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1 Introduction

A quaternionic structure on a vector space V1" is a 3-dimensional linear
Lie algebra g C End(V) with a basis J,, Ja, J3 satisfying the quaternionic
relations

JE==1, Judp=—-JpJe=1J,.

Here (o, 3,7) is a cyclic permutation of (1,2,3). The basis (J4)q is called
a standard basis of q. A quaternionic Kahler manifold is a Riemannian
manifold (M, g) together with a field of quaternionic structures q : z —
qr C so(T; M) such that:

1) q is parallel with respect to the Levi-Civita connection.

2) The curvature tensor R, z € M, of the metric g is invariant under the
natural action of .
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It is known that 1) implies 2) if » > 1 and that any quaternionic Kahler
manifold is Einstein.
The main result of the paper is the following theorem.

Theorem 1.1 Let M be a quaternionic Kahler manifold admitiing a tran-
silive unimodular group G of isometries. Then etther M is flat and hence is
the Riemannian product of a torus and an Fuclidean space or it is a quater-
nionic Kdahler symmetric space G/H, where G is a simple Lie group and H
is the normalizer of a regular 3-dimensional subgroup G, associated with a
long root a.

The proof of the theorem reduces to the case of negative scalar curvature
s < 0 and semisimple Lie group G . Indeed, if s > 0 the manifold M is
compact and in this case the theorem was proved in [A]. In the case s = 0,
the Ricci curvature Kic = 0 and the result follows from the fact that any
Ricci-flat homogeneous Riemannian manifold is flat [A-K]. Hence, we may
assume that s < 0-and hence Ric < 0.

The following result of I. Dotti Miatello shows that the group G is semisim-
ple.

Theorem 1.2 [Do] Let M be a Riemannian manifold admitting a transitive
unimodular group G of isometries. If Ric < 0 then the group G is semisimple.

To prove the main theorem we need some basic facts concerning homo-
geneous quaternionic Kahler manifolds.

2 Basic facts about homogeneous quaternionic
Kahler manifolds

2.1. Let M be a quaternionic Kahler manifold which admits a transitive
group G of isometries. Then we identify M = G/H, where H is the stabilizer
of a point. We will say that M = G/H is a homogeneous quaternionic Kahler
manifold. Let g = h & m be a reductive decomposition, where g = LieG,
h = LieH, [h,m] C m. We identify m = TyM and denote by < -, > the
Adp-invariant scalar product on m induced by the Riemannian metric on
M. For any a € g we define a skew-symmetric endomorphism L, (Nomizu
operator) on m by the formula

2< Loz,y > =< 7la 2],y > — < z,7m[a,y] > — < ma,w(z,y] >,

x,y € m, where 7 : @ — m is the natural projection.
Remark that for a € h the Nomizu operator L, = ad,|m is exactly the
isotropy operator. The following proposition is known.
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Proposition 2.1 [A] A homogencous Riemannian manifold M = G/H
(n > 1) is quaternionic Kahler iff the Nomizu operators belong lo the nor-
malizer n(q) = sp(1) @ sp(n) in so(m) of some quaternionic structure q =
span{Jy, J2, J3} on m.

2.2. Structure equations. Let M = G/H be a homogeneous quater-
nionic Kahler manifold. We will always assume that the group G is connected
and semisimple. Then the Cartan-Killing form B of g is non degenerate on
g and fj and we fix the reductive decomposition g = §j & m, where m is the
B-orthogonal complement to h in g. Let J,, @ = 1,2,3, be a standard basis
of the corresponding quaternionic structure on m. Then for any a € g we
can write

3
Lo =) wala)Jo + La,
a=1

where L, belongs to the centralizer 3(q) = sp(n) of q in so(m) and the 1-forms
wq satisfy the following structure equations

VT pa = dwy + 2wg A wy . (1)

Here p, = < -, Jar > is the Hermitian form associated with the complex
structure Ju; (a, 3,7) is a cyclic permutation of (1,2, 3) and v = s/4n(n+2)
is the reduced scalar curvature, see [A].

We denote by ) the Kraines 4-form on m, given by

3
Q=ZPQAPO-

a=1

It is Lg-invariant and defines a parallel 4-form on M (the Kraines form of
M). The 4-form 7*Q on g is exact:

0 = dy,

3
z,b:Zwﬂ/\dwa-l—A‘wl/\wg/\w;;.

a=1

Denote by b the kernel of the homomorphism

3
¢:b—)q) hHLh_Eh":Zwa(h‘)Ja
a=]
and by a the orthogonal complement of § in § with respect to the Cartan-
Killing form B. Since ¢ : a — q = sp(1) is an embedding, d = dima = 0,1
or 3. We will say that the homogeneous quaternionic Kahler manifold M =
G/H isof type 1,2 or 3, ifd = 0, 1 or 3 respectively. Passing to the universal
covering, if needed, we may assume that M is simply connected and hence
that H 1s connected.



3 Proof of the theorem for manifolds of type
1 and 2

3.1. Type 1 We assume now that a = 0. Then wy(h) = 0, ¢ = 1,2,3,
and the structure equations show that the 1-forms w, are invariant under
the isotropy representation of the Lie algebra h) and hence of the Lie group
H, since H is connected. This implies that i defines some invariant form
on M whose differential is the Kraines form © on M. In particular, the
volume form 2" is the differential of some invariant form. This contradicts
the following result of Koszul [Ko], [Ha].

Theorem 3.1 Let M = G/H be an orientable Riemannian homogeneous
space of a connected unimodular Lie group G. Then the Riemannian volume
form is not cohomological to zero in the complex of invariant differential
forms.

3.2. Totally geodesic Kahler and quaternionic Kéhler submani-
folds

Definition 3.1 Let (M, g,q) be a quaternionic Kdhler manifold.

1) A submanifold N of M is called a Kahler submanifold if there ez-
ists a section J of the gquaternionic structure q along N such that
(N,g|N,J) is a Kdhler manifold, i.e. J is a parallel complezr struc-
ture on N.

2) A submanifold N of M is called @ quaternionic Kahler submanifold
if qz TN C Ty N for anyz € N.

Recall that any quaternionic KKahler submanifold N of a quaternionic
Kahler manifold (M, g,q) is totally geodesic with the same reduced scalar
curvature, in particular, (N, g|N, q|N) is a quaternionic Kahler manifold.

Let M = G/H be a homogeneous quaternionic Kahler manifold and

g=h4+m=a+h+m

be the corresponding reductive decomposition as before. Denote by Z&(b)
the connected component of the centralizer of an element b € h in G.

Proposition 3.2 Let M = G/H be a homogeneous quaternionic Kdhler
manifold of type k.

1) Foranyb € b Ch = a4+l the orbit N = Z2(b)o of the point 0 = eH
s a quaternionic Kahler submanifold of the same type k or a point.
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2) For any a € a — {0} the orbit N = Z%(a)o is a totally geodesic Kdhler
submanifold or a point.

8) Assume k = 2. Then for any b € h\§ the orbit N = Z%(b)o is a totally
geodesic Kdhler submanifold or a point.

Proof. It is known (see e.g. [A], Assertion 4) that the orbit N = Z2(b)o of
the centralizer of any element b € lj in a homogeneous Riemannian manifold
M = G/H is totally geodesic. In the case 1), the reductive decomposition of
the Lie algebra go = 34(b) corresponding to N can be written as

go = a+35(b) +n, n = jm(b).

Since Ly € 3(q) = sp(n), the subspace n is quaternionic, i.e. qn C n. Now it
is immediate to check that N is a homogeneous quaternionic Kahler manifold
of type k, using the trivial fact that the image of b € hNgo under the isotropy
representation on n = T,N equals ady|n = Lyjn = T2 _ wa(b)Jaln + Ls|n.

In the case 3), the reductive decomposition of go reads:

90=Ra+35(b)+na n = 3m(b),

whereb=a®becad® f_) Without restriction of generality we can choose a
standard base (J, ) of q such that Ly = J; + Ly, Ly € 3(q). Since {Ly, J;] = 0,
n is a Ji-invariant subspace of m. The structure equations (1) show that
waln =w3n =10, e.g.

0=w([b,z]) = 0+ 2(0 —ws(z) - 1) = —2wa(z), z€n.

This shows that [£z,J;] = 0 for all z € go. Since the Lie algebra generated
by the Nomizu operators contains the holonomy algebra, this implies that J;
defines an invariant parallel complex structure on NV and hence N is a Kahler
submanifold.

In the case 2), go = 35(a) has the reductive decomposition

go=Ra+h+n, n=jnla)

and the proof is the same as for the case 3). O

Remark that in the cases 2) and 3) the N is a totally complex manifold
in the sense of Tsukada [T].

3.3. Invariant symplectic structure on quaternionic Kahler man-
ifolds of type 2 Now we consider the case when dima = 1. Choosing an
appropriate standard basis (J,), we may assume a = Re, B(a,a) = —1 and



Le = Ji + Ls. The reductive decomposition g = h @ m of g induces a decom-
position g* = §* @ m" of the dual space. For any k-form o € A¥g* we denote
by ", (p + q = k) the natural projection onto

A9 = AP @ A%m”

If o is Ady-invariant, o?? is also Ady-invariant and, in particular, ¢% is an
Adg-invariant k-form on m and hence defines an invariant form on M. The
1-forms w, associated to the basis (J,) have the following properties:

w = w®+w? is Ady-invariant and wl® = —B(a, ) # 0,

wy = wgl and w3 = wgl .

Lemma 3.3 1) The 2-form dwi®(z,y) = B(a,[z,y]) belongs to A%, is
Ady-invariant and hence defines an invariant 2-form o on M.

2) The forms wy A w3, wy A dwy + w3 A dws and ¢ are Ady-invariant.
8) The Kraines form & on M is cohomological to o A a.

Proof. The form dw}® is Ady-invariant, since w; is Ady-invariant. Let
h € b, z € m, then dw|®(h,z) = —w]%([h,z]) = 0, since [h,m] C m. Hence
(dwi®)'' = 0. The component (dwi®)® = 0, because [h,h] C §) = kerw,.
This proves 1).

2) The structure equations (1) imply

adyws = 2wi(h)ws,
adhwg = —2&)1(]1)L¢J2
for h € . From this 2) immmediately follows.
3) From the structure equations we obtain the following equalities:
du)1 = dW?z = TFtpl - 2(4)2 A w3,
dw; = dwd® + dw,)t,
dw; = cz,’(,..:g2 + dw;' ,

dwy® = Tpy — 2z AW,
dw?c,m = Tr*pg — QJJJ?I A wa ,
dw;l = —20.73 A wlm ’
doy' = —2w°Aw,.

Using this we obtain
'l,b — ¢03 + ,¢’l2



Moreover we compute

P = WO Adw 4wy Adwl' +ws A dwy' +4wl® A wy Aws
= W’ Adw; = w® Adw® +w® Adwt,

PP = WM Adwy 4wy A dwd® 4wy A dwd? + 4w A wy Aw;
= w]olf\dw1+w2/\7r'pg+w3/\7r'p3.

Using these formulas we have

Q — d’l/) — d,d)l‘) _I_ dl,[)03
= a!(w{0 A dw}o + wio A dw?l) + dy®?
dwl® A dw!® + d(dwi® A +$%).

According to 1), 2) dw{® Awd' + 9% € A% is Ady-invariant and hence defines
an invariant 3-form 7 on M. Hence, on the manifold M

Q=cAo+dr. D
As a corollary we obtain

Proposition 3.4 ¢ is an invariant symplectic form on M and M = G/H
is identified with the universal covering G/Z(a) of the adjoint orbit Adga =
G/Zg(a). Moreover, the group G is simple.

Proof. It is clear that the form o is closed and invariant. Moreover, the form
o?" is cohomological to ™. Since ™ is not cohomological to zero by Koszul’s
theorem, the invariant form o®* # 0. Hence, o is non-degenerate, that is o
is a symplectic form. The second statement follows now from the Kirillov-
Kostant description of homogeneous symplectic manifolds. Suppose now that
the semisimple group G is not simple. Without restriction of generality we
may assume that ¢ = G X G3. Then the homogeneous manifold G/ H is G-
isomorphic to the direct product G,/ H, x G2/ H; of homogeneous manifolds,
where H = Z2(a) = H, x H,. Any invariant metric on such a manifold is
reducible. On the other hand, it is known that a quaternionic Kahler metric
of non zero scalar curvature is irreducible. This contradiction shows that the
group G is simple. O

3.4. Type 2 The proof of the theorem for type 2 manifolds is based on
the following two lemmas.

Lemma 3.5 Assume that G/H is a quaternionic Kihler manifold of type 2
and rkg > 2. Then there exists h € by such that 34(h) is non-compact.
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Proof. Consider the root system R of (gc, tC), where t =Ra+1, tCh,isa
compact Cartan subalgebra of fj and hence of g. Any root & € R generates a
3-dimensional subalgebra g(«) = spang{ha, €q, €-o } Ng, which is isomorphic
to su(2) or to sl(2,R). The root « is called compact respectively non-
compact, if g{o) = su(2) respectively g(a) = si(2,R). If g is non-compact,
then there exists a non-compact root 3, s. [He]. Choose 0 # h € tN kerf.
Then 34(h) D a(f) = sl(2,R). O

Lemma 3.6 Let M = G/H be a homogeneous manifold, where G is a real
simple Lie group of rank 2 and H a compact subgroup of the form H =
Z2(a), a € h. Assume that the isotropy representation of H preserves a
quaternionic structure on m = TyM. Then G/H = SU(3)/U(2) & CP? or
= SU(1,2)/U(2) = CH?.

Proof. According to the theory of semisimple Lie algebras g is of type A,,
B, or G, and b is isomorphic to t* or to t! @ su(2), where t* denotes the Lie
algebra of the n-dimensional torus. Assume that the isotropy representation
of M preserves some quaternionic structure. Then dimG/H = 0 (4) and
(g,h) can only be of type (A2, t! @ su(2)), (Bz,t?) or (Go,t?). Checking the
real Lie algebras of Type Ay, we conclude that the first pair gives exactly the
two manifolds G/H described in Lemma 3.6. Let now g be a real simple Lie
algebra of type B; or (G with a compact Cartan subalgebra t = t2. To prove
the lemma, it is sufficient to check that the isotropy representation adi|m of
t on m = [t, g] does not preserve any quaternionic structure g. Suppose that
such a quaternionic structure q exists. Then

adi|m C nso(m)(q) =sp(1) & gl(n, H),

where n = 2 (resp. 3) if g has type B, (resp. G3). There exists an element
0 # b € tsuch that A = aby|m € gl(n,H). Since for any A € gl(n, H) the
multiplicity of an eigenvalue of A is even, the root system R of (gC, tC) must
satisfy the following condition for any o € R:

#{B € R| B(b) = a(b)} =0 (2).

From the picture of the root systems of type B; and Gy one sees that this is
impossible. O

Now we prove that there is no homogeneous quaternonic Kahler manifold
M = G/H of type 2 with an unimodular group G. By Prop. 3.4 we may
assume that G is simple. We will use induction on the rank of G. First
we remark that there is no quaternionic Kahler manifold M = G/H of type
2 and rk G £ 2. Indeed, if tkG = 1, then dimG = 3. If 1k G = 2, the
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only quaternionic Kahler manifolds are the symmetric manifold SU(3)/U(2)
and its non-compact dual, which are not of type 2. Applying induction,
we assume that there is no quaternionic Kahler manifold G/H of type 2
and tkG < k. Let now M = G/H be a quaternionic Kahler manifold of
type 2 with an unimodular and hence simple group G of rkG = k. Let
g = (Ra + h) + m be the corresponding reductive decomposition. We may
assume that rkg > 2 and hence ) # 0. By Lemma 3.5 there exists b € b
with non-compact centralizer go = 35(b). Remark that go is a reductive
and hence unimodular Lie algebra and g # go ¢ h. According to Prop.
3.2 1) the orbit N of the corresponding connected Lie group Z&(b) is a
quaternionic Kahler submanifold of type 2. The corresponding reductive
and hence unimodular isometry group Gy of (N,g|N) is the quotient of
Z2(b) by the kernel of non-effectivity, which contains {exptb| ¢ € R}. Hence,
rk Gy < rk Z&(b) = tk G = k. This contradicts the inductive assumption. O

4 Proof of the theorem for type 3 manifolds

Now we consider a homogeneous quaternionic Kahler manifold M = G/H
of type 3 with semisimple Lie group G. We will consider the reductive de-
composition g = h + m, where m is the orthogonal complement to ) with
respect to the Cartan-Killing form B. Moreover, h = a + §, where b is the
kernel of the homomorphism ¢ : h = q = sp(1) and a is the B-orthogonal
complementary ideal to b in ), s. 2.2. With respect to a standard basis (J4)a
of g the isomorphism éla: a = q = sp(1) is given by ¢(h) = 33_, walh)Ja,

in particular, the forms w,|a are linearly independent.
Proposition 4.1 For anya € a — {0}, go = 34(a) Ch.

Proof. Without restriction of generality we may assume that wy(a) = 1,
wz(a) = ws(a) = 0. According to Prop. 3.2 2)

go=3g(a)=ho+n=Ra+h+n

defines a totally geodesic Kahler submanifold and w;|go = ws|go = 0. Remark
that go (and any quotient of go) is reductive and hence unimodular. By the
structure equations (1) dw; = vw*p, on go. Consider the decomposition of
W1|Elo

w =w®+ ' € b+

as before. Since w; is adp,-invariant, the 1-form (! is invariant, vanishes

on ho and hence defines some invariant form on the homogeneous Kahler
manifold N = Gy/Hy, where Gy and Hg are the connected Lie subgroups
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of G with Lie algebra go and ly respectively. p; defines the Kahler form

o on N and dw® = dw; — dw}' defines an invariant form on N, which is

cohomological to o (up to the factor v # 0). Since 0%, k = dimg N, is a

volume form, the cohomological form (dw!®)? is not zero on N by Koszul’s

theorem. In other words, dw!® defines an invariant symplectic form on N.
Remark now that the 1-form w{® equals

w)”=MB(a,") €95, AER,

since wl®(h +n) = 0 and w%(«) = 1 and b + n is the orthogonal complement
of Re in gg with respect to the Cartan-Killing form B of g. This implies
dwi® =0 on go:

dw;o(&,",y) = —wlw([mvy]) = —)\B((L, [z,y]) = AB([:B,&], y) =0

for z,y € go. On the other hand we proved that dw]® defines a non-degenerate
form on N, hence N =pt and go C h. O

Corollary 4.2 1) For all a € a we have 35(a) = Ra +§.
2) h = a+b=ng(a).

8) Any Cartan subalgebra of § is a Cartan subalgebra of g and has the
form t = Ra + t, where t is a Cartan subalgebra of by.

Proposition 4.3 1) a is a compact regular 3-dimensional subalgebra as-
sociated to a long root o of (g,t).

2) @ is simple.

Proof. By Cor. 4.2 3) there exists a Cartan subalgebra t of g of the form
t = Ra+t C §. Obviously it normalizes a, hence aCisa regular 3-dimensional
subalgebra associated with some root « of (gc, f,C). Since any 3-dimensional
regular subalgebra is contained in some simple ideal and its normalizer con-
tains all other simple ideals, from Cor. 4.2 2) and from the eflectivity of G
statement 2) follows. It remains only to prove that « is long. [t was proved
in [A] (s. Lemma 5 2)) that under our assumptions « is long, if g is not of
type G. In the latter case the normalizer n, of the regular 3-dimensional
subalgebra associated to (any root) « is of the form n = a§n9+a£m, where
Qiong (resp. Qsnort) is a regular 3-dimensional subalgebra associated to a long
(resp. short) root. Moreover, (gg/nﬂ,)C &~ C*' @ C?, where aﬁm (resp. agng
acts irreducibly on C* (resp. C?) and trivially on C? (resp. C*). This shows
that a = a,ner is impossible, hence a = ajony. O

The proof of the main theorem follows immediately from the following
proposition.
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Proposition 4.4 Let a, be a compact regular 3-dimensional subalgebra as-
soctated with a long root a of a simple non-compact real Lie algebra g. If its
normalizer ng(a,) is compact, then it is mazimal compact and hence the
corresponding homogeneous space G/Ng(a,) ts a non-compact symmetric
quaternionic Kdhler manifold (dual to a Wolf space).

The proof of Prop. 4.4 is based on the following lemma.

Lemma 4.5 Lel o, oy be two involutive automorphisms of a simple complex
Lie algebra g, with fiz point sets g%, g°. Assume g?¢ C ¢“, then o = 0y.

Proof. Let g = g°° +g?° and g = g? + g° denote the corresponding symmet-
ric decompositions. They are orthogonal with respect to the Cartan-Killing
form. Moreover, since o preserves g°°, it preserves also the orthogonal com-

o0

plement g”° = a, +a_, a;y =g’ Na?°, a_ = g°. Then
[ay,a-] C e, 02] CoZ CoZ°.

On the other hand
[ay,a-] C [a%°, 7] C g™.

Hence [a4,a-] = la;,@%] = 0. Therefore the kernel ¢ of the isotropy repre-
sentation of g” on @7, which is an ideal of g, contains ay. Since g is simple,
0=¢t=ay and o0 =0p. O

Corollary 4.6 Let [ be a simple complez Lie algebra. There is no inclusion
between mazimal compact subalgebras of different real forms g, g’ C | of

[:gczglc,

Proof. It is sufficient to consider the Cartan involutions of the real forms
and apply the lemma to their complex linear extensions. O
Proof (of Prop. 4.4). Let &€ D n, = ny(a,) be a maximal compact subalgebra

of g. There exists some real form g’ of [ = gC such that n, is maximally
compact in @’. This real form corresponds to the non-compact dual of the
Wolf space G,/N¢,(a,), where Lie G, is the compact real form of [. Cor. 4.6
implies € = n,. O
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