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Abstract

We define the notion of acylindrical splitting (graph of groups) of a group. We bound
the combinatorics of acylindrical splittings for f.g. freely indecomposable groups with no
2-torsion. Our arguments imply a theorem of J. Hass on finiteness of acylindrical surfaces in
closed 3-manifolds [Ha}, finiteness of isomorphism classes of small splittings for (torsion-free)
freely indecomposable hyperbolic groups as well as finiteness results for small splittings of
f.p. Kleinian and semisimple discrete groups acting on non-positively curved simply connected
manifolds.

The notion of accessibility in groups was introduced by M. Dunwoody [Dul] who proved
that f.p. groups can split over finite groups only in a bounded way, namely the combinatorics
of the corresponding graphs of groups is bounded. Dunwoody’s result, which was generalized
by M. Bestvina and M. Feighn [Be-Fel] to splittings over small groups, can be viewed as
a generalization of the well known Grushko theorem for free products. In this paper we
generalize Grushko theorem in a different direction and get a new kind of accessibility. We do
not impose any conditions on edge or vertex groups of the corresponding graphs of groups by
themselves, but we do impose a restriction on the relation between them. The accessibility we
get, holds for (certain) finitely generated groups, a class for which Dunwoody’s accessibility
does not hold ([Be-Fe2}), [Du2]).

A splitting (graph of groups) of a group G is reduced if the label of every vertex of
valence 2 properly contains the labels of both edges incident to it. Let T' be the Bass-Serre
tree for a given splitting of the group (. We say that the splitting (graph of groups) and T
are k-acylindrical if they are reduced, 7" is minimal, and for all elements ¢ € G; g # 1 if
g fixes (pointwise) a path in 7', this path includes not more than &k edges.

Since our definition might seem a bit technical, we list some natural examples:

(i) G=Ax¢cB VYa€A agC aCa™lNC =id. a2-acylindrical splitting.

(i) G = Axc = (A, ttC1t7! = Cp) Vae A  aCia !0 Cy =1id. A l-acylin-
drical splitting.

(iii) Let G be a (torsion-free) hyperbolic group. Every small splitting of G can be written
as a 4-acylindrical splitting (see proposition 3.7).

(iv) An incompressible surface S in a compact 3-manifold M is called k -cylindrical if
one of the components of A/ \ S contains at most & non-homotopic cylinders. The
splitting of m (M) along m1(S) is (2k +2) acylindrical.

A (Gromov) hyperbolic group has a natural action on a hyperbolic space, its own Cayley
graph. This is definitely the “source” of many global results on hyperbolic groups. Our
arguments suggest a limited optional substitution for f.g. groups, a k -acylindrical tree. From
our point of view the exsitence of a k -acylindrical splitting joined with the inexistence of
a splitting over a cyclic subgroup for given f.p. group should provide information on its
global structure. In this paper our aim is to bound the combinatorics of all k -acylindrical
splittings of a given f.g. freely indecomposable group. Freely indecomposable f.p. groups
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are shown to have “acylindrical super accessibility” (theorem 3.3), namely there exist finitely
many splittings that cover all k -acylindrical splittings of such groups. This last result allow
us to deduce the finiteness of isomorphism classes of small splittings for (torsion-free) freely
indecomposable hyperbolic groups (theorem 3.3) as well as Kleinian groups with no rank
2 parabolics and semisimple groups acting freely and discretely on non-positively curved
simply-connected manifolds (corollary 3.9). In addition we get a stronger version of J. Hass’
theorem on the finiteness of acylindrical surfaces in 3-manifolds [Ha] (theorems 3.5, 3.6). To
stress our point of view on the information carried by the existence of an acylindrical splitting
for a group, we add an appendix in which we apply Barge-Ghys bounded cocycles [Ba-Gh]
for groups acting freely on real trees, to show HZ(G,R) # 0 for non-cyclic groups G with
a k-acylindrical splitting and no 2-torsion. In all our arguments we assume the groups in
question have no 2-torsion. In fact some of what we do generalize in the presence of 2—-torsion
(at least for f.p. groups), but assumptions and assertions become more technical so it seems
to us better to discuss 2-torsion elsewhere. The same remark holds for the assumption of
torsion-free in the case of hyperbolic groups. In contrast with our theorem regarding finiteness
of isomorphism classes of small splittings for freely indecomposable hyperbolic groups, free
groups have lots of non-isomorphic ones:

{xm}
{z}  {a™y}

In the first section we use the Bestvina-Paulin method ([Be], [Pa]) to bound the image
of generators in groups with no cyclic splittings. In section 2 we elaborate our argument to
deduce a similar result for freely indecomposable groups up to isomorphsim. In section 3 we
use these bounds to get our finiteness results. The appendix studies the bounded cohomology
of groups with acylindrical splittings.

The main techniques we are using are based on a joint work of the author with E. Rips
([Ri-Sel], [Ri-Se2]). The whole concept of this paper would have never been occured to
us without Joel Hass’ question on the possibility to generalize his 3-manifold result. We
are greatly indebted to him for that and for his continuing interest. We thank Etienne Ghys,
Frederic Paulin and Leonid Potyagailo for fruitful discussions around questions discussed in
this paper.

1. Groups with no cyclic splittings

To demonstrate our approach we first assume our finitely generated group with no
2-torsion G = (g1, --,¢9:) has no splitting over a cyclic subgroup. Let & > 1 be
given and let 77,75, -- be a sequence of Bass-Serre trees for non-conjugate % -acylindrical
splittings of . Clearly for each tree 7}, we have a natural action G x T}, — T, . Let

fm(u) = max dr, (v, gju) be a function on the vertices of T, . The functions {fim}oor,
<i<
are discrete so they achieve a minimum. Let «,, € T;, be a vertex on which the minimum

is obtained and let p,, = 111(1&2 dr, (%m, gjum) . Our aim is to get a global bound on the
J

tm 'S under our assumptions on G.

From now on we assume y,,, — oo and use the Bestvina-Paulin method (see [Be], [Pal)
which is an elaborate application of the Gromov topology on metric spaces [Grl]. Let X,



be the pointed metric space (I‘l:fl’,,,,um) endowed with left isometric action of the group
G. Clearly, the convex hull of the image of w,, under a finite set P C G is compact, and
since this convex hull is a finite tree of bounded combinatorics and length of edges (the bound
is independent of m ), these convex hulls form a totally bounded sequence of metric spaces.
The last simple observations allow us to apply the following:

Theorem 1.1 ([Pa], 2.3) Let {X m}‘,f:l be a sequence of 6, -hyperbolic spaces with 6y, =
lim é6,, < 0o . Let G be a countable group isometrically acting on X,,, . Suppose there exists
a base point u,, in X,, such that for every finite subset P of G, the closed convex hull of the
images of w,, under P is compact and these convex hulls are totally bounded metric spaces.
Then there is a subsequence converging in the Gromov topology to a 508, -hyperbolic space

Xoo endowed with an isometric action of G.

Our spaces {Xp,}o._, are trees, so they are O-hyperbolic and therefore any metric space
which is the limit of a subsequence is a real tree. Let Y be the limit of a subsequence
(still denoted) X,, .

Proposition 1.2:

(1) The stabilizers of edges of Y are cyclic.
(ii) The stabilizers of tripods (convex hull of three points which are not on an interval in
Y ) are trivial,

Proof: Let hy,he € G fix a segment [z,y]CY . Let D = dy(z,y) and let z,,,,ym € X
be sequences converging to x and y correspondingly. By theorem 1.2 for all m > myg
we have:

D

max (d,\’m(hl(-’ﬁm),mm)ad,\'m(hl(ym)aym)) < 1"0‘

D

max ((lxm(hg(.”b‘m), 'Tm)a d.\'m (hZ('ym): ym))
9D

dX,,. (3"1713 ym) > 1_0

<10

Since X, is a discrete tree, hi; and hp act as translations of a line on the segment
Zm, U] C [TmaUm)y dx,.(TmZm) = dx (T Um) = -1% . Translations on a line do
commute, so the commutator [h1, hg] fixes a segment [Tpn, Yo, dx,.(Tm, Ym) > % located
at the center of the interval (z,,,y,] . Therefore [hq,ho] fixes a segment of length %62
in all trees 7, for m > mg . For m > my, '“’"T(’)-D- > k+ 1, hence [hy,hs] fixes a
path of length at least & + 1, but our trees are assumed £ -acylindrical so [k, hs] =1 and
stabilizers of edges are abelian. Moreover since . and hs are commuting elements acting
as translations on a line, they are hyperbolic elements with a common axis. Since our trees are
k -acylindrical they therefore generate a cyclic group, so stabilizers of edges of Y are cyclic.

Under the notations above let A fix [z,y]CY and suppose h’ = 1. For all m > my
we have:

D

max (d}\'m (h(wm): 35111)1 d.\'m(h(ym): yrn)) < 2_06
9D
de (-'Cmaym) 2 _16



Then h acts as translation on [Zm, §m] C [Zm, Ym), dx,. (Em,m) = % and [Z,, Jm) located
at the center of [y, ym] . But if h acts as translation, so does h° and in particular 1% # 1,
a contradiction. Therefore stabilizers of edges are torsion-free and we have (i).

Let z,y,2 € Y be a tripod fixed by an element g € G, and let ¢ € Y be its three valence
vertex. Let 2., Ym, 2zm € Xm be sequences converging to =, y, 2 correspondingly and let ¢,

be three valence vertex of the tripod z,,, Ym, zm - Let D = min (dy(z, ¢), dy(y,¢),dy(z,¢)),
and let mj3 be large enough so that for all m > mg

max (dx,, (9{Zm), Tm), dx, (9(¥m), ¥m), dx,,(9(2m), 2m)) <

10
) 9D
min (de (:Ema cm)'l de (yma Cm-)) d)(m (zm: Cm)) > _1_0_
Since X, is a tree, the above inequality implies g(cn,) = ¢;, for all m > m3 | and the same

holds, therefore, for a %) neighborhood of ¢,,, in the tripod z,,, ¥m, zmm - In particular ¢ fixes

a segment of length “i'{‘T in Ty, , so by picking m large enough and by our % -acylindrical
assumption, g is trivial.
]

Proposition 1.3: Let [2,y|CY be a segment and suppose H = stab([z,y]) # {id} . Then
for all [zo,wolClz,y]  stab([zo,yo]) = stab([z,y]) .

Proof: Assume the converse. Let hy fix [zo,yp] but not [z,y], let h € H; h # 1 and
suppose (w.l.0.g.) y is not fixed by h; . By our assumptions hih(y) = hi1(y), on the other
hand h(hi(y)) # h1(y) since i does not fix a tripod by the previous proposition. But since
h,hy1 € stab([zo,y0]) h and hy do commute, a contradiction.

O

Proposition 1.3 shows the action of G on the R-tree Y satisfying the ascending chain
condition, so it is small in Rips’ sense [Ri]. Rips has completely classified small actions
with inversions for finitely presented groups, so we do not really need the assumption of
no 2-torsion in this case, but we prefer to restrict ourselves to actions with no inversions.
According to Rips’ theory the action is divided into axial, interval exchange transformation
(IET), indiscrete minimal actions of the free group (e.g. Levitt type) and discrete components.
In order to show (' splits over a locally cyclic subgroup we need to analyze each of these
components separately.

Indiscrete minimal actions of the free group. When the action is minimal and the ACC
condition holds, the stabilizer of a given edge is the stabilizer of the whole component [Ri].
Since by proposition 1.2 the stabilizer of a tripod is trivial, the stabilizer of indiscrete actions
of the free group components, minimal IET components and minimal axial components which
are not isometric to a real line are trivial. Therefore, in the presence of a component with




minimal indiscrete action of the free group, G has the form A x F, where F), is a free
group on n generators according to [Ri], so G is even freely decomposable.

IET components. Again, in our case the stabilizer of a minimal IET component is trivial, so
we are in an identical situation to the one described in [Ri-Sel] for studying the automorphism
group of a hyperbolic group. The discussion there is detailed and shows our group G is
either a free product with a Fuchsian group or it splits over a finite or infinite cyclic group.

The axial components. First suppose an axial component is not isometric to the real line.
Then the action is minimal, stabilizers of edges are trivial and we have one of the following
presentations for G

(i) G=Axz F
(i) G = Axg, By where (/k and:

By = {a,b|[a,b]k = 1} :

(i) G = A*x Fy

(see [Ri] for details). Again our group splits over a cyclic group. For the real line case
we have G = A x¢c B where C is the stabilizer of this real line component which is
(torsion-free) cyclic by proposition 1.2.

The discrete case. We have in fact reduced our problem to the standard Bass-Serre theory,
and since all edge stabilizers are cyclic (if G is not infinite cyclic) our group G admits a
splitting with cyclic stabilizers.

Recall, that the whole construction of the tree Y is based on the existence of a subsequence

of k-acylindrical splittings with x,, = max dx,. (g;(tm), um) — oo . Therefore, we have:
<i<

Theorem 1.5 Let G = (¢, -+, q:) be a f.g. group with no 2-torsion and no cyclic splitting.
Let {T),},._, be the Bass-Serre trees for the k-acylindrical splittings of G. There exists a
constant )\, and vertices u,, € T}, so that max dr,, (Um, 95 (tm)) < Ag .

<jst

2. Freely indecomposable groups

In this section we use a modification of the argument presented so far together
with techniques introduced in [Ri-Sel] to get a bound on the image of the generators
of a f.g. freely indecomposable group G with no 2-torsion in all isomorphism classes
of k-acylindrical splittings. Let 77,75,--- be a sequence of Bass-Serre trees for non-

isomorphic X -acylindrical splittings of G. Let wu, be a vertex of T,, and ¢,, €
Aut(G) satisfy: max, dr,, (Um, Pm(g;)um) = min  max dr (u,¢(gj)u) and let pum =
<<

pEARI(G) 1<j<t
wel ==

llg?ét (‘!T,11 (uma (Pm(gj )“'m) .

We assume, as we did in section 1, that p,, — oo and construct the pointed metric spaces
X = (#ime, umz edowed with left isometric action of the group ' via the isomorphism
@m - The spaces X,, satisfy the assumptions of theorem 1.1 so there exists a subsequence
(still denoted) X, converges to Y, a real tree endowed with a G -action, Propositions 1.2
and 1.3 remains valid for the action of G on Y, so once again we have Rips’ ACC condition

and we can use his theory to analyze the action of G on Y.



Indiscrete actions of the free group. If ¥ contains such component (e.g. Levitt components),
G can be represented as G = A x F,, where F, is a f.g. free group, in particular G is
freely decomposable, a contradiction.

IET components. The stabilizer of an IET component is trivial since the stabilizers of
tripods are trivial. In [Ri-Sel] we analyze the IET case in details and show one can find
an automorphism 3 € Aut(G) such that:

fuax, dy(id, g;(id)) > fnax, dy (id, Y(g; )(id))

but if such inequality holds for Y it clearly holds for 7;,, for large enough 1, a contradiction
to the choice of ¢, .

The axial components. Suppose first an axial component is not isometric to the real line.
Then the action is minimal, stabilizers of edges are trivial and using the same argument we
have used for the IET components [Ri-Sel], there exists an isomorphism v € Aut(G) that
maps the generators of GG to elements with shorter length in Y, a contradiction to the choice
of ¢, . For the real line components we need the following lemma:

Lemma 2.1 Let T be a k-acylindrical tree for the group G. If H < G and H is solvable
then either H is contained in a stabilizer of a vertex of T or H is abelian.

Proof: Suppose H is not contained in a stabilizer of a vertex of T". Let Ty CT be a minimal
subtree for the action of H. Since Ty is k-acylindrical (not necessarily reduced) for the
action of H, if it is isometric to a real line H is abelian since it has no 2-torsion. At this
stage one may apply our bounded cohomology appendix or simply the following:

Claim 2.2 Let T be a & -acylindrical tree for a group H which is not isometric to a real
line. Then H contains a free subgroup.

Proof: By the % -acylindrical condition if all elements of H are elliptics, H has a fixed
point (we do not need to assume H is f.g.) and the action is trivial. Therefore, there exists
a hyperbolic element h € H . Let A; be the axis of h, let e be an oriented edge in A, ,
and let ¢ be some image of e outside A, (there is such because 7" is minimal and not
isometric to a real line). Let LCT be the convex hull of € and Ap , let p be the three
valence vertex in L, and let e; be the image of ¢ under some power of A, such that e;
and e belong to distinct components of L\ {p} :

L7 A‘fb
%

-
4+
Y .
—— '

Ah'

Clearly, one of the elements hy € H; hi(€) = e or hy € H; ha(€) = e; is hyperbolic
(w.l.o.g. hg) and its axis has an edge included in Ay, . Therefore, the group generated by
sufficiently high powers of h and hy is free (see [Be-Fel]).
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Having proved the lemma, we may conclude that A4, the subgroup of (& corresponding
to an axial component which is isometric to a real line, is abelian, From our k— acylindrical
condition, it follows that for large enough m the elements of A are hyperbolic, so A is
cyclic and we are actually in the discrete case.

The discrete case. Left with the standard Bass-Serre theory, we are guaranted stabilizers of
edges are cyclic and non-trivial because G is freely indecomposable and propositions 1.2,
1.3. Our treatment is similar to the one given in {Ri-Sel] for the discrete case (which appears
in an effective version in [Ri-Se2] as well), although our case is somewhat easier since we
deal with trees and not with the Cayley graph of a hyperbolic group.

Our limiting (discrete) tree Y is a pointed metric space (Y, yp) which is the limit of
the pointed metric spaces (X, un) . To get a shortening argument for the discrete case, we
divide our treatment into two cases, the first is when i belongs to the interior of an edge
of Y and the second occurs when yp is a vertex of Y.

Case 1 yp C int(e), e = {vg,v1] is an edge of Y. Let z € stab(e) = C and let € denote
the edge corresponding to ¢ in Y/G . Again we need to split our treatment:

Case 1A € is a separating edge in Y/G .

In this case we can clearly write G as A*¢ B, where by our construction G is properly
included in both A and B. We will define automorphisms of G (in fact Dehn twists) that
will reduce the length of elements of A and B appear in the generators of &, in such a
way that for large enough m the distance from wun, to ¢,,(g;)(u.n) will decrease for those
gj which are not elements of C . This will clearly lead to a contradiction to the way we
have chosen the automorphisms ¢,, .

For each j let gj be given in a reduced form with respect to the above splitting of

G g; = ajbi- ’br(’,J 1<j<t a €A b €B af orb may be the identity

element. Let g = ax g, ¢ = min (dy (yo, %), dy(yo,v1)) and ¢ be the minimum between
<ig

¢ and the shortest length of an edge of ¥ (Recall, Y is discrete and G is f.g. so ¢ is

positive). Since the pointed metric spaces (X, u,,) converge in the Gromov topology to
Y (theorem 1.1), for large enough m we have:

ldx., (me (26(1{3_6)(“m),'u-m) —dy (af(yo)ayo)| <&
|dx,, ((Pm zsbjz'a)(um)»“m) — dy (b{(y0)1y0)| <e
@1 i (om ()1 u u,,,.) = -
ldx,, (@m( 0 a,-bf)(‘ltm),'um -d}’((f-{b'{"'ﬂ’?bj‘(‘yo) y0)|<€1
A, (m (], ) wn)s o (7,270 ) () = iy (&, (90, 2,2~ (w0) )| < 1
A (s0m (8, ) (), o (250,278 ) () ) =y (], (90), 2%, 273 (a0) ) | < 1

where 1 < ¢,i1,73 < g5, €1 = 6 §=0; 1.
Proposition 2.3 Let w, € [unn‘;on ( ) Um ] [U»m1 ©m ( )(Um)] satisfy:
£ t 5
dl\'m(“mawm) = 5 d){ (TL,”,’{U ) = -é—



Then for either 6 = +1 or § = -1

dX (um) ©m (56) (wm)) < (le (um; wm) < d.\'m ('uma ©m (Z_’S) (:wm))
(pm( ) ’wm) Pm (3—5) (wm)) < 2e1

i
e ) () < ) < () ()
e om () o) ) o) <30

Proof: ¢,,(2°) acts isometrically on X,, . By the k-acylindrical condition and our

requirements on @,, (z‘saJ z 5)('11,,,,), wy, cannot be fixed by ¢, (25) . In additon we

have by (2.1):

de (‘Pm (25)('“-m), um) <é1
W, (Pm wm € n [um, ‘Pm( J) ('“'m)]

§=0,%1
1<j<t
1<i<q;

So:
i 5 (o () o), () ) < 21

and either for § =1 or 6 = —1
de ('u'm, ©m (36) (wm)) < d.\'m(“m: wm) < d,\'m ('unu ©m (3_6) (wm )) .

The inequalities for w;,, follow by an identical argument.

(e

: 'U)ml

o) () - om0

Proposition 2.4 Assume (W.lo.g.) &6 = 1 in proposition 2.3. Thenforall 1 < 7 <t, 1<
t < gy




Proof: By the inequalities (2.1) we get:

dyx, (lpm (a{)(um), um) = 2dx, (Um,wm) + dx,, (tpm( J) ('wm),wm)
dy,, ((,om (za,{z_l) (), 'u‘,,,) =dy._ ((pm (zaf)( m), ©m(2 )(wm))
+ dx (Pn(2) (i), ) + i, (o (207 (), 1 (2027 ) () ) =
=dy, (‘Pm (“{) (wm), 'wm) + dx,, (Pm(2) (W), um) + dx,, (Wi, 0m(277) (Um))
But proposition 2.3 gives us:

de (“m; 'wm) > dX,,. (‘Pm(z)('wm); “m)
de(um) wm) - de (‘Pm(z)(wm)a “irl) <&

So we have proved the proposition for the a! ’s. A similar argument for the b{ ’s completes
our proof.

e —— e — - — O

‘Pm( )(”m) I \\

Um

L

" Theorem 2.5 Under the notations above, let ¥ be an automorphism of G given by:

VaeAd Ta)=zaz™?
Vvbe B  U(b)=z"lbz

Then for m large enough (so that inequalities (2.1) hold):

111<1;i§td\ ((Pm(gj)(um) “m) > lln]ai(td\’ ((pm ) \I](gj)(um)a“m) .

Proof: For any j for which ¢;  C' we have by the inequalities (2.1):

d; m(‘Pm(gJ)(“m) “m) = Zd ‘Pm((' )(Um),um)+

+ Z dx,, (‘Pm( ) (tm), “m) - ((]j — D)[dx,, (2tm, win)+

+ d,\'m (Uma wm) - de (wma 'w:n)] > de(‘Pm (za{»’-’_l) (Um): Um )+
+dx,, (‘Pm(z—lbjz) (wm), '”’m) - (Qj - 1)[d}\’...(unu ©m(2)(wn )+

+ dl\m (unn (Pm( ) wm)) - d.\'.,. (‘Pm(z)(wm), ©m (z_l) (w,]n))] =
=dx, (©m - V(g )(Um), ttm)



Clearly, for m large enough the maximum length of the generators is obtained for some
gj, € C so our theorem follows.

O

Theorem 2.5 demonstrates our general approach for the discrete case, and is clearly a
contradiction to the way the couples (,,,u,,) were chosen, so case 1A can not occur.

Case 1B € is a non-separating edge in Y/G.

In this case we can write G as Ax¢ where C # A | since otherwise G is solvable and
by lemma 2.2 if G is not cyclic, it admits no k -acylindrical splittings at all. Qur treatment
for the non-separating case is very similar to the separating one.

For each j let g; be given in a reduced form with respect to the above splitting
G={(Aflfef P =h(F)) : gj=dfafu.--a,f"s o €A, o} or f" may be the
identity element. As we did in case 1A let ¢ = 1121?_2{! qj, € = min (dy{yo, vo), dy(yo,v1))

and ¢ the minimum between ¢’ and the shortest len_gtil of an edge of Y. By the convergence
in the Gromov topology of the pointed metric spaces (X, ) to Y (theorem 1.1) we have
for large enough m the following inequalities:

g; € C = dy, (¢m(g;)(tm), um) < €1
ldx,, (rpm (af) (tm), 'u.m) —dy (a.f (0), yo)] <eg
de ((Pm (zé) (urn): um) <é€
s "{ J

de (‘Pm((fz ) )(um)aum) - dY(f""(yO)ayON <&

. n . n{
|d1\'m (‘Pm(a'{ (fzs) 1 e ﬁ',{ (fzs) )(unz)a um) -
dy (ﬂ-’{f"i cal f (o), yo)l <€l
|d‘\'m (‘Pm (a{l ) (uﬂ'l)7 Pm (3{2) (Um)) - dY ((L{] (yU)a a",)'.z (yO)) I <€

where 1 < 13,19, ¢t < g5, €1 = 1_(%5’ 6 =0, £1,+£2 .

(2.2)

By an identical argument we use to prove proposition 2.3, and from the inequalities (2.2),
we obtain the following:

Proposition 2.6 Let w,, € [im, 0m(f)(um)], w,, [um,cpm( f‘l)(u.,,,)] satisfy:

£ ; £
dx,, (tm,wm) = 3 dx,, ('unnwm) = >

Then for either 6 = +1 or 6 = —1

dx.,, (um,sﬂm( ) Wi ) < dy, (tm,wm) < dy. (um,(pm(z_é)(wm))
ax, (o (2 ) (wm). o (272 ) (0m)) < 261

o ) 12)) <o 2) < ()52
() o) () ) <2

Proposition 2.7 Assume (w.l.o.g.) 6 =1 in the previous proposition. Then:

10



dx, (em(F)(um), wn) > dx,, (om(f2)(1m), Wm)

(le (‘Pm(f)(um), 'U-m) - d,\',,, (‘Pm(fz)(um)a “m) < €1
Proof: By the inequalities (2.2):

(-le (SOm(f)(’Um), um) = d.\'m (Wm(f)(“m), wm) + d,\'m ('wnu 'U'm) <
dX,,. ((Pm(fz)(um): (Pm(z)(wm)) + de((Pm(z)(wm): “m) =
de(‘Pm(fz)(“m)s ) .

Theorem 2.8 Let v, = @m(z)(um) and let W be an automorphism of G given by:
Ula) =a Vae A
V()= [

Then for 'm large enough (so that inequalities (2.2) hold):

1123&2{1‘ d\ (‘Pm(gj)(um)a um) > lnsl_?éi (11\'"1 (‘Pm 0 ‘P(g]) (uvn) ) um)

Proof: By the inequalities (2.2) the maximum above obtained for y; € C', and clearly for
9; € C

dx, (‘Pm(gj)('u'm)= “m) =dy,, (‘Pm oW (gj) (”‘m) ) u,m)

so for shortening purposes we may assume ¢g; € C' .
By proposition 2.7 and (2.2):

dx,, {om{)(wm), um) = dx,, (‘Pm(f)( m)!u’m) >
dx.. (om(f:) ( ,,,), ) > dx,, (om(£2) () ) =

d,Ym (Pm (f )(urn), '“'nl) - d‘\-m ((Pnl [} \I’ (fn':) (u;n) ; U;n) —
’Il{ de ('u}nla Pm (22) (!w"l))

For ¢« € A we have:
dx, (om(e)(um), um) = dx,, ((,om(a) ('w:n) : w;,,) +
2dx, ('w:n, um) > dx,, (gom(a)(w:n), m) + 2dy (w'm,u'm) =
dx,. ((pm o ¥{a) (u;n> , u'm) .

(2.3)  dx, (om(a)(um), um) ~ dx,, ((Pm o lI"(“)( m)a “m) = 2dx,, (w:m gom(z)(w:n)>

11
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The above inequalities conclude our proof for generators g; of length 1 with respect
to the splitting G = A x¢ . We continue by scanning the subwords of g; from left to right,
essentially in a similar way we’ve dealt with amalgamated products. Let 7 = f " be a left
subword of some reduced form of a generator ¢; and suppose:

dz\'m(@m(ﬁ)(um); Um) > dy,, (‘Pm ° ‘I’(Tl) (“';u) ) U';:-z)

dx, (@m(T)(tm), ttm) > dx,, (cpm o ¥(r) (u’m) , 'u'm)
(The first assumption should hold only if 7 76 1)

Claim 2.9 With the notations above:

dxm'(t,o,,, (Ta"?+1) (tm), 'u,m) > dy,, (f,o,,, o (7‘«.{_{_1) (ulm) , u'm>

Proof: First assume n! < 0 . Then:

dx,, (cpm o (TCL'_H) ( 'm) , u'm) = dy,, (fpm o ¥(r) (ulm) , u‘m)-i-

dx,, ((pm 0 \ll( 1+1) ( 'm>,ulm) — [ff,\'m (u:n, w,,,) +dx,, ( ;n, u;") —dx,, (w,,,, w;n)]
dx,, (rpm (T(L ) um),um) =dx, (@m(7)(Um), n )+

dx,, (t,o,,, (ai_'_l)(u,,,),u,,l) - [(l‘\'m('lt,m,'l[),") +dy,, (um, m) —dy,, (wm,w;n)]

so the claim follows in this case from (2.3).

Second assume n] > 0 . Then:

d]fm ((Pm © lI, (Ta{-l-l) ( , )’um) = (ld\'m ((Pm o \IJ(T].) (‘”"m) 7 ulm>+
d:fm (‘Pm oW (fn{ a{+1) (um) ’ ulm) - [d.\'m (u:rm wm) + de (u‘nn w,m) - dz\’m (wm; w:n)]

In parallel with inequality (2.3) we obtain:

b () () ) = (o ()00 )

> Qde ((Pm (22) (wm)a wm)

and the claim follows, since we have assumed the inequality for 7 .

P D

(),

- —_—

Now suppose 7 , a left subword of one of the ¢; has the reduced form 7 = Tl(l , and
assume we have shortening inequalities for shorter subwords.

12



Claim 2.10 With the notations above:

dx,. (gom (Tf"{) (t), um) >dy,, (f,pm oW (Tf"{) (u_’m) ,u'm)
dy,, ((Pm (Tfn?) (tm), 'um) - dx,, (Qom oV (Tf"f) (u'm) ) '“"m)

- [dxm(%n(ﬂ(u?n)’ ) — dx,, (Som o ¥(r) (“rm) ) u’m)]

2> d.\'m ((Pm( z) ('wm ) y Wi ) .

Proof: First assume n] > 0 . Then:

dyx,, ((pm oW (Tf"'-') (u'm), ,") dx,, ((pm o ¥U(r )( m) , u;,,) +
oo () 1))~ )
dx,, (u:n, ) dx (wm, wm)]

But by proposition 2.7:

d,\'m (‘Pm (fni) (u’m)v 'm) dy,, (’Pm o\ (f )(’Um) 'U,m) =
n{ dx, (Pm (22) (wWm), wm) > dx,, (Pm(2)(wWm), Win)

and our claim follows for a positive exponent.

d (Som oV¥ (Tfn ) ( m) ) ?lm) = de ((Pm o 7‘11(7_1) (u‘m) y f[;,l) -+
dd\'m (‘Pm o ¥ (("?fni) (u:n)ﬂ m) [dx\ (“:m wm) +

dx,, ( m,w )— dy,, (wm,wm)]

In parallel with inequality (2.3), as we obtain in claim 2.9, we have:

o) s ) . () 05
> dx., ((p,,,( ) (u,m), m) - dy,, (zp,,, oW (a{)(u,’,,),u;,,)+

dx (fpm(z)(wm)y m)

and the claim follows.

Now assume n! < 0

1 I Om o'\II(an )(Um

el ) g

m Um

L]

u

Claims 2.9 and 2.10 complete the proof of theorem 2.8.
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Theorem 2.8 is clearly a contradiction to the way we’ve chosen the couples (@, %;,) and
therefore case 1B can not occur. We are left with the possibility of 3y being a vertex of
the limiting tree Y. ‘

Case 2 yo is a vertex of the limiting tree Y.

Our treatment in this case is very similar to the one we have already discussed, although
we do not have a distinguished edge in this case, so we compose the given automorphisms
©m with automorphisms that will make all edges attached to the vertex yy shorter, our system
of generators become shorter and we get a contradiction to the way the couples (i, ¥m)
were chosen. Let €p,---,€5 be the edges attached to the vertex correponds to yo in Y/G,
let Cy,---,C, be their cyclic stabilizers and let z, € C; . Again we need to consider two
cases which are parallel to 1A and 1B.

Case 2A The edge 2, is a bridge in the graph Y/G.

Let L} and L{ be the two components of ¥/G \ @ , suppose yo € L and let A, be
the fundamental group of the graph of groups L{ and B; of Lg . (By the construction of
Y, C is properly included in both A; and B ). For each j let g; be given in a
reduced form with respect to the above splitting:

RRNS N N
gj_alb{ an‘quJ‘

o) € Ay, bl € By al or b, may be the identity. Let ¢ be the length of the shortest
edge in Y. By the convergence of (X,,,u,,) to {Y,yo) the inequalities (2.1) hold for large
enough m for z = 2z .

Proposition 2.11 Let w,, € [um,fpm (b{)(*za,,l)] satisfy dxy, (um,wm) = 5 . For either
6 =41 or 6 = ~1 :

dx,, (um, Om (z‘g) (wm)) <dx, (wm,wm) < dx,, (um, Om (z[g)('wm))
dx,, ((pm (zg) (Wi )s ©m (ze_é) (wm)) < 2e1 .

Proof: identical with the proof of proposition 2.3,

Theorem 2.12 Assume proposition 2.11 holds for 6 = 1 . Let ¥; be an automorphism of
G given by:

Va e A Yela) =a
Vbe B Te(b) = zebz;
Then for m large enough we have:
(i) d,\'m (‘Pm (b',l) (um): um) > de ((Pm oW, (b':) (u‘ﬂl)j um)
(ii) g; € A = de (%u(gj)(ﬂm), U'm) = d.\'m(@m 0 \I’f(gj)(um),'um)
(iii) g; Q’ A= d‘Xm (‘Pm(gj)(um)a um) > de(‘Pm 0 lI’f(gj)(um):'“-m) -

14



Proof: By the inequalities (2.1):

ax (om (05727 () 0 ) = di (o (268]) (W), om{z2) () ) +
4 (Pm(20)(wm), ) + i, (9 (2660) (0), o (208277 () ) <
A5 (9 (6]) (W), 0 ) + 20, (W, 1) =

)

(i) is obvious since W(g;) = g; when g; € A¢ .
(iii) follows from (i), since if g; is the number of appearances of b;’ in g; ( ¢; is either g;
or ¢; —1 and since g; € A, q; is positive) we obtain:
dx,,(Pm(g;)(um), ) = dx, (@m0 Ve(g;)(um), wm) =
Gidx,, (pm(ze)(wm), (wm))
O
Case 2B Y/G \ g is a connected graph.

Let A, be the fundamental group of the graph of groups Y /G \ g (as we have noted before
A¢ # C¢ by the construction of ¥ ) G = Ag*¢, . Foreach j let ¢; be given in a reduced
form with respect to the given splitting:

) nj_. i n{;.
gi =@ fay f

af € Ay, a{ or f”'J'i may be the identity. From the convergence of (X, u,,) to (Y,%0)
in the Gromov topology (theorem 1.1), for m large enough the inequalities (2.2) hold. In
addition propositions 2.6 and 2.7 remain valid, so we have the following:

Theorem 2.13 Let W, be an automorphism of G given by:

Uela) =a Vae A

We(f) = fze
Then for m large enough (such that inequalities 2.2 hold) we have:
(‘) 9y EA=> de((Pm(gj)('U‘m)a um) = d.\'m(‘pm © \I’(?('“'m)uum)
(”) g; g A= d'Xm (%n(yj)('ltm), um) > dd\'m(ﬁpm o ‘IJE('“*m), um)

Proof: (i) is trivial from the definition of ¥, . (ii) follows from the inequalities (2.2) and
proposition 2.7, since if 7 = mal then:

dX,,, (‘Pm('r)(um), 'U-m) - de ((Pm o \IIE(T)(?f'nz>; '“'m) =
(l‘\’m ((10111(7-1)(“171)’ '“-m) - de ((Pm o \I}C(Tl )(”m); “m)

15



J
and for 7 = n f* we have:

de (CIDFII(T)(UHI):“'IH) - lem((Prn © ‘116(7_)(“731)1 “m) =
d.\'m (‘Pm(Tl)(um)a “m) - de((Pm o \I’g(ﬁ)(u,,,), 'U-m)+

lﬂ,{ dj{m (dwm: me(ze)(wm)) .

O

Theorem 2.14 Under the notations above let ¥ = Uy o ---0 W, . Then for m large enough
(so that inequalities (2.2) hold for { = 1,--- s } we obtain:

112_?%1& d,’f,,,(ﬁom(gj)(um)a u:n) > ]_H<1_ja%{t de((Pm o q’(“m), um)
Proof: Clearly by inequalities (2.2) the above maximum obtained for g; € stab(yo) .
Therefore, each g; which obtain the maximum satisfies g; € A, for some ( = ) ,
so its translation of wu,, is reduced by composing ¢, with ¥, . Since the translation of wup,
by g; does not increase by composing with the other W, ’s the theorem follows.

.

The whole construction of the tree Y based on the existence of a subsequence of k-

acylindrical splittings for G with ,, = max, dx,, (©m{g;)(tm), ) — oo . Since theorems

2.5, 2.8, 2.14 cancel all possibilities for the existence of a tree Y obtained by our construction,
we have shown:

Theorem 2.15 Let G = (g1, -+, ¢:) be a f.g. freely indecomposable group with no 2-torsion.
Let {Tim};,_, be the Bass-Serre trees for the k-cylindrical splittings of G. There exists a

m=
constant Xy , vertices u,, € Ty, and automorphisms o, € Aut(G) such that:

1??%{: dr,, (um, Pm(g;)(um)) < A

3. Acylindrical Accessibility and small splittings

Having bounded the image of given generators, we immediately obtain the following
(which we call “acylindrical accessibility”):

Theorem 3.1 Let G be a f.g. freely indecomposable group with no 2-torsion. For each k
there exists an integer v(k,G) so that the number of vertices and edges in all k -acylindrical
splittings of G does not exceed v(k,G) .

Proof: This clearly follows from theorem 2.15, since the number of G -orbits of edges and
vertices is bounded by the total length of a set of generators.

d
Remarks:

1. Acylindrical accessibility holds for (certain) f.g. groups, a class for which Dunwoody’s
accessibility fails to hold ([Du2], see also [Be-Fe2]).

2. Our bound v(k,G) is not qualitative, i.e. we do not get a bound on v(k,G) in terms of
other algebraic invariants of the group. This again differs from both Dunwoody [Dul] and
Bestvina-Feighn [Be-Fel] accessibilities.
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Now, we assume in addition that our group G is finitely presented. Let X be the
Cayley complex for the group G = {g1,---,gtlr1, -+, 7s) . By the Cayley complex we mean
adding a 2-cell for every conjugate of each of the defining relations to the Cayley graph of
G (cf. [Ly-Sc], ch. 3). Let R = 1121?2:3]7‘” and let By be the ball of radius R in X.

Definition 3.2 Let (T,ty) be a minimal pointed G -tree. The convex hull of ty under the

elements of Br equipped with notations for the image of ty under each of the elements of
Bpg is called the R-state of T, Sg(T) .

Since we have already bounded the length of the generators (theorem 2.15), there are
only finitely many possibilities for R -states of % -acylindrical splittings (trees) of our group
G. Given an R -state S, we know how each of the relations 71,---,rs collapses to a finite
tree. Moreover if two conjugates of »; and r;, have an edge in common, we know how to
collapse both to a finite tree. Therefore, we can start with the Cayley complex X' and collapse
each of the faces to a given finite tree according to the R -state 5. This collapsing procedure
is equivariant by definition, so we get a minimal G -tree 7. Let T be a minimal G -tree with
the same R -state S. By our construction we have the following commutative diagram:

GxT - T
lp lp
GxT — T

Vge G VteT  g(p(t)) = ply(t)) .

This leads us to the following, which we call “acylindrical super accessibility”.

Theorem 3.3 Let G be a f.p. freely indecomposable group with no 2-torsion. Then for each
k there exist G -trees Tu,- -, Ty ry such that every k-acylindrical splitting is covered (in
the above commutative diagram sense) up to isomorphism by one of the T; ’s.

The finiteness of R -states and G -trees obtained from them gives several fairly direct
corollaries. We start with k -acylindrical surfaces in 3-manifolds, for which we need the
following theorem due to Stallings, Epstein and Waldhausen:

Theorem 3.4 ([Cu-Sh], 2.3.1) Let M be a compact, orientable 3-manifold. For any non-
trivial splitting of m1(M ) there exists a non-empty system ¥ = L U---UX,, of incompressible
surfaces in M, none of which is boundary parallel, such that im(m (X;) — m(M)) is
contained in an edge group for i = 1,---,m and in(m(N) — m(M)) is contained in
a vertex group for each component of M \ T . Moreover, if KCOM is a subcomplex such
that im (7r1 (I;) — m (M )) is contained in a vertex group for each component K of K we
may take ¥ to be disjoint from K.

Recall, a k -acylindrical surface in a hyperbolic manifold M is an incompressible surface S
such that one of the pieces of M \ S contains at most ¥ non-homotopic cylinders.

Theorem 3.5 A compact, boundary irreducible, acylindrical hyperbolic 3-manifold contains
only finitely many closed k-acylindrical surfaces.

Proof: Let M be a 3-manifold satisfying the conditions above. Each closed % -acylindrical
surface defines a (2k + 2) -acylindrical spliting of 71 (M). m(M) is clearly f.p. and freely
indecomposable, so by theorem 3.3 there exist finitely many my(M)-trees T1,---,7, such
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that each (2k + 2) -acylindrical splitting is covered by one of the T; ’s:

mM)xT; - T,

lp lp
m(M)xT — T

Clearly, in a splitting of 71(M ) along the fundamental group of a closed incompressible
surface, the fundamental group of a boundary component stabilizes a vertex. Therefore,
if this is not the case with 7; , we may look at the minimal folding of 7; obtained by
identifying vertices, such that in this minimal folding each boundary component fixes a
vertex (we still denote such a minimal folding by 7; ). Now we are able to apply theorem
3.4 and conclude that each edge group of 7; contains the fundamental group of some closed
incompressible surface ©¢f . This implies that each 7} can cover finitely many splittings

L
along a k -acylindrical surface and our theorem follows.

O
Theorem 3.5 lead us to J. Hass’ theorem on acylindrical surfaces in closed 3-manifolds:

Theorem 3.6 [Ha] There are only finitely many acylindrical surfaces in a closed 3-manifold.

Proof: It is clear that a Seifert fibered and Solv marifolds do not contain acylindrical surfaces,
so it is enough to discuss compact, acylindrical hyperbolic ones.

O

Remark To prove theorems 3.5 and 3.6 we do not need the whole strength of our machinery.
It is enough to discuss f.p. groups with no cyclic splittings (theorem 1.5) and instead of Rips’
theory [Ri] it suffices to use Morgan-Shalen resuits [Mo-Sh].

A natural application of acylindrical super accessibility is small splittings. M. Bestvina
and M. Feighn have bounded the combinatorics of such splittings for f.p. groups [Be-Fel].
Our theory implies a much stronger finiteness result of isomorphism classes of such splittings,
under more restrictive algebraic conditions. Small splittings are closely related with the
structure of the automorphism group for hyperbolic groups, and a more detailed and deeper
discussion of both is given in [Ri-Sel] and [Se].

Proposition 3.7 Let G be a f.g. torsion-free group such that the normalizer of every cyclic
subgroup is cyclic. Then every splitting of G with cyclic edge stabilizers is obtained from an
action on a 4-acylindrical tree.

Proof: If G = (A,t|tzlt“1 = z2> for some subgroup A, then clearly both z; and zy are not
non-trivial powers. If G = A%¢ B and C = (c), then ¢ is not a power in either A or B.

Let Y be a minimal, reduced tree on which G acts with cyclic edge stabilizers and let Y/G
be the corresponding graph of groups. We define an equivalence relation on the edges of
Y/G, so that g ~ €; , if stab(g;) and stab(;) are contained in a common cyclic subgroup.
For each equivalence class we pick a vertex v, of Y/G that contains the maximal cyclic
group corresponding to the given equivalence class. Now we modify the graph Y/G such
that all edges in the equivalence class corresponding to the vertex v, have it as one of their
vertices (this can be done because G has the algebraic properties given above). The obtained
grpah of groups gives an action of G on a tree Y which is 4-acylindrical.

O
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Theorem 3.8 If G satisfies the conditions of proposition 3.7 and in addition finitely presented,
freely indecomposable, then G admits only finitely many isomorphism classes of splittings
with cyclic edge stabilizers.

Proof: By the previous proposition every small splitting can be viewed as a 4-acylindrical
one. By theorem 3.3 there are only finitely many & -trees 77y,---,7, that covers all small
splittings of G. Since G is freely indecomposable, the T; define small splittings of G with
cyclic edge stabilizers. Therefore, each small splitting is obtained from one of the 7; ’s by a
sequence of Stallings folds ([Be-Fel]). Each of the last folds either reduce the combinatorics
of the obtained graph of groups or enlarge edge stabilizers:

Type IA-reduce the combinatorics and perhaps enlarge edge stabilizers.
Type 1IA-enlarge one of the edge stabilizers.
Type 1I1A-reduce the combinatorics and perhaps enlarge edge stabilizers.

Since the combinatorics of each graph of groups correspond to one of the 7; ’s is bounded
and every edge stabilizer is of finite index in 2 maximal cyclic subgroup in G our theorem
follows.

O

Corollary 3.9 Let G be a f.p. torsion-free freely indecomposable group that satisfies one
of the following:

(i) G is (Gromov) hyperbolic.

(ii) G is discrete in Isom*(H™) and have no rank 2 parabolics.

(iii) G contains no rank 2 free abelian subgroups and admits a semisimple discrete action
on a non-positively curved simply connected manifold.

Then G admits only finitely many isomorphism classes of small splittings.

Proof: We need to show the groups in question satisfy the assumptions of proposition 3.7,
i.e. the normalizer of a cyclic group is cyclic. For hyperbolic groups this is proved in ([Gr],
ch. 8). A torsion-free element that stabilizes a semi-simple cyclic Kleinian subgroup must
have identical axis with the cyclic subgroup. Since we assume our group G is torsion-free, it
must belong to the cyclic group that map this axis to itself. If the cyclic subgroup is parabolic,
then every normalizing element in G fixes the same point at infinity, so the assumption of
3.7 follows since G has no rank 2 free abelian subgroups. If G is semisimple discrete group
of isometries of a Hadamard manifold, if ¢, z € G and t2t~1 € (z) , then tzt~! = z*! and
[t?,z] = 1. Therefore, it remains to show that if h} = z, hi* = z then [hy,hg] =1 since
we have assumed G has no rank 2 abelian subgroups. Let I' = (h;,hy) and let A denote
the center of I ,(2) < A. By ([BGS], 7.2) MIN(A) splits as 57 x R' where all elements
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of A actas (id,y) and all elements of I" act as (y1,7;) where 2 is a translation. Now,
[R1,ho] clearly fixes 72 in this splitting, it is not of finite order since G is torsion-free, so
if not trivial it has to be of infinite order. But [h;, hgy] and = generate a rank 2 free abelian
subgroup of G in that case, a contradiction.

O

Remarks:

(i) Proposition 3.7 can be modified for groups with higher rank abelian subgroups.

(i1) Proposition 3.7 implies acylindrical accessibility for f.g., torsion-free, freely indecom-
posable Kleinian groups and semisimple discrete groups of isometries of a Hadamard
manifold (this case is not covered by the Bestvina-Feighn accessibility).

Appendix: Bounded cohomology of groups with acylindrical splittings Let
G be a f.g. group with no 2-torsion and with a £ -acylindrical splitting. Let 7' be the Bass-
Serre tree corresponds to the acylindrical splitting of G. We follow Barge-Ghys construction
[Ba-Gh] to study the bounded cohomology of G.
Let — be an oriented path in 7. For each oriented segment [A, B]CT let &_(A,B) be
u u

the maximal integer n for which there exist g;,---,g, such that:

(ii) the interiors of ¢; — are disjoint for distinct elements.

(iii) the orientation of g; — agrees with that of [4,B] .

Let the weight of [A, B], W_ (A, B) be given by:
W_(A,B)=%_,(A,B)-d_(B,A)
Let * be (an arbitrary) base point in 7. For each ¢1,¢92 € G we define:
C—..'(gl’ g2) = 1’1’?(*,9192(*)) - WT(*’ n(*)) - PV:.(*, g2(*)) -

Proposition 4.1 [Ba-Gh]

(i) c— « defines a bounded 2-cocycle on G .
(i) The cohomology class of c_, . is trivial.

(iii) The bounded cohomology class corresponds to ¢, . does not depend on the base

point * .

Let g9 € C satisfy:
dr(t,go(t)) > k forall teT.

Let A be the axis of gy, let x € A, == [*,g0(x)] and fJ* : G — Z be given by:

2(g) = W, 9(*))

u

Lemma 4.2 Let ¢, = 6f7° . If [cg] is null bounded cohomology class then there exists a
homomorphism h : G — R | such that h{gp) = 1.
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Proof: Clearly, we have (1)_4(*,5;3(*)) = n and since T is A -acylindrical and G has no
2-torsion ®_.(gf(x),*) = 0, so we have f¥(g}) =n . Now, if [c4] is a null bounded

cohomology ::lass, there exists a bounded functional b: G — R such that c,, = 6b =46 fo
or 6(b - f") = 0, which implies b — f{* is a homomorphism h: G — R..

But |b(g2)| < K for some global constant ' and f%(¢%) = n which clearly give us
h(go) =1.
O

Theorem 4.3 Let G be a non-cyclic group with no 2-torsion which posess a k -acylindrical
splitting. Then H(G,R) # 0 .o

Proof: If 7' is a minimal tree for a group & and G is abelian, then 7' is either a point
or a real line. In both cases if G is not infinite cyclic, 7' is not a k -acylindrical tree for
G. If G is not abelian and has no 2-torsion, then the commutator subgroup of G can not
fix a vertex in a k -acylindrical tree. Since our tree T is k-acylindrical not all elements of
the commutator subgroup are therefore elliptics. Let § € [G, G| be a hyperbolic element and
g = (5)"*! . Since g1 € [G,G] there is no homomorphism from G to R that gives g1
the value 1, so by lemma 4.2 [Cg,] is not a null bounded cohomology class.

O
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