Homogeneous Quaternionic Kähler Manifolds of Unimodular Group

D.V. Alekseevsky, V. Cortés

Mathematisches Institut
der Universität Bonn
Beringstr. 6
53115 Bonn
GERMANY

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

Homogeneous Quaternionic Kähler Manifolds of Unimodular Group

D.V. Alekseevsky*
Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26

D-53225 Bonn

V. Cortés ${ }^{\dagger}$
Mathematisches Institut
der Universität Bonn
Beringstr. 6
D-53115 Bonn

August 16, 1995

To the memory of Franco Tricerri

1 Introduction

A quaternionic structure on a vector space $V^{4 n}$ is a 3 -dimensional linear Lie algebra $\mathfrak{q} \subset \operatorname{End}(V)$ with a basis J_{1}, J_{2}, J_{3} satisfying the quaternionic relations

$$
J_{\alpha}^{2}=-1, \quad J_{\alpha} J_{\beta}=-J_{\beta} J_{\alpha}=J_{\gamma} .
$$

Here (α, β, γ) is a cyclic permutation of $(1,2,3)$. The basis $\left(J_{\alpha}\right)_{\alpha}$ is called a standard basis of \mathfrak{q}. A quaternionic Kähler manifold is a Riemannian manifold ($M^{4 n}, g$) together with a field of quaternionic structures $\mathfrak{q}: x \mapsto$ $\mathfrak{q}_{\boldsymbol{x}} \subset \mathfrak{s o}\left(T_{x} M\right)$ such that:

1) \mathfrak{q} is parallel with respect to the Levi-Civita connection.
2) The curvature tensor $R_{x}, x \in M$, of the metric g is invariant under the natural action of \mathfrak{q}_{x}.
[^0]It is known that 1) implies 2) if $n>1$ and that any quaternionic Kähler manifold is Einstein.

The main result of the paper is the following theorem.
Theorem 1.1 Let M be a quaternionic Kähler manifold admitting a transitive unimodular group G of isometries. Then either M is flat and hence is the Riemannian product of a torus and an Euclidean space or it is a quaternionic Kähler symmetric space G / H, where G is a simple Lie group and H is the normalizer of a regular 3-dimensional subgroup G_{α} associated with a long root α.

The proof of the theorem reduces to the case of negative scalar curvature $s<0$ and semisimple Lie group G. Indeed, if $s>0$ the manifold M is compact and in this case the theorem was proved in [A]. In the case $s=0$, the Ricci curvature Ric $=0$ and the result follows from the fact that any Ricci-flat homogeneous Riemannian manifold is flat [A-K]. Hence, we may assume that $s<0$ and hence Ric <0.

The following result of I. Dotti Miatello shows that the group G is semisimple.
Theorem 1.2 [Do] Let M be a Riemannian manifold admitting a transitive unimodular group G of isometries. If Ric <0 then the group G is semisimple.

To prove the main theorem we need some basic facts concerning homogeneous quaternionic Kähler manifolds.

2 Basic facts about homogeneous quaternionic Kähler manifolds

2.1. Let M be a quaternionic Kähler manifold which admits a transitive group G of isometries. Then we identify $M=G / H$, where H is the stabilizer of a point. We will say that $M=G / H$ is a homogeneous quaternionic Kähler manifold. Let $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ be a reductive decomposition, where $\mathfrak{g}=$ Lie G, $\mathfrak{h}=$ Lie $H,[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$. We identify $\mathfrak{m} \cong T_{H} M$ and denote by $\langle\cdot, \cdot\rangle$ the $A d_{H}$-invariant scalar product on \mathfrak{m} induced by the Riemannian metric on M. For any $a \in \mathfrak{g}$ we define a skew-symmetric endomorphism L_{a} (Nomizu operator) on \mathfrak{m} by the formula

$$
2<L_{a} x, y>=<\pi[a, x], y>-<x, \pi[a, y]>-<\pi a, \pi[x, y]>
$$

$x, y \in \mathfrak{m}$, where $\pi: \mathfrak{g} \rightarrow \mathfrak{m}$ is the natural projection.
Remark that for $a \in \mathfrak{h}$ the Nomizu operator $L_{a}=a d_{a} \mid \mathfrak{m}$ is exactly the isotropy operator. The following proposition is known.

Proposition 2.1 [A] A homogeneous Riemannian manifold $M^{4 n}=G / H$ $(n>1)$ is quaternionic Kähler iff the Nomizu operators belong to the normalizer $\mathfrak{n}(\mathfrak{q}) \cong \mathfrak{s p}(1) \oplus \mathfrak{s p}(n)$ in $\mathfrak{s o}(\mathfrak{m})$ of some quaternionic structure $\mathfrak{q}=$ $\operatorname{span}\left\{J_{1}, J_{2}, J_{3}\right\}$ on m .
2.2. Structure equations. Let $M=G / H$ be a homogeneous quaternionic Kähler manifold. We will always assume that the group G is connected and semisimple. Then the Cartan-Killing form B of \mathfrak{g} is non degenerate on \mathfrak{g} and \mathfrak{j} and we fix the reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, where \mathfrak{m} is the B-orthogonal complement to \mathfrak{h} in \mathfrak{g}. Let $J_{\alpha}, \alpha=1,2,3$, be a standard basis of the corresponding quaternionic structure on \mathfrak{m}. Then for any $a \in \mathfrak{g}$ we can write

$$
L_{a}=\sum_{\alpha=1}^{3} \omega_{\alpha}(a) J_{\alpha}+\bar{L}_{a}
$$

where \bar{L}_{a} belongs to the centralizer $\mathfrak{z}(\mathfrak{q}) \cong \mathfrak{s p}(n)$ of \mathfrak{q} in $\mathfrak{s o}(\mathfrak{m})$ and the 1 -forms ω_{α} satisfy the following structure equations

$$
\begin{equation*}
\nu \pi^{*} \rho_{\alpha}=d \omega_{\alpha}+2 \omega_{\beta} \wedge \omega_{\gamma} \tag{1}
\end{equation*}
$$

Here $\rho_{\alpha}=\left\langle\cdot, J_{\alpha} \cdot\right\rangle$ is the Hermitian form associated with the complex structure $J_{\alpha} ;(\alpha, \beta, \gamma)$ is a cyclic permutation of $(1,2,3)$ and $\nu=s / 4 n(n+2)$ is the reduced scalar curvature, see [A].

We denote by Ω the Kraines 4 -form on m, given by

$$
\Omega=\sum_{\alpha=1}^{3} \rho_{\alpha} \wedge \rho_{\alpha} .
$$

It is $L_{\mathfrak{g}}$-invariant and defines a parallel 4 -form on M (the Kraines form of M). The 4 -form $\pi^{*} \Omega$ on \mathfrak{g} is exact:

$$
\begin{gathered}
\pi * \Omega=d \psi \\
\psi=\sum_{\alpha=1}^{3} \omega_{\alpha} \wedge d \omega_{\alpha}+4 \omega_{1} \wedge \omega_{2} \wedge \omega_{3}
\end{gathered}
$$

Denote by $\overline{\mathfrak{h}}$ the kernel of the homomorphism

$$
\phi: \mathfrak{h} \rightarrow \mathfrak{q}, \quad h \mapsto L_{h}-\bar{L}_{h}=\sum_{\alpha=1}^{3} \omega_{\alpha}(h) J_{\alpha}
$$

and by \mathfrak{a} the orthogonal complement of $\overline{\mathfrak{h}}$ in \mathfrak{h} with respect to the CartanKilling form B. Since $\phi: \mathfrak{a} \hookrightarrow \mathfrak{q} \cong \mathfrak{s p}(1)$ is an embedding, $d=\operatorname{dim} \mathfrak{a}=0,1$ or 3 . We will say that the homogeneous quaternionic Kähler manifold $M=$ G / H is of type 1,2 or 3 , if $d=0,1$ or 3 respectively. Passing to the universal covering, if needed, we may assume that M is simply connected and hence that H is connected.

3 Proof of the theorem for manifolds of type 1 and 2

3.1. Type 1 We assume now that $\mathfrak{a}=0$. Then $\omega_{\alpha}(\mathfrak{h})=0, \alpha=1,2,3$, and the structure equations show that the 1 -forms ω_{α} are invariant under the isotropy representation of the Lie algebra \mathfrak{h} and hence of the Lie group H, since H is connected. This implies that ψ defines some invariant form on M whose differential is the Kraines form Ω on M. In particular, the volume form Ω^{n} is the differential of some invariant form. This contradicts the following result of Koszul [Ko], [Ha].

Theorem 3.1 Let $M=G / H$ be an orientable Riemannian homogeneous space of a connected unimodular Lie group G. Then the Riemannian volume form is not cohomological to zero in the complex of invariant differential forms.

3.2. Totally geodesic Kähler and quaternionic Kähler submanifolds

Definition 3.1 Let (M, g, \mathfrak{q}) be a quaternionic Kähler manifold.

1) A submanifold N of M is called a Kähler submanifold if there exists a section J of the quaternionic structure \mathfrak{q} along N such that $(N, g \mid N, J)$ is a Kähler manifold, i.e. J is a parallel complex structure on N.
2) A submanifold N of M is called a quaternionic Kähler submanifold if $\mathfrak{q}_{x} T_{x} N \subset T_{x} N$ for any $x \in N$.

Recall that any quaternionic Kähler submanifold N of a quaternionic Kähler manifold (M, g, \mathfrak{q}) is totally geodesic with the same reduced scalar curvature, in particular, ($N, g|N, \mathfrak{q}| N$) is a quaternionic Kähler manifold.

Let $M=G / H$ be a homogeneous quaternionic Kähler manifold and

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}=\mathfrak{a}+\overline{\mathfrak{h}}+\mathfrak{m}
$$

be the corresponding reductive decomposition as before. Denote by $Z_{G}^{0}(b)$ the connected component of the centralizer of an element $b \in \mathfrak{h}$ in G.

Proposition 3.2 Let $M=G / H$ be a homogeneous quaternionic Kähler manifold of type k.

1) For any $b \in \overline{\mathfrak{h}} \subset \mathfrak{h}=\mathfrak{a}+\overline{\mathfrak{h}}$ the orbit $N=Z_{G}^{0}(b)$ o of the point $o=e H$ is a quaternionic Kähler submanifold of the same type k or a point.
2) For any $a \in \mathfrak{a}-\{0\}$ the orbit $N=Z_{G}^{0}(a) o$ is a totally geodesic Kähler submanifold or a point.
3) Assume $k=2$. Then for any $b \in \mathfrak{h} \backslash \overline{\mathfrak{h}}$ the orbit $N=Z_{G}^{0}(b)$ o is a totally geodesic Kähler submanifold or a point.

Proof. It is known (see e.g. [A], Assertion 4) that the orbit $N=Z_{G}^{0}(b) o$ of the centralizer of any element $b \in \mathfrak{h}$ in a homogeneous Riemannian manifold $M=G / H$ is totally geodesic. In the case 1), the reductive decomposition of the Lie algebra $g_{0}=\mathfrak{z g}_{\mathfrak{g}}(b)$ corresponding to N can be written as

$$
\mathfrak{g}_{0}=\mathfrak{a}+\mathfrak{z} \overline{\mathfrak{h}}(b)+\mathfrak{n}, \quad \mathfrak{n}=\mathfrak{z}_{\mathfrak{m}}(b) .
$$

Since $L_{b} \in \mathfrak{z}(\mathfrak{q}) \cong \mathfrak{s p}(n)$, the subspace \mathfrak{n} is quaternionic, i.e. $\mathfrak{q n} \subset \mathfrak{n}$. Now it is immediate to check that N is a homogeneous quaternionic Kähler manifold of type k, using the trivial fact that the image of $b \in \mathfrak{b} \cap \mathfrak{g}_{0}$ under the isotropy representation on $\mathfrak{n} \cong T_{o} N$ equals $a d_{b}\left|\mathfrak{n}=L_{b}\right| n=\sum_{\alpha=1}^{3} \omega_{\alpha}(b) J_{\alpha}\left|\mathfrak{n}+\bar{L}_{b}\right| \mathfrak{n}$.

In the case 3), the reductive decomposition of \mathfrak{g}_{0} reads:

$$
\mathfrak{g}_{0}=\mathbb{R} a+\mathfrak{z}_{\overline{\mathfrak{h}}}(\bar{b})+\mathfrak{n}, \quad \mathfrak{n}=\mathfrak{z}_{\mathfrak{m}}(b),
$$

where $b=a \oplus \bar{b} \in \mathfrak{a} \oplus \overline{\mathfrak{h}}$. Without restriction of generality we can choose a standard base $\left(J_{\alpha}\right)_{\alpha}$ of \mathfrak{q} such that $L_{b}=J_{1}+\bar{L}_{b}, \bar{L}_{b} \in \mathfrak{z}(\mathfrak{q})$. Since $\left[L_{b}, J_{1}\right]=0$, \mathfrak{n} is a J_{1}-invariant subspace of \mathfrak{m}. The structure equations (1) show that $\omega_{2}\left|\mathfrak{n}=\omega_{3}\right| n=0$, e.g.

$$
0=\omega_{2}([b, x])=0+2\left(0-\omega_{3}(x) \cdot 1\right)=-2 \omega_{3}(x), \quad x \in \mathfrak{n} .
$$

This shows that $\left[L_{x}, J_{1}\right]=0$ for all $x \in \mathfrak{g}_{0}$. Since the Lie algebra generated by the Nomizu operators contains the holonomy algebra, this implies that J_{1} defines an invariant parallel complex structure on N and hence N is a Kähler submanifold.

In the case 2), $\mathfrak{g}_{0}=\mathfrak{z}_{\mathfrak{g}}(a)$ has the reductive decomposition

$$
\mathfrak{g}_{0}=\mathbb{R} a+\overline{\mathfrak{h}}+\mathfrak{n}, \quad \mathfrak{n}=\mathfrak{z}_{\mathfrak{m}}(a)
$$

and the proof is the same as for the case 3).
Remark that in the cases 2) and 3) the N is a totally complex manifold in the sense of Tsukada [T].
3.3. Invariant symplectic structure on quaternionic Kähler manifolds of type 2 Now we consider the case when $\operatorname{dima}=1$. Choosing an appropriate standard basis $\left(J_{\alpha}\right)_{\alpha}$ we may assume $\mathfrak{a}=\mathbb{R} a, B(a, a)=-1$ and
$L_{a}=J_{1}+\bar{L}_{a}$. The reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ of \mathfrak{g} induces a decomposition $\mathfrak{g}^{*}=\mathfrak{h}^{*} \oplus \mathfrak{m}^{*}$ of the dual space. For any k-form $\sigma \in \wedge^{k} \mathfrak{g}^{*}$ we denote by $\sigma^{p q},(p+q=k)$ the natural projection onto

$$
\wedge^{p q}:=\wedge^{p} \mathfrak{h}^{*} \otimes \wedge^{q} \mathfrak{m}^{*} .
$$

If σ is $A d_{H}$-invariant, $\sigma^{p q}$ is also $A d_{H}$-invariant and, in particular, $\sigma^{0 q}$ is an $A d_{H}$-invariant k-form on \mathfrak{m} and hence defines an invariant form on M. The 1 -forms ω_{α} associated to the basis $\left(J_{\alpha}\right)_{\alpha}$ have the following properties:

$$
\begin{gathered}
\omega_{1}=\omega_{1}^{10}+\omega_{1}^{01} \quad \text { is } A d_{H} \text {-invariant and } \omega_{1}^{10}=-B(a, \cdot) \neq 0 \\
\omega_{2}=\omega_{2}^{01} \quad \text { and } \omega_{3}=\omega_{3}^{01}
\end{gathered}
$$

Lemma 3.3 1) The 2 -form $d \omega_{1}^{10}(x, y)=B(a,[x, y])$ belongs to \wedge^{02}, is $A d_{H}$-invariant and hence defines an invariant 2-form σ on M.
2) The forms $\omega_{2} \wedge \omega_{3}, \omega_{2} \wedge d \omega_{2}+\omega_{3} \wedge d \omega_{3}$ and ψ are $A d_{H-\text { invariant. }}$
3) The Kraines form Ω on M is cohomological to $\sigma \wedge \sigma$.

Proof. The form $d \omega_{1}^{10}$ is $A d_{H}$-invariant, since ω_{1} is $A d_{H}$-invariant. Let $h \in \mathfrak{h}, x \in \mathfrak{m}$, then $d \omega_{1}^{10}(h, x)=-\omega_{1}^{10}([h, x])=0$, since $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$. Hence $\left(d \omega_{1}^{10}\right)^{11}=0$. The component $\left(d \omega_{1}^{10}\right)^{20}=0$, because $[\mathfrak{h}, \mathfrak{h}] \subset \overline{\mathfrak{h}}=k e r \omega_{1}$. This proves 1).
2) The structure equations (1) imply

$$
\begin{aligned}
a d_{h} \omega_{2} & =2 \omega_{1}(h) \omega_{3}, \\
a d_{h} \omega_{3} & =-2 \omega_{1}(h) \omega_{2}
\end{aligned}
$$

for $h \in \mathfrak{h}$. From this 2) immmediately follows.
3) From the structure equations we obtain the following equalities:

$$
\begin{aligned}
d \omega_{1} & =d \omega_{1}^{02}=\pi^{*} \rho_{1}-2 \omega_{2} \wedge \omega_{3} \\
d \omega_{2} & =d \omega_{2}^{02}+d \omega_{2}^{11} \\
d \omega_{3} & =d \omega_{3}^{02}+d \omega_{3}^{11} \\
d \omega_{2}^{02} & =\pi^{*} \rho_{2}-2 \omega_{3} \wedge \omega_{1}^{01} \\
d \omega_{3}^{02} & =\pi^{*} \rho_{3}-2 \omega_{1}^{01} \wedge \omega_{2} \\
d \omega_{2}^{11} & =-2 \omega_{3} \wedge \omega_{1}^{10} \\
d \omega_{3}^{11} & =-2 \omega_{1}^{10} \wedge \omega_{2}
\end{aligned}
$$

Using this we obtain

$$
\psi=\psi^{03}+\psi^{12} .
$$

Moreover we compute

$$
\begin{aligned}
\psi^{12} & =\omega_{1}^{10} \wedge d \omega_{1}+\omega_{2} \wedge d \omega_{2}^{11}+\omega_{3} \wedge d \omega_{3}^{11}+4 \omega_{1}^{10} \wedge \omega_{2} \wedge \omega_{3} \\
& =\omega_{1}^{10} \wedge d \omega_{1}=\omega_{1}^{10} \wedge d \omega_{1}^{10}+\omega_{1}^{10} \wedge d \omega_{1}^{01} \\
\psi^{03} & =\omega_{1}^{01} \wedge d \omega_{1}+\omega_{2} \wedge d \omega_{2}^{02}+\omega_{3} \wedge d \omega_{3}^{02}+4 \omega_{1}^{01} \wedge \omega_{2} \wedge \omega_{3} \\
& =\omega_{1}^{01} \wedge d \omega_{1}+\omega_{2} \wedge \pi^{*} \rho_{2}+\omega_{3} \wedge \pi^{*} \rho_{3}
\end{aligned}
$$

Using these formulas we have

$$
\begin{aligned}
\Omega & =d \psi=d \psi^{12}+d \psi^{03} \\
& =d\left(\omega_{1}^{10} \wedge d \omega_{1}^{10}+\omega_{1}^{10} \wedge d \omega_{1}^{01}\right)+d \psi^{03} \\
& =d \omega_{1}^{10} \wedge d \omega_{1}^{10}+d\left(d \omega_{1}^{10} \wedge \omega_{1}^{01}+\psi^{03}\right)
\end{aligned}
$$

According to 1), 2) $d \omega_{1}^{10} \wedge \omega_{1}^{01}+\psi^{03} \in \wedge^{03}$ is $A d_{H}$-invariant and hence defines an invariant 3 -form τ on M. Hence, on the manifold M

$$
\Omega=\sigma \wedge \sigma+d \tau
$$

As a corollary we obtain
Proposition 3.4σ is an invariant symplectic form on M and $M=G / H$ is identified with the universal covering $G / Z_{G}^{0}(a)$ of the adjoint orbit $A d_{G} a=$ $G / Z_{G}(a)$. Moreover, the group G is simple.

Proof. It is clear that the form σ is closed and invariant. Moreover, the form $\sigma^{2 n}$ is cohomological to Ω^{n}. Since Ω^{n} is not cohomological to zero by Koszul's theorem, the invariant form $\sigma^{2 n} \neq 0$. Hence, σ is non-degenerate, that is σ is a symplectic form. The second statement follows now from the KirillovKostant description of homogeneous symplectic manifolds. Suppose now that the semisimple group G is not simple. Without restriction of generality we may assume that $G=G_{1} \times G_{2}$. Then the homogeneous manifold G / H is G isomorphic to the direct product $G_{1} / H_{1} \times G_{2} / H_{2}$ of homogeneous manifolds, where $H=Z_{G}^{0}(a)=H_{1} \times H_{2}$. Any invariant metric on such a manifold is reducible. On the other hand, it is known that a quaternionic Kähler metric of non zero scalar curvature is irreducible. This contradiction shows that the group G is simple.
3.4. Type 2 The proof of the theorem for type 2 manifolds is based on the following two lemmas.

Lemma 3.5 Assume that G / H is a quaternionic Kähler manifold of type 2 and $\mathrm{rkg}>2$. Then there exists $h \in \overline{\mathfrak{h}}$ such that $\mathfrak{z}_{\mathfrak{g}}(h)$ is non-compact.

Proof. Consider the root system \mathcal{R} of $\left(\mathfrak{g}^{\mathbb{C}}, \mathfrak{t}^{\mathbb{C}}\right)$, where $\mathfrak{t}=\mathbb{R} a+\overline{\mathfrak{t}}, \overline{\mathfrak{t}} \subset \overline{\mathfrak{h}}$, is a compact Cartan subalgebra of \mathfrak{h} and hence of \mathfrak{g}. Any root $\alpha \in \mathcal{R}$ generates a 3 -dimensional subalgebra $\mathfrak{g}(\alpha)=\operatorname{span}_{\mathbb{C}}\left\{h_{\alpha}, e_{\alpha}, e_{-\alpha}\right\} \cap \mathfrak{g}$, which is isomorphic to $\mathfrak{s u}(2)$ or to $\mathfrak{s l}(2, \mathbb{R})$. The root α is called compact respectively noncompact, if $\mathfrak{g}(\alpha) \cong \mathfrak{s u}(2)$ respectively $\mathfrak{g}(\alpha) \cong \mathfrak{s l}(2, \mathbb{R})$. If \mathfrak{g} is non-compact, then there exists a non-compact root β, s. [He]. Choose $0 \neq h \in \overline{\mathfrak{t}} \cap \operatorname{ker} \beta$. Then $\mathfrak{j g}(h) \supset \mathfrak{g}(\beta) \cong \mathfrak{s l}(2, \mathbb{R})$.

Lemma 3.6 Let $M=G / H$ be a homogeneous manifold, where G is a real simple Lie group of rank 2 and H a compact subgroup of the form $H=$ $Z_{G}^{0}(a), a \in \mathfrak{h}$. Assume that the isotropy representation of H preserves a quaternionic structure on $\mathfrak{m} \cong T_{H} M$. Then $G / H=S U(3) / U(2) \cong \mathbb{C} P^{2}$ or $=S U(1,2) / U(2) \cong \mathbb{C} H^{2}$.

Proof. According to the theory of semisimple Lie algebras \mathfrak{g} is of type A_{2}, B_{2} or G_{2} and \mathfrak{h} is isomorphic to \mathfrak{t}^{2} or to $\mathfrak{t}^{1} \oplus \mathfrak{s u}(2)$, where \mathfrak{t}^{n} denotes the Lie algebra of the n -dimensional torus. Assume that the isotropy representation of M preserves some quaternionic structure. Then $\operatorname{dim} G / H \equiv 0$ (4) and $(\mathfrak{g}, \mathfrak{h})$ can only be of type $\left(A_{2}, \mathfrak{t}^{1} \oplus \mathfrak{s u}(2)\right),\left(B_{2}, \mathfrak{t}^{2}\right)$ or $\left(G_{2}, \mathfrak{t}^{2}\right)$. Checking the real Lie algebras of Type A_{2}, we conclude that the first pair gives exactly the two manifolds G / H described in Lemma 3.6. Let now \mathfrak{g} be a real simple Lie algebra of type B_{2} or G_{2} with a compact Cartan subalgebra $\mathfrak{t}=\mathfrak{t}^{2}$. To prove the lemma, it is sufficient to check that the isotropy representation $a d_{t} \mid \mathfrak{m}$ of \mathfrak{t} on $\mathfrak{m}=[\mathfrak{t}, \mathfrak{g}]$ does not preserve any quaternionic structure \mathfrak{q}. Suppose that such a quaternionic structure q exists. Then

$$
a d_{\mathfrak{l}} \mid \mathfrak{m} \subset \mathfrak{n}_{\mathfrak{s o}(\mathfrak{m})}(\mathfrak{q})=\mathfrak{s p}(1) \oplus \mathfrak{g l}(n, \mathbb{H})
$$

where $n=2$ (resp. 3) if \mathfrak{g} has type B_{2} (resp. G_{2}). There exists an element $0 \neq b \in \mathfrak{t}$ such that $A=a b_{b} \mid \mathfrak{m} \in \mathfrak{g l}(n, \mathbb{H})$. Since for any $A \in \mathfrak{g l}(n, \mathbb{H})$ the multiplicity of an eigenvalue of A is even, the root system \mathcal{R} of ($\mathfrak{g}^{\mathbb{C}}, \mathbb{t}^{\mathbb{C}}$) must satisfy the following condition for any $\alpha \in \mathcal{R}$:

$$
\#\{\beta \in R \mid \beta(b)=\alpha(b)\} \equiv 0(2)
$$

From the picture of the root systems of type B_{2} and G_{2} one sees that this is impossible.

Now we prove that there is no homogeneous quaternonic Kähler manifold $M=G / H$ of type 2 with an unimodular group G. By Prop. 3.4 we may assume that G is simple. We will use induction on the rank of G. First we remark that there is no quaternionic Kähler manifold $M=G / H$ of type 2 and $\operatorname{rk} G \leq 2$. Indeed, if $\operatorname{rk} G=1$, then $\operatorname{dim} G=3$. If $\operatorname{rk} G=2$, the
only quaternionic Kähler manifolds are the symmetric manifold $S U(3) / U(2)$ and its non-compact dual, which are not of type 2. Applying induction, we assume that there is no quaternionic Kähler manifold G / H of type 2 and $\operatorname{rk} G<k$. Let now $M=G / H$ be a quaternionic Kähler manifold of type 2 with an unimodular and hence simple group G of $\operatorname{rk} G=k$. Let $\mathfrak{g}=(\mathbb{R} a+\overline{\mathfrak{h}})+\mathfrak{m}$ be the corresponding reductive decomposition. We may assume that $\mathrm{rkg}>2$ and hence $\overline{\mathfrak{h}} \neq 0$. By Lemma 3.5 there exists $b \in \overline{\mathfrak{h}}$ with non-compact centralizer $\mathfrak{g}_{0}=\mathfrak{z}_{\mathfrak{g}}(b)$. Remark that \mathfrak{g}_{0} is a reductive and hence unimodular Lie algebra and $\mathfrak{g} \neq \mathfrak{g}_{0} \not \subset \mathfrak{h}$. According to Prop. 3.2 1) the orbit N of the corresponding connected Lie group $Z_{G}^{0}(b)$ is a quaternionic Kähler submanifold of type 2. The corresponding reductive and hence unimodular isometry group G_{N} of $(N, g \mid N)$ is the quotient of $Z_{G}^{0}(b)$ by the kernel of non-effectivity, which contains $\{\exp t b \mid t \in \mathbb{R}\}$. Hence, $\operatorname{rk} G_{N}<\operatorname{rk} Z_{G}^{0}(b)=\operatorname{rk} G=k$. This contradicts the inductive assumption.

4 Proof of the theorem for type 3 manifolds

Now we consider a homogeneous quaternionic Kähler manifold $M=G / H$ of type 3 with semisimple Lie group G. We will consider the reductive decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$, where \mathfrak{m} is the orthogonal complement to \mathfrak{h} with respect to the Cartan-Killing form B. Moreover, $\mathfrak{h}=\mathfrak{a}+\overline{\mathfrak{h}}$, where $\overline{\mathfrak{h}}$ is the kernel of the homomorphism $\phi: \mathfrak{h} \rightarrow \mathfrak{q} \cong \mathfrak{s p}(1)$ and \mathfrak{a} is the B-orthogonal complementary ideal to $\overline{\mathfrak{h}}$ in \mathfrak{h}, s. 2.2. With respect to a standard basis $\left(J_{\alpha}\right)_{\alpha}$ of \mathfrak{q} the isomorphism $\phi \mid \mathfrak{a}: \mathfrak{a} \xrightarrow{\sim} \mathfrak{q} \cong \mathfrak{s p}(1)$ is given by $\phi(h)=\sum_{\alpha=1}^{3} \omega_{\alpha}(h) J_{\alpha}$, in particular, the forms $\omega_{\alpha} \mid \mathfrak{a}$ are linearly independent.

Proposition 4.1 For any $a \in \mathfrak{a}-\{0\}, \mathfrak{g}_{0}=\mathfrak{j}_{\mathfrak{g}}(a) \subset \mathfrak{h}$.
Proof. Without restriction of generality we may assume that $\omega_{1}(a)=1$, $\omega_{2}(a)=\omega_{3}(a)=0$. According to Prop. 3.2 2)

$$
\mathfrak{g}_{0}=\mathfrak{z}_{\mathfrak{g}}(a)=\mathfrak{h}_{0}+\mathfrak{n}=\mathbb{R} a+\overline{\mathfrak{h}}+\mathfrak{n}
$$

defines a totally geodesic Kähler submanifold and $\omega_{2}\left|\mathfrak{g}_{0}=\omega_{3}\right| \mathfrak{g}_{0}=0$. Remark that \mathfrak{g}_{0} (and any quotient of \mathfrak{g}_{0}) is reductive and hence unimodular. By the structure equations (1) $d \omega_{1}=\nu \pi^{*} \rho_{1}$ on \mathfrak{g}_{0}. Consider the decomposition of $\omega_{1} \mid \mathfrak{g}_{0}$

$$
\omega_{1}=\omega_{1}^{10}+\omega_{1}^{01} \in \mathfrak{h}_{0}^{*}+\mathbf{n}^{*}
$$

as before. Since ω_{1} is $a d_{h_{0}}$-invariant, the 1 -form ω_{1}^{01} is invariant, vanishes on \mathfrak{h}_{0} and hence defines some invariant form on the homogeneous Kähler manifold $N=G_{0} / H_{0}$, where G_{0} and H_{0} are the connected Lie subgroups
of G with Lie algebra \mathfrak{g}_{0} and \mathfrak{h}_{0} respectively. ρ_{1} defines the Kähler form σ on N and $d \omega_{1}^{10}=d \omega_{1}-d \omega_{1}^{01}$ defines an invariant form on N, which is cohomological to σ (up to the factor $\nu \neq 0$). Since $\sigma^{2 k}, k=\operatorname{dim}_{\mathbb{C}} N$, is a volume form, the cohomological form $\left(d \omega_{1}^{10}\right)^{2 k}$ is not zero on N by Koszul's theorem. In other words, $d \omega_{1}^{10}$ defines an invariant symplectic form on N.

Remark now that the 1 -form ω_{1}^{10} equals

$$
\omega_{1}^{10}=\lambda B(a, \cdot) \in \mathfrak{a}_{0}^{*}, \quad \lambda \in \mathbb{R}^{-},
$$

since $\omega_{1}^{10}(\overline{\mathfrak{h}}+\mathfrak{n})=0$ and $\omega_{1}^{10}(a)=1$ and $\overline{\mathfrak{h}}+\mathfrak{n}$ is the orthogonal complement of $\mathbb{R} a$ in \mathfrak{g}_{0} with respect to the Cartan-Killing form B of \mathfrak{g}. This implies $d \omega_{1}^{10}=0$ on $g_{0}:$

$$
d \omega_{1}^{10}(x, y)=-\omega_{1}^{10}([x, y])=-\lambda B(a,\lfloor x, y])=\lambda B([x, a], y)=0
$$

for $x, y \in \mathfrak{g}_{0}$. On the other hand we proved that $d \omega_{1}^{10}$ defines a non-degenerate form on N, hence $N=p t$ and $\mathfrak{g}_{0} \subset \mathfrak{h}$.

Corollary $4.2 \quad$ 1) For all $a \in \mathfrak{a}$ we have $\mathfrak{z}_{\mathfrak{g}}(a)=\mathbb{R} a+\overline{\mathfrak{h}}$.
2) $\mathfrak{h}=\mathfrak{a}+\overline{\mathfrak{h}}=\mathfrak{n}_{\mathfrak{g}}(\mathfrak{a})$.
3) Any Cartan subalgebra of \mathfrak{b} is a Cartan subalgebra of \mathfrak{g} and has the form $\mathfrak{t}=\mathbb{R} a+\overline{\mathfrak{t}}$, where $\overline{\mathfrak{t}}$ is a Cartan subalgebra of $\overline{\mathfrak{h}}$.

Proposition 4.3 1) \mathfrak{a} is a compact regular 3-dimensional subalgebra associated to a long root α of $(\mathfrak{g}, \mathfrak{t})$.
2) \mathfrak{g} is simple.

Proof. By Cor. 4.2 3) there exists a Cartan subalgebra \mathfrak{t} of \mathfrak{g} of the form $\mathfrak{t}=\mathbb{R} a+\overline{\mathfrak{t}} \subset \mathfrak{h}$. Obviously it normalizes \mathfrak{a}, hence $\mathfrak{a} \mathbb{C}$ is a regular 3-dimensional subalgebra associated with some root α of $\left(\mathfrak{g}^{\mathbb{C}}, \mathfrak{t}^{\mathbb{C}}\right)$. Since any 3-dimensional regular subalgebra is contained in some simple ideal and its normalizer contains all other simple ideals, from Cor. 4.22) and from the effectivity of G statement 2) follows. It remains only to prove that α is long. It was proved in $[A]$ (s. Lemma 5 2)) that under our assumptions α is long, if \mathfrak{g} is not of type G_{2}. In the latter case the normalizer n_{α} of the regular 3 -dimensional subalgebra associated to (any root) α is of the form $\mathfrak{n}_{\alpha}^{\mathbb{C}}=\mathfrak{a}_{\text {long }}^{\mathbb{C}}+\mathfrak{a}_{\text {short }}^{\mathbb{C}}$, where $\mathfrak{a}_{\text {long }}$ (resp. $\mathfrak{a}_{\text {short }}$) is a regular 3-dimensional subalgebra associated to a long (resp. short) root. Moreover, $\left(\mathfrak{g}_{2} / \mathfrak{n}_{\alpha}\right) \mathbb{C} \cong \mathbb{C}^{4} \otimes \mathbb{C}^{2}$, where $\mathfrak{a}_{\text {short }}^{\mathbb{C}}$ (resp. $\mathfrak{a}_{\text {long }}^{\mathbb{C}}$ acts irreducibly on \mathbb{C}^{4} (resp. \mathbb{C}^{2}) and trivially on \mathbb{C}^{2} (resp. \mathbb{C}^{4}). This shows that $\mathfrak{a}=\mathfrak{a}_{\text {short }}$ is impossible, hence $\mathfrak{a}=\mathfrak{a}_{\text {long }}$.

The proof of the main theorem follows immediately from the following proposition.

Proposition 4.4 Let \mathfrak{a}_{α} be a compact regular 3-dimensional subalgebra associated with a long root α of a simple non-compact real Lie algebra \mathfrak{g}. If its normalizer $\mathfrak{n}_{\mathfrak{g}}\left(\mathfrak{a}_{\alpha}\right)$ is compact, then it is maximal compact and hence the corresponding homogeneous space $G / N_{G}\left(\mathfrak{a}_{\alpha}\right)$ is a non-compact symmetric quaternionic Kähler manifold (dual to a Wolf space).

The proof of Prop. 4.4 is based on the following lemma.
Lemma 4.5 Let σ, σ_{0} be two involutive automorphisms of a simple complex Lie algebra \mathfrak{g}, with fix point sets $\mathfrak{g}^{\sigma}, \mathfrak{g}^{\sigma_{0}}$. Assume $\mathfrak{g}^{\sigma_{0}} \subset \mathfrak{g}^{\sigma}$, then $\sigma=\sigma_{0}$.

Proof. Let $\mathfrak{g}=\mathfrak{g}^{\sigma_{0}}+\mathfrak{g}_{-}^{\sigma_{0}}$ and $\mathfrak{g}=\mathfrak{g}^{\sigma}+\mathfrak{g}_{-}^{\sigma}$ denote the corresponding symmetric decompositions. They are orthogonal with respect to the Cartan-Killing form. Moreover, since σ preserves $\mathfrak{g}^{\sigma_{0}}$, it preserves also the orthogonal complement $\mathfrak{g}_{-}^{\sigma_{0}}=\mathfrak{a}_{+}+\mathfrak{a}_{-}, \mathfrak{a}_{+}=\mathfrak{g}^{\sigma} \cap \mathfrak{g}_{-}^{\sigma_{0}}, \mathfrak{a}_{-}=\mathfrak{g}_{-}^{\sigma}$. Then

$$
\left[\mathfrak{a}_{+}, \mathfrak{a}_{-}\right] \subset\left[\mathfrak{g}^{\sigma}, \mathfrak{g}_{-}^{\sigma}\right] \subset \mathfrak{g}_{-}^{\sigma} \subset \mathfrak{g}_{-}^{\sigma_{0}} .
$$

On the other hand

$$
\left[\mathfrak{a}_{+}, \mathfrak{a}_{-}\right] \subset\left[\mathfrak{g}_{-}^{\sigma_{0}}, \mathfrak{g}_{-}^{\sigma_{0}}\right] \subset \mathfrak{g}^{\sigma_{0}}
$$

Hence $\left[\mathfrak{a}_{+}, \mathfrak{a}_{-}\right]=\left[\mathfrak{a}_{+}, \mathfrak{g}_{-}^{\sigma}\right]=0$. Therefore the kernel \mathfrak{k} of the isotropy representation of \mathfrak{g}^{σ} on $\mathfrak{g}_{-}^{\sigma}$, which is an ideal of \mathfrak{g}, contains \mathfrak{a}_{+}. Since \mathfrak{g} is simple, $0=\mathfrak{k}=\mathfrak{a}_{+}$and $\sigma=\sigma_{0}$.

Corollary 4.6 Let [be a simple complex Lie algebra. There is no inclusion between maximal compact subalgebras of different real forms $\mathfrak{g}, \mathfrak{g}^{\prime} \subset 1$ of $\mathfrak{l}=\mathfrak{g}^{\mathbb{C}}=\mathfrak{g}^{\mathbb{C}}$.

Proof. It is sufficient to consider the Cartan involutions of the real forms and apply the lemma to their complex linear extensions.
Proof (of Prop. 4.4). Let $\supset \mathfrak{n}_{\alpha}=\mathfrak{n}_{\mathfrak{g}}\left(\mathfrak{a}_{\alpha}\right)$ be a maximal compact subalgebra of \mathfrak{g}. There exists some real form \mathfrak{g}^{\prime} of $\mathfrak{l}=\mathfrak{g}^{\mathbb{C}}$ such that \mathfrak{n}_{α} is maximally compact in \mathfrak{g}^{\prime}. This real form corresponds to the non-compact dual of the Wolf space $G_{c} / N_{G_{c}}\left(\mathfrak{a}_{\alpha}\right)$, where Lie G_{c} is the compact real form of I. Cor. 4.6 implies $\mathfrak{k}=\mathfrak{n}_{\alpha}$.

References

[A] D.V. Alekseevskiĭ: Compact quaternion spaces, Functional Anal. Appl. 2 (1968), 106-114.
[A-K] D.V. Alekseevskiĭ, B.N. Kimel'fel'd: Structure of homogeneous Riemannian spaces with zero Ricci curvature, Functional Anal. Appl. 9 (1975), 97-102.
[Do] I. Dotti Miatello: Transitive group actions and Ricci curvature properties, Michigan Math. J. 35 (1988), 427-434.
[Ha] J.-I. Hano: On Kählerian homogeneous spaces of unimodular Lie groups, Amer. J. Math. 79 (1957), 885-900.
[He] S. Helgason: Differential geometry, Lie groups and symmetric spaces, Academic Press, Orlando, 1978.
[Ko] J.L. Koszul: Homologie et cohomologie des algèbres de Lie, Bulletin Soc. Math. France vol. 78 (1950), 65-127.
[T] K. Tsukada: Parallel submanifolds in a quaternion projective space, Osaka J. Math. 22 (1985), 187-241.

[^0]: 'e-mail: daleksee@mpim-bonn.mpg.de; partially supported by Max-Planck-Institut für Mathematik (Bonn).
 ${ }^{\dagger}$ Fax: +49-228-737916; e-mail: V.Cortes@uni-bonn.de or vicente@rhein.iam.uniboun.de; partially supported by SFB 256 (Bonn University).

