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QUADRATIC HOMOLOGY
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ABSTRACT. We describe axioms for a ‘quadratic homology theory’ which generalize
the classical axioms of homology. As examples we consider quadratic homology
theories induced by 2-excisive homotopy functors in the sense of Goodwillie and
the homology of a space with coefficients in a square group which generalizes the
homology of a space with coeflicients in an abelian group.
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§ 0 INTRODUCTION

The development of algebraic topology was profoundly affected by the notion of
homology. Originally homology had coefficients in abelian groups and Eilenberg-
Steenrod described the axioms of such an ordinary homology theory. Somewhat
later important examples of generalized homology theories were found which led to
the notion of homology with coeflicients in a spectrum. The spectrum-homology
can also be described as a homology theory satisfying all Eilenberg-Steenrod axioms
except the dimension axiom concerning the value of the homology on spheres. In
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fact this value characterizes a homology theory in the sense that a natural trans-
formation of homology theories which is an isomorphism on spheres is also an
isomorphism on all finite CW-complexes.

In his recent work on the calculus of homotopy functors Goodwillie observed
that a spectrum is equivalent to a linear homotopy functor and spectrum-homology
of a space X can be equivalently described by the homotopy groups

(1) H,(X,L) = m, L{(X)

where L is a linear homotopy functor. We therefore call spectrum-homology also
a linear homology theory. The non-linear homology theories are then obtained by
the homotopy groups

(2) Hy(X, D) = 7 D(X)

where D 1s any homotopy functor. Hence we again generalize homology by choosing
now homotopy functors as coefficients. Clearly this is a very far reaching gener-
alization since in particular homotopy groups of a space are the homology groups
with coeflicients in the identity functor. It is an old problem to find axioms which
characterize the theory of homotopy groups in a similar way as ordinary homology
theory is characterized by the Eilenberg-Steenrod axioms. However the identity
functor is not linear but is still an analytic functor in the sense that there is a
Taylor tower, n > 1,

(3) X 5 P(X) = Poi(X) o ... 2 P(X) = PI(X) = Q(X)

approximating X. Here P; is linear, P, is quadratic and more generally P, is a
reduced and n-excisive homotopy functor; compare [19, 20]. The linear functor Py
yields the homology theory of stable homotopy groups x5(X) = Hn(X, Py).

In this paper we study as a first step outside the linear world the quadratic
homology theories H,(X,Q) obtained by a quadratic homotopy functor Q. We
introduce axioms of a quadratic homology theory such that H,(X, Q) satisfies these
axioms. As in the classical case the axioms characterize a quadratic homology
theory in the sense that a natural transformation between theories which is an
1somorphism on spheres is also an isomorphism on all finite CW-complexes. We
deduce from the quadratic homology axioms various facts like the general EHP-
sequence in § 3. For example quadratic homotopy groups

(4) 73(X) = Hao(X, P,)

defined by P, in the Taylor tower (3) satisfy all the axioms. This is the quadratic
analogue of stable homotopy groups.

Let Gr be the category of groups. Then any group functor F : Gr — Gr induces
a homotopy functor Fj which carries connected spaces to connected spaces. If F is
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linear then F(G) = G** ® A is given by an abelian group A and ordinary homology
with coeflicients in A can be described by

(5) H,(X,A) = H.(X,F).

If the group functor F is quadratic then we know by [10] that F(G) = G® M is
given by a square group M which is the quadratic analogue of an abelian group. We
prove that then Fj is a quadratic homotopy functor. Hence the square-homology

H.(X,M) = H,(X, F})

with coefficients in a square group M is a quadratic homology theory which gener-
alizes ordinary homology. Using the Taylor tower of Fy we obtain the linearization

(7) Fy = P,Fy » PFy = F{""

which gives us a linear homology theory

(8) HZ(X,M) = Ha(X, F{™)

termed stable square-homology. Here ij‘" corresponds to a spectrum Ejps so that
we get a functor from the category of square groups to the homotopy category of
spectra which carries M to Epr. We show that Eys is always the cofiber of a map
Sqar which carries an Eilenberg-Mac Lane spectrum to a product of Eilenberg-Mac
Lane spectra. We call Sqpr the squaring operation associated to M. For example
all Steenrod squares Sq%, S¢%,... can be derived from Sqas.

Let T',,G and T,G be the subgroups of a group G given by the lower central
series and the mod-2 restricted lower central series respectively. Then we obtain
the quadratic group functors

nily, nily : Gr — Gr

which carry G to the quotients G/T'3G and G/T'3G respectively. The corresponding
" square groups are Zy;; and Ziﬁ with

nily(G) = G Q Znit
nily(G) = G @ ZL2

nil
We compute the squaring operation Sqa for M = Zpy and M = Zi"-z, explicitly
in terms of Steenrod squares. This determines the spectrum associated to the
linearization of the homotopy functor (nily)y, resp. (nils)y; see (8.16), (8.17).
The author happily achnowledges helpful conversations with Teimuraz Pirashvili.
He also thanks G. Arone and T. Goodwillie for comments concerning “Calculus”.
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§ 1 CW-sPACES, CW-PAIRS AND SPECTRA

We use the following conventions: Top is the category of topological spaces and
Top” is the category of topological spaces with base point. We obtain cofibrations
in Top by the universal homotopy extension property defined via the cylinder
I x X where I = [0,1] is the unit interval. A homotopy in Top* is a pointed map
I{(X) = Y where I(X) = I x X/I x {*} is the reduced cylinder. By the inclusion
(t0,21) : X VX C I(X) we obtain the cone CX = I(X)/i1 X and the suspension
X = CX/1X. Here we use the quotient space X/Y which is defined for any pair
of spaces (X,Y") by the adjunction X/Y = X Uy {*}. More generally an adjunction
space X Uy Z is defined by a push out diagram

X—')XUYZ
g

I I

y —4— Z

If (X,Y) is a pair of spaces we call §: (X,Y) = (X Uy Z,Z) an adjunction map.

A space X is a CW-space if there is a CW-complex Y together with a homotopy
equivalence ¥ ~ X in Top. This is a finite CW-space if ¥ can be chosen to
be a CW-complex with finitely many cells. Moreover we write dim(X) < n if
dim(Y) < n. A CW-pair (X,Y) is a pair in Top of CW-spaces X and Y for which
the inclusion ¥ C X is a cofibration. This is a fintte CW-pair if X and Y are
finite CW-spaces. A CW-space X is well pointed if the inclusion {*} - X is a
cofibration.

Let space C Top™ be the full subcategory of well pointed CW-spaces and
pointed maps. Moreover let pair be the category of well pointed CW-pairs and
pointed pair maps. We have functors

space — pair — space

where i carries X to the pair (X, *) and ¢ carries (X, Y") to the quotient space X/Y.
We also use the full subcategory space , of (r — 1) -connected objects in space and
the full subcategory pair , of objects (X,Y") in pair for which X and Y are (r — 1)
-connected. We point out that the suspension yields a functor

Y : space, — space r4

raising the degree of connectedness.

A spectrum E is a sequence of maps €, : E, — En,y; in space,n € Z. A
map f : E = E' between spectra is a sequence of maps f, : E, — E, with
frt16n =€ (Zfn). Let spectra be the category of such spectra and maps.

Amap f: X = Y in Top is a weak equivalence if f induces a bijection of
homotopy groups f. : m1n X & m,Y, n > 0, for every basepoint in the domain. A
map in Top™ is a weak equivalence if it is one in Top. Clearly a weak equivalence
in space or pair is also a homotopy equivalence. A map f: E — E’ in spectra
is a weak equivalence if it induces an isomorphism f, : mE ~ mx E'. Here mpE =
colim {7, ++En} is an abelian group for all £ € Z.
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§ 2 AXIOMS OF HOMOLOGY
To fix notation we recall the following basic properties of a homology theory.
(2.1) Definition. Let r > 0. A suspension theory (H,s) is a sequence of covariant
functors, n € Z,
H, :space, - Ab

together with a sequence of natural transformations, n € Z,

s, H, = Hn+1 0 X

such that H,(*¥) = 0 and H,(fo) = Hn(f1) for homotopic maps fo ~ fi. We also
consider suspension theories which satisfy some of the following axioms.

FEzactness. For (X,Y) € pair, the sequence

Ha(Y) 25 Ho(X) 2 Ha(X/Y)
is exact where 7 : Y — X is the inclusion and ¢ : X — X/Y is the quotient map.

Suspension. For X € space, the natural map

Sn(X) : Hn(X) — Hn+1(2X)
given by the transformation s, is an isomorphism for all n € Z.

Colimit aziom. For each sequence Xy — X » ... of cofibrations in space, the
induced map

colim {H,(X;)} = Hp(colim {X;})
is an isomorphism.

A suspension theory (H,s) is termed a homology theory on space , if the exact-
ness and suspension axioms are satisfied; compare [29].

Given a supension theory (H,s) we obtain the stable theory (H®,s) associated
to (H,s). Here HS(X) is the colimit of

(2.2) Hy(X) 2 Hpt(5X) = ... = Hog(TFX) S
Clearly one obtains the canonical map

st H3(X) = HS, (2X)

which is an isomorphism. Hence (H¥,s) is a suspension theory satisfying the sus-
pension axiom. If (H,s) satisfies the exactness or colimit axiom then so does
(HS,s). Clearly for a homology theory we have (H,s) = (H®,s).

(2.8) Definition. Let r > 0. A boundary theory (H,0) is a sequénce of covariant
functors, n € Z,



H, : pair, —» Ab

together with a sequence of natural transformations 0 : H,41(X,Y) — H,(Y) with
(X,Y) € pair, and Hn(Y) = H,(Y,*), such that H,(x) = 0 and H,(fy) =
Hp(f1) for homotopic maps fo ~ f; in pair,. Moreover 8 -ezactness is satisfied,
that is

oo Ho (X, V) -5 HA (V) 25 Ha(X) 25 Ha(X,Y) -2
is exact. Here 7, and j, are induced by : Y C X and 5 : (X,%) C (X,Y). We also
consider boundary theories with the following additional property.

Ezcision. For (X,Y) € pair, and g : Y — Z ¢ space, the adjunction map g
induces an isomorphism

Gx t Ho(X,Y) = Ho(X Uy Z,Z)
foralln € Z.

A boundary theory (H,0) is termed a homology theory on pair,. if excision is
satisfied. Compare [29)].

Each boundary theory (H,0) yields a suspension theory (H,s) as follows. Let
CX be the coneon X. Then 0: Hyy1(CX,X) & H,(X) is an isomorphism. Hence
we obtain the suspension map

(2.4) S=q,a_1 :Hn(X)gH,,.*.](CX,X)—-}Hn.;.](EX)

where ¢ : (CX,X) — (Z£X,%) is the quotient map. If (H,d) is a homology the-
ory then ¢.87! is an isomorphism since excision implies that g, : H,(X,Y) —
H,(X/Y) is an isomorphism. This leads to the following well known lemma. For
this we observe that suspension theories, resp. boundary theories form categories.
Morphisms are the natural transformations compatible with s, resp. 0.

(2.5) Lemma. The category of homology theories (H, ) on pair, and the cate-
gory of homology theories (H,s) on space , are equivalent. The equivalence carries

(H,0) to (H,q*071).

These categories actually do not depend on r since the category of homology
theories (H', s’) on space , is equivalent to the category of homology theories (H, s)
on space. The equivalence carries (H',s') to (H,s) with H,(X) = H,, (Z"X).
This shows that a homology theory on space is determined by its restriction to the
category space, for arbitrary large r > 0. Such a statement will not be true for
quadratic homology theories below.

(2.6) Ezample. (A) Let A be an abelian group and let H,(X,Y’; A) be the singular
homology of the pair (X,Y) with coefficients in A. This is the classical homology
theory on pair. _

(B) Let n,(X,Y) be the relative homotopy group of the pair (X,Y). Then (r,,d)
is a boundary theory on pair, with 7,(X,Y) =0 for n < 1. Here we use (X,Y) €
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pair, in order to obtain abelian groups m,(X,Y), n € Z. The associated stable
theory (73, s) is the homology theory on space ; termed stable homotopy.

The spherical groups of a homology theory H on pair , are the groups H,,(S™), n €
Z, where S” is the r-sphere. The suspension isomorphism H,,(S7) & H,4x(S"¥)
shows that the spherical groups determine the value of H on all spheres in space,..
Moreover the following uniqueness-lemma is well known: Let ¢ : H — H' be a
natural transformation of homology theories on pair, such that ¢ is an isomor-
phism on spherical groups; that is, ¢ : H,(S") = H](S") for n € Z. Then ¢ is an
isomorphism

(2.7) $: Ho(X)Y)= H | (X)Y)

for all finite CW-pairs (X,Y) € pair, and n € Z. Compare for example (2.12) in
[28]. A similar uniqueness lemma is also true for the quadratic homology theories
below. Moreover we have the following representability theorem of E.H. Brown;
compare for example 1.3.8 in [28]. Let H be a homology theory on space ,. Then
there exists a spectrum F and a natural isomorphism

(2.8) Huo(X) 21 (EAX) = Hy(X,E), n € Z,

for all finite CW-spaces X in space,.

Next we describe the “partial suspension” and the “cross effect suspension” of a
boundary theory. To this end we have to introduce the following notation on cross
effects.

(2.9) Notation. Let Gr be the category of groups and let C be a category with zero
object * and assume that sums (coproducts) X VY exist in C. For objects X,Y € C
one has the unique zero morphism 0 : X -« > Y. Maps f: X = Z,¢9: Y = Z
determine (f,g) : X VY — Z. We have the retraction ry : X VY — X and
ra: X VY =Y with r; = (1,0) and r, = (0,1). Given a functor

F:C— Gr

we define the cross effect

(1) F(X|Y) =kernel {(Fry,Fr:) : F(XVY) = F(X) x F(Y)}

This yields the functor F(|) : C x C — Gr with induced maps denoted by (f|g)«.
The inclusion 215 : F(X|Y) C F(X VY) is natural in X and Y. Moreover we have
the natural interchange isomorphism

(2) T: F(X|Y)= F(Y|X)
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induced by T: X VY =Y VX with T = (42,1;). Let F(X VY); be the kernel of
Fry : F(X VY) = F(Y). Then we have the split short exact sequence of groups

3) 0— F(XIY) 23 F(XvY), 23 F(X) =0

If F'is a functor C —+ Ab we thus have natural isomorphisms

(4) (Fiy, Fiz,ire) : F(X)® F(Y) @ F(X|Y) = F(X VY)

which we use as identifications. The functor F': C — Gr is linear if F(x) = 0 and
F(X|Y)=0for all X,Y € C; that is

(5) (FT‘],FT‘Q)F(XVY)%F(X)XF(Y)

is an isomorphism. The functor F' : C — Gr is quadratic if F(x) = 0 and the
cross effect F(X|Y) as a bifunctor is linear in each variable X and Y. If F is linear
then the group F(X) is abelian and if F' is quadratic then the group F(X) has
nilpotency degree 2. Moreover for a quadratic functor the subgroup F(X|Y) is
central in F(X vY'). Compare [10].

Now let (H,d) be a boundary theory as in (2.3). Then one gets the following
exact sequences from which we derive the partial suspension E. Let CY be the
cone on Y so that H,(CY V X) = H,(X). This yields the short exact sequence

0— Hopt(CY VX, YVX) D H (Y VX) 22 Ha(X) =0

and hence the isomorphism

O: Ho1 (CY VX, YVX)2 H,(Y VX),.

Moreover one gets the short exact sequence

0= Hor(Y) = Hop1(SXVY) 25 Hy 1 (EXVY,Y) =0

which shows that 7, induces the isomorphism

j() M Hn.}_l(ZX Vv Y)2 & Hn+1(EX vV Y,Y)
Dividing out X yields the quotient map ¢V 1: (CXVY,XVY) = (EX VYY)

Now the partial suspension E is the composition
(2.10) E=35"(gV1).0;' i Hy(XVY)y = Hp 1 (EX VY),.

Compare [2, 3]. If Y = % this is the suspension in (2.4). Moreover the partial
suspension restricts to cross effects yielding the cross effect suspension
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(2.11) s: Hy(X|Y) = Hop 1 (EX]|Y)

such that via (2.9) (4) the partial suspension is the composite

HyXvY), —Z Hop1(TX VYY),

I I
Ho(X) @ Ho(XIY) =25 H,11(SX) @ Hopr (EX|Y)

Hence for each Y the pair (H,(—|Y),s) is a suspension theory. Using the inter-
change map T in (2.9) (2) also (H,(X|-), 3) is a suspension theory where 3 is the

composite \

(2.12) §=TsT: Hy(X|Y) =2 H,(Y|X) 2 Hoa (ZY|X) & Ho1 (X|ZY).
The sum or coproduct in the category space , is obtained by the one point union
X VY of spaces.

(2.13) Lemma. Let H be a homology theory on pair,. Then H,, : space, — Ab
is linear, that is H,(X|Y) =0 and H,(X VY) = H,(X) ® Hp(Y).

Proof. For the CW-pair (X VY,Y) € pair, we have by exactness the split short
exact sequence
0o Ho(Y)o H(X VYY) H (X VYY) 0

where Hy(i2) is injective since we have the retraction H,(ry). Moreover excision
shows that H,(X) = Ho(X VY,Y) is an isomorphism.

q.e.d.

(2.14) Lemma. Let (H,d) be a boundary theory on pair,. Then the suspension
s in (2.4) makes the following diagram commute

Hn(X VY) ((rl)-a(r2)-)

ls Jysxa
r (il)-+(i2)- r
Hn_}.}(z)t V EY) — Hn_,_l(E}\) X Hn+1(EY)

This implies that the composition
Hao(X|Y) 23 Hy(X VY) =2 Hop (EX V IY)
is always trivial, sz12 = 0.
Proof of (2.14). Let 7 : CX — £X be the quotient map. Then
CXVY)=CX)vCeY) 2N X vey Y SXVEY = 5(X VY)
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1s the quotient map wxvy. Hence we get the following diagram in which the row
is split short exact.

Hpp1(C(XVY),XVY) é Hp(XVY)
|xx v
0 —— Hpyy (BX) —— Hap1 (EX V CY,Y) — 2 HL.(Y) —— 0
l(lVfry).
Hay1(EX VEY)

Here we have the isomorphism (i7). + (i2)«

Hn+l(>:X) D Hn+1(CYa Y) E') Hn+1(2X N CY) Y)
by the exactness of the row. This yields the result.
g.e.d

§ 3 QUADRATIC HOMOLOGY

In this section we introduce new axioms of a quadratic homology. These axioms
are satisfied by various examples which we describe in the following sections. We
deal with some consequences of the axioms, in particular we obtain the long EHP-
sequence of quadratic homology and we prove a uniqueness lemma.

(8.1) Notation. Let F : C — Gr be a functor where C is a category with zero
object * and sums and let F(x) = 0. We obtain the natural homomorphism

P F(X|X) & F(x v x) 2 p(x)

for X € C. Moreover if X is a cogroup in C with structure maps 4 : X - X VX
and v : X — X satisfying the usual identities we define the function H, with

F(X) -2 F(x|X) o F(X Vv X),

by 112H(a) = F(u)(a) — F(iz2)(e) — F(i1)(a) where 1;, 12 are the inclusions of X
in X VX. Clearly H is natural with respect to maps between cogroups. We write
F{X} for the pair of functions

F{X} = (F(x) & F(x|x) 5 F(X))

It is shown in 3.6 [10] that F{X} is a square group (see (6.3) below) if F' is a
quadratic functor. Clearly H is a homomorphism for a functor ¥ : C — Ab.
If C is an additive category then a quadratic functor ' : C — Ab yields for
X € C a pair of homomorphisms F{X} = (H, P) as above with HPH = 2H and
PHP = 2P; that is F{X} is a quadratic Z -module; compare [5].

(3.2) Definition. Let » > 0 and consider a boundary theory (Q,d) on pair, with
the following properties (1) and (ii).

(i) The stable theory Q° associated to Q via the suspension (2.4) is a homology
theory.
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(ii) For each Y € space, the suspension theory of cross effects (Q(—,Y),s) in
(2.11) is a homology theory.

A quadratic homology theory (@, 0,4) is a boundary theory (Q,d) which satisfies
(i) and (ii) together with a sequence of homomorphisms, n € Z,

0:Qnt1(CAUL X, X) = Qn_1(A|A)
which are defined for all pairs (X, A) in pair, and which are natural in (X, A),
that is: A pair map f: (X, A4) — (Y, B) € pair, induces a commutative diagram
Qns1(CAUA X, X) —2 Qu_1(A]4)
Qn(CgUf)l 1(g|9).
Qni1(CBURY,Y) —>— Q._.(B|B)

where g : A — B is the restriction of f. Moreover the following property (iii) is
satisfied.

(iii} For each pair (X, A), the sequence

L Qu(A]A) 2 Qni1(CAVX, AVX) 25 Qui1(CAULX, X) =55 Qnoi(A]A) = ...

is exact. Here the inclusion i : A = X yields the map (¢,1) : AVX - X
which defines the adjunction map (¢,1) : (CAVX,AVX) = (CAU4 X, X)

which induces 7y = (7,1), in the sequence. Moreover j; in the sequence is
the composition

g8 =05 " (P,=(1li)s) : @n(Al4) = Qu(A)BQn(A|X) = Qu(AVX )2 = Qusr(CAVX, AVX).

Here P is the natural map in (3.1) and ~(1|¢). is the negative of the induced
homomorphism (11), = Qn(1}7). We call the long exact sequence (Jy,24,5)
above the quadratic ezcision sequence.

It follows from (ii) above and (2.13) that all functors

@n : space, — Ab

are quadratic. Moreover one can check that a quadratic homology theory (@, 9, 6)
for which these functors @, are linear is the same as a homology theory on pair ..
This follows from (i) and (3.5) below.

We now derive from the axioms of a quadratic homology theory some conse-
quences. First we observe that the following diagram commutes.
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(3.3) | |
Qn(AlA) 2 Quia(CAVX,AVX) — 5 Quii(CAUL X, X)

= Jyao la
do ‘ Qn(A Vv X)Z ﬂ} Qﬂ(X)
= ||
Qn(A4) ® Qn(A|X) P > Qn(X)

where do = (P, —(1|2)) and d1 = (14, P(i|1)4). Here d;d; = 0 since P is natural;

in fact,

didy = i.P — P(i[1).(1]i)s =1, P — P(i]i), = 0.

Clearly dyd; = 0 also follows from 7373 = 0 and the commutativity of the diagram.
Using (3.3) we can equivalently describe the excision exact sequence in (3.2) (iii)
by the exact sequence in the row of the commutative diagram:

(3-4) ]
=2 Qu(AlA) —2 Qu(A) B Qn(AlX) —2 Qui(CAUL X, X) —2s .
47 Lo
T Qa0

Here we set d; = 430, ' by (3.4). This is similar to the diagram for metastable
homotopy groups in 2.4 of [4]. As a consequence of (3.4) we obtain a long exact
sequence which resembles the classical EHP-sequence of James [23].

(3.5) Proposition. Let @ be a quadratic homology theory on pair ., 7 > 0. Then
one has the following long exact sequence which is natural in A € space,..
P H p
L QH(A|A) — Qn(A) —3> Qn+1(2A) — Qn—l(AIA) g Qn—l (A) — ...

Proof. We consider (3.4) in case X = CA is the cone on A. Then the homotopy
axiom shows @,(A|CA) =0 and @,(CA) = 0. Hence we obtain the isomorphism

iv: Qui1(CAUL CA) X Quy1(CAU4 CA,CA)
where YA = CAU4 CA. Thus (3.4) yields the commutative diagra.lﬁ

Qn(AlA) —2— Qu(4) —— Qnr1(ZA) s Qur(AlA)

| . I I I
On(AJA) —" 4 Qn(A) —2 4 Quii(CAULCA,CA) —2 s Qu_i(A]A)
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which defines the exact sequence in (3.5).

g.e.d.

Given a natural exact sequence as in (3.5) one obtains the associated sequence

of cross effects which is also exact. Since si12 = 0 by (2.14) this yields the following
commutative diagram with exact rows.

0 —— Qui2(TAISA) —T Qu(Al4) @ Qa(414) 175 Qu(4]4) —— 0

! l !

Quiz(BAVEA) 2y Quavaiava)y —F 5 Quava)

Here the vertical arrows are the inclusions ¢;2. This shows that ¢’ induces the
isomorphism

(3.6) 0 Qui2(SAISA) = Qa(Al4)

where ¢ = (pr1)o’ is the composition of o’ and the projection pry. Clearly o is
again natural in A and A’. We do not see that ¢ coincides up to sign with the
suspension isomorphisms § s given by (3.2) (ii) and (2.11), (2.12).

(3.7) Proposition. Let A be a cogroup in spacer/ ~, for example let A be
a suspension. Then the operator H' in (3.5) and H in (3.1) yield the following
commutative diagram

Qn+1(ZA)
H/ \ H'
Qua1(SASA) = Quor(4]4)
where o is the isomorphism in (3.6).

Proof. Let t: A = AV A’ be the comultiplication of A with A = A’. Then Tu is
the comultiplication of the suspension LA. Now the naturality of H' in (3.5) shows
that the following diagram cornmutes

Qui1(SAVEAY s Q. i (AV A/|AV 4

(E#).—(iz).—(il)-T T#-"‘(ﬁ)t‘(ﬁ)v

Qui(T4) L Qui(4l4)

Here the vertical arrows map to the cross effects; in fact the left hand side is ¢12.H
by definition of H and the right hand side is 212(1,T) by the bilinearity of the cross
effect. This implies by the definition of ¢’ above that ¢'H = (1,T)H’ and hence
ocH =H'.

q.e.d.
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For the metastable range of homotopy groups one has a diagram as in (3.7) where
o is actually the double suspension up to sign; compare A.6.8 in [7] and example
(2.6) (B) above.

The next lemma justifies our choice of axioms of a quadratic homology theory.
It is the quadratic analogue of the uniqueness lemma in (2.7) above. The spherical
groups of a quadratic homology theory @ on pair, are the groups @,(S™*) and
@n(ST|ST), n € Z, k > 0. Now the following unigueness lemma holds.

(3.8) Lemma. Let ¢: @ — Q' be a natural transformation of quadratic homology
theories on pair ,. compatible with @ and §. Moreover assume ¢ is an isomorphism
on spherical groups. Then ¢ is an isomorphism

¢:Qn(X,Y) = QL(X,Y)
for all finite CW-pairs (X,Y’) € pair, and n € Z.

Proof. Since @n( | ) is a homology theory in each variable we see that ¢ induces an
isomorphism Q,(X|Z) = @ (X|Z) for all finite X, Z. Compare (2.7). This shows
that for £ > 0 one gets the isomorphism ¢ : Qn(X) = QL (X) for all spaces X which
are finite one point unions of spheres S™**. By exactness it suffices to show that
¢ induces an isomorphism ¢x : @n(X) = QL (X) for all finite X in space,. We
proceed by induction on the dimension of X. If dim(X) = r then X is a finite one
point union of spheres S”. Now assume ¢y is an isomorphism for all finite X with
dim(X) < r +k and let dim(Y") = r + k. Then we may assume that ¥ = CAU4 X
where (X, A) is a pair with dim(X) < r + k and A is a finite one point union of
spheres S™t*~1, Hence ¢x and ¢, are isomorphisms and therefore the quadratic
excision sequence shows that also

b Qn+1(Y,X) = Q;+1(Y:X)

is an isomorphism. Hence § -exactness shows that ¢y is an isomorphism since ¢ x
1s one.

q.e.d.
A Moore space M(A,n),n > 2, is a simply connected CW-space X with homol-
ogy Hn(X,Z)= A and H;(X,Z) = 0 otherwise. If A is a free abelian group then
M(A,n) is a one point union of spheres S”, in particular M(Z,n) = S™. Each
homomorphism ¢ : A — B in Ab admits a realization ¢ : M{A,n) = M(B,n)
with H,(p) = ¢. Here @ is unique up to homotopy if A is free abelian. Now let
(@,0,6) be a quadratic homology on space, and let n > r,m 6 Z. By (3.10) we
obtain the quadratic Z -module

(3.9) Qu{S™} = (Qm(S™) 2 Qu(S™|S™) 5 Qm(S™))

which describes the canonical quadratic structure of the spherical groups above.
We now recall the following notation concerning quadratic Z -modules; compare

[5].

(8.10) Definition. Let M = (M, A M. 5 M,) be a quadratic Z -module, i.e.
a pair of homomorphisms H and P with HPH = 2H and PHP = 2P. Then
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M induces functors Ab — Ab which carry A to AQ M, A+ M and A+" M
respectively. Here A ® M is the abelian group with generators a @ m, [a,b] ® n for
a,be A,m € M,,n € M., and relations

(c+b)@m=a@m+b@®m+ [a,b] ® Hm
[a,a] @ =a® P(n)

where @ @ m is linear in m and [a,b] ® n is linear in a,b and n. Now let

0—)A1—d->Ao—q}A—)0

be a short exact sequence in Ab where Ag is free abelian. Then we obtain homo-
morphisms

AQAOM., 2 A QOMOA QA QM. 5 Ao M
with dyd; = 0 as follows:

di(a @m) = (da) @ m,
di([a,d'] @ n) = [da,d’] @ n,
di(a®@b®n) = [da,b] @n,
d(a®@a' @n)=—-a®@dd ®n+[a,dd'] @n

for a,a’ € Ay,b € Ag,m € M,,n € M,.. One can check that cok(dy) = A Q@ M.
Moreover we set

A+ M = ker (d)/im (d3)
A" M = ker (d3)

These are the derived functors of the functor Ab — Ab which carries A to A® M.
An abelian group N € Ab yields the quadratic Z -module N = (N — 0 — N)
with N, = 0. In this case A ® N is the usual tensor product and A« N = A+’ N
is the usual torsion product. Clearly A+ N = 0.

We now consider the quadratic homology of a Moore space M(A,n). There is
the natural homomorphism

(3.11) A AR Qn{S"} - Qm(M(A,n))
defined as follows. For a,b € A = 7, M(A,n),u € Qn(S"),v € @n(S™|S™) we set

Ma®u) = Qm(a)(w)
Mla,b] ® v) = P Qm(alb)(v)

Let AQm(M(A,n)) be the cokernel of .
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(3.12) Proposition. Assume that the quadratic homology (Q,8,8) satisfies the
colimit axiom. Then A above is an isomorphism in case A is a free abelian group.

Moreover for a general abelian group A € Ab there is the natural exact sequence
(n>2,melZ):

0= A¥ Qu{S™} —S0x Quurt(M(A4,7)) 25 A" Qi {S™)
25 A® Qu{S"} 2+ Qu(M(A,n)) = Qu(M(A,n)) = 0
This result generalizes 9.3 in [5]. If @ does not satisfy the colimit axiom then
proposition (3.12) is still true for finitely generated abelian groups.

Proof. If A is free abelian we see by (3.6) [5] or (6.4) below that A is an isomorphism.
Now let A € Ab and let

d:X = M(Ay,n) =Y = M(4o,n)

be a map which realizes d in (3.10). Then the Moore space M(A,n) is the mapping
cone M(A,n) = CX Uy Y. Therefore we get by (3.4) the following commutative
diagram in which the column and the row are exact.

Qm(X]X)

l-

Qm (X) ® Qm (X[Y)

a \dl

Qi (M(AR) — Qmar(M(A,n),Y) —2 o Qu(Y) —— Qum(M(A,n) o

I | I

Qm-1(X|X) Ay ®Qm{s"} — =  A®Qm{S5"}

J»

Qm-1(X) ® Qm-1(X[Y)

The map ¢, is surjective and the kernel of ¢, is the image of d;. Moreover using
the definition of dy,d; in (3.4) and (3.10) we get for d;,d; in the diagram

ker (d1)/im (dz) = A *' @ {S"}

ker (ds) = A" Qn{S"}
We now define the operators in (3.12) as follows. The inclusion ¢ is induced by dy
where cok (1) = cok (A) = im(j). The map h is the restriction of §. The map 9

in the proposition is induced by 8(6)~! and ¢ and j in the proposition are derived
from 7 and j in the row of the diagram. )

q.e.d.
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§ 4 HOMOTOPY FUNCTORS

Following Goodwillie [17, 18, 19, 20, 21] we consider for r > 0 functors D of the
form

D : space, — space or
(4.1) D : space, — spectra

We say that D is a homotopy functor if D carries weak equivalences to weak equiv-
alences and preserves filtered colimits up to homotopy. That is, for each sequence
of cofibrations Xg — X; »— ... in space, the induced map

hocolim (DX;) — D(colim X;)

is a weak equivalence. Here hocolim is the homotopy colimit. We say that D is
reduced if * — D(x) is a weak equivalence. We shall consider various examples of
such homotopy functors below.

(4.2) Definition. Let D be a homotopy functor as in (4.1). We define the D-
homology of a space X € space, by the homotopy group

H,.(X;D) =m.(D(X)).

Moreover the relative D-homology is the relative homotopy group

Hn+l(XaY;D) = 771'1+1(D(X)>D(Y))
for (X,Y) € pair . This yields the natural boundary map

8: Hoy1(X,Y;D) = Hy(Y; D).

If D maps to spectra then all such homotopy groups are well defined abelian
groups for n € Z. If D maps to space then these groups are abelian only for n > 2.
For n =1, resp. n = 0, the D-homology H,(X, D) and Hp41(X,Y; D) is a group,
resp. a pointed set. If D maps to space, we set H,(X,D) = Hp,(X,Y;D) =0 for
n < 0. If D is a reduced homotopy functor we obtain as in (2.4) the suspension

s=q,071: H.(X;D) - Hoq(E2X; D)

which defines the stable theory H3 (X; D) of stable homology groups with coefficients
in D.

(4.8) Remark. We have for a reduced homotopy functor D the linearization D"
which is the homotopy functor obtained by the homotopy colimit of

D(X) = QD(ZX) - Q*D(Z*X) — ...

We clearly have the natural isomorphism

H3(X,D) = H,(X, D).
Goodwillie [17] showed that HS(X; D) is a homology theory if D is approximately
l-excisive. This is also true if D is n-excisive for n > 1 as follows from 3.2.4 in [20].

The following lemma is an easy consequence of the definitions.
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(4.4) Lemma. Let D be a reduced homotopy functor which maps to spacey or

spectra. Then D-homology is a boundary theory which satisfies the colimit axiom
in (2.1).

Proof. The 0 -exact sequence is otained by (2.6) (B). Moreover homotopic maps
f ~ g induce f, = g, in D-homology since the projection I{X) — X of the cylinder
1s a homotopy equivalence and hence a weak equivalence.

q.e.d.
By an n-cube of spaces (or spectra) we will mean the following. Let P(n) be the
category whose objects are the subsets K of {1,2,...,n} and whose morphisms

are the inclusion maps among the subsets. An n-cube X in a category C is a
covariant functor X : P(n) = C. Goodwillie defines and uses particular n-cubes
in space or spectra, namely Cartesian and co-Cartesian n-cubes. Let “holim”
be the homotopy inverse limit and “hocolim” be the homotopy colimit as defined
in Bousfield-Kan [12]. Let P’(n), resp. P"(n}), be the full subcategory of P(n)
consisting of all K with K # ¢, resp. K # {1,...,n}, and let X’ and X" be the

restrictions of X to P'(n), resp. P”(n). There are maps

a(X) : X(¢) = lim(X) ~ holim(X) — holim(X")
b(X) : hocolim(X") — hocolim(X) =~ colim(X) = X({1,... ,n})

Now X is Cartesian, resp. co-Cartesian, if a(X), resp. b(X), is a weak equivalence.
An n-cube is strongly co-Cartesian if each of its 2-faces is co-Cartesian. A Cartesian
2-cube is also called a homotopy pull back and a co-Cartesian 2-cube is a homotopy
push out. A basic notion in [17, 18] is the following definition.

(4.5) Definstion. Let D be a homotopy functor as in (4.1). Then D is termed n-
ezcisive if D(X) is Cartesian for every strongly co-Cartesian (n 4+ 1) -cube X in
space .. We say that D is linear if D is reduced and 1-excisive and we say that D
is quadratic if D is reduced and 2-excisive.

Goodwillie [17] proved the following result:

(4.6) Theorem. Let D be a homotopy functor as in (4.1) which maps to space
or spectra and let D be linear. Then D-homology is a homology theory.

We obtain the corresponding result for the quadratic case as follows.

(4.7) Theorem. Let D be a homotopy functor as in (4.1) which maps to space;
or spectra and let D be quadratic. Then D-homology is a quadratic homology
theory on pair , in the sense of (3.2).

Here we use space; since we want all D-homology groups to be abelian.

Proof of (4.7). We obtain (3.2) (i) by (4.3) and (3.2) (ii) by (4.9) below; see also
(4.11). Moreover (3.2) (iii) is proved in (4.12) below.

q.e.d.

We need the following lemma; compare 1.18 [18]. Let X,Y be n-cubes in space

and let f: X — Y be a map between n-cubes which may be considered to be a

(n + 1) -cube. Let hofib(f) be the n-cube obtained by taking the homotopy fibers
of f(K): X(K) = Y(K), K € P(n).
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(4.8) Lemma. Assume Y (¢) is a connected space. Then f is a Cartesian (n + 1)
-cube if and only if hofib(f) is a Cartesian n-cube.

Below we shall also consider quadratic homotopy functors D which map to
space; and not necessarily to space as assumed in (4.7). For such homotopy
functors the following two lemmas hold.

(4.9) Lemma. Let D be a quadratic homotopy functor as in (4.1) which maps to
space; or spectra. Then D-homology defines for n € Z a quadratic functor

H,(-; D) : space, — Gr

which carries X to H,(X,D). Moreover the suspension theory of cross effects
H,.(X|Y; D) defined as in (2.11) is a homology theory.

The lemma is a consequence of Goodwillie’s results. In fact, let D(X VY'); be
the homotopy fiber of D(r2) : D(X VY) = D(Y) and let D(X|Y') be the homotopy
fiber of D(r1) : D(X VY)2 = D(X). Then one readily checks that one has

(4.10) H,(X|Y,D) = m, D(X|Y)

for any reduced homotopy functor D. If D maps to space; then D(X VYY), is
always a connected space. We now repeat an argument of Goodwillie which proves
(4.9).

Proof of (4.9). We first show that the functor Dx with Dx(Y) = D(X VYY) is
l-excisive. In fact, let ¥ be a co-Cartesian 2-cube. Then ro : X VY — Y is
a strongly co-Cartesian 3-cube; compare (A.1). Hence D(r;) = D(X VY = Y)
is a Cartesian 3-cube since D is 2-excisive. Therefore (4.8) shows that Dx(Y)
is Cartesian and hence Dy is l-excisive. Now D(X|Y') is the homotopy fiber of
Dx(Y) = Dx(x). Therefore the functor ¥ —— D(X|Y) is linear since Dy is
1-excisive. This completes the proof of (4.9) by using (4.6).

q.e.d.

(4.11) Remark. Let D be a quadratic homotopy functor as in (4.1) which maps to
space ;. Goodwillie showed that there exists a spectrum E and a natural isomor-
phism

(1) Huo(X|Y;D) = ma(EAX AY)

which is compatible with the-suspension s of X and the suspension 3 of V; see (2.11),
(2.12). Moreover the isomorphism is compatible with the interchange map on both
sides. Here the interchange map T on 7, (E A X AY) is introduced by a £, -action
t on E and by the interchange Ty : XAY & Y AX, that is T = m,(¢t ATxy). Let
(E A X A X)r be the homotopy orbit spectrum given by T. Then the Goodwillie
tower of the quadratic functor D yields a natural fibration sequence

(2) Q%(EAX AX)r = D(X) = DU (X).

Here the linearization satisfies D'**(X) = Q*®°(E’' A X) for an appropriate spectrum
E'.
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(4.12) Lemma. Let D be a quadratic homotopy functor as in (4.1) which maps
to space, or spectra. Then for Q,(X,Y) = Hn,(X,Y; D) there exists a quadratic
excision sequence as in (3.2) (iii} which is natural and exact.

We point out that in the lemma Q,(X,Y) = H;(X,Y; D) is only a pointed set
if D maps to space.

Proof of (4.12). Let (X,A) be an object in pair, and let f : A - X be the
inclusion. Then (X, A) yields a 3-cube in space, termed Cube (X, A) which is
obtained as the following map F' between 2-cubes

AV & ava X 1 4
(1) (| lu,l) —r, lq l

Here F is defined by (0,1) : AVX = X, (0,1): AVA 2 A, ¢: X - X/A and
0: A — *. One readily checks that F' = Cube (X, A) is well defined. Each square
in Cube (X, A) is a homotopy push out so that Cube (X, A) is actually strongly
co-Cartesian. Since D is quadratic this implies that D(Cube (X, A)) is Cartesian

and therefore by (4.8) the following diagram of homotopy fibers is a homotopy pull
back.

DAV Ay D% plavx),

(2) (1.1).1 l(f,l)-
D4y —Lo  P)

Here P(g.) is the homotopy fiber of g. : D(X) — D(X/A). Let K(A) be the
homotopy fiber of (1,1), : D(A V A); = D(A). Then we get the fiber sequence

(3) KA L2 prav x), L2y peg,)

since (2) 1s a homotopy pull back. This fiber sequence of spaces or spectra induces
a long exact sequence of homotopy groups. The definition of I{(A) yields forn € Z
the following commutative diagram of short exact sequences of groups.

0 —— muKk(4d) ——  mD(AVA), -

0 — kernel(1,P) —— 7, D(A) ® maD(Al4) 220 7. D(4) — 0

#aD(A) — 0

Here we use the isomorphism in (4.10) and (2.4) (4) and we point out that for
D : space, — space; the fiber D(A V X); is connected and that m; (D(A|A)) is
central and split in 7y D(A V X);. Now an isomorphism of abelian groups
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(4) O : 1, D(A|A) = kernel(1, P) = m K(A)

is obtained by mapping y to (Py, —y).

The boundary operator 0 of the long exact sequence of homotopy groups asso-
ciated to (3) yields the natural transformation

(3) 6:Hnp1(CAUAX,X;D) = muP(qs) ~2 mno1 K(A) = Hu_1(A|A; D)
This completes the proof of the quadratic excision axiom. q.e.d.

We can use (4.12) for the proof of the following result.
(4.13) Proposition. Let D : space; — space be a quadratic homotopy functor.
Then we obtain by (3.1) and (4.9) the square group
H,{S"; D} = (H,(S%; D) X H,(s"|S"; D) £ H( (S, D))

and using the tensor product in (6.3) below there is a natural isomorphism

H\(Y,D) = m(Y)® Hi{S"; D}
for 2-dimensional CW-complexes Y.

Proof. We may assume that ¥ = CAU4 X where A and X have the homotopy
type of one point union of 1-spheres. We now apply (4.12) and 9 -exactness. This
gives us the exact sequence of groups, Q,(X) = H,(X, D),

G{AVX) = Qi1(X) > Qi(Y)— 0.

Since D preserves filtered colimits up to homotopy we get by [10] with M =
H{S';D}:

(X)=mX)8M
Qi1(AV X)y =Q1(A) & G (AlX)
=m(A) @ M m(4)* @ (X)* QM.

and therefore the result follows from (8.4) [10]. For this observe that m;(A) 4

71(X) & 7 (Y) has the property that ¢ is surjective and the normal closure of
image of d is the kernel of ¢. q-e.d.

(4.14) Ezample. It follows from Goodwillie’s Calculus [19, 20] that there is a se-
quence of functors P, from pointed spaces to pointed spaces and natural transfor-
mations
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X

Py(X) = Q(X) = Q2=(X)

Here P, are homotopy functors satsifying n-th order excision and the maps X —
P,(X) are (n 4+ 1)k + 1 connected, where k is the connectivity of X. The functors
P,, are uniquely determined by these universal properties. According to Goodwillie
the tower above is termed the Taylor tower of the identity. Here Py is a linear
homotopy functor and the homology

Hu(X, P1) = m(X)

coincides with stable homotopy groups. Therefore the quadratic homotopy functor
P, yields a canonical quadratic homology which we call quadratic homotopy groups:

H.(X,P) = n%(X)

This is the quadratic analogue of stable homotopy groups. We know by (4.7)
that quadratic homotopy groups 79 form a quadratic homology theory on space
satisfying all properties in section 3. The cross effect of #9(X) is given by a natural
isomorphism

rQ(X[Y) = 75, (X AY)

where X AY = X xY/X VY, compare [19], [24]. Arone-Mahowald [1] mentioned
that P,(XX') also can be constructed by the fiber of the stable James-Hopf map ~,
in [13]; that is

Py(X) = Q(X) 5 Q(X A X)r
is a natural fiber sequence. Here (X A X)7 is the homotopy orbit space of the Z /2
-action on X A X given by the interchange map T'x x. In the metastable range we
have considered examples of the quadratic Z -modules 11',?_1_ 15"} in table 2 in 9.9

[5]. Such quadratic Z -modules seem to be the appropriate quadratic analogue of
stable homotopy groups of spheres.

§ 5 HOMOTOPY FUNCTORS INDUCED BY
ENDOFUNCTORS OF THE CATEGORY OF GROUPS

Let Gr be the category of groups and let sGr be the category of simplicial
groups. A functor F : Gr — Gr induces the functor

22



F:sGr — sGr

which carries the simplicial group X to the simplicial group FoX. We now consider
the following composition of functors Fy = fFa:

(5.1) space; —s sGr £ sar 2 space

Here we obtain o as follows. For a pointed space X let S(X) be the reduced
singular set consisting of all singular simplexes ¢ : A™ = X with o(v) = * for all
vertices v of the simplex A”. Then the functor a carries X to the Kan-loop group
a(X) = GS(X) of S(X); see for example [15]. Moreover for a simplical group
G let |G| be the realization and let B(G) = B|G| be the classifying space of the
topological group |G|. Then « and 8 induce equivalences of homotopy categories

space 1/ ~ o Ho(sGr)
B

where f is the inverse of «. Here Ho(sGr) is the localization of sGr with respect
to weak equivalences.

Let gr be the full subcategory of Gr consisting of free groups. Since a(X) above
is actually a free simplicial group we see that Fy depends only on the restriction
Fy : gr — Gr of F. On the other hand each functor Fp : gr — Gr determines
a unique extension Fj : Gr — Gr with the property that F} preserves cokernels.
Therefore we may assume that F' in (5.1) preserves cokernels.

Moreover it is convenient to assume that the behaviour of Fy on infinite CW-
complexes is determined by its behaviour on finite complexes. Therefore we assume
that Fy preserves filtered colimits up to homotopy. One readily checks that this is
the case if and only if F' preserves filtered colimits. These remarks lead to the

(5.8) Definition. A group functor is an endofunctor F' : Gr — Gr of the category of
groups which preserves cokernels and filtered colimits. Hence such a group functor
is determined by its restriction to the full subcategory of finitely generated free
groups.

(5.4) Lemma. A group functor F': Gr — Gr induces a functor Fy : space; —
space ; which is a reduced homotopy functor.

We point out that the lemma does not imply that the functor F in (5.1) carries
weak equivalences in sGr to weak equivalences in sGr; this in general does not

hold.

Proof of (5.4). Clearly * — Fy(*) is a homotopy equivalence so that Fy is reduced.
We have to show that Fy carries homotopy equivalences to weak equivalences .
Let H : fy ~ fi; be a homotopy in space;. Then there exists a homotopy H' :
afo ~ af; since aX) is a free simplicial group. The functor F carries H' to a
homotopy Fafy =~ Faf; in the category of simplicial sets, see (1.10) and (4.2) in
[15]. This implies that To(Fafo) = m7a(Fafi) and hence m,(Fyfo) = mn(Fuf1) for
n € Z. From this one readily derives that Fy carries homotopy equivalences to weak
equivalences. q.e.d.
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(5.5) Definition. Let F : Gr — Gr be a group functor and let X € space;. We
define the F-homology of X,

Hy(X;F) = Ho(X; Fy) = mo(FyX),-

by the Fy -homology of X in (4.2), n € Z. Similarly we obtain the relative F-
homology H,(X,Y;F) of a pair (X,Y) € pair,. Clearly F-homology has the
properties of D-homology described in (4.2) and (4.4). In particular H (X; F) is
only a group; see (5.11). Moreover we obtain the stable F-homology

H3(X,F) = H,(X,F{'™)

Compare (4.3). Let F,G : Gr — Gr be group functors. Then a natural transfor-
mation ¢ : F — G induces natural transformations

ty : Fﬂ(X) — Gﬁ(X) and
t.: Ho(X,Y; F) - Hy(X,Y;G)

where t. is the coefficient homomorphism induced by ty. We obtain ¢y as follows.
Let £ : F — G be the transformation induced by F. Then we set ty = Si.x.
Clearly the coefficient homomorphism ¢, is compatible with the boundary map 0
of F-homology.

(5.6) Lemma. Let(X,Y) € pair, be anr-connected pair. Then H,(X,Y; F) =0
for n < r. This implies that

H.(X;F) = H (X" F)

depends only on the (n + 1) -skeleton of X. Moreover if X is r-connected then so
is Fy(X).

Proof. We may assume that X is a reduced CW-complex with subcomplex ¥ and
that X — Y has only cells in dimension > r. By a result of Kan [25] we obtain a
homotopy equivalence

v:(Gx,Gy) ~ (aX,aY)

of pairs of free simplicial groups. Here G x as a free simplicial group has generators
in degree t which are exactly the (¢ + 1) -cells of X, ¢t > 0. Moreover Gy is the
subobject generated by the cells of Y. Hence (Gx)n = (Gy)n for n < r and
therefore also (F Gx)n = (F Gy)y for n < r. Since F carries ¢ above to a weak
equivalence we see that H,(X,Y;F)=0forn <.

q.e.d.
Let I be the identity functor of the category Gr. Then one has the canonical
natural isomorphism

(5.7) (X, Y) = Hy(X,Y; 1)
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which we use as an identification. For a group G let I'x(G) C G be the subgroup of
k-fold commutators. Then G/T2G = ab(G) = G?® is the abelianization of G. For
k > 1 we obtain the nilization functors

(5.8) nili : Gr = Gr

which carry G to the quotient nili(G) = G/Tx+1G. Hence nil; = ab is the abelian-
ization functor. All functors nily, k > 1, are group functors in the sense of (5.3).
By the result of Dold-Kan it is well known that for (X,Y") € pair; one has the
natural isomorphism

(5.9) Ho(X,Y;ab) = Hy(X,Y)

where the right hand side is the singular homology. Moreover the natural transfor-
mation I — ab given by the quotient map G — ab(G) induces the classical Hurewicz
homomoprhism

(X, Y) = H (X, Y1) » Ho(X,Y;ab) = Ho(X,Y)

Similarly one obtains by the natural quotient map I — nili{G), the nily -Hurewicz
homomorphism

(X, Y) = H (X, Y1) > Ho(X, Y nily)
The following generalization of the classical Hurewicz theorem is due to Curtis [15].

(5.10) Curtis theorem. Letr > 2 and let X be an (r — 1) -conneted space. Then
the nily -Hurewicz homomorphism

(X)) o Hn(X;nilk)

is an isomorphism for n < r+{log,(k+1)} and is surjective for n = r+{log,(k+1)}.
Here {a} denotest the least integer > a.

The Hurewicz theorem is the case k = 1 of this result since {log,(2)} = {1} = 1.

For k = 2 we have {log,(3)} = 2 since 2 > log,(3) > 1. Hence the nil; -Hurewicz
homomorphism yields for an (r — 1) -connected space X, r > 2,

(X)) = H (X, nily)
Trg1(X) = Hrp1 (X, nil)
(511) MTyr42 (X) —» H,«+2(X, Tl.zlg)

where —» denotes a surjection. Clearly the functor nil; = ab is linear and the
functor nily is quadratic in the sense of (2.9). In the next section we consider all
quadratic group functors Gr — Gr. It would be interesting to understand the
stable theory H?(X,nil;), k > 1, which is a homology theory approximating for
k — oo stable homotopy 72 (X). We shall determine HZ (X, F) for any quadratic
group functor in (8.5). This in particular yields an explicit spectrum E for which
HZ(X,nily) = H,(X, E); compare (8.16).
The next result corresponds to (4.13) in case F' is a quadratic group functor.
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(5.12) Lemma. Let F : Gr — Gr be a group functor. Then we have for X €
space; the natural isomorphism

H(X,F) = F(m(X)).

Moreover if S is a one point union of 1-spheres we have
H.(S,F)=0 for n>2.

Proof. The group G = 71(S) is a free group for which the constant simplicial group
G with G,, = G for n > 0 is a free simplicial group which is homotopy equivalent
to a(S). Hence one has a weak equivalence F(G) — Fa(S) where F(G) is again
a constant simplicial group. This shows H,(S5,F) = 1,1 F(G) =0 for n > 2 and

Hy(S,F)=mF(G) = F(G). Now let H = aX with moH = mX. Then the degree
1 part of the simplicial group H
H, 3 Hy —» mH

is a coequalizer. Since F preserves cokernels also

FH} :{FHU —}FTI'QH
is a coequalizer and therefore mo F'H = FmoH. This shows H{(X, F) = F(m X).

q.e.d.
If F' = ab is the abelianization functor we have by (5.9) and (5.11)

H, (X) = Hi(X,ab) = ab(m (X))

This is a part of the classical Hurewicz theorem.

§ 6 SQUARE-HOMOLOGY

We show that the homology theories obtained by linear group functors Gr — Gr
are exactly the classical “ordinary homology theories” of Eilenberg-Mac Lane. This
motivates the study of homology defined by quadratic group functors Gr — Gr.
There is the following classification of linear functors in [10].

(6.1) Lemma. The category of linear group functors Gr — Gr is equivalent to
the category Ab of abelian groups. More precisely for each linear group functor F
there is an abelian group A and an isomorphism

F(G) = ab(G) ® A

which is natural in G € Gr. The equivalence carries F' to A. In particular F' admits
a factorization

F:Gr =% Ab 24 Ab c Gr.

As a consequence of this result and the Dold-Kan theorem [16] we get:
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(6.2) Proposition. Let F be a linear group functor corresponding to A € Ab as

in (6.1). Then one has for (X,Y) € pair; the natural isomorphism, n € Z,
Ho(X,Y;F) = Hu(X,Y: A)

where the right hand side is the singular homology with coefficients in A.

This implies that the homology theories of linear group functors are exactly the
ordinary homology theories in the sense of Eilenberg-Steenrod which satisfy the
classical ”dimension axiom”. As a next step we consider quadratic group functors.
For this recall from [10] the following notation on square groups.

(6.8) Definition. A square group

M= M, 5 M, D M)

is given by a group M, and an abelian group M... Both groups are written addi-
tively. Moreover P is a homomorphism and H is a quadratic function, that is the
cross effect

(alb)y = H(a + b) — H(b) — H(a)
is linear in a,b € M,. In addition the following properties are satisfied (z,y € M. ).

(1) (Pzlb)y =0 and (a|Py)p =0
(2) Plab)y =a+b—a-1>
(3) PHP(z) = P(z) + P(z)

By (1) and (2) P maps to the center of M, and by (2) the cokernel of P is abelian.
Hence M, is a group of nilpotency degree 2. Let Square be the category of square
groups. As an example we have the square group

Znii=(Z 57 -2 7)

with H(r) = ; and P = 0; many other examples are discussed in [9, 10]. A

quadratic Z -module M is a square group for which H is linear and HPH = 2H;
see (3.1).

Let G be a group and let M be a square group. Similarly as in (3.10) we define
the group G @ M by the generators g ® ¢ and [g,h| ® z with g,h € G, a € M, and
z € M,, subject to the relations

(9+h)@a=g®a+h@a+g,h]®H(a)
9,91 @z =g ® P(z)

where g ® a is linear in @ and where [g, h] ® z is central and linear in each variable
g,h and z. There are obvious induced maps for this tensor product so that one
gets a bifunctor
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® : Gr x Square — Gr

One has the natural isomorphism

?’LZlg(G) =G QRZni

In [5, 10] we obtain the following classification of quadratic group functors which
is the quadratic analog of (6.1). Let Nil be the category of groups of nilpotency
degree 2.

(6.4) Proposition. The category of quadratic group functors Gr = Gr is equiv-
alent to the category Square of square groups. More precisely for each quadratic
group functor F one has the square group M = F{Z} in (3.1) and isomorphisms

F(G) =GO M =nil(G)®M

which are natural in G € Gr. The equivalence carries F' to M and F = nily corre-
sponds to M = Z,;. In particular quadratic group functors admit a factorization

Gr 3 Nil 24 Nil ¢ Gr

Moreover the quadratic group functors which admit a factorization

Gr % Ab — Ab C Gr
correspond exactly to quadratic Z-modules M.

Using this result we identify square groups M and quadratic group functors
Gr — Gr; we write M : Gr — Gr for the functor which carries G to GQ M. As a
quadratic analog of (6.2) we define for a square group M and (X,Y) € pair; the
square-homology with coeffictents in M, n € Z,

(6.5) Ho(X,Y; M) = Hy(X,Y; My) = mo(My X, MyY).

Here My is the homotopy functor (5.1) induced by M. The groups H,(X; M)
and Hp41(X,Y; M) are abelian for n > 2 and of nilpotency degree 2 for n = 1.
Moreover H,(X,Y; M) is a pointed set. For n < 0 all groups (6.5) are trivial.

(6.6) Theorem. Let F' : Gr — Gr be a quadratic group functor. Then Fy in
(5.1) is a quadratic homotopy functor.

We prove this result in the appendix A. Since for a simply connected space X
also FyX is simply connected we obtain by (6.6), (6.4), (4.7) the corollary:

(6.7) Corollary. Square-homology H,.(X,Y; M) with coefficients in a square group
M is a quadratic homology theory on pair in the sense of (3.2).

Using (4.3) we derive from (6.6) the next corollary which yields the homology
theory or spectrum associated to a square group.
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(6.8) Corollary. Stable square-homology HZ(X,Y; M) with coefficients in a square
group M is a homology theory on pair;.

In (6.7) we use the category space ; in order to obtain abelian groups H,(X,Y; M).
The next result improves (6.7) for the category space ;.

(6.9) Theorem. Let M be a square group. Then square-homology with coeffi-
cients in M defines a quadratic functor

Ab for n>2

Hn(—; M) : space; = {Nil for n=1

with cross effect

Ho(X|Y; M) = Hoya (X AY; Mee)

for n € Z. Here the right hand side is the singular homology of the smash product
X AY with coefficients in the abelian group M,.. The isomorphism is compatible
up to sign with the suspension s and § and the interchange map on both sides.
Moreover for (X, A) € pair one has the natural exact sequence of groups:

Hy (A MY® Ho(AA X M)
l

S Hu(AAA; Mee) 25 Ho(CAV X, AV X, M) —2— Ha(CAUL X, X; M) = Huo 1 (AN A, Mee)

The operators 7; and 7y are defined as in (3.2) (iii). For n £ 1 the sequence consists
of trivial groups. Asin (3.5) we derive from the quadratic excision sequence in (6.9)
the following long exact sequence.

(6.10) Corollary. Let M be a square group and A € space ;. Then one has the
natural long exact sequence of groups, n € Z,

Ly Ho(A; M) =5 Hoat(S4; M) 255 Ha(AN A Mae) 25 Hoor (A4 M) —

Proof of (6.9). In the following proof we do not use (6.6). Let F : Gr — Gr
be given by F(G) = G @ M where M is the square group. By [10] we have for
X,Y € Gr the binatural isomorphism

(1) F(X|Y) =ab(X) @ ab(Y) @ M.,

We now consider the following commutative cubical diagram in Gr which is deter-
mined by the inclusion

(2) f:A-AVC =X

where X is the sum of A and C in Gr. The pair (X, A) yields the three cube
G = Cube(X, A) as in (4.12):
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AVX & 4va X L 4

(f,l)l 1(1,1) — |
X

Here the map G between 2-cubes is given by (0,1) : AVX — X, (0,1): AVA — A,
g=(0,1):AvC =X - X/A=C and 0: A = *. One readily checks that Cube

(X, A) is well defined. We now apply F' to Cube (X, A) and we obtain the following
square consisting of the kernels of all F(g) where g is one of the arrows in G.

—~
(%]
—r

F(AV 4); L% pav x),

(4) (1,1).l 1(1,1).
F(A) ———— kernel(Fgq)

Using the assumption that X = AV C we see by (1) that (1V f). in (4) induces an
isomorphism of the kernels of the vertical arrows in (4). Hence (4) is a pull back
diagram in Gr. Now let

(5) A X

be a cofibration of simplicial groups. Then we know for all n that we can choose
free groups C}, such that

(6) Xn = A,V Ch.

Hence f in (4) is of the form (2) for each n. This implies by the naturality of (3)
and (4) that also (4) with f as in (5) is a pull back diagram in the category of
simplicial groups. This yields the short exact sequence of simplicial groups

(7) 0= K(4) 8" Plav X))y L2 kernel(Fq) — 0,
(8) K(A) = kernel{(1,1), : F(AV A), —» F(A4)}.

Using Fy in (5.1) we see that H,(X'; M) = ma—1(FX) where X = X' is the
simplicial group associated to X' € space .. Hence we get by (1) the cross effect
formula

(9) Ho(X'|Y"; M) = mny (F(X]Y))
= ‘lTn_l(ab(X) & ab(Y) & A{[ee)
= Hn+1(X' A Y', Meg)
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Here the last isomorphism is given by the Eilenberg-Zilber theorem. This shows that

the cross effect formula in (6.9) is satisfied. It only remains to check the quadratic
excision sequence. Now a pair (X', A’) in pair,, corresponds to a cofibration 4 —

X in the category of simplicial groups for which we have the short exact sequence

(7). This sequence induces a long exact sequence of homotopy groups which is
isomorphic to the quadratic excision sequence for (X', A’). The boundary J for (7)
determines the natural operator

(10)

§: Hop1(CA'UX'; M) = mp_ikernel(Fq) —2 mu_oK(A) 2 muos F(A|A) = H,_i(A'|A"; M)

Here the definition of K (A4) in (8) yields the split short exact sequence

(1,1)s

0 —— mK(A) —— mn F(AV A), mpF(A) —— 0

| I |
0 — kernel(l, P) —— mn(FA) @ maF(Al4) 22 7, P(4) —— 0

where we use the isomorphism in (2.9) (4). Now the isomorphism © in (10)

(11) O : m,(F(A|A)) = kernel(1, P) = n, {(A)

is obtained by mapping y to (Py,—y). This corresponds to the definition of 73 in
(3.2) (iii). q.e.d.

The first non vanishing homology with coefficients in a square group is described
by the following result.

(6.11) Proposition. Let M be a square group and let M°* = cok(P) € Ab be
the cokernel of P : M., — M,. If X is an (r — 1) -connected space one has

m(X)®@M for r=1

H.(X,M) =
( ) {w,{X)@M“dd for 7>1

Proof. For r = 1 this is a consequence of (5.11) or {4.13). Now let » > 2. The
EHP-sequence shows that for a one point union S of 1-spheres the sequence

ab(G) @ ab(G) ® Mo, —+ G @ M — Hy(SS; M) — 0
is exact where G = m(S). This implies
Hy(ES; M) = ab(G) @ M*%
Moreover the EHP-sequence shows that H2(LS; M) = H,(E""15; M) for n > 2.

Now we have
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Ho(X: M) = H (X4 M),

Here X" is the mapping cone of a maps f : S’ = §” where S’ and S are one

point unions of r-spheres. Now the 0 -exactness and the quadratic excision shows
H (X M) = m.(X) @ Mede,

q.e.d.

§ 7 SQUARE HOMOLOGY WITH COEFFICIENTS IN A QUADRATIC Z-MODULE

Let sAb be the category of simplicial abelian groups and let Chain be the
category of chain complexes C' of abelian groups with C; = 0 for ¢ < 0. It is a
result of Dold and Kan that there are isomorphisms of categories (see [9])

N
(7.1) sAb 2 Chain
"

where K is the inverse of the normalization N. Here N(A) is also termed the Moore
chain complex of A. Kan [26] 15.1 showed that for a reduced simplicial set X and
its Kan loop group G(X) one has the isomorphism of chain complexes

(7.2) N(A(X)) = s G

Here A(X) = abG(X) is the abelianization of G(X) and C,X is the reduced
(normalized) chain complex of the simplicial set X. Recall that the suspension s¥C
with k € Z is (s*C)n, = Cn—y with the differential d(s*z) = (~1)*s*(dz). We
define for X € space, the singular chain complez

(7.3) C.X = C.(5§X)

where SX is the reduced singular set in (5.1). Given a quadratic Z -module M we
obtain the induced chain functor My which 1s the composite

My : Chain £, sAb &% sAb Y, Chain
The next result is a consequence of (7.1), (7.2) and (6.4).

(7.4) Proposition. Let M be a quadratic Z -module and X € space,. Then
the square homology H.(X, M) is determined by C,X. More precisely there is a
natural isomorphism, n € Z,

Ho(X, M) = Hooy (My(s7C. X))
Proof. Using the definitions we get
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Hn(X, M) = mn (M X)

= m-1((GSX) ® M)
n-1((GSX)* ® M)
a—1((KN(GSX)™) @ M)
=M1 (K s7'C.X) @ M)
= H,_N((K s7'C,X) @ M)
= H,_ My(s7'C.X)

—
*
S
I

e
s

In (*) we use the fact that for a group G we have GQ M = G** @ M if M is a
quadratic Z-module; compare (6.4).

q.e.d.

(7.5) Remark. The homotopy type of the chain complex C.X is determined by the
homology H.(X,Z). This shows by (7.4) that the abelian groups H,(X, M) are
determined by H,(X,Z) and M provided M is a quadratic Z -module. This is not
true if M is a square group. For example we obtain by (5.11)

0= Ha(CPz,Znu) :/—‘ H3(S2 \% 54,Zm'1) =7Z

with H,(CP;,Z) = H,(S* Vv §%,Z). Here CP; is the complex projective plane and
52 v 5% is the one point union of spheres.

(7.6) Remark. The universal coefficient formula in [11] can be used to compute
H,(X,M) if M is a quadratic Z -module. For example if M., is torsion free one
has the natural short exact sequence

0~ (He @ M)y = Ho(X, M) = (Hy ¥ M)y—p =0

where H, = s71H.(X,Z) is the desuspended reduced homology of X. Here we use
the graded tensor and torsion products defined in [11].

Now let M be a square group. Then there is the canonical short exact sequence

(7.7) 0 M- ML M4 50

in the category Square where M4 = cok (P) is an abelian group and where M
is a quadratic Z-module. More precisely we obtain the commutative diagram

M = (im(P) " M, im (P))

| N I n

M = (Me "L+ Mee L} Me)

L ! Lt

M4 =(cok (P) —— 0 —— cok(P))
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where ¢ is the quotient map. The definition of a square group shows readily that
the restriction of H in M to M, = ém(P) is a homomorphism and that M is
a quadratic Z -module. If G is a free group then (7.7) induces the short exact
sequence of groups

0 — GOM — GOM — 5 G M ___,
(1) I i

AQM A® Moadd

where A = ab(G). If G is a free simplicial group this sequence is still well defined
and short exact. Hence the long exact sequence of homotopy groups for G = G(SX)
yields the following long exact sequence of square homology groups

(2) =2 Ho(X, M) =5 Ho(X, M) 25 Hoy(X, M%) 25 H, (X, M) —

Here H, (X, M*?) is the usual homology of X with coefficients in the abelian group
M4 = cok (P : My, — M,). Moreover H,(X, M) depends by (7.5) only on the
homology H.(X,Z) and M. In fact H,(X, M) can be computed by the universal
coefficient theorem [11] as follows; see (7.6).

Given a square group M we obtain the involution

T=HP_1:M33_}M33
with T7T = 1. This yields the chain complex of groups
M: Z(Me (?Mee SMCC ;:T-’Mee S)

where M, is in degree 0. We have 1 — T =2 — HP and 1+ T = HP so that the
homology of M¢ is

cok (P) n=20
. ker (P)/im (2 — HP) n=1
(78)  Ha(MI) =14 ., (2 — HP)/im (HP) n=2k>2
ker (HP)/im (2 — HP) n=2k+12>3

Moreover we associate with M the following quadratic Z -modules Z,,M,,n > 1.

ker (P) < M. *=2Y ker (P) n=1
(7.9) ZnM. = ker(2 - HP) - M,.,e HE ker (2~ HP)  n=2>2
ker (HP) —+Mee P Ler (HP) n=2k+1>3

Here j denotes the inclusion. We now compute the square-homology of a Moore
space M(A,n) of an abelian group A.
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(7.10) Proposition. Let n > 2 and let M be a square group. Then the square
homology of the Moore space M(A,n), A € Ab, has the following properties. If A

is free abelian there is a natural isomorphism
0 for k<0 or k>n
Hopu(M(An); M) =S AQH M} for 0<k<n-1
A®RZ,_ 1M, for k=n-1
In the general case one gets for A € Ab the following natural isomorphisms and
short exact sequences respectively.
0 for k<0,k>n+1
A®cokP for k=0
A+ Z,_ 1M, for k=n
A" Zo_ 1M, for k=n-+1

Hopk(M(An); M) =

0= A® Zno1 M, — Hyn_y(M(A,n); M) = Ax Hy_aM® = 0

0> AQH M - Hyyo(M(An); M) 5> AxH.1M; -0
forO<r<n-—1.

In (8.4) we shall see that the short exact sequence for Hy4.(M(A,n); M), 0 <
r <n — 1, is actually naturally split.

(7.11) Remark. We now determine the spherical groups of square homology; see
(3.8). Let M be a square group. For each sphere S™ we obtain by (3.1) the square
group (n > 1,k € Z)

Hopi{S™ M} = (Hup(S™ M) =5 Huyi(S™|S™ M) 5 Hpyi(S™; M)
For k > 1 this is a quadratic Z -module as in (3.9). Using (5.11) we see

sty = { M F=0
{575 M) = { 0 otherwise
Moreover by (7.10) we get for n > 1
0 for k<0 or n>1
Hopk{S™ M} = HiM; for 0<k<n-—1
ZpaM, for k=n-1

Hence only Hop1{S™; M} is quadratic and Hp4x{S"; M} is an abelian group for
k#£n-—1.

Proof of (7.10). For k = 0 compare (6.11). For & > 0 we have by the exact sequence
(7.7) the formula, X = M(A,n),
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Huyt(X; M) = Hopi(X, M)

If A is free abelian the right hand side is computed in [11] by

Hn+k(X1M) = (‘E[‘ ® M)n-i—k—]

Here H, = s™'H,(X,Z) is concentrated in degree n — 1 so that the result in [11]
yields the formulas of the proposition if A is free abelian. If A is not free abelian
we use the exact sequence in (3.12).

g.e.d.
(7.12) Remark. If M is a quadratic Z-module we can use (7.10) for the computation
of square homology with coefficients in M. For this let X € space; and let
(1) Xp=M(Ap,n) with A, =H,(X,Z)

be the Moore space of the n — th homology of X. Then there exists a homotopy
equivalence of chain complexes

(2) CoX) ~ Cy(Xy VX V...)

Hence we get by {7.4) an isomorphism

HH(X,M) ZHH(Xl VXZV... ,M)

(3) =€B.Hn(X;;M)€B€BHn+1(Xi/\XjéMee)
i>1 i<j

In the second row we use the cross effect formula. Since we know H,(X;) by (7.10)
we thus get a description for H,,(X; M) as an abelian group. For this we point out
that for A, B, M., € Ab

(4)
0 for n<i4+y and n>:1+7+2

AQRBRM,, for n=147
Trp(A,B,M,,) for n=:1+35+1
AxBxM,, for n=1+7+2

Hﬂ(M(Aai)AM(Baj)§Mee) =

Here Trp is the triple torsion product of Mac Lane; see Notes on page 393 in [27].
Using (3) for M in (7.7) we thus obtain by the exact sequence in (7.7) a possibility
to compute H,(X, M) for an arbitrary square group M in terms of the boundary
O : Ho(X, M%) 5 H,_1(X, M). For example we obtain the following vanishing
theorem.
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(7.13) Proposition. Let X be a connected CW-space with dimX = N and let
M be a square group. Then
H,(X,M)=0 for n > 2N

and

H(X,M)=H,(X,M) for N<n<2N

§ 8 STABLE SQUARE-HOMOLOGY AND STEENROD SQUARES

Given a square group M we obtain the square-homology H, (X; M) and the sta-
ble square-homology HZ(X; M) which is the stabilization of H,(X; M) as defined
in (2.2). We have seen in (6.8) that the stable square-homology H3(X; M) is a
homology theory on space . Hence by (2.8) there is a spectrum Ejs associated to
the square group M with

(8.1) H3(X;M) = H,(X; Eym).
This equation also holds if X is not a finite CW-space since both sides of the
equation satisfy the colimit axiom.

(8.2) Remark. The correspondence M — Ejy yields a functor

E : Square — Ho(spectra)

where the right hand side is the homotopy category of spectra. To obtain this
functor we use Goodwillie’s equivalence [17] between linear homotopy functors and
spectra. Hence the functor E is obtained by the functor which carries M to Mé'"

where the linear homotopy functor Mﬁ“" determines functorially Fjs by

M{™(X) = Q®(Em A X).

Compare (4.3) and (4.11).

For an abelian group A let K(A) be the Filenberg-MacLane spectrum with
K(A), = K(A4,n). Let I{(A)[z] be the shifted spectrum with K({A)[i], = K(A,n+
1} where ¢ € Z. We clearly have

(8.3) Ho(X; K(A)]) = Hai(X; A)

where the right hand side is the reduced singular homology of X with coefficients

in A.

(8.4) Theorem. Let M be a quadratic Z-module. Then the stable square homol-

ogy with coefficients in M is given by the natural isomorphism, X € space,
H(X, M) = @ Hn-i(X, H:M?)

i>0
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where M is the chain complex in (7.8). Hence by (8.3) the spectrum Ep associated
to M is the product of shifted Eilenberg-MacLane spectra K (H; ME)[i] with i > 0.

Proof. We know by (4.11) that there exists a spectrum E with

M (X) = Q®(E A X)

Hence F is determined by Méi“ (S™) where we can use a large dimension n. Now in

the stable range My(S™) — M™(S™) is an equivalence. Here My(S™) is given by
an abelian simplicial group since M is a quadratic Z -module. An abelian simplicial
group, however, is equivalent to a product of Eilenberg-MacLane spaces. Hence all
k-invariants of 'Mi|tin (S™) vanish and therefore E is a product of Eilenberg-MacLane
spectra.

q.e.d.

(8.5) Theorem. Let M be a square group and let M??? = cok P be defined by
M. Then the spectrum FEp associated to M is obtained as the cofiber of a map
between spectra

Sqm : K(M*4)[-1] - X K(HM;)i
i>1

Proof. For the proof we apply the Goodwillie calculus of functors which yields the
fibre sequence in (4.11) (2). Applying this fiber sequence to My and My in (7.7)
gives us the rows in the following commutative diagram of homotopy functors.

Q Mpdd = K
l I
F— M — M"

|| | .|
F—— My —— M
|
M;dd

Here the column in the middle is obtained by the fiber sequence in (7.7). Now
(4.11) (2) and (6.9) show that the fibres F' and F' coincide so that the subdiagram
* is a pull back. Hence the fiber K of Mi{"" — M’n“” coincides with

K =M = K(M**) (-1}
Here we denote by Ej the homotopy functor given by a spectrum E with
Ey(X) =Q®(EAX).

Now p in the diagram yields by (8.4) the map Sqar in the theorem since a fiber
sequence of spectra is also a cofiber sequence.
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q.e.d.

(8.6) Definition. The map Sqar in (8.5) is a (multiple) cohomology operation which
we call the squaring operation associated to the square group M. For: > 1 let

Sqiyt s K(M*4)[=1] - K(H; M?)[i]
be the coordinate of Sqas of degree 14+ 1. Below we show that the classical Steenrod
squares
S¢'t! K(Z)2)[-1] —» K(Z/2)[4]

yield examples of such squaring operations. Moreover we compute the operation
Sq3, for any M € Square in the next section.

It 1s a classical result that any short exact sequence A — B —» C of abelian
groups induces a long exact sequence of homology groups:

— Ho(X,A) = Ho(X,B) = Ha(X,C) S Ho_y(X, 4) —

where (3 is the Bockstein operator. In a similar way one has for each short exact
sequence L »—» M — N of square groups a long exact sequence of square-homology
groups:

(8.7) — Ho(X,L) = Ho(X, M) = Ho(X,N) 25 Hoo1(X, L) =

This sequence is obtained in the same way as the special case in (7.7) (2). In
addition the stabilization of (8.7) yields the long exact sequence of stable square-
homology groups:

(8.8) — H2(X,L) - H(X,M) = H3(X,N) LN H? (X,L) =

Clearly the sequences (8.7) and (8.8) are natural with respect to maps between
short exact sequences in Square. They are also natural in X € space;. As a
special case we obtain for M »— M —» M4 the commutative diagram

HS, (X, Meddy £, HS(X, M)
(8.9) | |

Hosa (X, Mo0d) 80 o H, (X, HiME)
i>1

Here the bottom arrow is induced by the squaring operation Sg¢ps in (8.6). For this
recall that a map ¢ : E — E’ between spectra induces a map ¢, : H,(X,E) —
H,(X,E') between homology groups. See (2.8) and (8.3).

It is well known that the Steenrod square S¢' is obtained as a Bockstein operator;
that is,
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(8.10) B =(Sq")s: Hop1(X,Z/2) » H,(X,Z/2)

coincides with the Bockstein operator associated to Z/2 — Z/4 — Z/2. The
next result shows that all Steenrod squares S¢*, ¢ > 1, are actually obtained by a
Bockstein operator of stable square-homology. For this we use the square group

(8.11) zrt = (z/a L zj2 2 7/4)

with H{n} = {n(n —1)/2}. Here {n} € Z/k denotes the coset of n € Z. For Z;
in (6.3) one has a canonical quotient map q : Zni = Zo'2 given by Z — Z /4 and
Z —» Z /2. There is a short exact sequence in Square

(8.12) (Z/2)' = 2% > Z/2

given by the diagram

(Z/2) =(Z)2 —— Z/2 —2 7./2)

| H |
z* = (2./4 y Z)2 — 2y 7,/4)
l | |
Z/2=(Z/2 —— 0 — Z/2)

One readily checks that for M = (Z/2)" one has H;M? = Z/2 for i > 0. Hence
one gets by (8.4) a Bockstein operator 5 as in the following theorem.

(8.13) Theorem. Let 3 be the Bockstein operator of stable square homology asso-
ciated to the short exact sequence in (8.12). Then the following diagram commutes:

HS, (X,2/2) —2— HS(X,(Z/2))
I |

Ho(X,2)2) —2 @ H.mi(X,2/2)
i>0

Here Sq has the coordinates (xSq¢'*t!), induced by the Steenrod squares Sq¢'*! for
i > 0 where x is the anti-automorphism of the Steenrod algebra; see 27.24 [22].

For the proof of this theorem we use the mod-2 restricted lower central series
[',(G) which defines the group functor

(8.14) nily : Gr — Gr  with nily(G) = G/T3(G)
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This is the restricted version of nily in (5.11). For a free group G we have the
following facts (1), (2) and (3).

(1) G/T2(G)=G*@Z/2=V

1s a Z /2 -vector space and

(2) T3(G)/Ts(G) = La(V)

Here Ly(V) C V®V is generated by [v,w] =vQ@w+w®v and v ® v forv,weV.
Ly(V) is the degree 2 part of the free mod-2 restricted Lie algebra L(V). Using
7.6 [15] one obtains (1) and (2) above. Hence one obtains the natural short exact

sequence in the top row of the following commutative diagram. The bottom row is
obtained by the exact sequence in (8.12) and the quadratic tensor product.

0 —— Ly(G*Q®Z/2) —— nily(G) —— GY¥QRZ/2 —— 0
(3) | I I
0 —— GR(Z/2)F — GRZY: —— GQRZ/2 —— 0

nil
The vertical isomorphisms which are natural in G are induced by GQZ nit = nila(G)
in (6.4); see 8.1 [10].
Proof of (8.18). If G = a(X) is the free simplicial group given by X then the exact

sequence of simplicial groups in (8.14) (3) induces the Bockstein operator in (8.13).
The connecting homomorphism

dy : (G @ Z/2) = w1 Ly(G* ® Z/2)

is computed in 8.10 [15] in terms of the Steenrod operations Sq' which act from
the right on homology since for a finite type space X we have H.(X,Z/2) =
Hom(H*(X,Z/2),Z/2). The anti-isomorphism x of the Steenrod algebra has the
property that for y € H,(X,Z/2) one has

(xSq')(y) =y S¢’
Therefore the stabilization of the differential d; in 8.10 [15] yields the result. q.e.d.
As an application of (8.13) and (8.5) we obtain the following results which deter-

mine explicitly the spectra Ejps associated to M = Z i and M = Zi’{", respectively.
For this we consider the following commutative diagram in Square

0 —— ZA — Zpil Z — 0

l ! l

~

(8.15) 0 —— (Z/2)* —— 22} y Z/4 y 0
0 —— (Z/2)F —— Z2} y Z/2 > 0
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Here the rows are exact and the vertical arrows are quotient maps. The top row and
the row in the middle are the exact sequences M »— M —» M%% for M = Z,,;; and
M = Z%7 respectively. We have Z* = (0 — Z — 0) and (Z/2)" = (0 5 Z/2 > 0).
Naturality of the Bockstein operator yields by (8.9) a relation of Squs for M = Z
and M = Z*? with § in (8.13). Since the maps Z* — (Z/2)* = (Z/2) induce
injections
H(BY) > HL(B/2V); = HL(Z/2);

(see (7.8)) we get the following results.
(8.16) Theorem. For the square group M = Z,;; we have the spectrum E = Ep
with

HZ(X,nily) = H (X, Zny) = Ho(X, E)
This spectrum E is the cofiber of the map

Sam : K(Z)[-1] = x K(Z/2){i]

Here the coordinate of degree i1 is ¢*(y Sqg**!) where q : Z — 7/2 is the quotient
map and x is the anti-automorphism of the Steenrod algebra.

(8.17) Theorem. For the square group M = Zi’fl we have the spectrum E = Ey
with

H3(X,nily) = H3(X,2%}) = H (X, E).

nil

This spectrum E is the cofiber of the map
Sqm : K(Z/4)[-1] — ;( K(Z/[2)[]
i>1

Here the coordinate of degree i + 1 is ¢*(x Sq't') where q : Z/4 — Z/2 is the
quotient map and y 1s the anti-automorphism of the Steenrod algebra.

§ 9 THE SQUARING OPERATION Sg¢,

The squaring operation Sgq3,; associated to a square group A is an element in
the following group where n is large; see (8.6).

[K(M)[-1], K(HM2)[1) =
= [K(M** n—-1), K(HLMZ n+1)]
(9.1) = Hom(M*“QZ/2, HH M)

Here we have M® = cok (P) and Hy M¢ = ker (P)/im (2 — HP) so that S¢3; is a
homomophism

Sq3, : cok (P)®Z/2 - ker (P)/im (2 — HP)
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We now consider the following diagram where (| )p is the cross effect of H in
(6.3) and where A is the diagonal with A(z) = (z,z) for z € M..

M, T2 cok(P)®Z/2 U0, ker(P)/im (2 - HP)

(9.2) s E

A/Ig X Me —(_H;_‘;_) Mee :) ker (P)
H

Here ¢ is the quotient map and ¢’ : M, — cok (P) is the quotient map.

(9.3) Theorem. For a square group M there is a unique homomoprhism Sq%, such
that diagram (9.2) commutes and this homomorphism coincides with the squaring
operation Sq3; by use of (9.1).

For example for M = Z,; the homomoprhism Sqﬁl is the isomorphism Sqﬁ,, :
ZQRZ/2=1Z]2. For the proof of (9.3) we have to recall algebraic models of (n — 1)
-connected (n + 1) -types, n > 2, obtained in [6].

(9.4) Definition. A reduced quadratic module (w,§) is a diagram
MMt 2y L 25 M

of homomorphisms between groups such that the following properties hold. The
groups M, L have nilpotency degree 2 and the quotient map M — M®® is denoted
by ¢ — {z}. Then for z,y € L, a,b € M we have

Sw({a}@{b})=—-a—-b+a+b
w({éz} @ {dy}) = —z-y+z+y
w({dz} ® {a} + {a} ® {dz}) =0

We say that (w,d) is a stable quadratic module if in addition

w({a} ® {b} + {a} @ {b}) =0

A morphism (w, ) = (w',§’) is a commutative diagram in Gr
L —— L
i E
M —— M

such that [w = w'(m®* ® m®?). This is a weak equivalence if ({,m) induces isomor-
phisms

ker (&) = ker (8'), cok (&) = cok(d')
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Let rquad (resp. squad) be the categories of reduced (resp. stable) quadratic
modules and let Horquad, Hosquad be the localization with respect to weak
equivalences. There are equivalences of categories for which the following diagram
commutes, n > 3; see [6] and [8].

types) 22, H rquad
(9.5) Qn-2y Us

types. —22— Hosquad

Here types; is the homotopy catgeory of CW-spaces X for which mX = 0 for
i{ < kand: > k + 1. Moreover 2"~?% is the iterated loop space functor and i
is the inclusion functor. For X € types! and (w,d) = A\,(X) we have natural
isomorphisms

TnX = 7y = cok(4), Tp41(X) = mpy1 = ker(6)

Moreover the k-invartant of X is an element

(1) K(X) € H' (K (70, n), Tnyy) = Hom(T7 (7n), a1

Here I'} is the functor Ab — Ab which is Whitehead quadratic functor T for n = 2
and ®Z/2 for n > 3. We can obtain k(X) from (w,§) = A,(X) as follows. Given
(w,d) € rquad there is a unique homomorphism k for which the following diagram
commutes

(M%) —  T(cok ) —* 4 ker$
(2) HJ' N
Meb @ Mab W > L S oM

Here H is the cross effect map in (3.1) for the functor I" and ¢. is induced by the
quotient map M — M?® — cok§ which factors through M®®. If (w,§) is stable
then k& admits a factorization

(3) k : T(cok §) ~Z cok(8) ® Z/2 - ker §

Now the k-invariant k(X) with (w,d) = Ay X is k for n = 2 and is k' for n > 3.
Compare [6, 8].

Recall that Square is the category of square groups in (6.3). We now define
canonical algebraic functors
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Square —— rquad Lt Horquad
(9.6) U U

tin

Square ——— squad —— Hosquad

together with a natural transformation a : 7 — 7/, Here L is the localization
functor. The functor 7 is given by

(M) = (M2 @ M2 2 M, 2 M)
where w({z} ® {y}) = (z|y)» and § = P. Moreover let

P (M) = (M® @ M® 5 M,./im (2 — HP) <5 M,)

where w’, resp. ¢’, are induced by w, resp. 4, in 7(M) above. We clearly have the
natural map a : 7(M) — 7!**(M) which is the identity on M, and the quotient
map on M,.. One readily checks that the functors 7 and 75" are well defined; for
. this we only prove:

(9.7) Lemma. 7'i"*(M) is a stable quadratic module.
Proof. We have to show that for a,b € M, we have (a|b)y + (bla)y € im(2 — HP).
But we know by 3.5 (4) in [10] that A : M, —» M., with

Ala)=(HP —2)Ha + (ala)u

is a homomorphism. Hence we get

(alp)rr + (bla)u = (a +dla+b)u — (ala)u — (blb)n
= A{a+b)+(2—HP)H(a+1b)
—(A(a)+(2—- HP)H(a) + A(b) + (2 — HP)H(b))
= (2—- HP)(a|b)n
This term needs not to be trivial in M., as the example Z,,; shows. Hence 7(M)

in general is not stable. q.e.d.

We now obtain functors

(9.8) S, S''" . Square — types,

which carry the square group M to S(M) = M;y(S?) and $""(M) = 3-type of
M{"(5?) respectively. Here (7.10) shows that My(S?) € types;. We have the
obvious map

b: S(M) = My(S?) » M{"(5%) = S"™(M)

which is natural in M. We also observe that S"*"(M) is an infinite loop space since
M{*(S?) is an infinite loop space.
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(9.9) Theorem. For the functors in (9.8), (9.6) and (9.5) there exist natural
isomorphisms such that the following diagram commutes.

MS(M) 2 Lo(M)

| By

N SHR(M) = Lrlin()

Proof of (9.8). One readily checks that Sq}; in (9.2) is the k-invariant of 7/"(M).
The k-invariant of !**( M) coincides with the first non-trivial k-invariant of My (5%)
by (9.9). This yields the proposition in (9.3).

q.e.d.
Proof of (9.9). We have by (7.10) that

mo(S(M)) = me M*(5?) = Z @ cok(P) = cok(P)
r3(S(M)) = 13 M*(S?) = Z ® Z, M, = ker(P)

Hence the isomorphism Ao S(M) = L 7(M) exists on the level of homotopy groups.
An explicit isomorphism is given by the result of Conduché [14]. For this let G
be the free simplicial group generated by one element in degree 1. Then we have
G ~ «(S?%) in (5.1) so that M*(S?) ~ B|G @ M|. Here G® M is a simplicial group
with only two nontrivial homotopy groups m; and 7. Hence the homotopy type
of G ® M is described by its reduced 2-module in the sense of Conduché (see (2.9)
[14]). But this reduced 2-module of G ® M coincides with 7(M). This yields the
isomorphism A S(M) & L7(M). Moreover we know that a, coincides with b, on
the level of homotopy groups since

n3(S(M)) = ker(P)
b.j' la
m3(SH(M)) = ker(P)/in(2 — HP)

commutes. This shows that the k-invariant of $""(M) is actually the k-invariant
of 7¥"(M). Moreover the natural isomorphism Ay S(M) & L7(M) induces the
natural isomorphism A, SU™(M) = L 747 (M). q.e.d.

APPENDIX A: A CRITERION FOR 2-EXCISIVE FUNCTORS

We describe a criterion for 2-excisive functors which shows that only very special
strongly co-Cartesian diagrams are needed to determine a 2-excisive functors. We
use this result for the proof of theorem (6.6). It would be interesting to obtain a
similar result for n-excisive functors.

Let Y be a 2-cube consisting of spaces Y1,Y>,Y3,Y; and let A € space. Then
we define AVY by
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AVY, —— AVY;

! l

AVY, —— AVY,

This yields the 3-cube (0,1) : AVY — Y. Clearly if Y is co-Cartesian then
(0,1) : AUY — Y is a strongly co-Cartesian 3-cube. Recall the definition of Cube
(X, A) in the proof of (4.12).

(A.1) Theorem. Let D : space, —» space;,r > 0, be a homotopy functor.
Assume that for pairs (X, A) € pair, and all homotopy push outs Y in space
the 3-cubes D(Cube (X, A)) and D((0,1) : AVY — Y) are Cartesian. Then the
homotopy functor D is 2-excisive.

The theorem shows that essentially the 3-cubes Cube (X, A) suffice to deter-
mine quadratic homotopy functors. This again shows that the quadratic excision
sequence essentially covers all excision properties of a 2-excisive functor.

Proof of (6.6). Let F be a quadratic coefficient functor so that F' = @M by (6.4).
Since we can use (5.4) it is enough to prove that Fy is 2-excisive. For this we
can use theorem (A.1) above. Using (1) in the proof of (6.9) above we see that
Fy((0,1) : AVY — Y) is Cartesian if Y is co-Cartesian. Moreover using the pull
back diagram (4) in the proof of (6.9) we see that Fy(Cube(X’, A")) is Cartesian
for (X', A") € pair,. For this we use (4.8). Hence the assumptions of (A.1) are
satisfied and therefore Fy is 2-excisive.

q.e.d

Proof of (A.1). Let Y be a cofibrant co-Cartesian 2-cube and let i : Y ¢ AVY
be the inclusion then D(z) is Cartesian since D(0,1) in (6.8) is Cartesian and
(0,1): = 1. For this we use the lemmas in section 1 of [12]. Next let (Y3, 4) be
a pair in pair,. Then we obtain the 3-cube ¢ : ¥ — Y /A given by the quotient
maps q; : Y; — Y;/A. Clearly q is strongly co-Cartesian. For this we put the cubes
Cube(Y;, A) and the cube (0,1) : AVY — Y together to form a large cube with
boundary ¢ : Y — Y /A. We apply D to this large cube and then we take homotopy

fibers which form the following commutative diagram where @; is the homotopy
fiber of (g;)« : D(Y;) = D(Y;/A).

G > Q2
N /
D(AV Y1), —— D(AVY)s

» 1 |
D(AVYs); —— D(AVYs)
v Ny
Qs > Q4

47




prompeper

Here the inside square is Cartesian since D(0,1) is Cartesian by the assumption in
(A.1). Moreover, since D(Cube (Y;, A)) is Cartesian by the assumption in (A.1) we
see that the four boundary subdiagrams are Cartesian by (4.8). For this we use the
following diagram; compare the proof of (4.9).

K(A) ——s K  —— K"
| | |
2) D(AV A)y —— D(AVYi)s —— D(AVY,),
| Lo
D(4) —— Q1 B Q-

Here the columns are fiber sequences. We know that I{(A) - K’ and K(A) —» K"
are homotopy equivalences. Hence also ' = K is a homotopy equivalence and
therefore the subdiagram * is Cartesian. Now all subdiagrams of (1) being Cartesian
we see that also the boundary diagram of (1) is Cartesian. This completes by (4.8)
the proof that D(g:Y — Y/A) is Cartesian. Now let ¥ U C' A be the 2-cube given
by Y;U4 CA. Since the quotient map Y;UCA — Y;/A is a homotopy equivalence we
see that also the inclusion 7 : Y C Y UCA is a 3-cube for which D(7) is Cartesian.
Now let X and Y be 2-cubes and let f : ¥ — X be a strongly co-Cartesian 3-
cube. We may assume up to equivalence that f is cofibrant, that is all maps in
the 3-cube f are cofibrations and all subsquares are actually push outs. Using
CW-decomposition we can filter f by an infinite sequence

f:Y=X,CcX,CX,C...Ccolim(X;)~ X

Here all X'; C X, are cofibrant co-Cartesian 3-cubes for which there exist A4; €
space , such that X; =Y V A; and X;; = X; UCA,;, ¢ > 1. We have seen above
that D(X; — X, ;) is Cartesian for all 7 > 0. This implies by .4b.5 in [3] that
also D(Y — X)) is Cartesian since we assume that D preserves filtered colimits.

q.e.d.

APPENDIX B: THE HOMOLOGY SPECTRAL SEQUENCE

Let D be a reduced homotopy functor. We describe a spectral sequence which
converges to the homology with coeflicients in D. If D is linear this is the Atiyah-
Hirzebruch spectral sequence.

(B.1) Definition. Let D : space; — space; be a reduced homotopy functor and
let X be a connected CW-complex. Let U = C(X) be the reduced cone on X
which is filtered by X = U° c U' € ...U with U = X UC(X" '), n > 1. For
(Y, B) € pair let

(1) H,(Y,B) = H,(Y,B; D)
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be the D-homology in (4.2). Then the filtered space U gives rise to the following
spectral sequence. First we can form the long exact sequence

(2)
oo Ha(UT) =5 Ho(U™, U™") =5 Hy (U™™1) == Hy(U™) =L Hy(U™,U"1) = 0

where the last object is a set with basepoint 0 and all the other objects are groups.
We can form the » — th derived homotopy sequences of (2) for r > 0, n <0,

(3)
el Hér)(n—Qr—l) — Fl(r)(n—r) — H](r) (n—r) — H}r)(n—r—l) - Fo(r)(n) =0

Here we set for g € Z, n = —m,

H{ (n) = image(Hy (U™ ") = He(U™))

F{7 (n) = kernel(Hgq1 (U™, U™) = Hy(U™)/H{™) (n))/ action of kernel(Hgy1 (U™F!) = Hopy (U™+7H1))
For r = 0 the sequence (3) coincides withe (2). One can check that (3) is well

defined and has the same properties as (2). Let

(4) Ext'=FT V) for  te€Z,s<0,7>1,

and let the differential d, : E3! — E3tH7=1 of degree (r,r—1) be the composition

r— r— r—1
FT3 () = BV (5) = B0 (s 1)

where we use the operators from (3). Clearly we have for ¢ > 0, s > 0

(5) E770 = FO(—s) = Hyp1 (U, U°)

and d; is the composition

(6) di =50 : Hyy (U, U*) — H(U*) — Hy(U®,U*™)

Assume that the pairs (U™,U™™!) have the property that there exist 0 < Ny <
N; <... with lim {N,,} = oo such that

(7) H,U™ U™ =0 for 1< Ny

Then we can find for each ¢ > 0 a bound r = r(g) < oo such that

ats _ poatl _ _ pegts
(8) Esots = poitl — = B
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We obtain a filtration of Hy(X) for ¢ > 1, s 2 0,

: 0=Koq CK1,4C...CEKs,C...CHyX)
(9) K, ¢ = kernel (Hy(X) = Hy (X/X?))

Since D is reduced we see that Uy»ol, 3 = Hy(X) and

(10) Eo_oa’q_s = Ks,q/I\’s+l,q-
A similar spectral sequence is available for reduced homotopy functors which map
to spectra; compare (4.1).

(B.2) Remark. The spectral sequence Ef* above coincides with the spectral se-
quence in (I11.10.4) [3] by considering the relative homotopy groups of the filtered
space {D(U™)}. The conventions for indexing E$'* arises from the comparison with
the Bousfleld-Kan spectral sequence [12]; compare the discussion in (II1.10.2) [3].
We can alter the indexing by defining

E;,t =Er—8'ta 82 0’ teZ.

Then the differential for E], has degree (—r,7 — 1) as in the spectral sequence
discussed by G.W. Whithead, chapter XIII page 614 [29]. Now assume that D in

(B.1) is a linear homotopy functor. Then H,(Y,B; D) = H,(Y, B) is a homology
theory on pair, in the sense of (2.2) and we get for s > 0

E.:,‘J—B = El_&’q—‘.J = HQ+1(U8+1’ Us)

= q+1(.XUCX8,XUCX3_1)
= H,1(SX*, X1 = H (X*,X°7Y)

Moreover by the exact sequence

Hy(X?) = Hy(X) = Ho(X/X?)

We see that K_, , in (B.1) (9) coincides with I, ;_, where I, ;_ is the image of
Hy(X?®) » H,(X) as on page 613 [29]. This shows that the spectral sequence (B.1)
yields as a special case the Atiyah-Hirzebruch spectral sequence in XII1.3.3 [29].

APPENDIX C: A SPECTRAL SEQUENCE FOR SQUARE-HOMOLOGY

In this section we apply the spectral sequence of Appendix B to square homology.
Let X be a CW-complex with trivial 0-skeleton X% = * and let M be a square group.
We consider the filtration, s > 0,

0=FKoqCIHKy1qC...CK,;C...CHyX;M)

of square homology given by
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(C.1) K, 4 =kernel (H (X; M) = H,(X/X?))

where X — X/X° is the quotient map. Then the spectral sequence (E;%97% d,)
defined in the Appendix converges and satisfies

(C.2) E =Ky g/Keo1 4

We now determine the E; -term of this spectral sequence. Let

U =XUCX* '~ Xx/X*!
and let A* = X*/X*~!. Then we have

(C.3) Ut = Xucxst =usucas

where the attaching map A® — U? is the composite f : A* C X/X*™! ~ U? given
by the inclusion. Clearly A, = M(C,, s) is the Moore space of the free abelian group
Cs + Hq(X*®,X*"1,Z) which is part of the cellular chain comlex C,X = (C,,d).
We can compute the Ey -term

(C.4) Er""° = Ho (U, U% M)
by applying diagram (3.4) to (C.3). This yields the following commutative diagram
in which the row and the column are exact.
Hyp1(As N Ay M)
[ B=@D)
Hy(Ag; M) @ Hopr1(As A X M)

NPU, 1.)

(C.5) Hyyy (U, U M) —2 s H(U*, M)

H (A N Ag; Mee)

(P!_(]!f)')

Hy_1(Ag; M) @ Hy(A AN X3 M,
Using (7.10) this yields the following result on Hg41 (U*1!,U®; M). Let B, = image
(d: Cs41 = Cs) be the group of boundaries in the cellular chain complex C, X and
let g : Cy —» C,/B; be the quotient map.
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(C.6) Proposition. The E, -term is given by the groups (C.4) which can be
described by the following isomorphisms and exact sequences respectively.

0 for g<s
Ho (UL U M) = Co@Hy—sM; for s<qg<25—1
C‘g & Hq_3+1(X;Mee) for q > 2s

For g =25 — 1 and ¢ = 2s one has the exact sequence

0= Cy ® Hopr (X; Moe) 25 Hpops (U, U, M) = Co ® Ca @ M.
V28 €y @ Zo-1 M, © Co @ Co/ By ® Moo — Hay (U, U5 M) - 0

Here C, = C, fors > 1 and C, = m(X1) is the fundamental group of the 1-skeleton
X! for s =1 and ZoM, = M.

A cross effect argument shows that the inclusion j in the exact sequence of (C.6)
is split injective. Moreover the differential dy of the spectral sequence is of the
form d ® 1 (with d given by C.X) for the groups in the first part of (C.6) with
g # 2s —1,2s. Tt is interesting to compare (C.6) with the results in section 7.

This shows that the spectral sequence for ¢ > s depends only on M and hence is
determined in this range by C, X.
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