieh D(j) is Cartesian.
Now let X and Y be 2-eubes and let f : Y -r X be a strongly Co-Cal·tesian 3
cube. We mayassurne up to equivalenee that f is cofibrant, that is all maps in
the 3-eube f are cofibrations and all subsquares are aetually push outs. Using
CW-deeornposition we ean filter f by an infinite sequence

Here all Xi C X i+1 are cofibrant co-Cartesian 3-eubes for whieh there exist Ai E
space r such that Xl = Y V Al and Xi+l = Xi U CAi, i ~ 1. We have seen above
that D(X i -r X i+1) is Car·tesian for all i ~ O. This implies by I.4b.5 in [3] that
also D(Y -r X) is Cartesian sinee we assurne that D preserves filtered eolirnits.

q.e.d.

ApPENDIX B: THE HOMOLOGY SPECTRAL SEQUENCE

Let D be a reduced homotopy funetor. We deseribe a spectral sequence wmeh
converges to the homology with coefficients in D. If D is linear this is the Atiyah
Hirzcbrueh spectral sequenee.

(B.l) Definition. Let D : space 1 -r space 1 be a reduced hOIUOtopy fUlletor anel
let X be a conneeted CW-complex. Let U = C(X) be thc reduced cone on X
which is filtered by X = UD C U 1 C ... U with un = X U c(xn-1), n 2: 1. For
(Y, B) E pair 1 let

(1) Hn(Y,B) = Hn(Y,BjD)
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be the D-homology in (4.2). Then thc filtered spacc U gives rise to the foHowing
spectral sequence. First we can form the long exact sequence

(2)

... --+ H2(U n
) -Ä H2(u n ,un

-
1)~ H1(U n

-
1)~ H1(U fl

) -Ä H1(u n ,un - 1) --+ 0

where the last object is a set with basepoint 0 and all the other objects are groups.
We can form thc l' - th derived homotopy sequences of (2) for r 2: 0, n :::; 0,

(3)
... --+ H~r)(n-2r-1) --+ Pl(r) (n-1') --+ H;r)(n-r) --+ H;r\n-r-1) --+ Pcir)(n) --+ 0

HeTe we set for q E Z, n = -m,

H~r)(n) = image(llq(um - r ) --t Hq(U m ))

FJr) (n) = kernel(Hq+l (U m+1 , um) --t Hq (U m )/H~r) (n))/ action of kernel(Hq+dum+1 ) --t H q+dUm+r+1 ))

For r = 0 the sequence (3) coincides withe (2). One can check that (3) is weH
defined and has the same properties as (2). Let

(4) E 8 ,t = p(r-l) (s)
r t-s for t E Z, s ::; 0, 7' 2: 1,

and let the differential dr : E:,t --+ E:+r,t+r-l of degree (1',1' -1) be the composition

P(r-1)() H(1'-1)() p(1'-l) ( + )(t-s) S --+ t-s S --+ t-s-l S r

where we use the operators from (3). Clearly we have for q 2: 0, S 2: 0

(5) E-8,q-8 - p(O) (-s) - H (u s+1 U S )1 - q - q+l ,

anel d1 is the composition

(6)

Assume that the pairs (um, um-I) have the property that there exist 0 ::; No ::;
NI ::; ... with Zirn {Nm} = CXJ such that

(7) for

Then we can find for each q 2: 0 abound r = 7'(q) < 00 such that

(8) E S ,q+8 = Es,q+l = = Es,q+s
r 1'+1' . . co
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We obtain a filtration of Hq(X) for q 2: 1, S ;::: 0,

(9)

o= !(o,q C !(l,q C ... C !(s,q C ... C Hq(X)

!(tJ,q = kernel (Hq(X) --+ Hq(X/ X S
))

Since D is reduced we see that Us~oI(.!l,q = Hq(X) and

(10)

A sinlilar spectral sequence is available for reduced homotopy functors which map
to spectraj compare (4.1).

(B.2) Remark. The spectral sequence E:,t above coincides with the spectral se
quence in (III.10.4) [3] by considering the relative homotopy groups of the filtered
space {D(U n )}. The conventions for indexing E:,t arises from the comparison with
the Bousfield-I<an spectral sequence [12]; C0l11pare the discussion in (111.10.2) [3].
We can alter the indexing by defining

E;, t = E;:s,t, s ;::: 0, t E Z.

Then the differential for E; t has degree (-7', T - 1) as in the spectral sequence
discussed by G.W. \iVhithead, chapter XIII page 614 [29]. Now assurne that D in
(B.1) is a linear homotopy functor. Then Hn(Y, B; D) = Hn(Y, B) is a hornology
theory on pair l in the sense of (2.2) and we get for s ;::: 0

EI = E- s,Q-.!l = H (U S +1 U S ).!l,q-s I q+l,

= Hq+1 (X U CX1\X U CX S
-

I
)

- H (EX.!! Ex s - I ) - H (X S X tJ
-

I )- q+1 , - q ,

Moreover by the exact sequence

We see that !<-tJ,q in (B.1) (9) coincides with ItJ,q-s where !s,q-s is the inlage of
Hq(X S

) --+ Hq(X) as on page 613 [29]. This shows that the spectral sequence (B.1)
yields a.s a special case the Atiyah-Hirzebruch spectral sequence in XII1.3.3 [29].

ApPENDIX C: A SPECTRAL SEQUENCE FOR SQUARE-HOMOLOGY

In this section we apply the spectral sequence of Appendix B to square hornology.
Let X be a CvV-complex with trivial O-skeleton XO = * and let M be a square group.
We consider the filtration, s ;::: 0,

0= Ko,q C !(I,q C ... C I(tJ,q C ... C Hq(X; M)

of square hornology given by
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(C.l)

where X -t xIX s is the quotient rnap. Then the spectral sequence (E;s,q-s, dr )
defined in the Appendix converges and satisfies

(C.2) E -S,q-S T..~ I T..~

co = l\.s,q 1\'.5-1 ,q

We now detennine the EI -term of this spectral sequence. Let

U S = X U Cx s
-

1 ~ XIx s
-

1

anel let AS = xs Ixs-1 . Then we have

(C.3)

where the attaching map A S -t US is the composite f : AS c XIX.5-I ~ US given
by the inclusion. Clearly AB = M( es, s) is the Moore space of the free abelian group
Cs + H s (x s ,X.5-1; Z) which is part of the cellular chain comlex C.X = (C.,d).
vVc can compllte the E1 -term

(CA) E-S,q-S - H (U S+1 US'lvf)
1 - q+l "

by applying diagram (304) to (C.3). This yields the following cornmutative diagram
in which the row and the colulnn are exact.

1
(C.5)

H q+1 (A s 1\ A.5; M ee )

1(P, - (1 ,1) • )

Hq(A s ; 111) EIl H q+1 (A s 1\ X s ; lvfee )

~P(J,l).)
a) Hq(US,M)

1
Hq(A B 1\ A s ; M ee )

1(P,-(lJ).)

Hq- 1 (A.5; M) EIl Hq(A s 1\ X s ; Mee

Using (7.10) this yields the following result on Hq+1 (UB+l, U8
; M). Let Es = image

(d : Cs+1 -t Gs ) be the group of boundaries in the cellular chain cOlllplex G.X anel
let q : G.5 -t eslEs be the quotient rnap.
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(C.6) Proposition. The EI -tenn is given by the groups (C.4) which can be
described by the following isomorpbisms and exact sequences respectively.

H (U s+I Uso M) -q+l " -

for

for

for

q<8

8 :::; q < 28 - 1

q > 28

For q = 28 - 1 and q = 28 one has tbe exact sequence

o-t es 0 HS+I (X; Mee ) ~ HZs+I (U s+I
, US

; M) -t es 0 es 0 M ec

(P,-~.) Cs 0 Zs-l M. EB Cs 0 Cs / Es 0 A1ee -t Hzs (U S +1 , US
; M) -+ 0

Here C.! = Cß for 8 > 1 and Cl = 1fI (Xl) is tbe fundamental group of the l-skeletoll
Xl for 8 = 1 and ZolvJ* = M.

A cross effect argulnent shows that the inclusion j in the exact sequence of (C.6)
is split injective. Moreover the differential d l of thc spectral sequence is of thc
form d 0 1 (with d given by e*X) for the groups in the first part of (C.6) with
q "# 28 - 1,25. It is interesting to compare (C.6) with the results in section 7.
This shows that the spectral sequence für q > 8 depends only on M and hence is
determined in this range by C*X.
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