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Abstract. The purpose of this paper is to study the connections between affine
algebras with extended symmetry and superconformal algebras. We investigate
which of the super-symmetries have super-affine backgrounds and in the course
derive simple free field realizations of the N = 2 superconformal algebra with the
underlying representation spaces being Fock spaces related to affine algebras with

2 + k extended symmetry, where k& > 1.

§1. INTRODUCTION

Construction of representations of the N = 2 superconformal algebra has re-
ceived some attention recently, mainly because of its connection to Mirror symmetry.
Kazama and Suzuki [KZ1] [KZ2] investigated under what conditions the GKO coset
method for the N = 1 symmetry can be applied to obtain an N = 2 symmetry.
Roughly speaking an N = 1 coset model possesses an N = 2 symmetry if and only
if the coset G/H can be polarized into 2 isotropic subalgebras. This construction
links the N = 2 symmetry to Kahler manifolds. More recently Parkhomenko [P)]
pointed out a connection between Manin triples and the N = 2 symmetry.- This
model is similar to the Kazama-Suzuki model, since in this case a Lie algebra with
a polarization into 2 isotropic subalgebras (a Manin triple) gives rise to an N =2
symmetry [G]. In this paper we will use the Sugawara construction to give yet
another approach to constructing representations of the N = 2 superconformal al-

gebra. Although the representations we get are known, we believe that it is worth
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mentioning, because constructing superconformal algebras from affine algebras with
extended symmetry is very natural. It turns out that one of our models coincides
with a special case of the so-called (b, ¢, 3, v)-model [FGLS]. This model is currently
of interest in the Landau-Ginzburg description of the N = 2 theories [W]. Qur other
model is equivalent to the Manin triple model with an even dimensional abelian Lie
algebra as the underlying Manin triple [G].

In this letter we will only deal with the Neveu-Schwarz algebra. The connection
between the Neveu-Schwarz algebra and the Ramon algebra was pointed out by
Seiberg and Schwimmer (SS].

Computations involving operator product expansions are bound to be cumber-
some and error-prone. We would like to thank Thielemans for making his Mathe-

matica package available to the public [T].

§2. PRELIMINARIES

Our field will always be the field of complex numbers C. We let C[t,t™]
stand for the Laurent polynomials. The Grassmann superalgebra in the n variables
61,082,---,6, will be denoted by A(n). We will write W(1,n) for the derivation
superalgebra of C{t,t7'] @ A(n).

Let g = g5 @ g7 be a Lie superalgebra. The degree of a homogenous element
g € g will be denoted by degg. Suppose that « is a 2-cocycle of g. « defines a

central extension g of g with the new commutation relation given by

[z,y] = [z,9]o + a(z, )z,

where z,y € g, z is a central element and [-,] and [, Jo denote the new and the old
Lie brackets, respectively.

Suppose that g possesses a nondegenerate supersymmetric invariant bilinear
form. Then there exits a 1-1 correspondence between outer superskewsymmetric
derivations of g and nontrivial 2-cocycles [C]. If D is such a derivation and (-, ")
is such a form, then ap(z,y) := (D(z),y) is a 2-cocycle. And conversely every 2-

cocycle is necessarily of this form. We will call such derivations central derivations.
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Suppose g = S ® C[t,t™'] @ A(n), where S is a simple finite dimensional Lie
algebra. Let (-,-)s be a symmetric nondegenerate invariant bilinear form on 5. We

can define a bilinear form on g by

(z@Ay®pu):= (z,y)sf/\/\#,

where z,y € §; A\, u € C[t,t7'|®A(n) and § denotes the coefficient of ™1 ® 6, A, A
+++ABn. (,+) is supersymmetric, invariant and nondegenerate. Since S is simple,
one can prove that the outer derivations of g is isomorphic to W(1,n). It is then
not hard to see that D = ao;% +3 0, ‘“3%'.7 with a; € C[t,t7'] ® A(n) is central if
and only if D is divergence free, i.e. divD := Zao + ELI(-—l)deg“‘a;:;a; =0.

Let dergg be the derivation superalgebra of g and D € derpg. We say that D

is compatible with « if D is superskewsymmetric with respect to a, i.e.
a(D(z),y) = (-1)!8P98%(z, D(y)), =,y €0

The set of all a-compatible derivations form a subalgebra of dergp and we will
denote this subalgebra by (dergg)®. We like to point out that (dergg)® consists
precisely of those D € dergg such that D € dergg, where g is the central extension
of g corresponding to the cocycle a.

Given a Zj-graded vector space V = V3 @ Vj equipped with a consistent
nondegenerate supersymmetric bilinear form (-,-). By consistent we mean that
(Vs, Vi) = 0. On the space L := A%(V)® S%(Vi) b (V3 ®V;) with obvious Zg-grading
one can define a Lie bracket using (-, ). For homogeneous elements z,y € V one de-
fines [z,y] := (z,y)-1. One extends this bracket operation, using the Leibniz rule, to
L. This gives a realization of the Lie superalgebra osp(V5|V;), the orthosymplectic
Lie superalgebra of dimg Vs even dimension and dimgVj odd dimension [K].

Now let g = gg @ i be a finite dimensional Lie superalgebra eqiupped with a
nondegenerate superskewsymmetric consistent bilinear form «(-,). « for example

could be a 2-cocycle. We obtain an embedding

(derge)* —osp(siles),
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where « is defined as follows: Let {z;,z3,---,z,} be a homogeneous basis of g.
Let {z],z3,---,2,} be elements in g such that a(z],z;) = &;. Let D € (dergg)”.
Suppose [D,z;] = 337_, aijz;. Then

k(D) = —% Z i T{ ;. (%)

We note that if a is invariant, then g C (dergg)®. Therefore if we have a represen-
tation of osp(gylgs) it will pull back to a representation of (derg)®. Now let a be
the Lie superalgebra generated by {z;,z2, -, zn;z} with commutation relations
given by a, i.e. [zi,z;] := a(z;,z;) 1. If § is a representation of a, then osp(gi|gg)
acts on §, and hence (dercg)c'. If p is infinite dimensional, this idea can be used
to construct representations of some central extension of (derpg)®. However, we
have to introduce “normal ordering” in order to give an expression like (%) meaning.
This simple idea is what we will use in the next 2 sections.

Let us conclude this section with some remarks on fields. We let ¥(z) =

. %;27772 be a field of conformal dimension A. We can then define
Yalz)= D #2778
i>-a

and

Y-(2)= Y gz IR

i<-a
We call this field even if all the ;s are even elements of some Lie superalgebra,
and odd if they are all odd elements. Given another field ¢(z) = } . piz7 12" of
conformal dimension A’. We define the normally ordered product of the fields 3(z}
and ¢(z) to be the following field of conformal dimension A + A’

L (2)(2) = Y- (2)e(2) + (2)d4(2),

if one of the two fields is even and

1 h(2)e(z) = Y- (2)e(2) — ¢(2)d+(2),
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if both fields are odd. So the normally ordered product is the field

9(2)d(2) 1= D (Y Yndiont Y Binthp)zITATA

;] n<-A n>=-A

Furthermore the derivative of the field ¥(z) is the following field of conformal di-

mension A + 1

B(z) == Y (—j = Az

J

Finally all fields we consider in this paper will be local with respect to one
another. The short distance operator product expansion of two fields ¢(z) and ¢(z)
will be denoted by ¥(z) - ¢(w). We will only write down the singular terms, which
are known to determine the commutation relations between mutually local fields

completely.

§3. CONSTRUCTION IN N =3

The fields of the N = 2 superconformal algebra are

They satisfy the following nontrivial operator product expansions:

L)L) ~ (fll(:};;z * (azL_(?)
T(z) T(w) ~ (z——cTu_j?

T(w)  OT(w)

(z —w)?  (z—w)

L(z) - T(w) ~
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1G+(w) | 8GH(w

(z—w)®  (z—w

)
3G~ (w)  0G~(w)

L(z)- Gt(w) ~

L(z) - G™(w) ~ (z-w)?  (z-w)

+(w

T(z) - Gt (w) ~ G_( )

(z —w)

ety L —Gw)

T()6™(w) ~ o
). G (w) ~ ¢ T(w) L(w)—}-%aT(w)
G7(z) -G~ (w) (z—w) | (z-w)? (z—w)

The Sugawara construction [S] of the Virasoro algebra relies on the fact that
the unique nontrivial (up to a scalar) 2-cocycle of the loop algebra S @ C[¢t,t7?]
is compatible with the centerless Virasoro algebra, realized as a subalgebra of the
derivation algebra of the loop algebra. It is important that this 2-cocycle establishes
a nondegenerate pairing for C[t,t™!], considered as an abelian Lie algebra. This en-
ables one to define x as in §2 and hence, after introduction of normal ordering, to
extend a highest weight representation of the central extension of S ® C[¢,t7!] to
include the Virasoro algebra in a natural way. Let us consider two simple examples
to illustrate this: Take S to be the 1-dimensional Lie algebra with a nodegenerate
symmetric invariant bilinear form. In this case x gives us the usual bosonic con-

1

struction of the Virasoro algebra; i.e. L(z) = 3 : a(z)? :, where a(z) a(w) ~ 7=

z—w)

and L(z) denotes the Virasoro field. As the second example we take S to be the
2-dimensional abelian odd Lie superalgebra with nondegenerate skewsymmetric in-
variant bilinear form. In this case we obtain the usual fermionic construction of the
Virasoro algebra. That is L(z) = 3(: 8¢+ (2)¥~(2) : + : O~ (2)¥(2) :), where
PH(z) (W) ~ =

The Kag-Todorov construction [KT] is similar. In this case one looks for 2-

cocycles of S ® Cl[t,¢7!] ® A(1) such that the corresponding compatible subalgebras
of the derivation superalgebra W(1,1) contain the N = 1 superconformal algebra.
Remark. Although the S in our two examples above are not simple, our argument

still applies. The only reason we have insisted on S being simple in ¢ = SQC[t,t7']|®
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A(n) is to assure that the outer derivations coincides with W(1,n). However, this
is by no means required, because W(1,n) will always be a subalgebra of the outer

derivation of g for arbitrary S.

To apply the above construction to the N = 2 superconformal algebra one is
therefore led naturally to consider S®C|t,t~!|®A(2) and look for central derivations
in W(1,2) which are compatible with the (centerless) N = 2 superconformal alge-
bra. Such central derivations could enable one to construct representations of the
N = 2 symmetry from the corresponding central extensions of S ® C[t,t7}] ® A(2).
However, the only such central derivation is the trivial one [CFRS], which does not
give rise to a nondegenerate pairing in C[t,:7!] ® A(2). But the {centerless) N = 2
superconformal algebra is obviously embedded in the derivation superalgebra of
W(1,3). One could ask if there is a nontrivial cocycle o of S® C[t,t™?] @ A(3) such
that (W(1,3))* contains the N = 2 superconformal algebra. It turns out that there
exists such a 2-cocycle. It is unique up to a scalar and this cocycle corresponds to

the central derivation 3%; [CFRS].

From now on we will assume that S is the 1-dimensional Lie algebra equipped
with a symmetric nondegenerate bilinear form, unless otherwise stated. Further-
more we will drop S in S®C|t,t~?|® A(n) when we make this assumption. Consider
the central extension of Cft,t~!]|®A(3) corresponding to 8%3. This cocycle is defined
by

a(z,y) = f 5&;—3@) Ay,

where z,y € Clt,t™'] ® A(3). Now only nontrivial pairings of o can be used to
construct the N = 2 symmetry. One checks easily that the only nontrival pairings

of a are

a(t" @6, A3, t™ "1 @6, Abs) = —1,

a(t" @603, @60, Aby AB3) =1.
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The centerless N = 2 superconformal algebra in W(1,3) can be realized as

Ln=—t“+‘§t (nzl)tw(e, 0 +62%)
Tn=t"®(¢9l£2 926‘2 )

G, —'trﬂf@(gl%—a%)+(r+l)t"'}®91 /\92%
G3=t"+i®(92%“5§; ‘(r+2)t'-%®91/\023?91
GF = %(Gl +iG?)

Gy \/_(G‘—-sz)

Let a denote the Lie superalgebra generated by {t" ®6; A83,t" @60, A83,t" R6;,t"®

61 A 83 A 83, z;n € Z} with nontrivial commutation relations

[t" @61 A 03,1 @2 Ab3] = —bpgm,—12

" R60:,t" R0, A0 Ab3] = bp4m,—12.

One checks that a is invariant under L,, Tn, G}, G%. We want to write the generators
of a in field notation to make computations easier. For this we need to determine
the conformal dimensions and the modes of these fields. We use the Virasoro field
L{z) to force these fields to be primary. This immediately implies that the fields of

a are of the following form:

E aj’z'r"i’

red+Z
a~(z) = Z ar_z—r'i

re}+Z

- e

jed

) =Y gy

je&
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where
CI,-!- = tr_% ®93 A 61

o =t ®6, A6
1/’;‘ =t' @6,
Y] ==jt' @60, A6 NG
Here a*(z) and a~(z) are bosonic fields and ¥ (z) and ¢~ (z) are fermionic fields.

They satisfy the following operator pi'oduct expansions:

at(z)-a (W) ~ ——
() a(w) ~

k
+z.-w ~ ———
V) ¥T) ~ B

where k € C* is the scalar with which z acts. To construct an N = 2 symmetry
from these four fields one needs to compute the actions of L,,T,, G, G% on these
fields. The computation is straightforward and we will leave the verification to the
reader. However, because we need these formulas for §4, let us write them down
explicitly:
PROPOSITION 3.1. Let A € A(63,---,62+%). Consider the N = 2 superconformal
algebra as a subalgebra of dercA(6;,02,03,---,0,44). Set

at =t""TQ@AAG o =t""E@6, AN

P =t'®N Y] =it @6 A6 AN

Then one has

L,,a',f' = ("T - 3)9:4-- Lya, = (—"“ - g)ar_.+r

Lo} = =j¥dy;  La¥j = —j¥ny;
Tﬂaj‘ = Ct;_'_r ‘ Tﬂar_ = "a-ri:+r

T} = Tud] =0 Glat =i,

1 - - 1.+ P
Gnar - _¢r+n Gn‘lbj = _Jan.{..j

1 ,,— __ = 2 4 -
Gn‘/)j _Jan+j Gnar —_¢r+n

2 - + 2+ _ -
Gnar - —¢r+n Gn¢; —Jan+j

2 p— .
Gn"vb_; = Ja:—-{-j‘



Using the above proposition it is not hard to derive the following formula for

the N = 2 symmetry. We summarize this in the following

PROPOSITION 3.2. On the Fock space of the central extension of the Lie superal-

gebra C[t,t~'} ® A(3) with corresponding central derivation 5%; one can define a

representation of the N = 2 superconformal algebra of central charge ¢ = —1. It is

equivalent to the following free field realization:

L(z) = 5-(: Ba~()a*(2) : — 1 Ba(2)a=(2) ) = 1+ $H ()™ (2) :

T() = 5 (: o () (z) : = a¥ () (2) )
G*(2) = gl o (2 (2) -+ @* (W™ (2) 1 = 2 o (29 (2) s = 2 0 () (2) )
G™() = 5 @™ (2H () 45 ot (2B (2) 4 @ ()T ()  + et () )

Proof. One can check the OPE’s using Wick’s theorem.

We will conclude this section with a few remarks.

Remarks.

(i)

Let a® be the subalgebra of a generated by { gb;-",t,bj_,aj,a:,z | 720r>0 }
Let |0 > be the one dimensional representation of a* such that 2|0 >= k|0 >
and 1,bj'l0 >= 7|0 >= a0 >= ;[0 >=0,for j > 0and r > 0. Let § =
Indg+|0 >, the induced a-module. Then § is clearly an irreducible a-module.
The N = 2 superconformal algebra acts on § and |0 > is a highest weight vector
with Lgl0 >= T5|0 >= 0. F however is not irreducible as a representation of
the N = 2 superconformal algebra. One checks that ai%|0 > +a:§|0 > is a
1

singular vector on which Ly and T act as the scalars 5 and —1, respectively.

a'_"g |0 > —a:%IO > is also singular with

- 1 -
Lo(af%|0 > —-a_%)|0 >= §(at§|0 > —aZ, |0 >)
Tg(ai'%|0 >—al,[0>) = (af& 0> —aZ,j0>).

Just as in the case of the Sugawara construction one can take S to be a simple

Lie algebra. In the Sugawara case one can get representations of different
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(iii)

central charges this way. In our case the situation is different. The N =
2 symmetry constructed from $ ® C[t,t™!] ® A(3), is equivalent to the one
constructed by using A ® C[t,t7!] ® A(3), where A is an abelian Lie algebra of
the same dimension as S. Therefore the N = 2 symmetry obtained from S ®
C[t,t~!] ® A(3) is a direct sum of dimg S copies of the one we have constructed
here.

This model is indeed a special case of the (b, ¢, 3,v)-model [FGLS] as we have
pointed out in the beginning as follows: Let 7 € Z and w = }-}-_2 We let b(z) and
¢(z) be two fermionic fields of conformal dimensions Uz'ﬁ and 1-;—“", respectively.
Furthermore supﬁose B(z) and ¥(z) are two bosonic fields of dimensions 1 — %

and ¥, respectively. The above fields satisfy the following nontrivial OPE:

1 1
ooy At ~

An N = 2 symmetry with central charge J—i—z using the fields b(z), c(z), 8(2)
and ~(z) can be obtained as follows [FGLS]:
14w l—w
L(z) = g b(2)0¢c(z) : +—2- : Ob(z)c(z2) :
3) 1 B2)01(2) : =5 : 8B(2)(2) :
T(z) = —(1 —w) : b(z)c(2) : +w : B(2)v(2) :
Gt {(z) = —w : (2)0¢(2) : +(1 —w) : By(2)c(2) :

G~ (2) =: B(2)b(z) : .
The (b, ¢, 3,7)-model with 7 = —1 is equivalent to our affine model via the

b(z) - e(w) ~

(z —w)

(1

following substitutions:

bz) = =7 () + ()

e(z) = —=(~(2) = ¥*(2)
1

B(z) = \/—Z_k-(a'(z) +a™(2))

1, - +
= —(a(z)—a™(z
1= Z=la™(2) - a*(2)
So our model provides a purely algebraic background for the (b, ¢, 3, v)-model

in the special case when j = —1.
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§4. THE CONSTRUCTION IN N > 3

From the previous section one is led naturally to consider the following question:
Can one find central derivations in W(1, N + k) that are compatible with the N-
superconformal algebra for £ > 1 and N > 2. §3 settles this question in the case
when £ = 1. To answer this question we will need to study the “compatibility
condition” more carefully. For this we introduce some more notation. Let D; =
0% + 2 € W(I,N +k)fori=1,---,N + k. We have [D;, D;] = 26;;%;. The N-
superconformal algebra can be realized as the subalgebra of W(1, N) (and therefore
as the subalgebra of W(1, N 4 k)) consisting of elements of the form [CFRS]

L(u) = u— +1 f: 1)48*D;(u)D;, u € Clt,t7'] @ A(N).
2 & 7 ’

Let D € W(1,N + k) be a central derivation and ap the corresponding 2-

cocycle. The compatibility condition means that L(u) is superskew with respect to

ap. We prove the following simple lemma, which was stated in {CFRS].

LEMMA 4.1. Let D € W(l,n) be central and ap be the corresponding cocycle.
Then A € W(1,n) is superskew with respect to ap if and only if [A, D] = —div(A)A
D.

Proof. Write A = a2 + 3.1, aig%;, a; € A(n) ® C[t,t™1]. We have for 1,y €
A(n) @ Clt,t7')

/at ao A D(z) A y) +Z )dea“-a%(a,/\p(x)/\y)

=1

=/ g(ao) A D(z) Ay + Z(—l)d‘*s"-'a%(a.-) AD() Ay

+ [aon 5D Ay)+2a. 2-(D(z) Av).
This implies that

A(D(z) Ay)

/ _(div(A) A D)(z) Ay

A(D(I)) Ay + (_l)degAdegD—{-degAdega:D(I) /\A(y).

I

— —,

12



Now A is superskew if and only if
/ DA(z) Ay = —(—1)desAdes / D(x) A Aly).
Thus
/ _(div(A) AD)(z) Ay = / AD(z) Ay — (—1)*EA8D D A(g) Ay
- / (4, D](z) A y.

Therefore —div(A) AD =[A,D]. O

Thus our task of finding compatible cocycles reduces to finding derivations
D € W(1,N + k) such that [L(u), D] = —div(L(u))A D for all u € C[t,t71]Q A(N).
Welet D = ag & + 2:1"1'* a;D;, a; € C[t,t7'|@ A(N +k). One computes [L(u), D]

and set it equal to —div(L(u))AD. It is easy to see that —div(L(u)) = (§ - 1) 2 (u).

From the above equality one derives the following set of equations:

a d d 0 1 z d
gy{e0) = (~1)* a0 ) + 5 3 (-1)* D)D)
N+k N
_ Z (__“l)degu(degaj+l)aij(u) + Z(_l)degu—i-degaj D](U)CIJ
1=1 =1
N 3]
= (5 —zw)ao (1)
1 degu(l-+degaq) a 1 degu A
—3(=D a0 (Dj(w)) + 5(=1) Y " Di(u)Di(a;)
i=1
1 N+k P
T2 Y (~1ytesutdesnlitdesail o, b (Dj(u)) + uz(ay)
i=1
N d :
=(E—1)§(u)aj, j=1,---,N. (2)
2 1 degu Al
ug(ei) +3(=1) Y Di(u)Di(a;)
=1
=(%_1)%(H)Q’J, j=N+171N+k' (3)
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From equations (1), (2) and (3) we obtain by putting v = 1:

a

E(Q’o)-—o

a

E(a_))_os J =41, :N
gt—(aJ)—O, j=N+1,--- , N+k

Now set u =8, =1,.--,N and we get

(N-1a;=0, j=1,---,N
(N-2)aj=0, j=N+1,---,N+k

Using the above nine identities we may rewrite (1), (2) and (3) as

N 8 Nk
S(gwa0) == 3 (~pjtersticseitio; pgy)

J=N+1

1 ) Rtk

2

1=1

=(——1) (u)aj, j=1--- N

Pl

(= -1)z(u)aj=0, j=N+1,---,N+k

We obtain the following corollaries.

(1”!)
(2!")

(3!1’!)

(17)

_ -{(—l)degu(1+degac)QO‘a"_t“(Dj(u)) + Z: ('_l)degu+degu(1+dega;)aiDi(Dj(.u))}

COROLLARY 4.1. If D is compatible with the N-superconformal algebra for N > 3,

then D = 0.

Proof. By (2") and (3") aj=0for y=1,---,N + k. Therefore D = ao??:" Now

we have by (1) ap=0. O
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Remark. Corollary 4.1 in the special case when k& = 1 was stated in [CFRS].
From this Corollary we can also deduce that one can only construct the N =0,1,2
superconformal algebras from affine algebras with extended symmetry using the
approach in this paper.

COROLLARY 4.2. D is compatible with the N = 2 superconformal algebra if and
only if D = Y135 aig-, with div(D) = 0 and a; € A(8s, -+, 6244).

Proof. We have by (2") a; = az = 0. Also by (1) one has

2+k 24-k

0
D__ZQJG_+ZQJ Jat 39)

j=3

Z“’ 28,

By (3') and (3") a; € A(f3,--,024%). Therefore the condition is necessary. One
checks that if D has the above form, then D satisfies (1*), (2*) and (3*) with
u=1"0,Qt" 0, ®t" 0 A Qt" forneZ. 0O

Therefore D € W(1,2 4 k) is N = 2 compatible if D € dercA(6s,---,824k)
and divergence-free. Let D be such a derivation. The ¥ = 2 will be constructed
on the Fock space of the central extension Lp of Ct,t™1} ® A(6:,- - - ,824%)/kerap.
This we will do now. |

When we consider D as a derivation of A{6s,---,024%) we will denote it by
D to avoid confusion. We let r be the rank of the linear map D. For parity
reason it is necessary to assume that the 2-cocycle ap is a consistent bilinear form.
Let ap(z,y) = [ D(z) Ay, where =,y € A(f3, --,024%) and [ here denotes the
coefficient of 63 A - -+ A624+. The bilinear form ap is symmetric on A(8s,- -, 0244)5
and skewsymmetric on A(fs, -, 024%)5 and furthermore it determines a 2-cocycle
on A(6s,--+,0z4k)/kerap. Let Lp be the corresponding central extension. ap is
nondegenerate on A(8s,: - -, 824k)/kerap, thus we can choose an orthonormal basis
{Nili = 1,...,r1} of (A(63,---,824k)/kerap); and a basis {ui, uflap(pi,pu}) =
§ij,i=1,..., 2} of (A(63,--,6024k)/kerap)y. Here one has of course ry + 1y =r.
Denote by a; the Lie superalgebra generated by {t" @ 6; A X, t" @82 A X, t" ® 6, A
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B2 A Xy t" @ A, zi; n € Z} with commutation relations determined by ap, 1.e.
t"@ut"V|=apt" ®v,t™ vz,

where 2; is a central element. Also let b; be the Lie superalgebra generated by the
elements {t" ® 61 A i, t" @, Apf,t" @2 A pi, t" @02 Auf, t" @0 Aby A i, 1" ®
Oy AO2 Al t" @ ui,t" @ uf, %; n € Z} with #; central and commutation relations
defined by ap. We have

Lo = (@L,0) @ (@F,0)/(r=n1 = =2 =51 = - = Eg).

So to study the action of our N = 2 on the Fock space of Lp it suffices to see what
happens on each a; and b;.

Let’s first look at a;, 2 = 1,...,ri. In this case A; and 83 have the same parity.
It follows that we have a Lie superalgebra isomorphism a £ a;, where a is the Lie
superalgebra in §3. Furthermore a = q; as modules of the N = 2 superconformal
algebra by Proposition 3.1. Thus the N = 2 symmetry one obtains on the Fock
space of a; is isomorphic to the one we have constructed on a in §3.

Next consider the action of the N = 2 superconformal algebra on b;, j =
1,---, 3. The situation here is slightly different, because p; and u} are even.
So even though by Proposition 3.1 we have an isomorphism of N = 2-modules
bi = (a @ a) after identification of the central elements on the right hand side, this
isomorphism is not degree preserving. Furthermore these 2 Lie superalgebras are
not isomorphic. So in this case we have to proceed as in §3 and use the actions of

the N = 2 on b; to construct the map < of §2. b; defines 8 free fields. The odd

fields are

a+(z) = Z a',!'z_'-%,a',f' = ™3} ® 61 A
re3+Z

a (z)= Z aTz"""h ar =t @6, A p
rG%-l-Z

brz)= > bRt =t o, A
rE%-I-Z

b(z)= ) brzTmTh b = —tE @6, Ap
r€§+z
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The even fields are

At(2) = Z Atz "1 At = in @ y,
neZ

A7 (2) = Z Arz" VA = —nt" ' @6, A6, Ap!
neZ

B*(z) =) B}z "\ Bf = —nt""' @6 A6 Au
neZ

B~ (z)=)_ Byz "By =t"@u.
neZ

They satisfy the following nontrivial operator product expansions:

a+z-a"'w~ +z-_w~
()0 )~ s AT AW

k B¥(z) - B~ (w) ~ ( =k

b+(z) b7 (w) ~

(z —w)

Here k € C* is the scalar with which z acts on the Fock space of b;. The fields of

the N = 2 can be then written as

L(z) = 2%( at(2)8a™(2) : + :a”(2)0at (z) : +: AT (2)b™(2) :
4067 (20 (2) 1 +2: AT (2)A™(2) : +2: BY(2)B ™ (2) )

G*(z) = 51?5(: A*(2)a~(2): = : A™(z)a* (2) : +BH(2)b(2) 1 — : B~ (2)b*(2) 2)
+ ;—k(: AT ()b (2) s +: A= (2)bH(2) : =BF(2)a"(z) : =B~ (2)a*(2) 1)
G () = 2ik(; A*(2)a™(2) : — 1 A= (2)a* () : +BH(2)b™(2) : — : B=(2)b¥(2) 1)

_ QE;;(: AT (2)b7(2) 1+ : A= (2)bF(2) : =Bt (2)a= () : =B~ (2)a*(2) ?)

These fields satisfy an N = 2 symmetry with central charge ¢ = 2. We can write

these formulas in a more familiar form. To do so, let us introduce the following new
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fields:

o AE B L AT —iBT()
NoT V2k
~(z 1B~ (z *(z iBt(z
ﬁ*(z)-“"”jz—kB() ﬂ+()—A()j2—kB()
() = ‘“”z\)/;_k"bﬂz) ¥ (2) = “_(z)\;’z—,ib_(z)
a=(z) —ib~(z —at(z) + b7 (2
s = TEE gy - 22
They satisfy
o) aw)~ o BB~ o
PHE) o)~ e () bo() ~

In terms of these fields we can rewrite our symmetry as:

L(z) = (= 9*(2)067(2) : 42 o (2)a(2) : = : 6¥(2)097(2) :
F2:BH@B(E) 4 0BT YT (2) 4 08¥ ()67 (2) )
T = = YW () = 47 ()87 ()
GH(z) = ¥ ()™ (2) s+ BH()(2)
G™() = @™ (WH () + 2 B8 ()
This symmetry can also be obtained via Getzler’s Manin triple construction [G],
where one takes the 4-dimensional abelian Lie algebra as the underlying Manin
triple. It clearly decomposes into a direct sum of two copies of the N = 2 symmetry

with underlying Manin triple being the 2-dimensional abelian Lie algebra. It is a

unitary representation. We summarize our results in §4.

THEOREM 4.1. Let D € W(1,2+k) be a central derivation of C[t,t"!|® A(2+k)and
let ap be the corresponding 2-cocycle Then D is compatible with the N = 2
superconformal algebra if and only if D € derg(A(63,---,0244)). Let =15 + 71
be the rank of D as a map of A(f3,---,024). Let Lp be the central extension
C[t,t"')®A(2+k)/kerap corresponding to the 2-cocycle ap, restricted to Cl[t,t~']®
A2 + k)/kerap. We have Lp = (&L,0:) ® (@ilbg)/(z =zy = o = zZpy =
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== 2:,0_) as Lie superalgebras. Furthermore the N = 2 symmetry on a; is
equivalent to the one in Proposition 3.2 and on b; it is equivalent to the Manin
triple model with the 4-dimensional abelian Lie algebra as the underlying Manin
triple. The total central charge of the N = 2 symmetry on the Fock space of Lpis

s

Remark. We have taken S to be abelian for the following reason. Suppose that
S is a Lie algebra equipped with a symmetric invariant nondegenerate bilinear form
(-,-)s. Let D define a cocycle ap. We need to construct an N = 2 symmetry on a
representation space of S ® Lp, where Lp is as in Theorem 4.1 with the Lie bracket
defined by [s1 ® [1, 52 @ l2] = [s1, s2) @ lhla + (51, s2)sap(l1,l2)z. However, although
kerap is an associative superalgebra, S ® Lp is not for nonabelian S in general.
This causes problem as to what space the N = 2 superconformal algebra should act

oll.
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