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Geometric properties of commutative subalgebras of partial

differential operators

Herbert Kurke Alexander Zheglov

Abstract

We investigate further alebro-geometric properties of commutative rings of partial differ-
ential operators continuing our research started in previous articles. In particular, we start
to explore the most evident examples and also certain known examples of algebraically inte-
grable quantum completely integrable systems from the point of view of a recent generaliza-
tion of Sato’s theory which belongs to the second author. We give a complete characterisation
of the spectral data for a class of ”trivial” rings and strengthen geometric properties known
earlier for a class of known examples. We also define a kind of a restriction map from the
moduli space of coherent sheaves with fixed Hilbert polynomial on a surface to analogous
moduli space on a divisor (both the surface and divisor are part of the spectral data). At
last, we give several explicit examples of spectral data and corresponding rings of commuting
(completed) operators, producing as a by-product interesting examples of surfaces that are
not isomorphic to spectral surfaces of any commutative ring of PDOs of rank one.

1 Introduction

In this paper we continue the study of algebro-geometric properties of commutative algebras of
partial differential operators (PDO for short) in two variables started in [23]. Everywhere in this
paper we assume that k is a field of characteristic zero.

Recall that one of very complicated questions appearing in the theory of algebraically inte-
grable systems is: how to find explicit examples of certain commutative rings of PDOs (see [23,
Introduction] for an extensive history). This question can be also reformulated in the following
way (see [5]). In classical mechanics an integrable Hamiltonian system on a manifold X of di-
mension n is a collection of functions f1, . . . , fn on the cotangent bundle T ∗X , that Poisson
commute among themselves and that are functionally independent. An analogous definition can
be given in the framework of algebraic geometry. Thus, by an integrable Hamiltonian system on
a smooth connected n -dimensional algebraic variety X we understand a pair (Λ, f) , where Λ
is an irreducible n -dimensional affine algebraic variety, and f : T ∗X → Λ is a dominant map
whose generic fiber is Lagrangian. In [5] the quantum analogue of this definition is also consid-
ered. By a quantum completely integrable system (QCIS) on X the authors understand a pair
(Λ, θ) , where Λ is an irreducible n -dimensional affine algebraic variety, and θ : OΛ → D(X)
is an embedding of algebras (here the algebra D(X) of differential operators on X is the quan-
tum analogue of the Poisson algebra O(T ∗X) ). If Λ = An , such a mapping is defined by a
n -tuple D1, . . . , Dn of differential operators on X which are algebraically independent and
which commute with each other.

By definition, a QCIS S = (Λ, θ) is said to be algebraically integrable if it is dominated by
another QCIS S′ with rk(S′) = 1 (see loc. cit.), where the rank of QCIS is the dimension of
the space of formal solutions of the system

θ(g)ψ = g(λ)ψ, g ∈ OΛ

near a generic point of X . This is an important notion that appeared first in the context of
soliton theory for dim(X) = 1 ([19]). In [5] these definitions were also generalized to the case of
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integrable systems on a formal polydisc. Thus, in this case X is Spec(k[[x1, x2, . . . , xn]]) and the
symbols OX , k(X), D(X) denote respectively k[[x1, . . . , xn]] , k((x1, . . . , xn)) , OX [∂1, . . . , ∂n] ,
where ∂i = ∂/∂xi . In this situation for n = 1 even the classification of all algebraically
integrable commutative subalgebras B = θ(Λ) ⊂ D(X) in terms of the spectral data is known
since the work of Krichever [20]. In [5] the criterion for algebraic integrability of QCIS’s is given
in terms of the corresponding Galois groups.

In this paper we continue to explore geometric properties of commutative rings of PDOs in
D = k[[x1, x2]][∂1, ∂2]] started in [23] (the restriction n = 2 seems to be basically not essential,
but in general case one needs to do some work to generalize a number of statements from our
previous papers). Recall that even in this case there is still no classification of algebraically
integrable (in the above sense) commutative subalgebras in terms of spectral data, though there
is a classification of subalgebras in a completed ring of differential operators (see [40], cf. [23,
Introduction]) in terms of Parshin’s modified geometric data (which include algebraic projective
surface, an ample Q -Cartier divisor, a point regular on this divisor and on the surface, a torsion
free sheaf on the surface and some extra trivialisation data). Moreover, up to now only a few
examples of such algebras are known. The first nontrivial examples appeared in [8], [9], [10].
The examples were connected with the quantum (deformed) Calogero-Moser systems. Later the
ideas of these constructions were developed in a series of papers (see e.g. [13], [14], [11]) in
order to construct more examples (for review see e.g. [7] and references therein; cf. also [5], [3],
[4]). Let’s also mention that the idea to construct a free BA-module (the module consisting of
eigenfunctions of the ring of PDO) was developed later by various authors (see e.g. [29], [27],
[7]) to produce explicit examples of commuting matrix rings of PDO.

In [23] several geometric properties of these data were investigated. In particular, all alge-
braically integrable commutative rings of PDOs correspond to rank one geometric data with X
Cohen-Macaulay, C rational and C2 = 1 , F torsion free of rank one and Cohen-Macaulay
along C . In this paper we strengthen the last property: namely, we show that any commutative
subalgebra of PDOs (satisfying as in [23] certain mild conditions) leads to a sheaf F on X
which is Cohen-Macaulay (theorem 3.1).

Cohen-Macaulay rank one torsion free sheaves appearing as sheaves from geometric data
classifying commutative subalgebras of (completed) operators with fixed spectral surface can be
parametrized by a moduli space which is an open subscheme of the projective scheme parametris-
ing semistable sheaves with fixed Hilbert polynomial (see remark 2.9). We introduce in this paper
a kind of restriction map ζ from this moduli space to the moduli space of coherent torsion free
rank one sheaves on the divisor C (see sections 2.1, 2.3) and formulate a conjecture that this
morphism is surjective (remark 2.9). It is important to study this moduli space in order to find
new examples of algebraically integrable systems or to classify commutative algebras of PDOs.
We hope to return to this question in future works.

This moduli space can be thought of as another analogue of the Jacobian of the curve in
the context of the classical KP theory. Recall that in the work [32] Parshin offered to consider
a multi-variable analogue of the KP-hierarchy which, being modified, is related to algebraic
surfaces and torsion free sheaves on such surfaces as well as to a wider class of geometric data
consisting of ribbons and torsion free sheaves on them if the number of variables is equal to two
(see [38], [22, Introduction]). In the work [22] we described the geometric structure of the Picard
scheme of a ribbon. This scheme has a nice group structure and can be thought of as an analogue
of the Jacobian of a curve in the context of the classical KP theory. In particular, generalized
KP flows are defined on such schemes. The disadvantage of the Picard scheme of a ribbon is its
infinite-dimensionality. The moduli space we have mentioned above is finite dimensional. The
generalized KP flows are also defined on it. Clearly , it can be embedded into the Picard scheme
of a ribbon.

To investigate already existing examples of commutative algebras mentioned above we prove

2



a theorem (3.3) about algebraically integrable commutative rings of PDOs whose affine spectral
surface is rational. Such rings appeared, for example, in papers [13], [14], [11], [4]. In the examples
from these papers the normalisation of the affine spectral surface is known to be A2 . In [4] the
authors gave a method of producing new non-trivial examples of commutative rings of PDOs
using the Darboux transformation. We show in theorem 3.3 that all rings with this property
of the affine spectral surface are Darboux transformations of rings of operators with constant
coefficients. As a by-product we also give a geometric characterisation of certain completion of
A2 (see theorem 3.2): a completion of A2 , whose divisor at infinity is an ample irreducible
Q -Cartier divisor with self-intersection index 1, is P2 . This result could be probably proved
by classical methods of algebraic geometry using old results of Morrow ([28]) or relatively new
results of Kojima, Takahashi ([18]) (we would like to thank M.Gizatoulline and T.Bandman for
pointing out these works), but we used instead only some ideas from our theory of ribbons and
(or alternately) the construction of the generalized Krichever-Parshin map.

It is reasonable to ask if there are examples of algebraically integrable commutative rings of
PDOs whose spectral surface is isomorphic to a given one. We give here two counterexamples
(3.1, 4.1), both for affine and projective spectral surfaces.

Another natural question is: how to characterise those commutative algebras which consist
of operators not depending on x1 or x2 . We call these algebras ”trivial”, because one can easily
construct such algebras taking commutative subalgebras of one-variable operators and adding
a derivation with respect to another variable. Surprisingly the geometry of spectral data is not
so trivial for these algebras. We give a description (theorem 4.1) of such algebras in terms of
geometric data.

At last, we give examples (4.1, 4.2) of surfaces for which it is possible to describe all sheaves
from the moduli space mentioned above and calculate all corresponding rings of commuting
(completed) operators. All these rings are ”trivial”.

The paper is organized as follows:
In section 2.1 we recall basic definitions of geometric data from [40], introduce the restriction

map ζ and prove several technical lemmas.
In section 2.2 we recall basic definitions and properties of the ring of completed operators,

recall the classification theorem from [40] and prove additional technical lemmas.
In section 2.3 we recall and prove some properties of Schur pairs corresponding to data with

sheaves whose Hilbert polynomial is fixed, and formulate the conjecture about the map ζ .
In section 3 we prove theorems about CM-property, completion of plane and Darboux trans-

formations mentioned above.
In section 4 we give the description of ”trivial” algebras and examples.
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2 Preliminaries

On the two-dimensional local field k((u))((t)) we will consider the following discrete valuation
of rank two ν : k((u))((t))∗ → Z⊕ Z :

ν(f) = (m, l) iff f = tlumf0, where f0 ∈ k[[u]]∗ + tk((u))[[t]].

(Here k[[u]]∗ means the set of invertible elements in the ring k[[u]] .) We also define the discrete
valuation of rank one

νt(f) = l.

2.1 Geometric data

In this paper we will work with the geometric data described in [40]. In this subsection we
recall definitions from [40], [23]; we slightly change some definitions from loc.cit. to simplify the
exposition and to avoid explaining certain technical details.

For any n -dimensional irreducible projective variety X over the field k , and any Cartier
divisors E1, . . . , En ∈ Div(X) on X one defines the intersection index (E1 · . . . · En) ∈ Z on
X (see, e.g., [15], [24, ch. 1.1].) Let (En) = (E · . . . · E) be the self-intersection index of a
Cartier divisor E ∈ Div(X) on X , and F be a coherent sheaf on X . There is the asymptotic
Riemann-Roch theorem (see survey in [24, ch. 1.1.D]) which says that the Euler characteristic
χ(X,F ⊗OX

OX(mE)) is a polynomial of degree ≤ n in m , with

χ(X,F ⊗OX
OX(mE)) = rk(F) · (En)

n!
·mn +O(mn−1), (1)

where rk is the rank of sheaf.
There is the cycle map: Z : Div(X) → WDiv(X) from the Cartier divisors to the Weil

divisors on X (see [23, Appendix A]). From the above description it follows that if E1, E2 ∈
Div(X) such that Z(E1) = Z(E2) , then the self-intersection indices (En1 ) = (En2 ) on X (see
[23, §2.4]).

The cycle map Z restricted to the semigroup of effective Cartier divisors Div+(X) is an
injective map to the semigroup of effective Weil divisors WDiv+(X) not contained in the sin-
gular locus. We will say that an effective Weil divisor C on X not contained in the singular
locus is a Q -Cartier divisor on X if lC ∈ Im (Z |Div+(X)) for some integer l > 0 .

Definition 2.1. Let C be a Q -Cartier divisor on X . We define the self-intersection index
(Cn) on X as

(Cn) = (Gn)/ln, (2)

where G = lC is a Cartier divisor for some integer l > 0 .

We note that if l > 0 is minimal such that lC is a Cartier divisor, then for any other l′ > 0
with the property l′C is a Cartier divisor we have that l | l′ . Therefore, using above reasonings
and the property (En1 ) = mn(En2 ) for any E1 = mE2 , E2 ∈ Div(X) , m ∈ Z we obtain that
formula (2) does not depend on the choice of appropriate l .

Definition 2.2. We call (X,C, P,F , π, φ) a geometric data of rank r if it consists of the
following data (where we fix the ring k[[u, t]] for all data):

1. X is a reduced irreducible projective algebraic surface defined over a field k ;

2. C is a reduced irreducible ample Q -Cartier divisor on X ;

3. P ∈ C is a closed k -point, which is regular on C and on X ;
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4.
π : ÔP −→ k[[u, t]]

is a local k -algebra homomorphism satisfying the following property. If f is a local
equation of the curve C at P , then π(f)k[[u, t]] = trk[[u, t]] and the induced map
π : OC,P = OP /(f) → k[[u]] = k[[u, t]]/(t) is an isomorphism. (The definition of π
does not depend on the choice of appropriate f . Besides, from this definition it follows
that π is an embedding, k[[u, t]] is a free ÔP -module of rank r with respect to π .
Moreover for any element g from the maximal ideal MP of OP such that elements g
and f generate MP we obtain that ν(π(f)) = (0, r) , ν(π(g)) = (1, 0) .)

5. F is a torsion free quasi-coherent sheaf on X .

6. φ : FP ↪→ k[[u, t]] is an OP -module embedding subject to the following condition for
any n ≥ 0 (we note that by item 4 of this definition, k[[u, t]] is an OP -module with
respect to π ). By item 2 there is the minimal natural number d such that C ′ = dC
is a very ample divisor on X . Let γn : H0(X,F(nC ′)) ↪→ F(nC ′)P be an embedding
(which is an embedding, since F(nC ′) is a torsion free quasi-coherent sheaf on X ). Let
εn : F(nC ′)P → FP be the natural OP -module isomorphism given by multiplication
to an element fnd ∈ OP , where f ∈ OP is chosen as in item 4. Let τn : k[[u, t]] →
k[[u, t]]/(u, t)ndr+1 be the natural ring epimorphism. We demand that the map

τn ◦ φ ◦ εn ◦ γn : H0(X,F(nC ′)) −→ k[[u, t]]/(u, t)ndr+1

is an isomorphism. (These conditions on the map φ do not depend on the choice of the
appropriate element f .)

Remark 2.1. The rank of the sheaf is greater or equal to the rank of the data, see [23, Rem.3.3].
If the sheaf F is coherent of rank one, then π is an isomorphism and φ induces the isomorphism
φ̂ : F̂P ' k[[u, t]] , see [40, Rem. 3.5]. Note that any two trivialisations φ̂1, φ̂2 : F̂P ' k[[u, t]]
differ by multiplication on an element a ∈ k[[u, t]]∗ . In some cases the conditions on the map φ
in last item of the definition can be rewritten in purely algebro-geometrical terms, see proposition
2.2 below.

Given a geometric data (X,C, P,F , π, φ) of rank r we define a pair of subspaces

W,A ⊂ k[[u]]((t)),

where A is a filtered subalgebra of k[[u]]((t)) and W a filtered module over it, as follows (cf.
[40, Def.3.15]):

Let fd be a local generator of the ideal OX(−C ′)P , where C ′ = dC is a very ample Cartier
divisor (cf. definition 2.2, item 6). Then ν(π(fd)) = (0, rd) in the ring k[[u, t]] and therefore
π(fd)−1 ∈ k[[u]]((t)) . So, we have natural embeddings for any n > 0

H0(X,F(nC ′)) ↪→ F(nC ′)P ' f
−nd(FP ) ↪→ k[[u]]((t)),

where the last embedding is the embedding f−ndFP
φ
↪→ f−ndk[[u, t]]↪→k[[u]]((t)) (cf. definition

2.2, item 6). Hence we have the embedding

χ1 : H0(X\C,F) ' lim−→
n>0

H0(X,F(nC ′)) ↪→ k[[u]]((t)).

We define W
def
= χ1(H0(X\C,F)) . Analogously the embedding H0(X\C,O) ↪→ k[[u]]((t)) is

defined (and we’ll denote it also by χ1 ). We define A
def
= χ1(H0(X\C,O)) .
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As it follows from this construction,

A ⊂ k[[u′]]((t′)) ⊂ k[[u]]((t)), (3)

where t′ = π(f) , u′ = π(g) (see also definition 2.2, item 4). Thus, on A there is a filtration
An induced by the filtration t′−nk[[u′]][[t′]] on the space k[[u′]]((t′)) :

An = A ∩ t′−nk[[u′]][[t′]] = A ∩ t−nrk[[u]][[t]] (4)

We have X ' Proj(Ã) , where Ã =
∞⊕
n=0

Ans
n (see also [40, lemma 3.3, lemma3.6, th.3.3]). The

similar filtration is defined on the space W ⊂ k[[u]]((t)) :

Wn = W ∩ t−nrk[[u]][[t]] (5)

And the sheaf F ' Proj(W̃ ) 1, where W̃ =
∞⊕
n=0

Wns
n . Note that we have Wnd ' H0(X,F(nC ′))

by definition 2.2, item 6 and by construction of the map χ1 .

Remark 2.2. Let’s note that we can construct the analogous spaces Wn, W̃ for any torsion
free sheaf F (not only for sheaves from data) endowed with a OP -module embedding FP ↪→
k[[u, t]] . Such an embedding exists, for example, if F is a coherent torsion free rank one Cohen-
Macaulay sheaf (or, more generally, F is locally free at P ). In this case the stalk FP is a free
OP -module, φ′ : FP ' OP , and we can define the embedding φ by composing a trivialization
φ′ with the isomorphism π . Note that, if we choose another trivialisation of such sheaf F , then
the new space W will differ from the old one by multiplication on the element a ∈ k[[u, t]]∗ and
the space A will not change. Note also that the property Wnd ' H0(X,F(nC ′)) might not be
true in general.

Remark 2.3. We will also use in our paper the following notation. Let Ã(i) (or W̃ (i) ) de-
note the graded ring (module) obtained from Ã ( W̃ ) by the shift of grading, i.e. the k -th
homogeneous component is Ã(i)k = Ãk+i . Define the family of coherent sheaves on X :

Bi = Proj(Ã(i)), Fi = Proj(W̃ (i)).

Then from (3), (4) it easily follows that the sheaves

Bi/Bi−1 ' Proj(
∞⊕
n=0

Ai+n/Ai+n−1), Fi/Fi−1 ' Proj(
∞⊕
n=0

Wi+n/Wi+n−1)

are torsion free coherent sheaves on C ' Proj(B0/B−1) .
In particular, for any torsion free sheaf F endowed with a OP -module embedding FP ↪→

k[[u, t]] we have a kind of a ”restriction” map:

ζ : F 7→ F0/F−1 (6)

from the set of torsion free sheaves on X to the set of torsion free sheaves on C .
For sheaves F satisfying the property Wnd ' H0(X,F(nC ′)) for all n � 0 we have

F ' F0 by [33, Lemma 9] and [16, Ch.2, ex. 5.9]. If F is a torsion free sheaf of rank one locally
free at P , then by remark 2.2 for another choice of trivialisation at P there are isomorphisms
F ′k ' Fk for any k . So, in this case definition of ζ depends only on F .

1Here and later in the article we use the non-standard notation Proj for the quasi-coherent sheaf associated

with a graded module. If M is a filtered module, then we use the notation M̃ =
∞⊕
i=0

Mis
i for the analog of the

Rees module, as well as for filtered rings.

6



If C ′ = dC is a very ample Cartier divisor from definition 2.2, then by [12, prop.2.4.7] we
have Fnd = Proj(W̃ (nd)) ' Proj(W̃ (d)(n)) and Proj(W̃ (d)(n)) ' Proj(W̃ (d))(n) ' F0(nC ′) for
any n . On the other hand, for any torsion free sheaf F and any m > 0 we also have the exact
sequences

0→ F ⊗OX
OX(−mC ′)→ F → F ⊗OX

(OX/OX(−mC ′))→ 0.

Thus the pull-back of the sheaf F0 on the scheme (C, i−1(OX/OX(−mC ′))) (where i : C ↪→ X
denotes the embedding) is isomorphic to the pull-back of the sheaf F0/F−md . We will denote
this pull-back as F0|mC′ .

Note that the scheme (C, i−1(OX/OX(−mC ′))) is an irreducible scheme since C is irre-
ducible. Hence the nilradical of the ring Ã/Ã(−md) is prime. From (3), (4) it again follows that
Ass(W̃/W̃ (−md)) coincides with this nilradical. Therefore, the restriction F0|mC′ is a torsion
free sheaf in the following sense: any restriction of a non-zero section a ∈ F0|mC′(U) (where U
is any open subset of C ) to a smaller open subset is not zero.

Notably, we have the following property for any torsion free sheaf F such that its restriction
F|mC′ on the scheme (C, i−1(OX/OX(−mC ′))) is torsion free in the same sense:

Lemma 2.1. Let F be a torsion free sheaf on X endowed with a OP -module embedding
FP ↪→ k[[u, t]] such that its restriction F|mC′ is torsion free for all m > 0 .

Then we have H0(X,F(nC ′)) ' Wnd for all n ≥ 0 , where C ′ = dC is an ample Cartier
divisor and Wnd is defined by formula (5).

Proof. By definition of the space W we have

Wnd = {w ∈W |fndw ∈ k[[u]][[t]]} = {w ∈W |νt(fndw) ≥ 0}.

We also have by definition χ1(H0(X,F(nC ′)) ⊂ Wnd . Let w ∈ Wnd , w 6= 0 . Let’s show that
w ∈ χ1(H0(X,F(nC ′)) . We have

w ∈ χ1(H0(X,F(mC ′))

for some m . Since F is a torsion free sheaf and C ′ is a Cartier divisor, we have embeddings

χ1(H0(X,F(kC ′)) ⊂ χ1(H0(X,F(nC ′))

for all k ≤ n . Suppose that m > n . Assume the converse: w /∈ χ1(H0(X,F(nC ′)) . Let
b ∈ H0(X,F(mC ′)) be the preimage of w : w = χ1(b) .

There is a neighbourhood U(P ) of the point P , where the ample Cartier divisor C ′ is
defined by the element fd . Since w ∈ Wnd , we have w ∈ f−nd(FP ) (since the stalk FP
is embedded in k[[u, t]] by the map φ from item 6), thus b|U(P ) ∈ Γ(U(P ),F(nC ′)) and
b|U(P ) 6= 0 (since F is torsion free). Now we have the following commutative diagram:

b ↪→ H0(C,F(mC ′)|(m−n)C′)

↓ ↓
0→ Γ(U(P ),F(nC ′))→ Γ(U(P ),F(mC ′))

α→ H0(U(P ) ∩ C,F(mC ′)|(m−n)C′)

,

where the vertical arrows are embeddings. Indeed, the right vertical arrow is an embedding since
F(mC ′)|(m−n)C′ is a torsion free sheaf by assumption.

But α(b) = 0 , a contradiction. Thus, b ∈ H0(X,F(nC ′)) .

By [23, Cor. 3.1] all sheaves F of rank one appearing in the geometric data from definition
2.2 are Cohen-Macaulay along C . As it easily follows from definition 2.2 (item 6) all such sheaves
fulfil the property OX ⊂ F , P /∈ Supp(F/OX) .
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Lemma 2.2. Let F be a torsion free rank one sheaf on X . Assume that F is Cohen-Macaulay
along C .

Then for some trivialisation φ̂ : F̂P ' k[[u, t]]

Wnd ' H0(X,F(nC ′))

for all n ≥ 0 (see remark 2.2), or, equivalently, F0 ' F .

Proof. By construction of the space W we have H0(X,F(nC ′)) ⊂ Wnd (cf. the beginning of
the proof of lemma 2.1). We also have Γ(X\C,F) 'W . Consider the sheaf F0 . We obviously
have the embedding F ↪→ F0 . As in the proof of the previous lemma there is a neighbourhood
U(P ) of the point P , where the ample Cartier divisor C ′ is defined by the element fd . Thus,
f−d ∈ Ãd and the localisation W̃(f−d) is naturally embedded into FP . Therefore, cfP ' F0,P .
By corollary 2.1 we have Γ(X\C,F0) 'W . Thus, the support of the sheaf F0/F is a finite set
of closed points, and therefore by [23, Rem.B2] (applied to the Cohen-Macaulayfication of the
sheaves F0 , F ) F0 ' F .

Corollary 2.1. For any k ≥ 0 we have H0(X,Fk(nC ′)) 'Wnd for all n ≥ 0 .

The proof is obvious.

Now let’s give the last definition in this section.

Definition 2.3. We define a category Q of geometric data as follows:

1. The set of objects is defined by

Ob(Q) =
⋃
r∈N
Qr,

where an object from Qr denotes the geometric data of rank r up to the following iden-
tification: two geometric data (X,C, P,F , π1, φ1) and (X,C, P,F , π2, φ2) are identified if
the corresponding to these data pairs of subspaces (A1,W1) and (A2,W2) coincide (i.e.
A1 = A2 and W1 = W2 ).

2. A morphism

(β, ψ) : [(X1, C1, P1,F1, π1, φ1)] −→ [(X2, C2, P2,F2, π2, φ2)]

of two objects consists of a morphism β : X1 → X2 of surfaces and a homomorphism
ψ : F2 → β∗F1 of sheaves on X2 such that:

(a) β|C1 : C1 → C2 is a morphism of curves and β−1(X2\C2) = X1\C1 ;

(b)
β(P1) = P2.

(c) There exists a continuous k -algebra isomorphism h : k[[u, t]]→ k[[u, t]] (in a natural
linear topology, where the base of neighbourhoods of zero is generated by the powers
of the maximal ideal) such that

h(u) = u mod (u2) + (t), h(t) = t mod (ut) + (t2),

and the following commutative diagram holds:

H0(X2\C2,O2)
β]

−−−−→ H0(X1\C1,O1)yχ2

yχ1

k[[u]]((t))
ĥ−−−−→ k[[u]]((t)),

where ĥ denotes the natural extension of the map h to a k -algebra k[[u]]((t))
automorphism.
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(d) There is a k[[u, t]] -module isomorphism ξ : k[[u, t]] ' h∗(k[[u, t]]) (which is given just
by multiplication of a single invertible element ξ ∈ k[[u, t]]∗ ) such that the following
commutative diagram holds:

H0(X2\C2,F2)
ψ−−−−→ H0(X2\C2, β∗F1) = H0(X1\C1,F1)yχ2

yχ1

k[[u]]((t))
ξ̂−−−−→ h∗(k[[u]]((t))) = k[[u]]((t)).

2.2 Commutative rings of operators

In this paper we will work mainly with commutative k -algebras of PDOs B ⊂ D =
k[[x1, x2]][∂1, ∂2] that satisfy the following condition:

B contains the operators P,Q with constant principal symbols such that

the intersection of the characteristic divisors of P,Q is empty. (7)

Recall that the symbol σ(P ) of an operator P ∈ D is called constant if σ(P ) ∈ k[ξ1, ξ2] .
The characteristic divisor is given by the divisor of zeros of σ(P ) in Pn−1

k . It is unchanged by
a k -linear change of coordinates x1, . . . , xn . Recall also that any operator Q from the ring B
satisfying condition (7) has constant principal symbol (see e.g. [23, Lemma 2.1]) and all such
rings are finitely generated k -algebras of Krull dimension 2 (see e.g. [23, Th.2.1]).

In the work [40] was shown that such algebras are a part of a wider set of commutative k -
algebras B′ ⊂ D̂ , and all algebras from this set can be classified in terms of geometric data from
subsection 2.1. To explain what is going on we need to recall several definitions and statements
from [40].

Definition 2.4. We define the order function on the ring k[[x1, x2]] by the rule

ordM (a) = sup{n|a ∈ (x1, x2)n}.

Definition 2.5. ([40, Sect.2.1.5]) Define

D̂1 = {a =
∑
q≥0

aq∂
q
1 |aq ∈ k[[x1, x2]] and for any N ∈ N there exists n ∈ N such that

ordM (am) > N for any m ≥ n}. (8)

Define
D̂ = D̂1[∂2], Ê+ = D̂1((∂−1

2 )).

Definition 2.6. ([40, Def.2.12])
We say that an operator P ∈ D̂ has order ordΓ(P ) = (k, l) if P =

∑l
s=0 ps∂

s
2 , where

ps ∈ D̂1 , pl ∈ k[[x1, x2]][∂1] = D1 , and ord(pl) = k (here ord is the usual order in the ring of
differential operators D1 ). In this situation we say that the operator P is monic if the highest
coefficient of pl is 1 .

We say that an operator P ∈ D̂ , P =
∑
pij∂

i
1∂

j
2 with ordΓ(P ) = (k, l) satisfies the

condition Aα , α ≥ 0 if

(Aα) ordM (pij) ≥
{

0 if i ≤ α(l − j) + k
i− α(l − j)− k otherwise

9



Definition 2.7. ([40, Def.2.18]) The ring B ⊂ D̂ of commuting operators is called quasi elliptic
if it contains two monic operators P,Q such that ordΓ(P ) = (0, k) and ordΓ(Q) = (1, l) for
some k, l ∈ Z .

The ring B is called α -quasi elliptic if P,Q satisfy the condition Aα .

Definition 2.8. ([40, Def.3.4]) The commutative α -quasi elliptic rings B1 , B2 ⊂ D̂ are said
to be equivalent if there is an invertible operator S ∈ D̂1 of the form S = f + S− , where
S− ∈ D̂1∂1 , f ∈ k[[x1, x2]]∗ , such that B1 = SB2S

−1 .

Definition 2.9. ([40, Def.3.1]) The subspace W ⊂ k[z−1
1 ]((z2)) is called α -space, if there exists

a basis wi in W such that wi satisfy the condition Aα for all i (we identify here and below
the ring k[z−1

1 ]((z2)) with the ring k[∂1]((∂−1
2 )) via z1 ↔ ∂−1

1 , z2 ↔ ∂−1
2 )

Using the identification z1 ↔ ∂−1
1 , z2 ↔ ∂−1

2 we can extend the definition of the order
function ordΓ from definition 2.6 on the field V = k((z1))((z2)) . Using the anti-lexicographical
order on the group Z ⊕ Z we define the least term LT (a) of any series a from V to be the
monomial of a with the least order.

Definition 2.10. ([39]) The support of a k -subspace W from the space V is the k -subspace
Supp(W ) in the space V generated by LT(a) for all a ∈W .

Definition 2.11. ([40, Def.3.2]) We say that a pair of subspaces (A,W ) , where A,W ⊂
k[z−1

1 ]((z2)) and A is a k -algebra with unity such that W · A ⊂ W , is a α -Schur pair if A
and W are α -spaces and Supp(W ) = k[z−1

1 , z−1
2 ] .

We say that α -Schur pair is a α -quasi elliptic Schur pair if A is a α -quasi elliptic ring .

Consider the ring Ê+ = D̂1((∂−1
2 )) . It has a natural action on the space k[z−1

1 ]((z2)) via
the isomorphism Ê+/(x1, x2)Ê+ ' k[z−1

1 ]((z2)) which endows this space with the structure of
a right Ê+ -module.

Definition 2.12. ([40, Def.3.3]) An operator T ∈ Ê+ is said to be admissible if it is an invertible
operator of order zero such that T∂1T

−1 , T∂2T
−1 ∈ k[∂1]((∂−1

2 )) . The set of all admissible
operators is denoted by Adm .

An operator T ∈ Ê+ is said to be α -admissible if it is admissible and satisfies the condition
Aα (the definition of the condition Aα for operators from Ê+ is literally the same as for
operators from D̂ ). The set of all α -admissible operators is denoted by Admα .

We say that two α -Schur pairs (A,W ) and (A′,W ′) are equivalent if A′ = T−1AT and
W ′ = WT , where T is an admissible operator.

Remark 2.4. In fact, in our paper we will use all conditions and definitions with α = 1 . This
is the only case when the classification theorems from [40] (see also below) work.

Let’s recall here one more notion from [40].
We will say that an operator Q =

∑
qij∂

i
1∂

j
2 ∈ Ê+ satisfies the condition Aα for order

(k, l) if Aα holds for all qij .
Consider the set in Ê+

Π1 = {P ∈ Ê+| ∃ (k, l) ∈ Z+ ⊕ Z s. that P satisfies A1 for (k, l) }.

It is an associative subring with unity (see [40, Corol.2.2]).
We note that Π1 ⊃ D . Recall that by [40, lemma 2.10, lemma 2.11] it follows that any

1 -quasi elliptic ring B belongs to Π1 .

Remark 2.5. By [40, Lemma 2.11] any two operators with constant coefficients L1, L2 of the
form

L1 = ∂1 +
∞∑
q=1

vq∂
−q
2 , L2 = ∂2 +

∞∑
q=1

uq∂
−q
2
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and satisfying condition A1 can be obtained as L1 = S−1∂1S , L2 = S−1∂2S , where S =
1 + S− ∈ k[[x1, x2]][∂1]((∂−1

2 )) is an invertible zeroth order 1 -admissible operator.
On the other hand, as one can easily check, for the operator

T0 = c0 exp(c1x2∂1) exp(c2x2 + c3x1) ∈ D̂1, (9)

where c0, c1, c2, c3 ∈ k , we have

T−1
0 ∂1T0 = ∂1 + c3, T−1

0 ∂2T0 = ∂2 + c1∂1 + c1c3 + c2.

So, any 1 -admissible operator can be written in the form T = ST0 .

Theorem 2.1. ([40, Th.3.2]) There is a one to one correspondence between the classes of
equivalent 1 -quasi elliptic Schur pairs (A,W ) with Supp(W ) = 〈z−i1 z−j2 |i, j ≥ 0〉 and the
classes of equivalent 1 -quasi elliptic rings of commuting operators B ⊂ D̂ .

The proof of the theorem is constructive; the spaces A and W are obtained as follows:
A = S−1BS , W = k[z−1

1 , z−1
2 ]S , where S is a monic operator of special type satisfying the

condition A1 . It is defined by a pair of normalized operators from B (see [40, §2.3.4] or definition
below) using the analogue of Schur’s theorem in dimension one (see [40, Lemma 2.11]).

Definition 2.13. We say that commuting monic operators P,Q ∈ Ê+ with ordΓ(P ) = (0, k) ,
ordΓ(Q) = (1, l) are almost normalized if

P = ∂k2 +

k−1∑
s=−∞

ps∂
s
2 Q = ∂1∂

l
2 +

l−1∑
s=−∞

qs∂
s
2,

where ps, qs ∈ D̂1 .
We say that P,Q are normalized if

P = ∂k2 +

k−2∑
s=−∞

ps∂
s
2 Q = ∂1∂

l
2 +

l−1∑
s=−∞

qs∂
s
2,

where ps, qs ∈ D̂1 .

Recall that by [40, lemma 2.10] any two commuting operators of order (0, k) and (1, l) can
be normalized by conjugating with an invertible operator S ∈ D̂1 . The space A from theorem
2.1 depends only on the choice of the pair of normalized operators from B , and don’t depend on
the choice of the operators S from [40, Lemma 2.11]. If one chooses another pair of normalized
operators from B , then the resulting Schur pair from theorem 2.1 will be equivalent to the
first one. The following lemma clarifies the structure of elements in a ring that has a pair of
normalized operators and in any equivalent ring.

Lemma 2.3. i) If the ring B ⊂ Π1 of commuting operators contains a pair of normalized
operators P,Q with ordΓ(P ) = (0, k) , ordΓ(Q) = (1, l) ( k > 0 ), then all operators in B
have constant highest coefficients, i.e. if L =

∑N
s=0 ls∂

s
2 , then lN is an operator with constant

coefficients. In particular, lN ∈ D1 (i.e. it has a finite order).
Moreover, any operator P ′ ∈ B with ordΓ(P ′) = (0,m) has the form

P ′ =

m∑
s=0

p′s∂
s
2, where p′m ∈ k and p′m−1 has constant coefficients

and any operator Q′ ∈ B with ordΓ(Q′) = (1, n) has the form

Q′ =
n∑
s=0

q′s∂
s
2, where q′n = c1∂1 + c0 , c0, c1 ∈ k .
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ii) If B′ = S−1BS , S ∈ D̂1 is an equivalent 1 -quasi elliptic ring containing a pair of
normalized operators P ′, Q′ with ordΓ(P ′) = (0, k′) , ordΓ(Q′) = (1, l′) ( k′ > 0 ), then S has
the form

S = c0 exp(c1x2∂1) exp(c2x2 + c3x1) ∈ D̂1,

where c0, c1, c2, c3 ∈ k (cf. remark 2.5).

Proof. i) We have

0 = [P, P ′] = k∂2(p′m)∂k+m−1
2 +k∂2(p′m−1)∂k+m−2

2 +[pk−2, p
′
m]∂k+m−2

2 + terms of lower degree.
(10)

Hence ∂2(p′m) = 0 , i.e. p′m don’t depend on x2 . Then we have

0 = [Q,P ′] = [∂1, p
′
m]∂m+l

2 +[∂1, p
′
m−1]∂l+m−1

2 +[ql−1, p
′
m]∂l+m−1

2 + terms of lower degree. (11)

Hence [∂1, p
′
m] = 0 and therefore p′m must be an operator with constant coefficients. So,

p′m ∈ D1 (and clearly these arguments work for any operator from B ). Since ordΓ(P ′) = (0,m) ,
p′m is a constant, and since ordΓ(Q′) = (1, n) , q′n must be a linear polynomial. But then
from (11) we have [∂1, p

′
m−1] = 0 , i.e. p′m−1 don’t depend on x1 , and from (10) we have

∂2(p′m−1) = 0 , i.e. p′m−1 must be an operator with constant coefficients.

ii) We have P ′ = S−1P̃S , Q′ = S−1Q̃S for some operators P̃ , Q̃ ∈ B . Since S is
invertible, we obviously have

S = c ∈ k∗ mod (x1, x2).

Therefore, since by item i) the highest terms of operators P̃ , Q̃ are constant-coefficient operators,
we must have ordΓ(P̃ ) = (0, k′) and ordΓ(Q̃) = (1, l′) . From remark 2.5 we know that there
exists an operator S0 of the form exp(cx1) such that S−1

0 q̃l′S0 = ∂1 (here q̃l′ is a linear
polynomial with constant coefficients). Then obviously the operator S′ = SS−1

0 don’t depend
on x1 . So, S = S′S0 .

From remark 2.4 we know that P̃ , Q̃ ∈ Π1 and from item i) we know that p̃k′ , p̃k′−1 are
operators with constant coefficients (and p̃k′ = ∂k

′
2 ). Thus, S′ has the form

S′ = exp(F (x2, ∂1)),

where F is a polynomial in x2, ∂1 . This polynomial is linear iff p̃k′−1 is linear. But if it is not
linear, then the operator (S′)−1P̃S′ will not satisfy the condition A1 (as P̃ satisfies A1 for
some (k, l) ), a contradiction. So, it is linear and we are done.

As this lemma shows, if there is a pair of normalized operators in B , then any equivalent
ring B′ that has a pair of normalized operators is obtained from B by conjugation with an
operator of special form, and this conjugation is equivalent to a linear change of variables

∂2 7→ ∂2 + c∂1 + b, ∂1 7→ ∂1 + d (12)

with c, b, d ∈ k . The Schur pair corresponding to such a ring B′ will be equivalent to the first
one as well.

Conversely, of one starts from any Schur pair (A,W ) in a given equivalence class, then the
ring B can be constructed as B = SAS−1 , where S now comes from the analogue of the Sato
theorem (see theorem 2.2 below). If (A′,W ′) is an equivalent Schur pair, then A′ = T−1AT ,
W ′ = WT for some 1 -admissible operator T , which can be written (see remark 2.5) in the
form T = T ′T0 , where T0 has the form (9), and T ′ = 1 + T− , where T− ∈ D̂1[[∂−1

2 ]]∂−1
2 .

Then it is easy to see that the corresponding Sato operator for the space W ′ from theorem 2.2
is S′ = T−1

0 ST ′T0 . So, the corresponding ring B′ = S′A′(S′)−1 = T−1
0 BT0 , i.e. it is obtained

from B by the linear change (12). It will automatically contain a pair of normalized operators.
To find a pair of normalized operators in a given ring B we need sometimes to replace B

by an equivalent ring (see [40, Lemma 2.10]).

12



Theorem 2.2. ([40, Th.3.1]) Let W be a k -subspace W ⊂ k[z−1
1 ]((z2)) with Supp(W ) = W0 .

Let {wi,j , i, j ≥ 0} be the unique basis in W with the property wi,j = z−i1 z−j2 + w−i,j , where

w−i,j ∈ k[z−1
1 ][[z2]]z2 . Assume that all elements wi,j satisfy the condition Aα with α ≥ 1 .

Then there exists a unique operator S = 1 + S− satisfying Aα , where S− ∈ D̂1[[∂−1
2 ]]∂−1

2 ,
such that W0S = W .

The Schur pairs from theorem 2.1 one to one correspond to pairs of subspaces in the space
k[[u]]((t)) via an isomorphism

ψ1 : k[z−1
1 ]((z2)) ∩Π1 ' k[[u]]((t)) z2 7→ t, z−1

1 7→ ut−1, (13)

where k[z−1
1 ]((z2))∩Π1 denotes the k -subspace generated by series satisfying the condition A1

(see [40, Cor.3.3]). We will denote these pairs by the same letters (A,W ) . Obviously, W ·A ⊂W .

Definition 2.14. ([40, Def.3.5,3.6]) For the ring A ⊂ k[[u]]((t)) define

NA = GCD{νt(a), a ∈ A such that ν(a) = (0, ∗)},

where ∗ means any value of the valuation. Define

ÑA = GCD{νt(a), a ∈ A}.

We’ll say that the ring A is strongly admissible if there is an element a ∈ A with ν(a) = (1, ∗)
and ÑA = NA .

Definition 2.15. ([40, Def.3.8]) For 1 -quasi elliptic commutative ring B ⊂ D̂ we define num-
bers ÑB , NB to be equal to the numbers ÑA , NA , where A is the ring corresponding to B
by theorem 2.1 (after applying the isomorphism (13)). We say that B is strongly admissible if
A is strongly admissible.

For a strongly admissible ring B we define rank

rk(B) = NB = ÑB

Remark 2.6. If the ring B in the definition 2.15 is a ring of PDO’s, then the numbers ÑB ,
NB and the rank can be defined similarly to definition 2.14:

NB = GCD{ord(Q), Q ∈ B such that ordΓ(Q) = (0, ∗)}.

Define
ÑB = GCD{ord(Q), Q ∈ B},

where ord means the usual order in the ring D .
Analogously, B is strongly admissible if there is an element Q ∈ B with ordΓ(Q) = (1, ∗)

and ÑB = NB . Its rank rk(B) = NB = ÑB .
We would like to emphasize that the rank of the ring B defined as NB = ÑB is less or

equal to the rank of the sheaf of common eigenfunctions of the operators from B (this notion
of rank is often used in various papers). This follows from [23, Prop. 3.3, Prop. 3.2, Th.2.1].

Below we will write rk(B) to denote the rank in the second sense.

Theorem 2.3. ([40, Th.3.4]) There is a one to one correspondence between the set of classes
of equivalent 1 -quasi elliptic strongly admissible finitely generated rings of operators in D̂ of
rank r and the set of isomorphism classes of geometric data Mr of rank r .
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If we have a ring B ⊂ D of commuting PDOs satisfying the property 7, then by [40, Lemma
2.6] and by [40, Prop.2.4] (cf. also the beginning of section 3.1 in loc. cit.) there is a linear
change of variables making this ring 1 -quasi elliptic strongly admissible. Moreover, as it follows
from the proofs of [40, Lemma 2.6, Prop.2.4], almost all linear changes of variables preserve the
property of the ring to be 1 -quasi elliptic strongly admissible. In particular, for almost all linear
changes we have the following extra property of the operators P,Q from definition 2.7:

σ(P ) = ξk2 +
k∑
q=1

hqξ
q
1ξ
k−q
2 , hk 6= 0; σ(Q) = ξ1ξ

l
2 +

l+1∑
q=2

cqξ
q
1ξ
l+1−q
2 , cl+1 6= 0. (14)

Remark 2.7. From the construction of geometric data starting from 1 -quasi elliptic strongly
admissible ring given in [40, Sec.3] follows that the ring after such linear change of variables
corresponds to the data with the same surface, divisor and sheaf, but with other point P and
trivializations π, φ (cf. also [23, Th.2.1, Prop.3.2]).

Remark 2.8. If the ring B of PDOs is of rank r (i.e. it is 1 -quasi-elliptic strongly admissible),
then, obviously, there are two operators P,Q as in definition 2.7 with k = l + 1 = ord(P ) . In
this situation, examining the arguments from the proof of Lemma 2.10, item 1 in [40], we see
that there are some β ∈ k and f ∈ k[[x1, x2]]∗ such that the operators f−1(P +βQ)f , f−1Qf
are normalized (in the sense of [40, Def. 2.19]). Thus, in the equivalent class of B we can find
again a ring of PDOs with a pair of normalized operators.

As the arguments from the proof of theorem 2.1 given above show, any Schur pair equivalent
to the Schur pair associated with B leads to a ring B′ obtained from B by the linear change
of variables (12). Thus, B′ is also a ring of PDOs!

There is another nice property of 1 -quasi elliptic subrings of partial differential operators
claiming the ”purity” of such rings:

Proposition 2.1. ([40, Prop.3.1]) Let B ⊂ D ⊂ D̂ be a 1 -quasi elliptic ring of commuting
partial differential operators. Then any ring B′ ⊂ D̂ of commuting operators such that B′ ⊃ B
is a ring of partial differential operators, i.e. B′ ⊂ D .

2.3 Schur pairs, ribbons and moduli space

We would like to recall that in the classical KP theory there are well known geometric data clas-
sifying the commutative rings of ordinary differential operators. These data consist of projective
curves over a field k plus line bundles (or torsion free sheaves if the curve is singular) plus
some additional data (a distinguished point p of the curve plus a formal local parameter at p ,
and a formal trivialization at p of the sheaf). Also there is a map which associate to each such
data a pair of subspaces (A,W ) (”Schur pairs”) in the space V = k((z)) , where A ! k is a
stabilizer k -subalgebra of W in V : A ·W ⊂W , and W is a point of the infinite-dimensional
Sato grassmannian (see e.g. [26] for details). This map is usually called as the Krichever map in
the literature. In works [34], [33] (see also [31]) Parshin introduced an analogue of the Krichev-
er map which associates to each geometric data (which include a Cohen-Macaulay surface, an
ample Cartier divisor, a smooth point and a vector bundle) a pair of subspaces (A,W) in the
two-dimensional local field associated with the flag (surface, divisor, point) k((u))((t)) (with
analogous properties). He showed that this map is injective on such data. In works [33], [31]
some combinatorial construction was also given. This construction helps to calculate cohomolo-
gy groups of vector bundles in terms of these subspaces and permits to reconstruct the geometric
data from the pair (A,W) . The difference of this new Krichever-Parshin map from the Krichever
map is that the last map is known to be bijective.

To extend the Krichever-Parshin map and to make it bijective we introduced in the work [21]
new geometric objects called formal punctured ribbons (or simply ribbons for short) and torsion
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free coherent sheaves on them, we extended this map on the set of new geometric data which
include these objects and showed the bijection between the set of geometric data and the set of
pairs of subspaces (A,W) (also called generalized Schur pairs) satisfying certain combinatorial
conditions. We also showed that for any given Parshin’s geometric data one can construct a
unique geometric data with a ribbon, and the initial Parshin’s data can be reconstructed from
the new data with help of the combinatorial construction mentioned above. In the work [23] we
extended this construction to the modified Parshin’s data from definition 2.2.

2.3.1 Properties of the Krichever map in dimension one

First let’s recall some properties of the classical Krichever map for torsion free sheaves of rank
one (see [25], [26] for details; we change slightly some notation from these papers here). In this
case the geometric data is a quintet (C,P,F , u, φ) , where C is a projective curve, P is a
smooth point on C , F is a torsion free sheaf of rank one, u is a local parameter such at the
point P (in particular, there is an isomorphism π : ÔC,P ' k[[u]] ), and φ : F̂P ' k[[u]] is
a trivialisation. Obviously, any two such trivialisations differ by multiplication on an element
a ∈ k[[u]]∗ . The Schur pair A,W ⊂ k((u)) is constructed in analogous way as in section 2.1:
A is the image of the group H0(C\P,OC) in the space k((u)) (which is obtained using the
trivialisation π ), and W is the image of the group H0(C\P,F) in the space k((u)) (which is
obtained using the trivialisation φ ). If we choose another trivialisation of the sheaf F then the
new space W will differ from the old one by multiplication on the element a ∈ k[[u]]∗ and the
space A will not change.

In this case we also have the following properties in terms of spaces A,W :

F(nP ) ' Proj(W̃ (n)), (15)

where W̃ = ⊕∞n=0Wns
n , Wn = W ∩ un · k[[u]] ;

H0(C,F) 'W ∩ k[[u]], H1(C,F) ' k((u))

W + k[[u]]
. (16)

Recall that all torsion free rank one sheaves with fixed Euler characteristic can be divided into
the union of orbits of the group Pic0(C) . Namely (see [36, Sec.6]) there are maximal torsion
free sheaves, i.e. sheaves not isomorphic to a direct image of a torsion free sheaf on a (partial)
normalisation of the curve C , and not maximal torsion free sheaves, i.e. sheaves isomorphic to
direct images of torsion free sheaves on partial normalisations of C . If the sheaf is maximal
then the action of the group Pic0(C) is free on it. Thus, every orbit of a torsion free sheaf of
rank one is a torsor over Pic0(C ′) , where C ′ is a partial normalisation of C . This torsor has
a topology induced by the topology of Pic0(C ′) . Further we will need the following fact: if the
Euler characteristic of a sheaf F is k ≥ 0 , then there exists a dense open subset U in the orbit
of this sheaf such that for each L ∈ U

H1(C,L) = 0, H0(C,L) = k, H1(C,L(−kP )) = 0, H0(C,L(−kP )) = 0. (17)

This fact can be proved by induction on k as follows. For any torsion free sheaf F with Euler
characteristic k ≥ 0 , any fixed smooth point Q and n � 0 we have H1(C,F(nQ)) = 0 ,
h0(C,F(nQ)) = k + n > 0 . For any fixed global section a ∈ H0(C,F(nQ)) there is a dense
open subset U ⊂ C such that for any P ∈ U the image of an embedding of a in OC,P (with
help of any trivialisation) is invertible. Then from properties (15) and (16) follows that

h0(C,F(nQ− P )) = n+ k − 1, H1(C,F(nQ− P )) = 0.

Thus, by induction there exists an open subset U ′ ⊂ C such that for any P ∈ U ′

H0(C,F(nQ− (n+ k)P )) = 0, H1(C,F(nQ− (n+ k)P )) = 0,
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H1(C,F(n(Q− P ))) = 0, h0(C,F(n(Q− P ))) = k.

The rest of the proof follows from [16, Th.12.8] for the morphism f : Pic0(C) × C → Pic0(C)
and the Poincare sheaf P .

2.3.2 Three properties of the pair (A,W)

Now we would like to recall three properties of the pair (A,W) . First we recall (see, for exam-
ple, [21]) that a k -subspace W in k((u)) is called a Fredholm subspace if

dimkW ∩ k[[u]] <∞ and dimk
k((u))

W + k[[u]]
<∞.

For a k -subspace W in k((u))((t)) , for n ∈ Z let

W (n) =
W ∩ tnk((u))[[t]]

W ∩ tn+1k((u))[[t]]

be a k -subspace in k((u)) = tnk((u))[[t]]
tn+1k((u))[[t]]

.

The first property is the following. Let the pair (A,W) be the image of the ribbon’s data
corresponding to some geometric data of rank one from definition 2.2 (for details see [23, Sec.3.5]).
Recall (see remarks 2.2, 2.3) that for all rank 1 torsion free sheaves the map ζ (6) was defined.
Then (see the proof of theorem 1 in [21])

A(nd) ' the image of the quintet (C,P,OC(nC ′), u, id) in k((u)) under the Krichever map,
(18)

where C ′ = dC is the ample Cartier divisor as above (note that OC(nC ′) ' ζ(OX(nC ′)) ), and

W(nd+k) ' the image of the quintet (C,P, ζ(Fk(nC ′)), u, φ) under the Krichever map, (19)

where 0 ≤ k < d and φ is some trivialization of the sheaf ζ(Fk(nC ′)) at the point P on C
(note that ζ(Fk(nC ′)) ' (Fk/Fk−1)(nC ′) ). Thus, from one-dimensional KP theory (see (16))
we have

H0(C, (Fk/Fk−1)(nC ′)) 'W(nd+ k) ∩ k[[u]],

H1(C, (Fk/Fk−1)(nC ′)) ' k((u))/(W(nd+ k) + k[[u]]) (20)

The second property is the following. Assume that the pair A,W ∈ k((u))((t)) comes from
a geometric data of rank one. Then

H0(X,OX(nC ′)) ' A · tnd ∩ k[[u]]((t)) ∩ k((u))[[t]], (21)

H1(X,OX(nC ′)) ' A · tnd ∩ (k[[u]]((t)) + k((u))[[t]])

A · tnd ∩ k[[u]]((t)) + A · tnd ∩ k((u))[[t]]
, (22)

H2(X,OX(nC ′)) ' k((u))((t))

A · tnd + k[[u]]((t)) + k((u))[[t]]
. (23)

For the proof see remark 3 and lemma 1 from [22] (remark 3 refers for the proof to papers [31, 33],
where C was assumed to be a Cartier divisor; in general case it is not difficult to improve the
proof from these papers; nevertheless, we will need these property in our paper only for such
cases when C is known to be Cartier). In particular, if C is a Cartier divisor, it follows that

OX(nC) ' OX,n, ζ(OX(nC)) ' OC(nC) (24)

for any n (cf. remark 2.3).
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The third property is:

If A is Cohen-Macaulay ring then A = A ∩ k[[u]]((t)) , (25)

where A,W are the subspaces in k[[u]]((t)) constructed above starting from the geometric
data. This claim was proved in [23, Remark 3.4]. In the introduction to the loc.cit. the analogous
property for the space W was also announced (though imprecise):

W = W ∩ k[[u]]((t)).

We are going to clarify it here.

Proposition 2.2. Let F be a coherent rank one torsion free sheaf on a projective surface X
defined over an uncountable algebraically closed field k . Assume that there is an ample irreducible
Q -Cartier divisor C ⊂ X not contained in the singular locus such that C2 = 1 . Let C ′ = dC
be a very ample Cartier divisor. Suppose that the following conditions hold (see remarks 2.2,
2.3):

χ(X,F(nC ′)) =
(nd+ 1)(nd+ 2)

2
, H0(C, ζ(Fk)(−(k+ 1)Q)) = H1(C, ζ(Fk)(−(k+ 1)Q)) = 0

for a smooth point Q ∈ C , n ≥ 0 , where 0 ≤ k < d . Then
i) there exists a point P ∈ C regular in C and X such that the conditions from item 6 of

definition 2.2 hold for a trivialisation φ̂ : F̂P ' k[[u, t]] , i.e. the homomorphisms

H0(X,F(nC ′))→ k[[u, t]]/(u, t)nd+1

are isomorphisms for all n ≥ 0 ;
ii) for this trivialisation

W = W ∩ k[[u]]((t));

iii) for this trivialisation

H1(X,F) ' W ∩ (k[[u]]((t)) + k((u))[[t]])

W ∩ k[[u]]((t)) + W ∩ k((u))[[t]]
= 0, (26)

H2(X,F) ' k((u))((t))

W + k[[u]]((t)) + k((u))[[t]]
= 0; (27)

iv) the sheaf F is Cohen-Macaulay on X .

Proof. i) For any sheaf Fk and m > 0 we have the short exact sequences

0→ ζ(Fk)→ ζ(Fk)⊗OC
OX(mC ′)|C → ζ(Fk)⊗OC

(OX(mC ′)|C/OC)→ 0,

since OX(mC ′)|C is an invertible sheaf. Hence we have H1(C,Fk ⊗OC
OX(mC ′)|C) = 0 for all

m ≥ 0 . Since C2 = 1 (i.e. deg(OX(C ′)|C) = d ), by the asymptotic Riemann-Roch theorem we
have

χ(ζ(Fk)⊗OC
OX(mC ′)|C) = h0(C, ζ(Fk)⊗OC

OX(mC ′)|C) = md+ k + 1. (28)

For each m ≥ 0 by the property (17) there is an open subset Um in C such that

H0(C, ζ(Fk)⊗OC
OX(mC ′)|C ⊗OC

OC(−(md+ k + 1)Q)) =

H1(C, ζ(Fk)⊗OC
OX(mC ′)|C ⊗OC

OC(−(md+ k + 1)Q)) = 0, and

h0(C, ζ(Fk)⊗OC
OX(mC ′)|C ⊗OC

OC(−(md)Q)) = k + 1 (29)
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for any Q ∈ Um . Therefore, since the ground field is uncountable, there exists a point P ∈
∩∞m=0Um such that these properties hold simultaneously for all m ≥ 0 and 0 ≤ k < d . Since
for any n ≥ 0 by lemma 2.1 we have

Wnd+k/Wnd+k−1 ' H0(X,Fk(nC ′))/H0(X,Fk−1(nC ′)) ↪→ H0(C, ζ(Fk)⊗OC
OX(nC ′)|C),

and χ1(H0(X,F(nC ′))) ⊂Wnd by definition, we have that for all n� 0

h0(X,F(nC ′)) = χ(F(nC ′)) =
(nd+ 1)(nd+ 2)

2
≤ dimk(Wnd) ≤

d−1∑
k=0

n−1∑
m=0

h0(C, ζ(Fk)⊗OC
OX(mC ′)|C) + h0(C, ζ(Fk)⊗OC

OX(nC ′)|C). (30)

By (28) these inequalities are equalities. Therefore, H0(X,F(nC ′)) ' Wnd for any n � 0 .
Hence F ' F0 and

H0(X,F(nC ′)) 'Wnd, Wnd+k/Wnd+k−1 ' H0(C, ζ(Fk)⊗OC
OX(nC ′)|C) (31)

for all n ≥ 0 by remark 2.3 and by lemma 2.1. Together with (29) this implies that the conditions
from item 6 of definition 2.2 hold for some trivialisation at the point P .

ii) By (16) and (19) we have

H0(C, ζ(Fk)⊗OC
OX(nC ′)|C) 'W(nd+ k) ∩ k[[u]].

From this and from (31) follows that W = W ∩ k[[u]]((t)) .
iii) By assumption on the Euler characteristic of the sheaf F and from (31) it follows

h1(X,F) − h2(X,F) = 0 . From (29) we know that h1(C, ζ(Fk) ⊗OC
OX(nC ′)|C) = 0 for any

0 ≤ k < d and n ≥ 0 . Recall that we have exact sequences

0→ Fk → Fk+1 → ζ(Fk+1)→ 0

for any 0 ≤ k . So, from the induced long exact cohomological sequences and from (31) we obtain
H1(X,Fk) ' H1(X,Fk+1) for any k ≥ 0 . Thus, all these groups are zero, since H1(X,Fk+nd) =
H1(X,Fk(nC ′)) = 0 for all n� 0 . Hence H2(X,F) = 0 . From item ii) we get

W ∩ (k[[u]]((t)) + k((u))[[t]]) ⊂W ∩ k[[u]]((t)) + W ∩ k((u))[[t]],

where from
W ∩ (k[[u]]((t)) + k((u))[[t]])

W ∩ k[[u]]((t)) + W ∩ k((u))[[t]]
= 0.

By (16) and (19) we have

0 = H1(C, ζ(Fk)⊗OC
OX(nC ′)|C) ' k((u))

W + k[[u]]

for all k ≥ 0 . Hence
k((u))((t))

W + k[[u]]((t)) + k((u))[[t]]
= 0.

iv) By [23, Cor.3.1] the sheaf F is Cohen-Macaulay along C . The same arguments show that
the sheaves Fk are Cohen-Macaulay along C . Consider the Macaulaysation CM(F) of the
sheaf F (see [23, Appendix B]). Consider the image W ′ = χ1(H0(X\C,CM(F))) in k[[u]]((t)) ,
where we use the same embedding φ of the sheaf F to define χ1 (cf. section 2.1). Let’s note
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that CM(F)|mC′ = F|mC′ is a torsion free sheaf for any m > 0 , since F is Cohen-Macaulay
along C . Then by lemma 2.1 we have H0(X,CM(F)(nC ′)) 'W ′nd for all n ≥ 0 .

Directly from definition of a Cohen-Macaulay sheaf follows that the sheaves CM(F)k
are Cohen-Macaulay for all k . Note that CM(Fk) ' CM(F)k . Indeed, by definition of
Cohen-Macaulaysation we have CM(Fk) ⊂ CM(F)k . If CM(Fk) 6' CM(F)k , then this
would mean CM(Fk)−k 6' (CM(F)k)−k ' CM(F) . But CM(Fk)−k ' CM(F) , since
CM(Fk)−k ⊂ (CM(F)k)−k ' CM(F) and CM(Fk)−k is a Cohen-Macaulay sheaf contain-
ing F (cf. [23, Rem.B.2]).

In particular, we can apply the construction from [23, Sec.3.5] and construct a torsion free
sheaf N on the ribbon (C,A) (the ribbon constructed by our geometric data). Then we can
construct a space W′ ⊂ k((u))((t)) by the sheaf N . Since the construction depends only on
sections of the sheaves CM(Fk) along the curve C , we get W′ = W . Hence from item ii) we
obtain F ' CM(F) .

Remark 2.9. Torsion free sheaves of rank one on the projective surface X with fixed Hilbert
polynomial χ from proposition 2.2 are stable in the sense of [17, Ch.2]. Stable sheaves are
parametrized by a projective scheme MX(χ) (see Chapter 4 in loc.cit.).

On the other hand, all sheaves we are interested in satisfy the assumptions of lemma 2.2
(and in view of theorems 3.1 and 4.1 even more strong assumption: they are Cohen-Macaulay
on X ). By [6, Prop.1.2.16] the Cohen-Macaulayness is an open condition. So, it is reasonable
to consider an open subscheme M1

X of the moduli space MX(χ) parametrising such sheaves.
Then the map ζ from remark 2.3 induces the morphism

ζ :M1
X →MC(g),

where MC(g) is the moduli space of rank one torsion free sheaves of degree g = pa(C) on C
(cf. [35]). We conjecture that this morphism is surjective (cf. examples at the end of this paper).

3 Theorems

3.1 Cohen-Macaulay property for PDOs

Recall that by [23, Th.2.1] any commutative ring B ⊂ D of PDOs satisfying the property (7)
leads to a datum (X,C,L) , where X,C are the same as in definition 2.2 and L is a torsion
free coherent sheaf on X . Thus datum don’t depend on linear change of variables in D , i.e. any
ring B after this linear change leads to the datum naturally isomorphic to the first one. Thus,
if we want to learn more about geometric properties of this datum we can assume without loss
of generality that B is a 1-quasi-elliptic strongly admissible ring satisfying the extra property
(14).

In this case by [23, Prop. 3.3] the datum (X,C,L) is isomorphic to the triple (X,C,F) (a
part of geometric data) from theorem 2.3. If B is of rank one, then by [23, Th. 2.1] we have
C2 = 1 , and by [23, Prop. 3.2] the sheaf F and the geometric data from theorem 2.3 are of
rank one.

Theorem 3.1. Let (X,C, P,F , π, φ) be a geometric datum of rank r corresponding to a 1-
quasi-elliptic strongly admissible ring B ⊂ D of commuting operators satisfying the properties
(7), (14).

Then F is a Cohen-Macaulay sheaf on X .

Remark 3.1. If the ring B is maximal then by [40, Th.4.1] the surface X is also Cohen-
Macaulay.
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Proof. By [23, Prop.3.2] the sheaf F ' L is coherent.
Consider the Macaulaysation CM(F) of the sheaf F (see [23, Appendix B]). By [23, Cor.

3.1] the sheaf F is Cohen-Macaulay along C ; in particular, FP ' CM(F)P . Consider the
image W ′ = χ1(H0(X\C,CM(F))) in k[[u]]((t)) , where we use the embedding φ of the sheaf
F to define χ1 (cf. section 2.1). Then we claim that this image is a finitely generated linear
space over W = χ1(H0(X\C,F)) :

W ′ = 〈W,w1, . . . , wk〉,

where w1, . . . , wk /∈W , w1, . . . , wk ∈ k[[u]]((t)) .
To prove the claim, first of all let’s note that CM(F)|mC′ = F|mC′ is a torsion free sheaf

for any m > 0 (see remark 2.3 for the notation), since F is Cohen-Macaulay along C . Then
by lemma 2.1 we have H0(X,CM(F)(nC ′)) 'W ′nd for all n ≥ 0 , where C ′ = dC is an ample
Cartier divisor and W ′nd is defined by formula (5).

As a corollary we get that for n > 0 big enough

W ′nd/W
′
(n−1)d ' H

0(C,CM(F)(nC ′)|C′) = H0(C,F(nC ′)|C′) 'Wnd/W(n−1)d.

Obviously, W ′nd ⊃Wnd for all n . So, our claim is proved.
By [40, Th.3.3, Th.3.1] there is a unique operator S satisfying condition A1 such that

ψ−1
1 (W ) = W0S (the map ψ1 is defined in (13)), where W0 = k[z−1

1 , z−1
2 ] . Moreover, B =

Sψ−1
1 (A)S−1 , where A = χ1(H0(X\C,OX)) . Since W ′ ·A ⊂W ′ , we have

(ψ−1
1 (W ′)S−1) ·B ⊂ (ψ−1

1 (W ′)S−1), ψ−1
1 (W ′)S−1 = 〈W0, w̃1, . . . , w̃k〉,

where w̃i = ψ−1
1 (wi)S

−1 . Each series w̃i can be written in the following way:

w̃i = w′i + w′′i , w′i =
∑

k≥0,l>0,k+l=qi

cklz
−k
1 zl2, w′′i =

∑
k≥0,l>0,k+l<qi

bklz
−k
1 zl2

To the end of this proof we will call qi the order of w′i : ord(w′i) = qi . Since the ring B satisfies
the property (14), for any n > 0 the symbols of the operators Pn , Qn satisfy the same property
(14) with k, l replaced by kn, ln . For all n� 0 and for any w̃i we must have

w̃iP
n ∈ (ψ−1

1 (W ′)S−1), w̃iQ
n ∈ (ψ−1

1 (W ′)S−1).

Direct calculations show that these elements can be represented as

w̃iP
n = w′iσ(P )n + ”lower order terms”, w̃iQ

n = w′iσ(Q)n + ”lower order terms”.

Hence, since n� 0 , we must have w′iσ(P )n, w′iσ(Q)n ∈W0 . Therefore, w′iσ(P )n, w′iσ(Q)n must
be homogeneous polynomials of orders qi+nk , qi+n(l+1) . Since the characteristic schemes of
P and Q have no intersection, this mean that w′i must be a homogeneous polynomial of order
qi . But then since w′i /∈ W0 and due to the property (14) the polynomials w′iσ(P )n, w′iσ(Q)n

will contain a nonzero monomial of type cz−a1 zb2 /∈W0 for b > 0 , a contradiction. Thus, all w̃i
must be zero, and W ′ = W , where from CM(F) = F .

3.2 Geometric properties of rational commutative algebras of PDOs

Theorem 3.2. Let X be a projective surface, C ⊂ X — an integral Weil divisor not contained
in the singular locus of X which is also an ample Q -Cartier divisor and C2 = 1 . Assume that
X\C ' A2 .

Then X ' P2 , C ' P1 .
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Proof. Since C is not contained in the singular locus of X , we can choose a point P regular
on C and on X . Choose local parameters u, t at P such that t is a local equation of C at
the point P and u ∈ OP restricted to C is a local equation of the point P on C .

Now we have the natural isomorphism

π : ÔP → k[[u, t]].

Using this isomorphism we can repeat the construction of the subspace A from section 2.1 and

define A
def
= χ1(H0(X\C,O)) .

Repeating the arguments from the proof of [40, lemma 3.6] we obtain that for all n ≥ 0

H0(X,OX(nC ′)) ' And,

where Al = A ∩ t−lk[[u, t]] . Since C2 = 1 , we must have for all n� 0

dim(And/A(n−1)d) = d2n+ const. (32)

Consider any element a ∈ And such that ν(a) = (∗, nd) . We claim that ∗ ≤ nd .
Indeed, by [23, sec.3.4] there is a canonically defined ribbon (C,A) over the field k . Thus, by

the proof of [21, Th.1] we can construct the space A in k((u))((t)) which is generalized Fredholm
subspace (see loc. cit. or section 2.3). As it follows from (18), the space A(nd) is naturally
isomorphic to a Fredholm subspace in the field k((u)) obtained as the image of the sheaf
OX(nC ′)|C under the Krichever map. For n� 0 we have also H0(C,OX(nC ′)|C) ' And/And−1

and by (16)
dim(A(nd) ∩ k[[u]]) = h0(C,OX(nC ′)|C) = nd+ const. (33)

Remark 3.2. Alternately, we can just repeat the construction of the generalized Krichever map
from [33] or from [31] in our situation (replacing a Cartier divisor there with a Q -Cartier one)
to avoid referring to the theory of ribbons.

Since C2 = 1 , we have that the Euler characteristic

χ(A(nd)) = nd+ const.

Now we can apply arguments from the proof of [39, Th.1] to show that ∗ ≤ nd . Assume the
converse. We have a ·A(0) ⊂ A(nd) . It is easy to see that χ(a ·A(0)) = χ(A(0)) + ∗ . Now we
have

χ(A(nd)) = nd+ const < ∗+ const = χ(A(0)) + ∗ = χ(a ·A(0)) ≤ χ(A(nd)),

a contradiction.
Now note that, since X\C ' A2 , we have A ' k[p, q] . So, the space A is generated by

monomials pkql . Because of the claim and formulas (32) and (33) we conclude that (without
loss of generality) ν(p) = (0, 1) , ν(q) = (1, 1) (since otherwise these conditions would be
impossible). But then A ' k[t−1, ut−1] and X ' Proj(⊕An) = P2 , C ' Proj(⊕An/An−1) = P1

(cf. the proof of [40, lemma 3.3]).

Example 3.1. Using the idea from the proof of theorem 3.2 we can give an example of an affine
surface which can not be a spectral surface of any ring B of PDO’s of rank one satisfying the
property 7. For example, consider the ring

A = k[X1, X2, X3]/(F ), (34)

where F = X1X2 + X3 +
∑r

q=1 gqX
q
1 , and gi ∈ k[X3] are any polynomials and k is an

algebraically closed field.
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Then (see [2, Ch.VII,§3, Ex.5]) A is a factorial ring, and Spec(A) is a rational affine surface.
It is easy to see that A is not isomorphic to a polynomial ring k[u, v] for generic gi and that
Spec(A) is a smooth surface. Assume that there exists a ring B ⊂ D of rank one satisfying the
property 7 and such that B ' A . Since the rank of the ring is one, the rank of the data is also
one by the classification theorem 2.3. Then the sheaf F is coherent of rank one by [23, Prop.3.3].
By theorem 3.1 the sheaf F is Cohen-Macaulay. Since Spec(A) is smooth, F must be locally
free. But since A is a factorial ring, we have Cl(A) ' Pic(A) = 0 , thus F ' OSpec(A) . But
then the space W of the corresponding Schur pair must be equal to the space A . Therefore,
A ' k[ut−1, t−1] (where u, t are the parameters from (13)), a contradiction.

Theorem 3.3. Let B ⊂ D be a commutative ring of rank rk(B) = 1 satisfying the properties
(7), (14). Assume that the normalization of Spec(B) is A2 .

Then there exists a PDO F such that F−1BF ⊂ k[∂1, ∂2] .
More precisely, F = S∂n2 , where S is an operator as in the analogue of the Sato theorem

2.2.

Proof. As we have already noted in section 3.3, we can assume without loss of generality that
B is a finitely generated 1-quasi-elliptic strongly admissible ring.

Since the rank of the ring B is one, the rank of the corresponding geometric data
(X,C, P,F , π, φ) is also one by the classification theorem 2.3. Then the sheaf F is coherent of
rank one by [23, Prop.3.3] and C is a rational curve with C2 = 1 by [23, Prop.3.2].

The assumption about normalization is equivalent to the assumption that the normalization
of Spec(A) = X\C is A2 . Note that this assumption is equivalent to the assumption that
the normalization of X is P2 . Indeed, if p : P2 → X is the normalization morphism, then
p∗(C) is a rational irreducible curve. Thus, we have p∗(C) is an ample rational Cartier-Weil
divisor on P2 with p∗(C)2 = 1 , i.e. p∗(C) = P1 . Therefore, the normalization of Spec(A)
is the complement to P1 in P2 , i.e. it is A2 . The converse statement follows from the same
arguments together with theorem 3.2.

Let (P2,P1, P̃ ) be the normalization of (X,C, P ) (so, P̃ = p∗(P ) ). Since P is regular, the
local rings OX,P and OP2

,P̃
are canonically isomorphic.

Now we can repeat the arguments from the beginning of the proof of theorem 3.2 to get an
embedding of H0(P2\P1,O) to the same space k[[u]]((t)) (here u, t are local parameters at the
point P ∈ X ). Let’s denote this space by A′ . As we have seen above, A′ is the normalization of
A . The arguments from the proof of theorem 3.2 show that in fact A′ ' k[p, q] with the highest
terms of the series p, q equal to t−1 , ut−1 correspondingly (so, Supp(A′) = k[ut−1, t−1] ).

Set A′′ = ψ−1
1 (A′) (see (13)). Then we have Supp(A′′) = k[z−1

1 , z−1
2 ] , and A′′ is a 1 -space.

By [40, Lemma 2.11, 2),3)] there is an operator S such that S−1∂1S = ψ−1
1 (q) , S−1∂2S =

ψ−1
1 (p) , and S satisfies the condition A1 . Thus, S ∈ Adm1 .

Now consider the Schur pair (A,W ) from theorem 2.1 corresponding to the ring B . Consider
the equivalent pair (A = SAS−1,W = WS−1) . Then the ring SA′′S−1 = k[z−1

1 , z−1
2 ] is the

normalization of the ring SAS−1 (in the field k(z1, z2) ⊂ k((z1))((z2)) ). Thus, all elements of
the space SAS−1 are polynomials in z−1

1 , z−1
2 .

The space WS−1 is a finitely generated module over SAS−1 . Without loss of generality
we can assume that 1 ∈ WS−1 by taking another equivalent Schur pair (A,WT ) if needed
(for an appropriate operator T with constant coefficients; T just changes the trivialisation
φ in definition 2.2, item 6). By construction of the Schur pair given in section 2.1 we have
W ⊂ k(z1, z2) (as this Schur pair corresponds to a pair coming from the geometric data with
an appropriate trivialization φ , and the rank of the coherent sheaf F is one).

So, W is generated by a finite number of elements from k(z1, z2) over A . Since W is a
1 -space, we can choose the generators to be the elements satisfying the condition A1 . Let’s
denote by Q their common denominator. By lemma 3.1 (see below) we have ordΓ(Q) = (0, n) ,
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where n = ord(Q) (here and below we identify z1 with ∂−1
1 , z2 with ∂−1

2 ; in this case
ord(Q) = deg(Q) , where deg means the usual degree of the polynomial Q in two variables).

Consider the equivalent Schur pair (A,WQ/∂
deg(Q)
2 ) (this is a Schur pair since Q/∂

deg(Q)
2 is

a zeroth order operator with constant coefficients with ordΓ(Q/∂
deg(Q)
2 ) = (0, 0) satisfying

condition (A1) !). Note that all elements from the space WQ/∂
deg(Q)
2 are just polynomials in

∂1 , ∂2 , ∂−1
2 with constant coefficients, and the order of these polynomials with respect to ∂−1

2

is less or equal to deg(Q) .
Then from the proof of theorem 2.2 in [40] immediately follows that the operator S is a (non-

commutative) polynomial in ∂−1
2 of degree with respect to ∂−1

2 not greater than deg(Q) . By
remark 2.8 the ring SAS−1 is a ring of PDO’s. Then S ∈ k[[x1, x2]][∂1]((∂−1

2 )) (this immediately

follows from lemmas 2.9, 2.11 item 2,3 in [40]). Thus, we can set F = S∂
deg(Q)
2 .

Lemma 3.1. Assume that the Laurent expansion of the element

P/Q ∈ k(∂1, ∂2) ⊂ k((∂−1
1 ))((∂−1

2 )),

where P,Q ∈ k[∂1, ∂2] are relatively prime, belongs to k[∂1]((∂−1
2 )) . Assume that this expansion

satisfies the condition A1 .
Then ordΓ(Q) = (0,ord(Q)) .

Proof. The proof of this lemma is based on several technical routine elementary calculations,
and we will hardly use some technical lemmas from [40].

Assume the converse. Then Q can be represented as a polynomial in ∂2 of the order with
respect to ∂2 less than ord(Q) , say

Q = qn∂
n
2 −

n−1∑
l=0

ql∂
l
2, n < ord(Q),

where ql ∈ k[∂1] . Let

P =
m∑
l=0

pl∂
l
2.

Now we will prove our lemma in several steps.
Step 1. First we claim that deg(qn) + n = ord(Q) .
Clearly, we always have deg(qn) + n ≤ ord(Q) . Assume that deg(qn) + n < ord(Q) .

Let’s show that this will contradict to the condition A1 for the element P/Q . Since we are
working with series in the field k((∂−1

1 ))((∂−1
2 )) of pseudo-differential operators with constant

coefficients, we can literally repeat the proofs of lemma 2.8 and corollary 2.1 in [40] to show that
the statements from these claims remain true also for operators from k((∂−1

1 ))((∂−1
2 )) .

In particular, Q−1 don’t satisfy the condition A1 . Indeed, assume that Q−1 satisfies the
condition A1 . Then Q−1 = q−1

n ∂−1
2 Q′ , where Q′ is an operator of the form from [40, Corol.2.1]

satisfying the condition A1 (by [40, Lemma 2.8]). Then Q = (Q−1)−1 = qn∂2(Q′)−1 must satisfy
the condition A1 by [40, Lemma 2.8, Corol.2.1]. But Q don’t satisfy the condition A1 by our
assumption (namely, the term with the first coefficient qi of Q such that deg(qi) + i = ord(Q)
will contradict the condition A1 ), a contradiction.

Let P = P1+P2 be any decomposition of P in a sum of two PDOs with constant coefficients
such that P1 satisfies the condition A1 and the degree of P2 with respect to ∂2 is less than m
(P2 may be zero). Let Q−1 = Q1 +Q2 be any decomposition of Q−1 in a sum of two pseudo-
differential operators from k((∂−1

1 ))((∂−1
2 )) such that Q1 satisfies the condition A1 and the

degree of Q2 with respect to ∂2 is less than −n (since Q−1 don’t satisfy the condition A1 ,
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Q2 is not zero). Denote by α the first coefficient of Q2 , and by β the first coefficient of P2 if
P2 6= 0 . Now we have two cases: if P2 = 0 then the product PQ−1 will not satisfy the condition
A1 , because the coefficient of PQ−1 containing pmα will not satisfy it; if P2 6= 0 then the
product PQ−1 will not satisfy the condition A1 , because the coefficient of PQ−1 containing
βα will not satisfy it. Thus, PQ−1 does not satisfy the condition A1 , a contradiction.

Step 2. Now the idea of the proof is to come to a contradiction with the assumption that
qn 6= const .

Obviously, we can multiply the element P/Q on an appropriate degree of ∂−1
2 to make the

degree of its Laurent expansion to be zero. Thus, we can assume without loss of generality that
P,Q are polynomials in ∂−1

2 with nonzero free terms pm , qn correspondingly.
Now we can write

P/Q = (

m∑
l=0

pl∂
l−m
2 )(

n∑
l=0

ql∂
l−n
2 )−1 = (

m∑
l=0

pl
qn
∂l−m2 )(

∞∑
i=0

(

n−1∑
l=0

ql
qn
∂l−n2 )i). (35)

Note that not all qi are divisible by qn . Indeed, otherwise (q−1
n Q) ∈ k[∂1, ∂2] and therefore

q−1
n P = (PQ−1)(q−1

n Q) ∈ k[∂1]((∂−1
2 )) ∩ k((∂−1

1 ))[∂2] = k[∂1, ∂2]

i.e. P and Q are divisible by qn 6= const , a contradiction.
Note that we can reduce the proof to the case deg(P ) ≤ n − 1 (the degree now means the

degree with respect to ∂−1
2 ). Indeed, it is easy to see that pm must be divisible by qn . Since

P/Q ∈ k[∂1]((∂−1
2 )) , all expressions of type (P/Q− a)∂k2 will again belong to k[∂1]((∂−1

2 )) for
any polynomial a ∈ k[∂1] . Thus, if we take a = pm/qn , then (P/Q − a)∂2 = P ′/Q , where
deg(P ′) < deg(P ) if m ≥ n . Note that P ′ 6= 0 , since P,Q are relatively prime.

Analogously we can reduce the proof to the case deg(P ) = 0 . Indeed, using Euclidean
algorithm, we can always find polynomials a ∈ k[∂1] and F ∈ k[∂1, ∂

−1
2 ] such that deg(aQ −

FP ) < deg(P ) if deg(P ) 6= 0 . Again (aQ − FP ) 6= 0 , since P,Q are relatively prime and
deg(P ) 6= 0 . Thus, F (P/Q)− a = P ′/Q with deg(P ′) < deg(P ) , P ′ 6= 0 .

At last, in the case deg(P ) = 0 the proof follows immediately from (35): P must be divisible
by infinite power of some prime factor of qn , i.e. P = 0 , a contradiction.

4 Examples

In this section we give several examples.
First we would like to explain the geometric picture for a class of ”trivial” examples. These

are examples of rings of commuting operators in D̂ containing, say, the operator ∂1 . In this case
all operators obviously don’t depend on x1 . Nevertheless, the geometry of the corresponding
surfaces and even the naive moduli space of sheaves from geometric data are non-trivial.

Note that, if we have a commutative 1 -quasi-elliptic strongly admissible ring B ⊂ D satis-
fying properties (7), (14) and containing the operator ∂2 , then after a linear change ∂1 ↔ ∂2

the ring B will remain 1 -quasi-elliptic strongly admissible and will contain the operator ∂1 .
So, in particular, the well known example of the quantum Calogero-Moser system (see [30], [5,
sec. 5.3] and [40, Ex.4.3]) belongs to this class of ”trivial” examples. We would like to emphasize
that in [5, sec. 5.3] the affine spectral surface of this system was calculated: it is A1×H , where
H is some hyperelliptic curve. So, by [23, Th.2.1] the projective spectral surface X from the
corresponding geometric data is normal, and singularities appear only on the curve C (which
is rational).
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Theorem 4.1. Let B ⊂ D̂ be a Cohen-Macaulay finitely generated 1-quasi-elliptic strongly
admissible ring of commuting operators (note that by [40, Th.4.1] any finitely generated 1-quasi-
elliptic strongly admissible ring B lies in a Cohen-Macaulay finitely generated 1-quasi-elliptic
strongly admissible ring).

Then B contains ∂1 if and only if the divisor C of the corresponding geometric data is
Cartier, the sheaf F is coherent of rank one, OC(C) ' OC(P ) and the map

H1(X,OX)→ H1(X,OX(C))

is injective.
Moreover, the sheaf is Cohen-Macaulay on X .

Proof. Recall that the surface X corresponding to B is Cohen-Macaulay by [23, Th.3.2].
Assume first that B contains ∂1 . Since B is 1-quasi-elliptic strongly admissible, this means

that rk(B) = 1 . Also this means that for any n � 0 there are operators Pn ∈ B with
ordΓ(Pn) = (0, n) . Thus, we can give an approximation of the dimension of the space An ⊂ A
(where, as usual, A means the space of the Schur pair corresponding to the ring B ): dimk(An) ∼
n2/2 for all n� 0 . Then it follows from the asymptotic Riemann-Roch formula (1) that C2 = 1
(since And ' H0(X,OX(ndC)) for all n � 0 , see section 2.1). Since rk(B) = 1 , the rank
of the corresponding geometric data is also one by theorem 2.3. Thus, by [23, Prop.3.2] the
corresponding sheaf F is coherent of rank one.

Now let’s prove that C is a Cartier divisor. Our arguments will be very similar to the
arguments from the proofs of lemma 3.3 in [40] or theorem 2.1 in [23]. Recall that X ' Proj Ã
and the divisor C is defined by the homogeneous ideal I = (s) . It is not contained in the
singular locus, since it contains the regular point P . Since Ã is a finitely generated k -algebra
with Ã0 = k , by [2, Ch.III, § 1.3, prop. 3] there exists an integer d ≥ 1 such that the k -algebra

Ã(d) =
∞⊕
k=0

Ãkd is finitely generated by elements from Ã
(d)
1 as a k -algebra (here Ã

(d)
1 = Ãd ).

Let’s show that the divisor dC is an effective Cartier divisor. We consider the subscheme
C ′ in X which is defined by the homogeneous ideal Id = (sd) of the ring Ã . The topological
space of the subscheme C ′ coincides with the topological space of the subscheme C (as it can
be seen on an affine covering of X ). The local ring OX,C coincides with the valuation ring of
the discrete valuation on Quot(A) induced by the discrete valuation νt on the field k((u))((t)) :

OX,C = Ã(I) = {asn/bsn | n ≥ 0, a ∈ An, b ∈ An \An−1}.

The ideal I induces the maximal ideal in the ring OX,C , and the ideal Id induces the d -th
power of the maximal ideal. Therefore, if we will prove that the ideal Id defines an effective
Cartier divisor on X , then the cycle map on this divisor is equal to dC (see [23, Appendix A]).
By [12, prop. 2.4.7] we have X = Proj Ã ' Proj Ã(d) . Under this isomorphism the subscheme
C ′ is defined by the homogeneous ideal Id ∩ Ã(d) in the ring Ã(d) . This ideal is generated by

the element sd ∈ Ã(d)
1 . The open affine subsets D+(xi) = Spec Ã

(d)
(xi)

with xi ∈ Ã(d)
1 define a

covering of Proj Ã(d) . In every ring Ã
(d)
(xi)

the ideal (Id ∩ Ã(d))(xi) is generated by the element

sd/xi . Therefore the homogeneous ideal Id ∩ Ã(d) defines an effective Cartier divisor.

Now let’s show that the k -algebra Ã(m) is finitely generated by elements from Ã
(m)
1 for all

m� 0 . By theorem 2.1 it is equivalent to show that the k -algebra B̃(m) is finitely generated

by elements from B̃
(m)
1 for all m� 0 .

Let d be such a number that all generators of B lie in Bd and for all n ≥ d there
are elements Pn ∈ B with ordΓ(Pn) = (0, n) (the same will be true also for the ring A ).
Let Σ denote the set of all numbers a ∈ Z+ such that there are operators Q in Bd with
ordΓ(Q) = (∗, a) . Since ∂1 ∈ B , we have that for any m > d and any a ∈ Σ there are
operators Q in B with ordΓ(Q) = (m, a) .
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Now let m > 2d be any number such that B̃(m) is finitely generated by elements from

B̃
(m)
1 . It suffices to show that B̃(m+1) is also finitely generated by elements from B̃

(m+1)
1 .

To show this it suffices to show that any element from B̃
(m+1)
k can be represented as a sum

of products of elements from B̃
(m+1)
k−1 and from B̃

(m+1)
1 . The space B̃

(m+1)
1 has two special

operators: Q1 = ∂m+1
1 and Q2 with ordΓ(Q2) = (0,m + 1) . As it follows from what we have

said above, for any l ≥ 2d and any i, j ∈ Z+ such that i + j = l there is an element Q ∈ B
with ordΓ(Q) = (i, j) . Thus, any element Q ∈ B̃(m+1)

k can be written as a sum of an element

with the order less than ordΓ(Q) and a product of an element from B̃
(m+1)
k−1 and Q1 or Q2 .

By induction we obtain our claim.
Now the arguments above for mC and (m+1)C (instead of dC ) show that mC , (m+1)C

are Cartier divisors. But then C must be also a Cartier divisor.
Now let (A,W) be the pair from k((u))((t)) corresponding to our geometric data (see

section 2.1). As it follows from section 2.1 (namely, from (18), (20) and (25))

A(n) ∩ k[[u]] ' An/An−1 ' H0(C,OC(nC)),

for all n� 0 and A(n) is the image of (C,P,OC(nC), u, id) under the Krichever map (cf. also
(24)). From one-dimensional KP theory (see (15), (17)) we have then that A(n)·u−n is the image
of the quintet (C,P,OC(nC)(−nP ), u, id) under the Krichever map. Since ∂n1 ∈ Bn\Bn−1 , we
have that t−nun ∈ An/An−1 . Hence,

H0(C,OC(nC)(−nP )) ' A(n) · u−n ∩ k[[u]] ' k,

and by Riemann-Roch h1(C,OC(nC)(−nP )) = ga(C) . But then OC(nC)(−nP ) ' OC for all
n� 0 , i.e. OC(C) ' OC(P ) .

Now we have two possibilities for the number h0(C,OC(C)) : it is either 1 or 2. If it is equal
to 1, then this means that

H0(C,OC(C)) ' A(1) ∩ k[[u]] ' A1/A0, (36)

because ∂1 ∈ B1\B0 and we have always A1/A0 ⊂ A(1) . Note that we always have the
embeddings

A ∩ (k[[u]]((t)) + k((u))[[t]])
·t
↪→ A · t ∩ (k[[u]]((t)) + k((u))[[t]]),

A ∩ k((u))[[t]]
·t
↪→ A · t ∩ k((u))[[t]],

A ∩ k[[u]]((t)) ' A · t ∩ k[[u]]((t)).

Thus, we have a natural linear map

A ∩ (k[[u]]((t)) + k((u))[[t]])

(A ∩ k((u))[[t]]) + (A ∩ k[[u]]((t)))
−→ A · t ∩ (k[[u]]((t)) + k((u))[[t]])

(A · t ∩ k((u))[[t]]) + (A · t ∩ k[[u]]((t)))
. (37)

By (22) this map coincides with the map H1(X,OX) → H1(X,OX(C)) . Let’s show that the
kernel of this map may contain only elements from

(A1 ∩ (k[[u]]((t)) + k((u))[[t]])) + [(A ∩ k((u))[[t]]) + (A ∩ k[[u]]((t)))], (38)

where A1 = A ∩ t−1 · k((u))[[t]] . From this and (36) follow that the map H1(X,OX) →
H1(X,OX(C)) is injective. Let a ∈ A ∩ (k[[u]]((t)) + k((u))[[t]]) be a lift of an element from
the kernel. Then a · t = a1 + a2 , where a1 ∈ (A · t ∩ k((u))[[t]]) and a2 ∈ (A · t ∩ k[[u]]((t))) .
Since a1t

−1 ∈ (A ∩ k((u))[[t]]) , we have

a2t
−1 = a− a1t

−1 ∈ A ∩ (k[[u]]((t)) + k((u))[[t]]).
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But a2t
−1 ∈ A1 and also gives an element of the kernel.

Now assume that h0(C,OC(C)) = 2 . This means that the image of the sheaf OC in k((u))
under the Krichever map contains an element of order −1 . Hence, this image is isomorphic to
the ring k[u−1] , i.e. C ' P1 . But then the surface X must be smooth along C , hence X must
be normal since X is Cohen-Macaulay and C is an ample divisor. Then by [1, Th.2.5.19] and
[1, Corol.2.5.20] there is an open neighbourhood of C isomorphic to an open neighbourhood
of a line in P2 . Since ζ(F) is a torsion free sheaf and h0(C, ζ(F(nC))) = dimWn/Wn−1 =
n + 1 for all n � 0 , we have ζ(F) ' OC . Since F is Cohen-Macaulay, it is locally free
on the smooth open neighbourhood of C . Since Cl(P2) = Cl(P2\Z) ' Z for any closed
subscheme of codimension greater than one, we must have F ' OX on this open set (since
otherwise its restriction on C = P1 would be not trivial). But then (e.g. by [1, Prop.1.1.6])
Wn ' H0(X,F(nC)) ' H0(X,OX(nC)) ' An since X and F are Cohen-Macaulay. Thus,
A ' k[a, b] and X = P2 . Hence, H1(X,OX) = 0 and we are done.

At last, by formulas 15 and 16 the sheaf F fulfils the assumptions of proposition 2.2. Hence
it is Cohen-Macaulay on X .

Conversely, assume that C is a Cartier divisor, F is a coherent sheaf of rank one, the
map H1(X,OX) → H1(X,OX(C)) is injective, OC(C) ' OC(P ) . Then by [23, Rem.3.3]
the rank of the data is one. As we have seen above, the condition on cohomology means that
the kernel of the cohomology map (37) is zero. This means (see (38)) that all elements from
A1 ∩ (k[[u]]((t)) + k((u))[[t]]) can be represented as a sum of an element from A1 ∩ k[[u]]((t))
and an element from A1 ∩ k((u))[[t]] . In particular, for any element from A(1) ∩ k[[u]] there
exists an element from A1 ∩ k[[u]]((t)) with the same support (multiplied by t−1 ). This means
that

H0(C,OC(C)) ' H0(C,OC(P )) ' A(1) ∩ k[[u]] ' A1/A0

(since the rank of the data is one). Note that A(1) contains an element of order one (since A(1)
is the image of OC(P ) under the Krichever map). Thus, there is an element in A1 with the
least term ut−1 . But this element will give us the element ∂1 after applying the map ψ−1

1 and
conjugating by the Sato operator from theorem 2.2.

Example 4.1. This is an example of a surface, divisor and point for which we can calculate all
possible geometric data of rank one, corresponding Schur pairs and corresponding algebras of
commuting operators. More precisely, we start from a ring A , and describe all possible Schur
pairs with the ring A as a stabiliser ring. This description is possible due to using concrete
formulas from the classical KP theory in dimension one; these formulas also lead to a precise
description of commuting operators. Notably, we will see that the map ζ restricted to the set of
all sheaves from these geometric data maps this set surjectively to the dense open subset of the
compactified generalized jacobian of the curve C consisting of sheaves with trivial cohomologies.
We will see also that for this surface there are no other rings of commuting PDOs except one
ring of operators with constant coefficients.

Consider the ring
A = k〈∂2

2 , ∂2(∂2
2 + 3∂2

1), ∂1〉 ⊂ k[∂1, ∂2].

It is easy to see that A ' k[h][z, x]/(z2 − x(x + 3h2)2) (where ∂2(∂2
2 + 3∂2

1) 7→ z , ∂2
2 7→ x ,

∂1 7→ h ) and that F = k[∂1, ∂2] , where F denote the normalization of A . It is also clear that
A is a 1-quasi-elliptic strongly admissible ring.

Recall that, having such a ring A , we can construct a part of geometric data, namely the
surface X , the divisor C and the point P (see section 2.1). This part can be described in a
more explicit way: we have the embedding

Ã ' k〈∂2
2 , ∂2(∂2

2 + 3∂2
1), ∂1, T 〉 ⊂ F̃ ' k[∂2, ∂1, T ],
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which induces the normalisation morphism π : Proj(F̃ ) → Proj(Ã) , and X = Proj(Ã) can
be considered as a as a subscheme in the weighted projective space Proj(k[x, z, h, T ]) , where
weights of (x, z, h, T ) are (2, 3, 1, 1) . Thus, ∂2 = z/(x+ 3h2) = x(x+ 3h2)/z where from

π∗OP2 = OX +OX(−1)∂2

and

π∗OP2/OX ' OX(−1)∂2/OX(−1)∂2 ∩ OX ' OX(−1)/OX(−1) ∩ OX
1

∂2

and

OE = OX/OX ∩ OX(1)
1

∂2
' OX/OX(−3)z +OX(−2)(x+ 3h2),

where E is the singular locus of X (cf. example 3.3 in [40]). So, E = Proj(k[h, T ]) = P1 and
π∗OP2/OX ' OE(−1) , where from H1(X,OX) = 0 .

Let’s note that, if we have a geometric data (X,C, P,F , ...) where X,C, P are defined by
the ring A and the sheaf F is coherent of rank 1, then the corresponding Schur pair (A,W )
induces a 1-dimensional Schur pair (A′,W ′) , where

A′ = k((∂1))〈∂2
2 , ∂2(∂2

2 + 3∂2
1)〉,

and W ′ is a space over K = k((∂1)) generated by elements from W (thus, A′,W ′ ⊂ K((∂−1
2 )) ).

The Schur pair (A′,W ′) corresponds to a one-dimensional geometric quintet (C ′, P ′,F ′, . . .)
(see [25, Th.4.6] or [26]), where C ′ is the nodal curve over K and F ′ is a torsion free rank
one sheaf on C ′ with H0(C ′,F ′) = H1(C ′,F ′) = 0 . It is not difficult to see that the divisor
C on the surface X is naturally isomorphic to the nodal curve too, whose affine equation (the
equation of C\P ) is ỹ2 = y(y + 3)2 .

On the other hand, all torsion free rank one sheaves on this nodal curve (cf. [35]) as well
as corresponding Schur pairs of one-dimensional geometric data can be explicitly described as
follows (cf. [36, Sec 3]). The nodal curve C ′ can be thought of as a projective line with two
glued points, whose local coordinates are a and −a (with respect to the local coordinate z on
P1\P ′ ). It is not difficult to see that in our case

a = (i
√

3∂1)−1,

and for the curve C a = (i
√

3)−1 . Now we can use the well known formula of Baker-Akhieser
function associated to a line bundle on the curve to describe the corresponding spaces of Schur
pairs. Recall that the Baker-Akhieser function can be written in the form ψ(x, z) exp (xz−1) =
S(x, ∂−1)(exp (xz−1)) (where z is a local parameter at a point on the curve).

For the unique non-locally free sheaf n∗(OP1) of degree zero (where n : P1 → C ′ is the

normalization map) the corresponding space W ′ is equal to K[∂2] . This space comes from
W = k[∂1, ∂2] , and the pair (A,W ) obviously corresponds to the ring A of differential operators
with constant coefficients.

The only line bundle of degree zero which has non-zero cohomologies is OC′ . For any line
bundle L parametrized by an element λ ∈ K∗ ' Pic(C ′) , λ 6= −1 ( λ = −1 corresponds to
OC′ ) the corresponding space W ′ is equal to

K[∂2] · S, where S = (1 + w∂−1
2 ) and

w = −aλ exp (x2a)− exp (−x2a)

λ exp (x2a) + exp (−x2a)
.

Now we can describe those one-dimensional Schur pairs (A′,W ′) (over K ) that are induced
by two dimensional Schur pairs (A,W ) (over k ). It is easy to see that necessary and sufficient
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conditions for that are the following: all elements from the admissible basis in W ′ must belong
to k[∂1]((∂−1

2 )) and satisfy the condition (A1) . Since A ⊂ A′ and all elements from A satisfy
the condition (A1) , it is enough to check this property only for the two first elements from the
admissible basis of W ′ . These elements are

w0 = S|x=0, w1 = ∂2 + ∂2(w)|x=0∂
−1
2 − (w|x=0)2∂−1

2 .

Thus we must have

−aλ− 1

λ+ 1
= P (∂1),−a2 4λ

(λ+ 1)2
= Q(∂1),

where P,Q are polynomials in ∂1 with coefficients in k of degree not higher than 1 and 2
correspondingly. Hence, from the first equality we have

λ =
a− P
a+ P

∈ k(∂1),

and the second equality holds for any such λ for any such P . The same formulas show (due
to theorem 4.1) that for all −1 6= λ ∈ k∗ the sheaf ζ(F) (which is defined by the space
⊕Wi+1/Wi ) is a line bundle on C corresponding to λ . Clearly, ζ(π∗(OP2)) ' n∗(OP1) . Thus,
the map ζ mentioned in the beginning of this example is indeed surjective.

On the other hand, for any such λ we can calculate operators from the corresponding ring
of operators. In particular, there will be an operator of the form

S−1∂2
2S = ∂2

2 + 2∂2(w) = ∂2
2 −

8a2λ

(λ exp (x2a) + exp (−x2a))2
.

The last term of this operator can not be a polynomial in ∂1 , because the exponential function
can not belong to an algebraic extension of the field of rational functions. So, by remark 2.8
there are no rings of PDOs associated with any geometric data except the ring A of operators
with constant coefficients.

Example 4.2. This is another example of a surface, divisor and point for which we can calculate
all possible geometric data of rank one, corresponding Schur pairs and corresponding algebras of
commuting operators. The map ζ mentioned in the previous example will be again surjective.
But we will see that for this surface there are many commutative rings of PDOs.

Consider the ring
A = k〈∂2

2 , ∂
3
2 , ∂1〉 ⊂ k[∂1, ∂2]

It is easy to see that A ' k[h][z, x]/(z2 − x3) (where ∂3
2 7→ z , ∂2

2 7→ x , ∂1 7→ h ) and that
F = k[∂1, ∂2] , where F denotes the normalization of A . It is also clear that A is a 1-quasi-
elliptic strongly admissible ring.

Using similar arguments from the previous example one can show that X can be ob-
tained from P2 by glueing one doubled projective line (cf. [23, Sec. 3.6]). Thus, we have also
H1(X,OX) = 0 . Again as in the previous example X is a cone over C which is a cuspidal
curve. So, we can use in this case the same ideas and notation.

Now any Schur pair (A,W ) induces a 1 -dimensional Schur pair (A′,W ′) over K , where

A′ = k((∂1))〈∂2
2 , ∂

3
2〉.

For the unique non-locally free sheaf n∗(OP1) of degree zero the corresponding space W ′

is equal to K[∂2] . This space comes from W = k[∂1, ∂2] , and the pair (A,W ) obviously
corresponds to the ring A of differential operators with constant coefficients.
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The only line bundle of degree zero which has non-zero cohomologies is OC′ . For any line
bundle L parametrized by an element λ ∈ K ' Pic(C ′) , λ 6= 0 ( λ = 0 corresponds to OC′ )
the corresponding space W ′ is equal to

K[∂2] · S, where S = (1 + w∂−1
2 ) and

w =
1

λ− x2
.

Now w0 = S|x=0 = 1+(1/λ)∂−1
2 . To find those pairs (A′,W ′) that are induced by pairs (A,W )

we again must have 1/λ = P (∂1) for some linear polynomial P . It is not difficult to see that
for all such λ the spaces W ′ are induced by W and that the map ζ is surjective.

The rings of commuting operators will contain two operators: ∂1 and

S−1∂2
2S = ∂2

2 +
2P (∂1)2

(1− x2P (∂1))2
.

By remark 2.8 and by proposition 2.1 such a ring is a ring of PDO if and only if P (∂1) is a
constant. Clearly the sheaves corresponding to such rings are the preimages of the sheaf n∗(OP1) .
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