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Abstract. The purpose of this paper is to study the connections between affine

algebras with extended symmetry and superconformal algebras. We investigate

which of the super-symmetries have super-affine backgrounds and in the course

derive simple free field realizations of the N = 2 supereonformal algebra with the

underlying representation spaees being Fock spaces related to affine algebras with

2 + k extended symmetry, where k 2: 1.

§1. INTRODUCTION

Construction of representations of the N = 2 superconformal algebra has re­

ceived some attention recently, mainly beeause ofits connection to Mirror symmetry.

I(azama and Suzuki [KZl) [I(Z2] investigated under what eonditions the GI(O eoset

method for the N = 1 symmetry can be applied to obtain an N = 2 symmetry.

Roughly speaking an N = 1 eoset model possesses an N = 2 symmetry if and only

if the eoset G/ H ean be polarized into 2 isotropie subalgebras. This eonstruetion

links the N = 2 symmetry to !(ähler manifolds. More recently Parkhomenko [P]

pointed out a connection between Manin tripies and the N = 2 symmetry. This

model is similar to the I(azama-Suzuki model, since in this case a Lie algebra with

a polarization into 2 isotropie subalgebras (a Manin tripie) gives rise to an N = 2

symmetry [G]. In this paper we will use the Sugawara eonstruction to give yet

another approach to constructing representations of the N = 2 superconformal al­

gebra. Although the representations we get are known, we believe that it is worth
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mentioning, because constructing superconformal algebras from affine algebras with

extended symmetry is very natural. It turns out that one of our models coincides

with a special case of the so-called (b, c, ß, 1)~model [FGLS]. This model is currently

of interest in the Landau-Ginzburg description of the N = 2 theories [W]. Our other

model is equivalent to the Manin tripie model with an even dimensional abelian Lie

algebra as the underlying Manin tripie [G].

In this letter we will only deal with the Neveu-Schwarz algebra. The connection

between the Neveu-Schwarz algebra and the Ramon algebra was pointed out by

Seiberg and Schwimmer [55].

Computations involving operator product expansions are bound to be cumber­

some and error-prone. We would like to thank Thielemans for making his Mathe­

matica package available to the public [T].

§2. PRELIMINARIES

Dur field will always be the field of complex numbers C. We let C[t, t- 1]

stand for the Laurent polynomials. The Grassmann superalgebra in the n variables

81 ,82 ,···,8n will be denoted by A(n). We will write W(l,n) for the derivation

superalgebra of C[t, t-1 ] ® A(n).

Let 9 = gö ffi 9I be a Lie superalgebra. The degree of a homogenous element

9 E 9 will be denoted by degg. Suppose that 0 is a 2-cocycle of g. adefines a

central extension 9 of 9 with the new commutation relation given by

[x, y] = [x, Y]o + o(x, y)z,

where x, y E g, z is a central element and [.,.] and [', ']0 denote the new and the old

Lie brackets, respectively.

5uppose that 9 possesses a nondegenerate supersymmetric invariant bilinear

form. Then there exits a 1-1 correspondence between outer superskewsymlnetric

derivations of 9 and nontrivial 2-cocycles [Cl. If D is such a derivation and C,')

is such a form, then aD(x, y) := (D(x), y) is a 2-cocycle. And conversely every 2­

cocycle is necessarily of this form. We will call such derivations central derivations.
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Suppose 9 = S 0 C[t, t- I
] ® A(n), where S is a simple finite dimensional Lie

algebra. Let (', ')5 be asymmetrie nondegenerate invariant bilinear form on S. We

ean define abilinear form on 9 by

(x 12> >., y 12> 1') := (x, y)s f >. AI',

where x, y E S; A, J.l E C[t, t- I
] ®A(n) and § denotes the coefficient of t- I (981 A 82 !\

... A (}n. (".) is supersymmetrie, invariant and nondegenerate. Sinee S is simp~e,

one can prove that the outer derivations of g is isomorphie to W(l, n). It is then

not hard to see that D = ao ;t + E7=1 ai~ with ai E C[t, t-I] ® A(n) is central if

and only if D is divergenee free, i.e. divD := :t ao + E7=I (_l)dega i a~i ai = O.

Let dercg be the derivation superalgebra of 9 and D E derCg. We say that D

is compatible with a if D is superskewsymmetric with respect to 0', i.e.

a(D{x),y) = (_l)degDdegxa(x,D(y)), x,y E 9

The set of all a-compatible derivations form a subalgebra of dercg and we will

denote this subalgebra by (derCg)o. We like to point out that (dereg)O' consists

precisely of those D E dercg such that D E dereg, where g is the central extension

of 9 corresponding to the cocycle a.

Given a Z2-graded vector space V = Vö ffi Vj equipped with a consistent

nondegenerate supersymmetrie bilinear form (.,.). By consistent we mean that

(Vö , Vj) = O. On the space L:= A2(Vö)ffiS2(Vj)EB(Vö0Vj) with obvious Z2-grading

one can define a Lie bracket using (', .). For homogeneous elements x, y E V oue de­

fines [x, y] := (x, y) .1. One extends this bracket operation, using the Leibniz rule, to

L. This gives a realization of the Lie superalgebra osp(VaIVl), the orthosymplectic

Lie superalgebra of dimeVö even dimension and dime Vj odd dimension [I<:].

Now let 0 = Oö EB 91 be a finite dimensional Lie superalgebra eqiupped with a

nondegenerate superskewsymmetric consistent bilinear form a(', .). a for example

eould be a 2-cocycle. We obtain an embedding
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where K is defined as follows: Let {Xl, X2,' .. , Xn } be a homogeneous basis of g.

Let {x;,xi,'" ,x~} be elements in 9 such that o(x;'Xj) = dij. Let D E (derCg)o.

Suppose [D, Xi] = :Ej=l aijXj. Then

We note that if ° is invariant, then 9 C (derCg)o. Therefore if we have a represen­

tation of osp(g:dgö) it will puB back to a representation of (derCg)o. Now let a be

the Lie superalgebra generated by {Xl, X2, ... , Xn ; z} with commutation relations

given by 0, i.e. [Xi, Xj] := o(Xi, Xj) . 1. If ~ is a representation of a, then OSP(9I 19ö)

acts on ~, and hence (derCg)o. If 9 is infinite dimensional, this idea can be used

to construct representations of some central extension of (derCg)o. However, we

have to introduce "nonnal ordering" in order to give an expression like (*) meaning.

This simple idea is what we will use in the next 2 sections.

Let us conclude this section with some remarks on fields. We let 1/;(z) ­

:E j VJjZ-j-t:. be a fieid of conformal dimension .6.. We can then define

VJ+(z) = L 1/;jZ-j-t:.
j>-t:.

and

1/;-(z) = L 1/;jZ-j-a..
i-5-a.

We call this field even if all the 1/lj's are even elements of some Lie superalgebra,

and odd if they are aU odd elements. Given another field </1(z) = :Ei cjJjz-i-a.' of

conformal dimension .6.'. We define the normally ordered praduct of the fields 7f; (z )

and q,(z) to be the following fielel of confarmal dimension .6. + .6':

: 1/;(z)</1(z) : := 1/J-(z)cjJ(z) + q,(z)1f;+(z),

if one of the two fields is even and

: t/;(z)cjJ(z) : := 1/J-(z)<jJ(z) - 4>(z)1/;+(z),
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if both fields are odd. So the normally ordered product is the field

: 1fJ(z)</J(z) : = L( L 1fJn</Ji-n ± L cPi_ntPn)z-i-Di.-Di.'.
i n~-Di. n>-~

Furthermore the derivative of the field tP(z) is the following field of eonformal di­

mension ~ + 1

8t/J(z) := 2:(-j - ß)t/JjZ-i-Di.-I.
j

Finally all fields we eonsider in this paper will be loeal with respeet to one

another. The short distanee operator product expansion of two fields 1fJ(z) and 4>( z)

will be denoted by 1f;(z) . 4>(w). We will only write down the singular terms, wmeh

are known to determine the eommutation relations between mutually loeal fields

eompletely.

§3. CONSTRUCTION IN N = 3

The fields of the N = 2 supereonformal algebra are

L(z) = L Ln z- n
- 2

nEZ

T(z) = L Tnz- n- 1

nEZ

C+(z) = 2: C~z-r-~

rE,+Z

C-(z) = L C;- z-r-~.

rE,+Z

They satisfy the following nontrivial operator produet expansions:

L(z) . L(w) f"V ~c + 2L(w) + 8L(w)
(z - w)4 (z - w)2 (z - w)

c
T(z) . T(w) f"V

(z - w)2

L (z) . T (10 ) f"V T (w ) + 8T(w )
(z-w)2 (z-w)
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~C+(w) + 8C+(w)
L (z) . c+ (w) "'-J

(Z-W)2 (Z-W)

L(z) . C-(w) "'-J ~a-(w) + 8a-(w)
(Z-W)2 (Z-W)

T(z) . C+(w) "'-J G+(w)
(z - w)

T(z) . C-'(w) "'-J -C-(w)
(z - w)

C+(z) . C-(w) f"V C + T(w) + L(w) + ~8T(w) .
(z-w)3 (z-w)2 (z-w)

The 8ugawara construction [8] of the Virasoro algebra relies on the fact that

the unique nontrivial (up to a scalar) 2-cocycle of the loop algebra S ® C[t, t-I]

is compatible with the centerless Virasoro algebra, realized as a subalgebra of the

derivation algebra of the loop algebra. It ia important that this 2-cocycle establishes

a nondegenerate pairing for C[t, t-I], considered as an abelian Lie algebra. This en­

ables oue to define K. as in §2 and hence, after introduction of normal ordering, to

extend a highest weight representation of the central extension of Se> C[t, t- I ] to

include the Virasoro algebra in a natural way. Let us consider two simple examples

to illustrate this: Take S to be the I-dimensional Lie algebra with anodegenerate

symmetrie invariant bilinear form. In this case K. gives us the usua! bosonic coo­

struction of the Virasoro algebra; i.e. L(z) = k:a( z)2 :, where a(z)· er(w) f"V (z_Iw )~

and L(z) denotes the Virasoro field. As the second example we take S to be the

2-dimensional abelian odd Lie superalgebra with nondegenerate skewsymmetric in­

variant bilinear form. In this case we obtain the usual fennionic construction of the

Virasoro algebra. That is L(z) = t(: 8ljJ+(z)tf;-(z) : + : 81/;-(z)'lj;+(z) :), where

'lj;+(z) ·'lj;-(w) f"V z~w.

The I(ac-Todorov const~ction [I(T] is similar. In this ease one looks for 2­

cocycles of S ®C[t, t- I ] 0 A(l) such that the corresponding compatible subalgebras

of the derivation superalgebra ltV (1, 1) contain the N = 1 superconformal algebra.

Remark. Although the S in our two examples above are not simple, our argument

still applies. The only reason we have insisted on S being simple in 9 = Se>C[t, t- I ]0
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A(n) is to assure that the outer derivations coincides with W(l, n). However, this

is by no means required, because W(l, n) will always be a subalgebra of the outer

derivation of 9 for arbitrary S.

To apply the above construction to the N = 2 superconformal algebra one is

therefore led naturally to consider S®C[t, t- I l®A(2) and look for central derivations

in W(l, 2) which are compatible 'with the (centerless) N = 2 superconformal alge­

bra. Such central derivations could enable oue to construet representations of the

N = 2 symmetry from the corresponding central extensions of S 0 C[t, t- I ] 01\(2).

However, the only such central derivation is the trivial one [CFRS], which does not

give rise to a nondegenerate pairing in C[t, t-1
] 01\(2). But the (centerless) N = 2

supereonformal algebra is obviously embedded in the derivation superalgebra of

W(1,3). One could ask if there is a nontrivial cocycle Q of S ® C[t, t- 1
] 01\(3) such

that (W(l, 3))Q contains the N = 2 superconformal algebra. It turns out that there

exists such a 2-cocycle. It is unique up to a scalar and this cocycle corresponds to

the central derivation -10; [CFRS].

From now on we will assume that S is the I-dimensional Lie algebra equipped

with asymmetrie nondegenerate bilinear fonn, unless otherwise stated. Further­

more we will drop S in S0C[t, t- 1
] 01\(n) when we make this assumption. Consider

the central extension of C[t, t- I
] 0A(3) corresponding to 8~3' This cocycle is defined

by

er (x, y) = f i)~3 (x) A y,

where x, y E C[t, t- I ] 0 A(3). Now only nontrivial pairings of Cl' can be used to

construct the N = 2 symmetry. One checks easily that the only nontrival pairings

of 0 are
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The centerless N = 2 superconformal algebra in W(l, 3) can be realized as

Let Q denote the Lie superalgebra generatecl by {t n 0 BI /\ B3 , t n 082 /\ 83 , t n 083 , t n ®

f}1 /\ 82 /\ 83 , Zj n E Z} with nontrivial commutation relations

One checks that Q is invariant under Lnl Tn , G~, C;. We want to write the generators

of a in field notation to make computations easier. For this we need to determine

the conformal dimensions and the modes of these fields. We use the Virasoro field

L(z) to force these fields to be primary. This immediately implies that the fields of

a are of the following form:

a+(z) = L o;z-r-!

rE~+Z

a-(z) = L a;-z-r-,

rE!+Z

lj;+(z) = L ,pJ z-i- I

jEZ

7jJ-(z) = L~;z-j-l

jEZ
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where
a~ = t r-! 083 /\ 81

a;- = t r-! @ 82 /\ ()3

t/Jt = ti 083J

t/Jj = _jti - 1 081 1\82 1\83

Here a+(z) and o-(z) are bosonic fields and t/J+(z) and 1/J-(z) are fennionic fields.

They satisfy the following operator product expansions:

k
o+(z) . o-(w) t""oW

(z - w)'

k
1jJ+(z) ·1/J-(w) t""oW (z _ w)2'

where k E C· is the scalar with which z acts. To construct an N = 2 symmetry

from these four fields one needs to compute the actions of Ln, T n, G~, G; on these

fields. The computation is straightforward and we willleave the verification to the

reader. However, because we need these formulas for §4, let us write them down

explicitly:

PROPOSITION 3.1. Let ,\ E A(83 ,··· ,()Z+k). Consider the N = 2 superconformal

algebra as a subalgebra of derCA(81 , 82 , ()3," . ,82+k ). Set

o~ = t r-! 0 A 1\ BI 0;- = tr-~ 0 Bz 1\ A

Then one has

+ _ ( n) + (n)Lnor - -r - 2' °n+r Lna;- = -T - 2' a;+r

~n1jJt = -jt/Jt+i L n1/Jj = -j1/J;:+i

C l - ~/,-
nUr = -o/r+n

C l.I.- .-
no/i = JCt n+i

Cz - .1.+
nOr = -If/r+n

CZ.I,- - . +
no/i - JOn+j"

C l + - ..1.+nar - o/r+n

C1 •1.+ - . +
nJf/j - -Ja n + j

C 2 + ./,-nQr = -o/r+n

CZ .. I.+ .-
no/i = JD n +i
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Using the above proposition it is not harcl to derive the following fonnula for

the N == 2 symmetry. We summarize this in the following

PROPOSITION 3.2. On the Fock space oE the central extension oE the Lie superal­

gebra C[t, t- I ] ® A(3) witb corresponding central derivation tI1; one can denne a

representation oE the N == 2 superconEormal algebra oE central charge c == -1. It is

equivalent to the {ollowing (ree neId realization:

1 1
L(z) == 2k (: 8a-(z)a+(z) : - : 8a+(z)a-(z) :) - k : tj;+(z)'lj;-(z) :

1
T(z) == 2k (: a-(z)a-(z) : - : a+(z)a+(z) :)

1
G+(z) == 2k (: a-(z)'lj;+(z) : +: a+(z)'lj;-(z) : - : a-(z)tj;-(z) : - : a+(z)tj;+(z) :)

C-(z) = 2
l
k (: a-(z),p+(z) : + : a+(z),p-(z) : + : a-(z),p-(z) : + : a+(z),p+(z) :)

Proof. One can check the OPE's using Wick's theorem.

We will conclude this section with a few remarks.

Remarks.

(i) Let a+ be the subalgebra of a generated by { .,pt,.,pj, a~, a;:, z t j 2:: 0, r > 0 }.

Let 10 > be the one dimensional representation of a+ such that zlO >= klO>

and .,pt 10 >= t/Jj 10 >== at]O >== a;: 10 >== 0, for j 2:: 0 and r > O. Let ~ ==

Ind~+ 10 >, the induced a-module. Then ~ is clearly an irreducible a-module.

The N == 2 superconformal algebra acts on ~ and 10 > is a highest weight vector

with LalO >= TalO >== O. ~ however is not irreducible as a representation of

the N == 2 supereonformal algebra. One checks that a~~ 10 > +0':=,10 > is a

singular vector on whieh La and Ta act as the scalars ! and -1, respectively.

a~~ 10 > -0=, jO > is also singular with

and

(ii) Just as in the case of the Sugawara construction one cau take S to be a simple

Lie algebra. In the Sugawara case one cau get representations of different
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central charges this way. In our case the situation is different. The N ==

2 symmetry constructed from S ® C[t, t-t] c&l A(3), is equivalent to the one

constructed by using A c&l C[t, t-t] ® A(3), where A is an abelian Lie algebra of

the same dimension as S. Therefore the N == 2 symmetry obtained from S 0

C[t, t-t}0 A(3) is a direct su~ of dimeS copies of the one we have constructed

here.

(iii) This model is indeed a special c~e of the (b, c, ß, ,)-model [FGLS] as we have

pointed out in the beginning as folIows: Let j E Z and w == j~2' We let b(z) and

c(z) be two fermionic fields of conformal dimensions 11"" and 1;"", respectively.

Furthermore suppose ß(z) and ,(z) are two bosonic fields of dimensions 1 - ~

and ~, respectively. The above fields satisfy the following nontrivial OPE:

1 1
b(z)'c(w)"-J ( ) ß(z).,(w) "-J ( )'

z-w z-w

An N == 2 symmetry with centraI charge ii2 using the fields b(z), c(z), ß(z)

and ,(z) can be obtained as follows [FGLS]:

1+w 1-w
L(z) == --2- : b(z)8c(z) : +-2- : 8b(z)c(z) :

w w+ (1-"2) : ß(z)(}y(z) : -"2 : 8ß(z),(z) :

T(z) == -(1 - w) : b(z)c(z) : +w : ß(z),(z) :

C+(z) == -w : ,(z)8c(z) : +(1 - w) : 8,(z)c(z) :

C-(z) =: ß(z)b(z) : .

The (b, c, ß, ,)-model with j == -1 is equivalent to our affine model via the

following substitutions:

b(z) = ~(1/'-(z) + 1/'+(z))
v2k

8c(z) = ~(1/'- (z) -ljJ+(z))
v2k

ß(z) == ~(a-(z) + a+(z))
v2k

, = ~(a-(z) - a+(z))
v2k

So our model provides a purely algebraic background for the (b, c, ß, ,)-model

in the special case when j = -1.
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§4. THE CONSTRUCTION IN N > 3

From the previous section one is 100 naturally to consider the following questian:

Can one find central derivations in W(l, N + k) that are compatible with the N­

superconformal algebra for k > 1 and N ;::: 2. §3 settles this questian in the case

when k = 1. Ta answer this question we will need to study the "compatibility

condition" more carefully. For this we introduce some more notation. Let Di =

Bi %, + 8~; E W(l, N +k) for i = 1,"', N +k. We have [Di' Dj] = 2Jij :,. The N­

superconformal algebra can be realized as the subalgebra of W(1, N) (and therefore

aB the subalgebra of W(1, N + k)) consisting of elements of the form [CFRS]

a 1 N
L(u) = u fJt + 2" L(_l)degu Dj(u)Dj, u E C[t, t- 1

] C9 A(N).
j=1

Let D E W(l, N + k) be a central derivation and UD the corresponding 2­

cocycle. The compatibility condition means that L(u) is superskew with respect to

aD. We prove the following simple lemma, which was stated in [CFRS].

LEMMA 4.1. Let D E W(1, n) be central and erD be tbe corresponding cocyc1e.

Tben A E W(1, n) is superskew witb respect to erD ifand only if[A, D] = -div(A)A

D.

Proof. Write A = ao :, + L:~=1 ai 8~i' ai E A(n) C9 C[t, t-1
]. We have for x, y E

A(n) 0 C[t, t- 1
]

Ja n a
o= &t (ao A D(x) A y) + ~(_l)dega; 80

i
(ai A D(x) A y)

Ja n a
= &t (ao) A D(x) A Y + ~(_l)dega; 8Bi (ai) A D(x) A Y

J
a n a

+ ao /I &t (D(x) /I y) +~ ai A 80
i
(D(x) /I y).

This implies that

J-(div(A) /I D)(x) /I Y =JA(D(x) A y)

= JA(D(x» A y + (_l)degAdegD+degAdegxD(x) A A(y).
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Now A is superskew if and only if

j DA(x) i\ y = -(_1)degAdegz j D(x) i\ A(y).

Thus

j -(div(A) i\ D)(x) i\ Y = jAD(x) i\ y - (_1)degAdegD DA(x) i\ y

= j[A,D](X) i\ y.

Therefore -div(A) A D = [A, D]. 0

Thus our task of finding compatible cocycles reduces to finding derivations

D E W(l,N +k) such that [L(u),D] = -div(L(u))AD for all u E C[t,t- I ]Q9A(N).

We let D = Cto :t +~~ik CtiDi, 0i E C[t, t- 1] ® A(N + k). One computes [L( u), D]

and set it equal to - div( L(u))1\ D. It is easy to see that - div(L (U )) = (~ - 1) tt (U ) •

From the above equality one derives the following set of equations:

N

u~ (ao) - (_1)deg udego"ao~ (u) + ~ L(_1)degu Dj(u)Dj(ao)
,=1

N+k N- L (_l)degu(degoj+I)OjDj(u) + L(_l)degu+degojDj(u)aj

j=1 j=1

N a
= ("2- 1)at(U)OO. (1)

N

- ~(_1)degU(I+degOO)ao ~(DAu)) + ~(_1)degU L D;(u )D;(aj)
1=1

N+k
- ~ L (_1)degu+degu(I+degn;)aiDi(D j (u)) +11~ (ai)

i=1

- (N _ l)~(u)Ct . J' - 1 ... N (2)- 2 at " -, , .
N

11~ ( ai) + ~ (-1)d eg u L D; (11 ) D; (ai )
i=1

N a
=("2-1)at(u)Ctj, j=N+1,···,N+k. (3)
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From equations (1), (2) and (3) we obtain by putting u = 1:

a
at (00) = 0

a
m(Oj)=O, j=l,···,N

a
m(Oj)=O, j=N+1,···,N+k

Now set u = B" I = 1,"', N and we get

D,(oo) = 0

D,(oj) = 0, j = 1,···, N

D,(Oj) =0, j=N+1,···,N+k

Finally if we let u = t we conclude that

N+A: N
- L ajBj = "20'0

j=N+l

(N - l)oj = 0, j = 1,·" ,N

(N - 2)uj = 0, j = N + 1, ... ,N + k

Using the above nine identities we may rewrite (1), (2) and (3) as

(1 ')

(2')

(3')

(1")

(2")

(3")

(1"')

(2"')

(3"')

N+A:

~(; (u)ao) = - L (_l)deg u(dega j +!)ajDj(u) (1*)
j=N+l

N+A:
- ~ { (-1 )degu( l+degao) ao ; (Dj{u)) + L (-1 )degu+degu(l+dega; ) aiDi ( D j ( u ))}

i=l

=(~ -l)~(u)aj, j=l,···,N (2*)

(~ -l)~(u)aj=O, j=N+1,···,N+k (3*)

We obtain the following corollaries.

COROLLARY 4.1. Jf D is compatible with the N -superconformal algebra for lV 2:: 3,

then D = O.

Proof. By (2"') and (3"') O'j = 0 for j = 1,' .. ,N + k. Therefore D = 00 tr Now

we have by (1"') 00 = O. 0
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Remark. Corollary 4.1 in the special case when k = 1 was stated in [CFRS].

From this Corollary we can also deduce that one can only construct the N = 0,1,2

superconformal algebras from affine algebras with extended symmetry using the

approach in this paper.

COROLLARY 4.2. D js compatjble wjtb tbe N = 2 superconformal algebra jf and

only jf D = 2:::3k
Oi8~i' with div(D),= 0 and 0i E A(83 ,··· ,82+k}.

Proof. We have by (2"') 01 = 02 = O. Also by (1"') oue has

2+k a 2+1: a 8
D = - ~ oj8j &t +~ oj(8j &t + 88)

J=3 J=3 J

2+k a
= L:Oj aB,·

j=3 J

By (3') and (3") Oj E A(B3,··· ,82+k}. Therefore the condition is necessary. One

checks that if D has the above form, then D satisfies (1*), (2*) and (3*) with

u = t n
, 81 ® t n

, 82 ® t n
, BI /\ 82 ® t n for n E Z. 0

Therefore D E W(1,2 + k} is N = 2 compatible if D E derCA(83,···, 82+k}

and divergence-free. Let D be such a derivation. The N = 2 will be constructed

on the Fock space of the central extension LD of C[t, t- I ) ® A(8I,··· ,82+k )/keraD.

This we will do now.

When we consider D as a derivation of A( (Ja, ... , 82+k ) we will denote it by

D to avoid confusion. We let r be the rank of the linear map D. For parity

reason it is necessary to assume that the 2-cocycle aD is a consistent bilinear form.

Let oD(X, y) = JD(x) A y, where x, y E A(83 ,···, 82+k) and J here denotes the

coefficient of (J3 /\ ... /\ 82+k. The bilinear form a D is symmetric on A(83 , ... ,(J2+ k ) j

and skewsymmetric on A(83 ,··· ,82+k )Ö and furthermore it determines a 2-cocycle

on A((J3, ..• , 82+k ) / kera D. Let LD be the corresponding central extension. a D is

nondegenerate on A((J3,··· ,fJ2+k )/keraD, thus we can choose an orthonormal basis

{Ai li = 1, , rj} of (A(83 , ... , 82+k) /kera Dhand a basis {J.li, J.l: jaDÜ.li, J-lj) =

oij,i = 1, ,~} of (A(83 ,···, 82+k)/keraD)ö. Here one has of course rö + rI = r.

Denote by Qi the Lie superalgebra generated by {tn ® 8} 1\ Ai, t n ® B2 /\ Ai, t n ® B} 1\
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82 /\ Ai, tn ® Ai, Zi; n E Z} with commutation relations determined by 0D, i.e.

where Zi is a central element. Also let bi be the Lie superalgebra generated by the

elements {tn ® 81 1\ j.1.i, tn 0 BI 1\ Jli, tn 082 1\ Jli, t n 0 B2 I\. pi, tn ® 81 1\ 82 1\ Jli, t n ®

81 A 82 1\ Jli, t n ® Jli, t n 0 Jli, Zi; n E Z} with Zi central and commutation relations

defined by 0D. We have

LD '" (EB~1Qi) EB (EB~1 bd/ (z = ZI = ... = Zr[ = ZI = ... = z~ ).

So to study the action of our N = 2 on the Fock space of LD it suffices to see what

happens on each Qi and bj.

Let's first look at Qi, i = 1, ... , ri. In this case Ai and B3 have the same parity.

It follows that we have a Lie superalgebra isomorphism a '" ai, where a is the Lie

superalgebra in §3. Furthermore Q '" Qi as modules of the N = 2 superconformal

algebra by Proposition 3.1. Thus the N = 2 symmetry one obtains on the Fock

space of Qi is isomorphie to the one we have eonstructed on a in §3.

Next eonsider the action of the N = 2 supereonformal algebra on bj, J

1,' .. ,~. The situation here is slightly different, because Jlj and Jlj are even.

So even though by Proposition 3.1 we have an isomorphism of N = 2-modules

bi '" (Q EB Q) after identification of the eentral elements on the right hand side, this

isomorphism is not degree preserving. Furthermore these 2 Lie superalgebras are

not isomorphie. So in this case we have to proceed as in §3 and use the aetions of

the N = 2 on bi to construct the map K. of §2. bi defines 8 free fields. The odd

fields are
a+(z)= L a~z-r-!,a~=-tr-1®81I\Jli

rE~+Z

a-(z)= L a;-z-r-!,a;-=tr-!®82 I\.pi

rE~+Z

b+(z) = L btz- r- ~ ,bt = t r-! 0 82 I\. Jl i
rE,+Z

b-(z) = L b;-z-r-',b;- = _tr-! 081 1\ pi
rE~+Z
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The even fields are

A+(z) = l: A~z-n-t, A~ = t n tl; JJi

nEZ

A-(z) = l: A;;- Z-n-l, A;;- = _ntn - 1 @ 91 /\ 92 /\ JJ:

nEZ

B+(z) = l: B~Z-n-~,B~= _ntn- 1 tl;91 /\()2/\/-li

nEZ

B-(z) = l: B; z-n-l, B; = t n ® JJi.
nEZ

They satisfy the following nontrivial operator product expansions:

-k
(z - w)

k
(z - w)

k

(z - w)2
-k

(z - w)2

Here k E C* is the scalar with which z acts on the Fock space of bio The fields of

the N = 2 can be then written as

1
L(z) = 2k(: a+(z)8a-(z): +: a-(z)8a+(z): +: 8b+(z)b-(z):

+: 8b-(z)b+(z) : +2: A+(z)A-(z) : +2: B+(z)B-(z) :)
-1

T(z) = T(: a-(z)b+(z) : - : a+(z)b-(z) :)

1
C+(z) = 2k (: A+(z)a-(z) : -: A-(z)a+(z) : +B+(z)b-(z) : -: B-(z)b+(z) :)

+ 2
z
k (: A+(z)b-(z) : + : A-(z)b+(z) : -B+(z)a-(z) : -B-(z)a+(z) :)

1
C-(z) = 2k (: A+(z)a-(z) : - : A-(z)a+(z) : +B+(z)b-(z) : - : B-(z)b+(z) :)

- 2
z
k(: A+(z)b-(z) : +: A-(z)b+(z) : -B+(z)a-(z) : -B-(z)a+(z) :)

These fields satisfy an N = 2 symmetry with central charge c = 2. We can write

these formulas in a more familiar form. To do so, let us introduce the following new
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fields:

They satisfy

z-w

1
ß+(z) .ß- (w) '" (z - w)2

1

In terms of these fields we can rewrite our symmetry as:

1
L (z) = - (- : 1jJ+(z )81jJ - (z) : +2 : Q +(z)Q - ( z) : - : </>+(z )8</> - (z) :

2

+2 : ß+ (z )ß- (z) : + : 81jJ+(z)tjJ - (z) : + : 8</>+ (z)</>- (z) :)

J(z) = - : tjJ+(z)1jJ-(z) : - : </>+(z)</>-(z) :

C+(z) =: Q+(z)1jJ-(z): +: ß+(z)4J-(z}:

C-(z} =: Q-(z}1jJ+(z} : + : ß-(z}4J+(z} :

This symmetry can also be obtained via Getzler's Manin tripie construction [G],

where one takes the 4-dimensional abelian Lie algebra as the underlying Manin

tripie. It clearly decomposes into a direct sum of two copies of the N = 2 symmetry

with underlying Manin tripie being the 2-dimensional abelian Lie algebra. It is a

unitary representation. We summarize our results in §4.

THEOREM 4.1. Let D E W(1, 2+k} be a central derivation ofC[t, t- 1]~A(2+k}and

let QD be tbe corresponding 2-cocyc1e Tben D is compatible witb tbe N = 2

superconEormal algebra i{ and only if D E derC(A(83, "', 82+ k }}. Let r = rö + Tj

be the rank oE D as a map oE A(83 ,··· ,82+ k }. Let LD be tbe central extension

C[t, t-1]0A(2+k )/keroD corresponding to tbe 2-cocyc1e QD, restricted to C[t, i- I ]0

A(2 + k)/keroD. We llave LD ~ (EB~;IQd EB (EB~1 bd/(z = ZI = ... = zrr =
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ZI = ... = z~) as Lie superalgebras. Furthennore the N = 2 symmetry on Qi is

equivalent to tbe one in Proposition 3.2 and on bi it is equivalent to the Manin

tripie model with the 4-dimensional abelian Lie algebra as the underlying Manin

tripie. The total central charge oE the N = 2 symmetry on the Fock space oE LD is

Remark. We have taken S to be abelian for the following reason. Suppose that

S is a Lie algebra equipped with a symmetrie invariant nondegenerate bilinear form

(" .)s. Let D define a eoeyc1e Q D. We need to eonstruet an N = 2 symmetry on a

representation space of S 0 LD, where Lv is as in Theorem 4.1 with the Lie bracket

defined by [SI @lI, S2 @12 ] = [SI, S2] 01112 + (SI, S2 )SO'D(l1, 12 )z. However, although

kerov is an associative superalgebra, S @ LV is not for nonabelian S in general.

This causes problem as to what space the N = 2 superconformal algebra should act

on.
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