Zakharov-Shabat technique with quantized spectral parameter in the theory of integrable models

D. Lebedev ${ }^{\dagger \ddagger}$, S. Pakuliak ${ }^{*}$

Institute for Theoretical and Experimental Physics
117259, Moscow
USSR
*
Institute for Theoretical Physics
252130, Kiev
USSR
$\dagger$
Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
5300 Bonn 3
Germany


#### Abstract

. Two new integrable hierarchies are constructed: $M I L W_{n}$ and the hierarchy of nonlocal twodimensional Toda lattices. A new version of the Zakharov-Shabat technique with quantized (non-commutative) spectral parameter is proposed: We apply also our technique to investigate the $I L W_{n}$ hierarchy. It is also worth mentioning that the zero-curvature equations we obtain are very similar to those which appear in application of non-commutative geometry techniques to the gauge theory of non-commutative two-tori.


## 1. Introduction.

Recently the Zakharov-Shabat technique with quantized spectral parameter was introduced [1]. This technique was applied to the construction of three types of integrable nonlocal hierarchies: $I L W_{n}$ with $n=1,2[2-3], M I L W_{n}$ with $n=2$ and nonlocal partners of two-dimensional Toda lattices [4].

In this note we will generalize this construction to the case of arbitrary $n$. The three hierarchies are deeply connected with each other: the $M I L W_{n}$ hierarchy reduces to the $I L W_{n}$ hierarchy via the generalized Miura transformation and the hierarchy of nonlocal twodimensional Toda lattices is the hierarchy of equations for which $M I L W_{n}$ hierarchy are the symmetry equations [5].
It is worth mentioning that matrix elements of $U(\hat{\Lambda})$ and $V(\hat{\Lambda})$ in eq. (9) below have the form $\sum_{n} f_{n}(x) \hat{\lambda}^{n}, \quad \hat{\lambda}=\lambda e^{-2 i h \partial_{x}}$ and therefore belong to the irrational rotation $C^{*}$ - algebra $A_{h}$ which describes a non-commutative (quantum) 2-tori [6] (if the function $f_{n}(x)$ are defined on the circle). Therefore the nonlocal effects which appear in our theory are very similar to those which appear, for example, in the theory of two-dimensional Yang-Mills equations on noncommutative two-tori [7]. We would like to stress that it is very important to find the right point of switching on the non-commutative effects. In the theory of integrable equations the successful point is the Zakharov-Shabat dressing technique. For this reason we hope that our results might give additional intuition on the possible physical applications of A. Connes' philosophy of quantization of space-time manifolds [8].

We do not give any proofs in this paper. These can be obtained by straightforward generalization of earlier results given in [1], [3], [4]. In the same papers one can find also the simplest examples of our general equations.

## 2. $I L W_{n}$ Hierarchy in Zero-Curvature Representation with Quantized Spectral Parameter.

The simplest representative of the $I L W_{n}$ hierarchy is the $I L W$ equation [2]:

$$
\begin{equation*}
u_{t}+2 u u_{x}+i T\left[u_{x x}\right]=0 \tag{1}
\end{equation*}
$$

where

$$
T u(x)=\frac{1}{2 h} P . V . \int_{-\infty}^{\infty} \operatorname{coth}[\pi(y-x) / 2 h] u(y) d y
$$

and $u_{x}=\partial u / \partial x, u_{t}=\partial u / \partial t$. Here, the real parameter $h$ corresponds to the depth of stratified fluid.
To formulate our results concerning the $I L W_{n}$ hierarchy it is useful to introduce some further notation.
Let

$$
K\left(z, \partial_{z}\right)=1+\sum_{i \geq 1} K_{i}(z, t) \partial_{z}^{-i},\left(\partial_{z}=\partial / \partial z\right)
$$

where the functions $K_{i}(z, t)$ are holomorphic, bounded and continuous up to the boundary in the strip $\prod_{2 h}=\{z \mid-2 h<\operatorname{Im} z<0\}$ and $t$ denotes the set of time-parameters $t_{2}, t_{3} \cdots$. Define $K_{i}^{+}(z)=K_{i}(x), \quad K_{i}^{-}(z)=K_{i}(x-2 i h)$ where $x=\operatorname{Re} z$ and $K^{ \pm}\left(\partial_{x}\right)=1+\sum_{i \geq 1} K_{i}^{ \pm}(z, t) \partial_{x}^{-i}$. (We will use also the notation $K^{+}\left(\partial_{x}\right) \equiv K\left(\partial_{x}\right)$ ).
Let $\hat{\lambda}=\lambda e^{-2 i h \partial_{x}}$ and introduce the $n \times n$ matrices

$$
\hat{\Lambda}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & \hat{\lambda}  \tag{2}\\
1 & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
\vdots & & & \ddots & 0 \\
0 & \cdots & \cdots & 1 & 0
\end{array}\right) \equiv I+\hat{\lambda} e_{1, n}, \quad q^{\text {can }}=\left(\begin{array}{ccc}
u_{n-1}, & \cdots, & u_{0} \\
0 & \cdots & 0 \\
& & \\
0 & \cdots & 0
\end{array}\right)
$$

One can define the following formal series with matrix coefficients

$$
\begin{equation*}
G(\hat{\Lambda})=1+\sum_{j \geq 0} G_{j}(x, t) \hat{\Lambda}^{-(j+1)} \tag{3}
\end{equation*}
$$

where

$$
\left(G_{j}(x, t)\right)_{a b}=\left\{\begin{array}{cc}
C_{b-a}^{n-a} \partial_{x}^{b-a} K_{j}(x, t), & b \geq a  \tag{4}\\
0, & b<0
\end{array}\right\}
$$

and $C_{b}^{a}=\frac{b!}{(b-a)!a!}$.
Now we are in position to state our results concerning the $I L W_{n}$ case [3]. We will formulate them in a series of theorems.
Theorem 1 (i) Fix $G(\hat{\Lambda})$ by the equation

$$
\begin{equation*}
G(\hat{\Lambda})\left(\partial_{x}-\hat{\Lambda}\right) G^{-1}(\hat{\Lambda})=\partial_{x}-\hat{\Lambda}+q^{c a n} \equiv \partial_{x}-U(\hat{\Lambda}) \tag{5}
\end{equation*}
$$

Then, the recurrence equations in the coefficients $K_{i}$ are the same as the equations which can be obtained from the equation

$$
\begin{equation*}
K^{-}\left(\partial_{x}\right) \partial_{x}^{n} K\left(\partial_{x}\right)^{-1}=\partial_{x}^{n}+u_{n-1} \partial_{x}^{n-1}+\cdots+u_{0} \equiv L \tag{6}
\end{equation*}
$$

and therefore can be solved [3].
(ii) Let us require in addition that

$$
\begin{equation*}
G(\hat{\Lambda})\left(\partial_{t_{s}}-\hat{\Lambda}^{s}\right) G^{-1}(\hat{\Lambda})=\partial_{t_{s}}-V_{s}(\hat{\Lambda}) \tag{7}
\end{equation*}
$$

where $V_{s}(\hat{\Lambda})=\sum_{j=0}^{s} V_{s, j} \hat{\lambda}^{j}$.
Equation (7) is equivalent to the equation

$$
\begin{equation*}
\left[K_{t},\left(\partial_{x}\right) K^{-1}\left(\partial_{x}\right)+K\left(\partial_{x}\right) \partial_{x}^{s} K^{-1}\left(\partial_{x}\right)\right]_{-}=0 \tag{8}
\end{equation*}
$$

and therefore can be solved [3]. In the last formula the lower index "-" defines the projection onto the negative powers in $\partial_{x}$.

Comment. Appearance of additional field $u_{n-1}(x)=K_{1}(x-2 i h)-K_{1}(x)$ in (5) and (6) is the consequence of the switching on "non-commutative tension" in $x, \lambda$ direction in (5).
Using the Theorem 1 one can construct the zero-curvature equation

$$
\begin{equation*}
\left[\partial_{x}-U(\hat{\Lambda}), \partial_{t}-V_{s}(\hat{\Lambda})\right]=0 \tag{9}
\end{equation*}
$$

Following the usual arguments, the last equation can be rewritten to the form

$$
\begin{equation*}
q_{t,}^{c a n}=\left[V_{s, 0}, \partial_{x}+q^{c a n}-I\right] \tag{10}
\end{equation*}
$$

where $q^{c a n}$ and $I$ are defined by eq. (2) and the matrix $V_{s, 0}$ is the zero-order coefficient in the polynomial $V_{s}(\hat{\Lambda})=\sum_{i \geq 0} V_{s, i} \hat{\lambda}^{i}$. Due to eq. (7) one would expect that the entries of $V_{s, 0}$ consist of functions shifted in their argument by different multiples of $h$. Now, the nontrivial result is that the entries of $V_{s, 0}$ either depend on $x$ or on ( $x-2 i h$ ) only. More exactly Theorem 2. (i) Let

$$
\operatorname{Grad} \tilde{l}_{X}=\left\{\begin{array}{cc}
\text { res } \partial_{x}^{n-1} X\left(L \partial_{x}^{-(n+1)+j}\right)_{+}, & j \leq i ;  \tag{11}\\
- \text { res } \partial_{x}^{n-i} X\left(L \partial_{x}^{-(n+1)+j}\right)_{-}^{n-1} \\
+\sum_{a=0}^{n-1} C_{a+j-i}^{a+n-i} \partial_{x}^{a+j-i} r e s\left(\partial_{x}^{-(a+1)} X L\right), & j>i
\end{array}\right\}
$$

where

$$
\begin{equation*}
X=\sum_{i=1}^{\infty} \partial_{x}^{-i} \circ X_{i}=\left[K\left(\partial_{x}\right) \partial_{x}^{s-n} K^{-}\left(\partial_{x}\right)^{-1}\right]_{-} \tag{12}
\end{equation*}
$$

and $\operatorname{res}\left(\Sigma a_{i} \partial_{x}^{i}\right)=a_{-1}$. Then $V_{s, 0}$ defined by eq. (7) is equal to

$$
\begin{equation*}
V_{s, 0}=\operatorname{Grad} \tilde{l}_{X} \tag{13}
\end{equation*}
$$

(ii) Equation (9) or (10) are equivalent to

$$
\begin{equation*}
L_{t},=(L X)_{+} L-L(X L)_{+} \tag{14}
\end{equation*}
$$

where $X$ is defined by eq. (12).
Summarizing, we have proved that eq. (9) is equivalent to eqs. (14), (12), which define the $I L W_{n}$ hierarchy [3].
Furthermore, there is a Hamiltonian formulation of eq. (10). Following [5] let $\mathcal{M}_{I}=$ $\left\{\mathcal{L}=\partial_{x}-I+q\right\}$, where $q(x) \in b_{+}$and $b_{+}=n_{+}+h$. Here $n_{+}$is the algebra of upper triangular matrices with zeros on the diagonal and $h$ is the algebra of diagonal matrices. The group $\tilde{N}=e^{\tilde{n}_{+}}$acts on the space $\mathcal{M}_{I}$ by the gauge transformations. (Here $\tilde{n}_{+}$denotes the Lie algebra of linear maps $R \rightarrow n_{+}$). Let $\overline{\mathcal{M}}_{I}$ be the quotient space $\mathcal{M}_{I} / \tilde{N}$. One can realize $\overline{\mathcal{M}}_{I}$ as the linear space of differential operators $\mathcal{L}^{c a n}=\partial_{x}-I+q^{c a n}$, where $q^{\text {can }}$ is defined by (2). The Poisson bracket on the space of functionals on $\overline{\mathcal{M}}_{I}$ is given by the Poisson bracket on the space $\mathcal{F}$ of gauge-invariant functionals on $\mathcal{M}_{I}$. This means that $\mathcal{F}$ consists of the functionals satisfying the condition $f(q)=f(\tilde{q})$, where $\tilde{q}$ is defined by $s^{-1}\left(\partial_{x}-I+q\right) s=\partial_{x}-I+\tilde{q}$. There is a natural Poisson bracket on $\mathcal{F}:$

$$
\begin{equation*}
\{f, g\}=\int \operatorname{tr} \operatorname{grad}_{q} f\left[\operatorname{grad}_{q} g, \partial_{x}+q-I\right] d x \tag{15}
\end{equation*}
$$

where the $n \times n$ matrix $\operatorname{grad}_{q} f$ is determined by the following equation

$$
\begin{equation*}
\left.\frac{d}{d \epsilon} f(q+\epsilon h)\right|_{\epsilon=0}=\int \operatorname{tr}\left(\operatorname{grad}_{q} f h\right) d x \tag{16}
\end{equation*}
$$

where $h(x) \in \tilde{b}_{+}$. Of course, the matrix $\operatorname{grad}_{q} f$ is defined by eq. (16) up to addition of an arbitrary matrix $\theta(x) \in \tilde{n}_{+}$. But it is easy to check that the Poisson bracket (15) on the gauge invariant functionals does not depend on the choice of $\operatorname{grad}_{g} f$, i.e. is correctly defined on the functionals from the space $\mathcal{F}$. It is also easy to see that $\{f, g\}(\tilde{q})=\{f, g\}(q)$, i.e. the Poisson bracket (15) is gauge invariant. (cf. for the proofs [5]).
Now, we can state the following properties of eqs. (10-13):
Theorem 3. Let $\tilde{l}_{X}=\int$ res $L X d x$, where $L$ and $X$ are defined by the eqs. (6) and (12). Then
(i) If

$$
\begin{equation*}
H_{s}=\int r e s_{\lambda}\left[\left(i \lambda^{n}+\frac{n}{2 h} \lambda^{n-1}\right) \lambda^{s} \ln \frac{K^{-}(\lambda)}{K^{+}(\lambda)}\right] d x \tag{17}
\end{equation*}
$$

where $K\left(\partial_{x}\right)$ satisfies the condition (6) and $K^{ \pm}(\lambda)=1+\sum_{i \geq 1} K_{i}^{ \pm}(x) \lambda^{-i}$ with commutative parameter $\lambda$. Then

$$
\begin{equation*}
\delta H_{s-n}=\int \operatorname{tr}\left(\operatorname{Grad} \tilde{l}_{X} \delta q^{c a n}\right) d x \tag{18}
\end{equation*}
$$

(ii) The functionals $H_{s} \in \mathcal{F}$ are in involution under the Poisson bracket (15).
(iii) The equation (10) is Hamiltonian under the Poisson bracket (15) with the Hamiltonian $H_{s-n}$.

## 3. $M I L W_{n}$ Hierarchy in Zero-Curvature Representation with Quantized Spectral Parameter

To state the second block of theorems concerning $M I L W_{n}$ hierarchy we introduce some further notation. Let

$$
q^{d i a g}=\operatorname{diag}\left(v_{1}(x, t), \cdots, v_{n}(x, t)\right)
$$

Define the matrix $S=\left(\left(S_{i j}\right)\right)$ by

$$
\begin{equation*}
S_{i j}=r e s\left[\prod_{k=i+1}^{n}\left(\partial_{x}+v_{k}(x, t)\right) \partial_{x}^{-(n+1)+j}\right] \tag{19}
\end{equation*}
$$

Theorem 4. (i)

$$
\begin{equation*}
S\left(\partial_{x}-\hat{\Lambda}+q^{c a n}\right) S^{-1}=\partial_{x}-\hat{\Lambda}+q^{d i a g} \tag{20}
\end{equation*}
$$

(ii) Let $\tilde{G}(\hat{\Lambda})=S G(\hat{\Lambda})$, where $G(\hat{\Lambda})$ is the same as in Theorem 1, then

$$
\begin{gather*}
\tilde{G}(\hat{\Lambda})\left(\partial_{x}-\hat{\Lambda}\right) \tilde{G}^{-1}(\hat{\Lambda})=\partial_{x}-\hat{\Lambda}+q^{d i a g} \equiv \partial_{x}-\tilde{U}(\hat{\Lambda})  \tag{21}\\
\tilde{G}(\hat{\Lambda})\left(\partial_{t_{t}}-\hat{\Lambda}^{s}\right) \tilde{G}^{-1}(\hat{\Lambda})=\partial_{t_{t}}-\tilde{V}_{s}(\hat{\Lambda}) \tag{22}
\end{gather*}
$$

where $\tilde{V}_{s}(\hat{\Lambda})=\sum_{\alpha=0}^{s} \tilde{V}_{s, \alpha} \hat{\lambda}^{\alpha}$.
(iii) The equations (21)-(22) are equivalent to the following equations on $K\left(\partial_{x}\right)$ :

$$
\begin{gather*}
K^{-}\left(\partial_{x}\right) \partial_{x}^{n} K\left(\partial_{x}\right)^{-1}=\prod_{i=1}^{n}\left(\partial_{x}+v_{i}\right)  \tag{23}\\
{\left[K_{t}\left(\partial_{x}\right) K\left(\partial_{x}\right)^{-1}+K\left(\partial_{x}\right) \partial_{x}^{s} K\left(\partial_{x}\right)^{-1}\right]_{-}=0 .} \tag{24}
\end{gather*}
$$

Using (21)-(22) one can construct the zero-curvature equation

$$
\begin{equation*}
\left[\partial_{x}-\tilde{U}(\hat{\Lambda}), \partial_{t_{t}}-\tilde{V}_{s}(\hat{\Lambda})\right]=0 \tag{25}
\end{equation*}
$$

As in the previous, the last equation can be rewritten to the form

$$
\begin{equation*}
q_{t_{0}}^{\text {diag }}=\left[\tilde{V}_{s, 0}, \partial_{x}+q^{d i a g}-I\right] \tag{26}
\end{equation*}
$$

where $\tilde{V}_{s, 0}=S V_{s, 0} S^{-1}+S_{t,} S^{-1}$ and $V_{s, 0}, S$ are defined by the equations (13) and (19). We will call eq. (26) as $M I L W_{n}$ hierarchy. This equation satisfies the following properties:
Theorem 5. (i) The equation (25) (or(26)) is equivalent to the equations on the functions $v_{i}$ :

$$
\begin{equation*}
v_{i, t}=-\partial_{x}\left[S V_{s, 0} S^{-1}\right]_{i, i}, \quad i=1, \cdots, n . \tag{27}
\end{equation*}
$$

(ii) The Miura map defined by

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\partial_{x}+v_{i}\right)=\partial_{x}^{n}+u_{n-1} \partial_{x}^{n-1}+\cdots+u_{0} \tag{28}
\end{equation*}
$$

transforms the $M I L W_{n}$ hierarchy (25)-(27) into the $I L W_{n}$ hierarchy (9)-(10).
(iii) Due to the Hamiltonian property of the Miura map, the conservation laws of MILW $W_{n}$ hierarchy are given by eq. (17) where we changed from the variables $u_{i}$ to $v_{i}$ using eq. (28).

## 4. Nonlocal Partners for the Generalized Two-Dimensional Toda Lattice.

Let us define two first order differential operators

$$
\begin{align*}
\mathcal{L} & =\partial_{x}-\hat{\Lambda}+\phi^{\prime} \\
\overline{\mathcal{L}} & =\partial_{\tau}-e^{-\phi} \hat{\Lambda}^{-1} e^{\phi}, \tag{29}
\end{align*}
$$

where $\phi=\operatorname{diag}\left(\phi_{1}, \cdots, \phi_{n}\right), \quad \phi_{i}=\phi_{i}(x, \tau, t)$ and $\hat{\Lambda}$ is defined by the eq. (2). Consider the zero-curvature equation

$$
\begin{equation*}
[\mathcal{L}, \overline{\mathcal{L}}]=0 \tag{30}
\end{equation*}
$$

It is easy to check that eq. (30) is equivalent to the following equations on the fields $\phi_{i}$ :

$$
\left\{\begin{array}{ccc}
\phi_{1, x \tau} & =e^{\phi_{1}(x, r, t)-\phi_{n}(x-2 i h, r, t)} & -  \tag{31}\\
\cdots \cdots \cdots & e^{\phi_{2}(x, t)-\phi_{1}(x, t)} \\
\phi_{i, x \tau} & =e^{\phi_{i}(x, \tau, t)-\phi_{i-1}(x, \tau, t)} & - \\
e^{\phi_{i+1}(x, \tau, t)-\phi_{i}(x, \tau, t)} \\
\phi_{n, x \tau} & =e^{\phi_{n}(x, \tau, t)-\phi_{n-1}(x, \tau, t)} & -e^{\phi_{1}(x+2 i h, \tau, t)-\phi_{n}(x, \tau, t)}
\end{array}\right\}
$$

One important property of the eqs. (31) is
Theorem 6. Let the $t_{s}$-evolution of $\mathcal{L}$ coincide with the $M I L W_{n}$ eq. (25) where we have set $q^{\text {diag }}=\phi^{\prime}$. Then

$$
\partial_{t}[\mathcal{L}, \overline{\mathcal{L}}]=0
$$

i.e. the $M I L W_{n}$ equations are the symmetry equations to the nonlocal generalized 2-dimensional Toda lattice. This property is very similar to that one which appeared in the theory of the generalized local two-dimensional Toda lattice [5].

Remark 1. It is impossible to reduce eqs. (29)-(31) putting $\phi_{n}=-\sum_{i=1}^{n-1} \phi_{i}$ i.e. to reduce the $g l_{n}$ case to the $s l_{n}$ one.
Remark 2. It is worth mentioning that eqs. (31) have a very similar structure to those in [9] but are different.

## Acknowledgement

One of the authors (D.L.) would like to thank W. Nahm for pointing out the similarity between our approach to nonlocal integrable equations and A. Connes' ideas on non-commutative geometry. D.L. is also very grateful to the Max-Planck-Institut für Mathematik for financial support and extremely stimulating atmosphere.

## References

1. A. Degasperis et al. Generalized Internal Long-Waves Hierarchy in Zero-Curvature Representation with Noncommutative Spectral Parameter: Preprint Roma University, 1990.
2. M. Ablowits, Y. Kodama, J. Satsuma: Phys. Rev. Lett. 46 (1981) 677; Phys. Lett. A 73 (1979) 283; J. Math. Phys. 23 (4) (1982) 564.
3. D. Lebedev, A. Radul: Comm. Math. Phys. 91 (1983) 543.
4. A. Degasperis et al. Nonlocal Integrable Partners to Generalized MKdV and TwoDimensional Toda Lattice Equations in Formalism of Dressing Method with Quantized Spectral Parameter: Preprint Bonn-HE-90-14. Recent Developments for Integrable IntegroDifferential Equations. Preprint Bonn-HE-90-13.
5. V. Drinfeld, V. Sokolov: Journal of Soviet Math. 30 (1985) 1975.
6. M. Pimsner, D. Voiculescu: J. of operator theory 4 (1980), 201-211.
A. Connes: C.R. Acad. Sc. Paris, t. 290 (1980) Serie A-599.
M. Rieffel: Pac. J. of Math. 95 (2) (1981), 415-429.
7. A. Connes and M. Rieffel: Contemp. Math. 62 (1987), 237.
M. Rieffel: J. of Diff. Geometry 31 (1990), 535.
8. A. Connes: Essay on Physics and Non-commutative Geometry, in The Interface of Mathematics and Particle Physics, Edited by D.G. Quillen, G.B. Segal, and Tsou S.T., Clarendon Press, Oxford, 1990.
9. M. Saveliev, A. Vershik: Comm. Math. Phys. 126 (1989) 367; Phys. Lett. A 143 (1990), 121.
