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1 Introduction

A quaternionie structure on a vector space V 4n is a 3-dimensional linear
Lie algebra q C End(V) with a basis JI, J2 , J3 satisfying the quaternionic
relations

J~ = -1, JaJß = -JßJo = J,.

Here (a, ß, f) is a cyclic pcnTIlltation of (1,2,3). The basis (Ja)o is called
a standard basis of q. A quaternionic Kähler n1anifold is a Riemannian
manifold (M4n, g) together with a field of quaternionic structures q : x f---7

qx C 5o(Tx A1) such that:

1) q is parallel with respect to the Levi-Civita connection.

2) The curvature tensor RXl x E M, of the Inetric 9 is invariant under the
natural action of qx.

•e-mail: daleksee@mpim-bonH.mpg.de ; part ially SlI pported by Max- Planck-Insti t 1I t für
Mathematik (Bonn).

t Fax: +49-228-737916; e-mail: V.Cortes@uni-bonn.de or vicente@rhein.iam.uni­
bOlln.de; partially supported by SFB 256 (BoHn University).
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It is known that 1) ilnplies 2) if n > 1 anel that any quaternionic Kähler
manifold is Einstein .

Thc main result of the paper is the following theorem.

Theorenl 1.1 Let M be a quaternionic 1{ähler 1nanifold admitting a tran­
sitive unimodular group G 01 iso"rnet1'ies. Then either M is flat and hence is
the Riemannian product 0/ a torus and an Euclidean space 01' it is a quater­
nionic !(ähler sym1netric space G/ 11, where G is a simple Lie gro7.1p and H
is the normalizer of a regular 3·dimensional subgroup GQ associated with a
long root Q.

The proof of thc theorem rec!tlees to the case of negative scalar curvature
s < 0 and semisinlple Lie group G. Indeecl, if s > 0 the Inanifold A1 is
eompact alld in this case the theorern was proved in [A]. In the case s = 0,
the Ricci eurvature Ric = 0 anel thc resuit follows frorn the fact that any
Ricci-flat homogeneous Rienlannian manifold is flat [A-K]. Bence, we may
asSllme that s < O'and henee Ric < O.

The following result of I. Dotti Miatello shows that the group Gis senlisim­
pIe.

Theorem 1.2 [Do] Let A1 be a Riem,annian 'rnanifold ad1nitting a transitive
unimodular' gr'o'up G 0/ isometries. 11 Ric < 0 then the group G is semisi'Tnple.

To provc thc main theorem we need sorne basic facts concerning homo­
geneous quaternionic Kä,hler lnanifolels.

2 Basic facts about homogeneous quaternionie
Kähler manifolds

2.1. Let NI bc a quaternionic Kähler 111anifold which aelmits a transitive
group G of isornetries. Then we identify kf = G/ H, where H is the stabilizer
of a point. We will say that AI = G/ H is a hOlnogeneous quaternionie Kähler
manifold. Let 9 = f) ffi m bc a rcduetive decomposition, where .9 = Lie G,
~ = Lie H, (f), m] C m. vVe identify m ~ TJIM and denote by < ',' > the
AdH-invariant scalar product on m induced by the Rielnannian metric on
!vI. For any a E g we elefine a skew-symmetrie endomorphisI11 La (Nolnizu
operator) on m by the formula

2< La.x,Y > = < n[a,x],y > - < x,rr[a,y] > - < rra,rr[x,y] >,

x, y E m, where rr : 9 -+ m is thc natural projeetion.
Relnark that for a E f) the Nomizli operator La = adaIm is exactly the

isotropy operator. The following proposition is known.
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Proposition 2.1 [Al A homogeneous Riernannian manifo/d M'tn = GI H
(n > 1) is quale1'7üonic j(äh/e1' iff lhe Nomizu operators belong to the nor­
rna/izer n(q) ~ sp(l) EB sp(n) in so(m) of so'me quaternionie st1'1leture q =
span{ J1 , J2 , J3 } on m.

2.2. Structure equations. Let M = GIH be a homogeneous quater­
nionie Kähler Inanifold. Wc will always assUl11e that the group G is connected
and semisimple. Then the Cartan-Killing form B of g is non degenerate on
g and f) and we fix the reductive decorllposition g = 1) EB m, where m is the
B-orthogonal complelnent to 1) in g. Let Ja, a = 1,2,3, be a standard basis
of the corresponding quaternionic structure on m. Then for any a E 9 we
can write

3

La = L wa(a)Ja + La,
a=1

where La belongs to the centralizer J(q) ~ sp(n) of q in so(m) alld the I-forms
W a satisfy the following structure equations

(1)

Here Pa = <., Ja· > is the Hennitian fornl associated with the complex
structure .Ja; (a,ß,,) is a eydic permutation of (1,2,3) and v = sI4n(n+2)
is the reduced scalar curvature, see [A).

We denote by n thc Kraines 4-forol on m, given by

3

o = L Pa 1\ Pa'
a=1

It is Lg-invariant and dcfincs a parallel 4-form on M (the Kraines form of
1\1). The 4-form 1r'"O on g is exact:

1r'"O = d'ljJ,
3

'ljJ = L W a 1\ dWa +4w1 1\ W2 1\ W3 •

a=1

Denote by ~ thc kernel of thc hOmOnlOrphisITI

3

eP: ~ -t q, h f-+ Lh - Lh = Lwa(h)Ja
a=1

ar~'d by Cl the orthogonal cOlnplcment of fj in ~ with respect to the Cartan­
Killing fonn B. Since 4> : a y. q := !ip(1) is an embedding, d = dirn Cl = 0, 1
or 3. v\Te will say that the homogeneous quaternionic Kähler manifold M =
GI H is of type 1, 2 01' 3, if d = 0, 1 01' 3 respectively. Passing to thc universal
covering, if needed, we mayassume that M is simply connected and hence
that fl is connected.
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3 Proof of the theorem for manifolds of type
1 and 2

3.1. Type 1 We assume now that a = O. Then wa(f)) = 0, a = 1,2,3,
and the structure equations show that the l-forIns Wo are invariant under
the isotropy representation of the Lie algebra ~ and hence of the Lie group
H, since H is connected. This implies that 'ljJ defines SOIne invariant form

on M whose differential is the Kraines form n on M. In particular, the
voluIl1e form nn is the differential of some invariant form. This contradicts
the following result of Koszul [Ko], [Ha].

Theoren1 3.1 Let Iv! = G/ H be an orientable Rielnannian homogeneous
space 01 a connecled unimodu/ar Lie g'roup G. Then lhe Rielnannian vo/u'me
fonn is not coh01nologica/ to ze1'0 in the c01np/ex oJ invariant differential
forms.

3.2. Totally geodesie Kähler and quaternionie Kähler subn1ani­
folds

Definition 3.1 Let (M, g, q) be a quaternionie l(ähler 'manifo/d.

1) A sublnanifo/d N oJ M is ca//ed a Kähler submanifold i1 ihere ex­
isis a secti071 J 01 the qualernionic structure q along N such thal
(N, gl N, J) is a !(äh/e'r 1nanifo/d, i. e. J is a parallel complex struc­
tU1'e on N.

2) A sub1nanifold N of M is ca/led a quaternionie Kähler submanifold
if qxTxN C TxlV J01' any x E lV.

Recall that any quaternionie Kähler subInanifold N of a quaternionie
Kähler Inanifold (M, g, q) is totally geodesie with the sanle reduced scalar

curvature, in particular, (N, giN, qlN) is a quaternionie Kähler manifold.
Let Ivl = G/ H be a hOIl1ogeneous quaternionie Kähler lllanifold and

g=l)+m=a+~+m

be the corresponding reductive decornposition as before. Denote by zg(b)
the connected component of the centralizer of an element bEl) in G.

Proposition 3.2 Let M = G/ Il be a hOlnogeneous quaternionic !(ähler
1nanifo/d 0/ lype k.

1) For any b E 5c l) = a + 5 thc orbit N = Zg(b)o of the point 0 = eH
is a quaternionie [(äh/er submanifo/d of the same lype k 01' a point.
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2) P01' any a E Cl - {O} the orbit N = zg(a)o is a totally geodesie I{ähler
sub'manifold or a point.

3) Assume k = 2. Then 101' any b E f) \ fj the orbit N = Zg(b)o is a totally
geodesie [{ähler submanifold OT a point.

Proof. It is known (see e.g. [Al, Assertion 4) that the orbit N = Zg(b)o af
tbe centralizer af any element bEI) in a hamogeneous Riemannian Inanifold
M = G/11 is totally geodesie. In the case 1), the reductive decomposition of
the Lie algebra go = Jg(b) corresponding to N can be written as

Qo = Cl + J fj (b) + n , n = Jm(b).

Since L b E J(q) ~ !ip(n), the subspace n is quaternionie, i.e. qn C n. Now it
is ilTIlnediate to check that N is a hOlllogeneous quaternionic Kähier Inanifold
of type k, using the trivial fact that the image of bEI) nQo under the isotropy
representation on n ~ ToN equals adbln = Lbln = L~=l wo(b)Jojn + Lbln.

[n the case 3), the reductive decOlnposition of Qo reads:

n = Jm(b),

where b = a EB b E Cl EB fj. Without restriction of generality wc can choase a
standard base (Ja)a of q such that Lb = J I+Lb, Lb E J(q). Since [L b, Jd = 0,
n is a JI-invariant subspace of m. The structure equations (1) show that
w21n = w31n = 0, e.g.

o= w2([b, xl) = 0 + 2(0 - W3(X) . 1) = -2W3(X), X E n.

This shows that [Lx, Jd = 0 for all x E Qo. Since the Lie algebra generated
by the Nomizu operators contains the holonoIny algebra, this iInplies that J 1

defines an invariant parallel c0I11plex structure on N and heuce N is a Kähier
submanifold.

In the case 2), Qo = Jg (a) has the reductive decomposition

Qo = Ra + f) + n , n = Jm(a)

and the proof is the saIne as for the case 3). 0

Remark that in the cases 2) and 3) the Ar is a totally complex I11anifold
in the sense of Tsukada [T].

3.3. Invariant symplectic structure on quaternionie Kähler man­
ifolds of type 2 Now we consider the case when dirn Cl = 1. Choosing an
appropriate standard basis (Ja)O' we may aSSUIne Cl = Ra, B(a, a) = -1 and
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La = J I +La. The reductive decornposition g = ~ ffi m of ginduces a decom­
position g* = 1)* ffi m* of the dual space. For any k-form a E I\kg* we denote
by a pq

, (p + q = k) the natural projection onto

If a is AdH-invariant, a pq is also AdlJ-invariant and, in particular, aOq is an
AdH-invariant k-form on m and hence defines an invariant fornl on M. The
I-rorms Wo associated to the basis (Ja L, have the following properties:

WI = w~O +W?I is AdH-invariant and w:o = - B(a, .) =J. °,
and

Lemma 3.3 1) The 2-for'm dw}O(x,y) = B(a,[x,yl) belongs to 1\02, zs
AdH -inva1'iant and hence defines an invariant 2-fo1'1n a on M.

2) The fOT'7ns W2 1\ W3J W2 1\ dw2 + W3 1\ dW3 and 'ljJ are AdH-invariant.

3) The J{raines form n on M is cohomological to a 1\ a.

Proof. The form dw}O is AdH-invariant, since WI is AdH-invariant. Let
h E ~, x E m, then dw}O(h, x) = -w}O([h, xl) = 0, since [~, m] C m. Hence
(dw}O)11 = 0. The component (dW}O)20 = 0, because [I),~] c fj = kerwt.
This proves 1).

2) The structure equations (I) imply

2uJ1(h )W3 ,

-2uJdh)W2

for hEl). From this 2) irnmnlediately follows.
3) Fl'om the structure equations we obtain the following equalities:

Using this we obtain

dw l

dw2

dw3

dw02
2

dwo2
3

dwll
2

dw 11
3

dW?2 = 1f'*PI - 2W2 1\ w3 ,

dw02 + dw 11
2 2 ,

dw0 2 + <Lw 1l
3 3 ,

>I: 2 1\ 011f' P2 - W3 w l ,

= -rr*p i) .•01 1\ W" 3 - ~l 2,

- 2uJ3 1\ w}O ,
_2uJ: O A W2 .

'ljJ = 'ljJ03 + 'ljJl2.
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Moreover we compute

'ljJ12 w:o /\ dWI + W2 /\ dw~l + w3 /\ dw~l + 4w:o /\ w2 /\ W3

w:o /\ dwl = w:o /\ dw: o +w:o /\ dw~l ,

'ljJ03 W~l /\ dw l + W2 /\ dw~2 + W3 /\ dwg2 + 4W~1 /\ W2 /\ W3

= W?l /\ dWI + W2 /\ 1r* P2 +W3 /\ rr* P3 .

Using these formulas we have

o d'IjJ = d'IjJ12 + d'IjJ°3

d(w:o /\ dw~o + w~o /\ dW~l) + d'IjJ°3

= dw: o /\ dw:o + d( dw:o /\ W~l + 1/;03) .

According to 1), 2) dw:o /\ W~l +1/;03 E /\03 is AdH-invariant and hence defines
an invariant 3-fonll T on M. Hence, on the manifold M

o = a /\ a +dT . 0

As a corollary we obtain

Proposition 3.4 a is an invariant sy'mplectic for'm on M and M = G / n
is identified with the universal cove'ring G / zg (a) 0/ the adjoint orbit Adca =
G/Zc(a). Moreover, the group G is sl:mple.

Proof. It is deal' that the fornl a is closed and invariant. Moreover, the form
a 2n is cohomological to on. Since on is not cohomological to zero by Koszul's
theorem, the invariant form a 2n #- O. Hence, a is non-degenerate, that is a
is a sYlnplectic form. Thc second statement follows now from the Kirillov­
Kostant description of hOlnogeneolls sYlnplectic manifolds. Suppose now that
the semisimple group G is not silnple. Without restriction of generality we
Inay assulne that C; = GI X G2 . Then the hOlllogeneous manifold G/ H is G­
isoIll0rphic to the direct product GI / I/I x G2 / H2 of homogeneous Inanifolds,
where H = Zg(a) = fII X H2 • Any invariant Inetric on such a manifold is
reducible. On thc other hand, it is known that a quaternionie Kähler lnetric
of non zero scalar curvature is irreducible. This contradiction shows that the
group G is sinlple. 0

3.4. Type 2 The proof of the theoreln for type 2 Inanifolds is based on
the following two lemmas.

Len1n1a 3.5 Assume thal G / I/ is a quate'rnionic [(ähler mani/old 0/ type 2
and rk g > 2. Then there exists h E fj such that Jg( h) is non-cornpact.
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Proof. Consider the root system R of (gC, tC), where t = IRa + t, t c ij, is a
eOillpaet Cartan subalgebra of f) anel henee of g. Any root Q' E R generates a
3-di Inensional subalgebra g(a) = spane{ho 1 ecn e_o} ng, whieh is isomorphie
to .ou(2) 01' to .0((2, IR). The root 0' is ealled compact respeetively n011­

conlpact, if g(a) ~ 5u(2) respectively g(a) ~ 5[(2, IR). If 9 is non-coIl1pact,
then there exists a non-compact root ß, s. [He]. Choose 0 =I- h E t n ke7'ß.
Then Jg(h) ~ g(ß) ~ 5((2, IR). 0

Lemma 3.6 Let, M = G/ H be a horHogeneous maniJold, where G is areal
sirnple Lie group of rank 2 and H a compaet subgroup of the form H =
zg(a )J a EI). Assumethat the iso trop y 7'epresentatio n 0f H p'res e7'ves a
quaternionie strueture on m ~ TIIM. Then G/ff = 8U(3)/U(2) ~ CP2 01'

= 8U (1, 2) / U (2) ~ CH 2 .

Proof. According to the theory of seInisimple Lie algebras 9 is of type A 2 ,

B2 01' G2 and I) is isomorphic to t2
01' to t1 EB su(2), where tn denotes the Lie

algebra of the n-dimensional torus. Assurne that the isotropy representation
of M preserves some quaternionic strueture. Then dilll G/ H =0 (4) anel
(9,1)) can only be oftype (A 2,t1 EB!iu(2)), (B2 ,t2

) 01' (G2 ,t2
). Checking the

real Lie algebras of Type A 2 , wc canelude that the first pair gives exactly the
two manifolds G/ H described in Lemilla 3.6. Let now 9 be a real simple Lie
algebra of type B2 01' G2 with a cOInpact Cartan subalgebra t = t2

• To prove
the Iemnla, it is sufficient to check that the isotropy representation adllm of
t on m = [t, g] does not preserve any quaternianic structure q. Suppose that
such a quaternionic strueture q exists. Then

adtJm C 0so(m) (q) = !i~(1) EB g((n, 1Hl) ,

where Tl = 2 (resp. 3) if 9 has type B2 (resp. G2 ). There exists an element
o =I- b E t such that A = abblm E g((n, 1Hl). Since for any A E g((n, IHr) the

multiplicity of an eigenvalue of A is even, the root system R of (gC, tC) must
satisfy the following condition for any a E R:

#{ß E RI ß(b) = a(b)} == 0 (2).

FrOIn the picture of the root systenls of type B2 and G2 one sees that this is
impossible. 0

Now we prove that there is BO homogeneous quaternonic Kähler rnanifold
A1 = C; / H of type 2 with an unilllodular group G. By Prop. 3.4 we may
assume that G is siInple. We will use induction on the rank of G. First
we remark that there is no quatern ionic Kähler manifold M = G/ H of type
2 alld rk G ::; 2. Indeed, if rk G = 1, then dirn G = 3. If rk G = 2, the

8



only quaternionic Kähler manifolds are the symmetrie manifold 8U(3)/U(2)
anel its nOn-C0l11pact dual, which are not of type 2. Applying induction,
we assume that there is no quaternionic Kähler manifold G/ H of type 2
anel rk G < k. Let now M = G/ IJ be a quaternionic Kähler manifold of
type 2 with an unituoelular anel hence simple group G of rk G = k. Let
fl = (Ra + ij) + m be the eorresponding reeluetive decomposition. V\Te may
assume that rk g > 2 and hence fj =f O. By LenuTIa 3.5 there exists b E fj
with non-compact centralizer Po = Jg(b). Remark that fla is a reduetive
and henee unitnodular Lie algebra anel g =J. go ct f). According to Prop.
3.2 1) the orbit N of the eorresponding connected Lie group Zg(b) is a
quaternionie Kähler subtuanifold of type 2. The eorresponding reductive
and hence unitTIodular isometry group GN of (N, giN) is the quotient of
Zg(b) by the kernel of non-effectivity, which contains {exptbl t E IR}. Henee,
rk GN < rk zg(b) = rk G = k. This contradicts the inductive assumption. D

4 Proof of the theorem for type 3 manifolds

Now we eonsieler a hotnogeneous quaternionie Kähler manifold NI = G/ li
of type 3 with semisimple Lie group G. 'vVe will consider the reductive de­
composition g = D+ m, where m is the orthogonal eOInplement to i) with
respeet to the Cartan-Killing fonn B. Nloreover, D= a + ij, where fj is the
kernel of the homoInorphisnl cP : D -t q ~ .sp(l) and a is the B-orthogonal
cOlllpletnentary ideal to fj in l), s. 2.2. With rcspect to a standard basis (Jo)o
of q the iS0l110rphisln cPla : a-; q ~ -5p(I) is given by <j;(h) = ~=1 wo(h)Jo,
in particula,r, the fonns Wo la are linearly independent.

Proposition 4.1 FOT any Cl E a - {O}, flo = Jg(a) C f).

Proof. Without restriction of generality wc may aSSUInc that Wl (a) 1,
W2 (a) = W3( a) = O. Aecording to Prop. 3.2 2)

go = Jg ( a) = f) 0 + n = Ra + ij + n

defines a totally geodesie Kähler subnlanifold and w21flo = w3/flo = O. RClnark
that flo (and any quotient of go) is reductive and henee unilnodular. By the
structure equations (1) dw1 = vrr*Pt on go. Consider the decomposition of
wllgo

10 + 01 E h* + •Wl = W t W 1 ')0 n

as befol'e. Since Wl is adlJo-invariant, the I-form w?1 is invariant, vanishes
on Do and henee defines some invariant fornl on the honl0geneous Kähler
manifold IV = Go/ liD, where Go and Ho are thc eonnected Lie subgroups
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of G with Lie algebra go and f)o respectively. PI defines the Kähler form
(j on N and dwio = dwi - dw~I defines an invariant form on N, which is
cohoTnological to (j (up to the factot' v =J. 0). Since (j2k, k = dime N, is a
volunle fornl, the cohomological form (dw~O)2k is not zero on N by Koszul's
theorem. In other words, dwfo defines an invariant symplectic form on Pi.

Rernark now that thc I-form wio equals

w ~°= ,\B (a, .) E g~ , ,\ E IR- ,

since wiO(fj + n) = 0 and wiO(a) = 1 and fj + n is the orthogonal cOlnplement
of !Ra in go with respect to thc Cartan-Killing form B of g. This implies
dwio = 0 on go:

dwiO(x, y) = -wiO([x, yJ) = -'\B(a, [x, yJ) = '\B((x, a], y) = 0

for x, y Ego. On the other hand we proved that dwfo elefines a non-degenerate
form on Pi, hence N = pt anel go c ~. 0

Corollary 4.2 1) For alt a E a we have Jg(a) = Ra + fj.

t
i

2) ~ = a + fj = ng ( a) .

S) Any Cartan subalgebra 0/ I) is a Ca'rtan subalgebra oJ g and has the
Jo'r-m t = IRa +t, where t is a Cartan subalgebra oJ fj.

Proposition 4.3 1) a is a COlnpact regular 3-din"ensional subalgebra as-
sociated to a lang rooi 0' oJ (g, t).

2) g is sirnple.

Proof. By Cor. 4.2 3) there exists a Cartan subalgebra t of g of the form

t = IRa+t Cf). Obviously it normalizes a, hence aC is a regular 3-dilnensional
subalgebra associateel with SOlne root a of (gC, tC). Since any 3-dirnensional
regular subalgebra is contained in SOIlle silnple ideal anel its nornlalizer con­
tains all other siDlple ideals, froDl Cor. 4.2 2) and from the effectivity of G
stateTnent 2) folIows. It remains only to prove that a is long. It was proved
in [A] (s. Lemma 5 2)) that under our assumptions a is long, if g is not of
type G2 • In the latter case the nornlalizer na of the regular 3-dimensional

subalgebra associated to (any root) a is of the form n~ = O~ng +a~oro where
along (resp. ashord is a regular 3-dimensiollal subalgebra associated to a long

(resp. short) root. Moreover, (92/na)C ~ (:4 0 c2, where a~ort (resp. a~ng
acts irreducibly on C4 (resp. (:2) and triviallyon C 2 (resp. (:4). This shows
that 0 = 0short is impossible, hence a = along ' 0

The proof of the Inain theoreln follows inlmediately from the following
proposition.
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Proposition 4.4 Let Oa be a COlnpaet regular 3-dimensional subalgebra as­

sociated witk a long root a 0/ a sitnple non-eompaet real Lie algebra g. I/ its
nonna/izer Og (oa) is compacl, tken it is maxitnal compaet and hence the

correspo71ding homogeneous 8paee G/ Nc (Oa) is a non-eompaet symmetrie
quaternionie [(ählel' mani/old (dual to a Wolf space).

The proof of Prop. 4.4 is based on the following lemma.

Lenlnla 4.5 Let a J ao be two involutive automorphisms 0/ a simple complex
Lie algebra g, with fix point sets g(1, g(1o. Assume g(10 C g(1, then a = ao.

Proof. Let 9 = gO"o +g~O and 9 = gO' +g~ denote the corresponding sYlnmet­
rie decompositions. They are orthogonal with respect to the Cartan-Killing
fonn. Moreover, since apreserves gO"o, it preserves also the orthogonal com­
pleInent g~O = 0+ + 0_, 0+ = gO' n g~O, 0_ = g~. Then

On the other hand
[0+, o-l c [g~O, g~Ol C gdO

•

Hence [0+, o-l = [0+, g~l = O. Therefore the kernel eof the isotropy repre­
sentation of gO" on g~, which is an ideal of g, contains 0+. Since 9 is simple,
o= e= 0+ and a = ao. 0

Corollary 4.6 Let ( be a simple co'mplex Lie algebra. There is no inclusion
between maxitnal C01npaet subalgebras 01 different real fonns B, g' C ( 0/
(= ge = g'C.

Proof. It is sufficient to consider the Cartall involutions of the real forms
and apply the lelnma to their cornplex linear extensions. 0

Proof (of Prop. 4.4). Let eJ 00' = Og(OO') be a maxiInal cOInpact subalgebra

of g. There exists SOIne real forill g' of ( = gC such that Oa is maximally
compact in g'. This real fonn corresponds to the non-cOlnpact dual of tbe
Wolfspace Ge/Ncc(oO'), where LieGe is the conlpaet real form of L Cor. 4.6
implies e= 0 0 , 0
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