Zakharov-Shabat technique with quantized spectral parameter in the theory of integrable models

D. Lebedev^{†‡}, S. Pakuliak^{*}

‡

Institute for Theoretical and Experimental Physics 117259, Moscow USSR

Institute for Theoretical Physics 252130, Kiev USSR

†

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 5300 Bonn 3 Germany

Abstract.

Two new integrable hierarchies are constructed: $MILW_n$ and the hierarchy of nonlocal twodimensional Toda lattices. A new version of the Zakharov-Shabat technique with quantized (non-commutative) spectral parameter is proposed. We apply also our technique to investigate the ILW_n hierarchy. It is also worth mentioning that the zero-curvature equations we obtain are very similar to those which appear in application of non-commutative geometry techniques to the gauge theory of non-commutative two-tori.

1. Introduction.

Recently the Zakharov-Shabat technique with quantized spectral parameter was introduced [1]. This technique was applied to the construction of three types of integrable nonlocal hierarchies: ILW_n with n = 1, 2 [2-3], $MILW_n$ with n = 2 and nonlocal partners of two-dimensional Toda lattices [4].

In this note we will generalize this construction to the case of arbitrary n. The three hierarchies are deeply connected with each other: the $MILW_n$ hierarchy reduces to the ILW_n hierarchy via the generalized Miura transformation and the hierarchy of nonlocal twodimensional Toda lattices is the hierarchy of equations for which $MILW_n$ hierarchy are the symmetry equations [5].

It is worth mentioning that matrix elements of $U(\hat{\Lambda})$ and $V(\hat{\Lambda})$ in eq. (9) below have the form $\sum_{n} f_n(x)\hat{\lambda}^n$, $\hat{\lambda} = \lambda e^{-2ih\partial_x}$ and therefore belong to the irrational rotation $C^* - algebra A_h$ which describes a non-commutative (quantum) 2-tori [6] (if the function $f_n(x)$ are defined on the circle). Therefore the nonlocal effects which appear in our theory are very similar to those which appear, for example, in the theory of two-dimensional Yang-Mills equations on noncommutative two-tori [7]. We would like to stress that it is very important to find the right point of switching on the non-commutative effects. In the theory of integrable equations the successful point is the Zakharov-Shabat dressing technique. For this reason we hope that our results might give additional intuition on the possible physical applications of A. Connes' philosophy of quantization of space-time manifolds [8].

We do not give any proofs in this paper. These can be obtained by straightforward generalization of earlier results given in [1], [3], [4]. In the same papers one can find also the simplest examples of our general equations.

2. ILW_n Hierarchy in Zero-Curvature Representation with Quantized Spectral Parameter.

The simplest representative of the ILW_n hierarchy is the ILW equation [2]:

$$u_t + 2uu_x + iT[u_{xx}] = 0 , (1)$$

where

$$Tu(x) = \frac{1}{2h} P.V. \int_{-\infty}^{\infty} coth[\pi(y-x)/2h]u(y)dy$$

and $u_x = \partial u/\partial x$, $u_t = \partial u/\partial t$. Here, the real parameter h corresponds to the depth of stratified fluid.

To formulate our results concerning the ILW_n hierarchy it is useful to introduce some further notation.

Let

$$K(z,\partial_z) = 1 + \sum_{i\geq 1} K_i(z,t)\partial_z^{-i}, \ (\partial_z = \partial/\partial z)$$

where the functions $K_i(z,t)$ are holomorphic, bounded and continuous up to the boundary in the strip $\prod_{2h} = \{z \mid -2h < Im \ z < 0\}$ and t denotes the set of time-parameters $t_2, t_3 \cdots$. Define $K_i^+(z) = K_i(x)$, $K_i^-(z) = K_i(x - 2ih)$ where $x = Re \ z$ and $K^{\pm}(\partial_x) = 1 + \sum_{i \ge 1} K_i^{\pm}(z,t) \partial_x^{-i}$. (We will use also the notation $K^+(\partial_x) \equiv K(\partial_x)$).

Let $\hat{\lambda} = \lambda e^{-2ih\partial_x}$ and introduce the $n \times n$ matrices

$$\hat{\Lambda} = \begin{pmatrix} 0 & 0 & \cdots & \ddots & \lambda \\ 1 & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & 0 \\ 0 & \cdots & \cdots & 1 & 0 \end{pmatrix} \equiv I + \hat{\lambda} e_{1,n} , \quad q^{can} = \begin{pmatrix} u_{n-1}, & \cdots , & u_0 \\ 0 & \cdots & 0 \\ & & & \\ 0 & \cdots & 0 \end{pmatrix} .$$
(2)

One can define the following formal series with matrix coefficients

$$G\left(\hat{\Lambda}\right) = 1 + \sum_{j \ge 0} G_j(x, t) \hat{\Lambda}^{-(j+1)} , \qquad (3)$$

where

$$(G_{j}(x,t))_{ab} = \begin{cases} C_{b-a}^{n-a} \partial_{x}^{b-a} K_{j}(x,t), & b \ge a \\ \\ 0, & b < 0 \end{cases}$$
(4)

and $C_b^a = \frac{b!}{(b-a)!a!}$.

Now we are in position to state our results concerning the ILW_n case [3]. We will formulate them in a series of theorems.

Theorem 1 (i) $Fix G(\hat{\Lambda})$ by the equation

$$G(\hat{\Lambda})(\partial_x - \hat{\Lambda})G^{-1}(\hat{\Lambda}) = \partial_x - \hat{\Lambda} + q^{can} \equiv \partial_x - U(\hat{\Lambda}).$$
⁽⁵⁾

Then, the recurrence equations in the coefficients K_i are the same as the equations which can be obtained from the equation

$$K^{-}(\partial_x)\partial_x^n K(\partial_x)^{-1} = \partial_x^n + u_{n-1}\partial_x^{n-1} + \dots + u_0 \equiv L$$
(6)

and therefore can be solved [3].

(ii) Let us require in addition that

$$G(\hat{\Lambda})(\partial_{t_{s}} - \hat{\Lambda}^{s})G^{-1}(\hat{\Lambda}) = \partial_{t_{s}} - V_{s}(\hat{\Lambda}), \qquad (7)$$

where $V_s(\hat{\Lambda}) = \sum_{j=0}^{s} V_{s,j} \hat{\lambda}^j$.

Equation (7) is equivalent to the equation

$$\left[K_{t,}(\partial_x)K^{-1}(\partial_x) + K(\partial_x)\partial_x^s K^{-1}(\partial_x)\right]_{-} = 0, \qquad (8)$$

÷ 1

and therefore can be solved [3]. In the last formula the lower index "-" defines the projection onto the negative powers in ∂_x .

Comment. Appearance of additional field $u_{n-1}(x) = K_1(x - 2ih) - K_1(x)$ in (5) and (6) is the consequence of the switching on "non-commutative tension" in x, λ direction in (5). Using the Theorem 1 one can construct the zero-curvature equation

$$\left[\partial_x - U\left(\hat{\Lambda}\right), \ \partial_{t_s} - V_s\left(\hat{\Lambda}\right)\right] = 0 \ . \tag{9}$$

Following the usual arguments, the last equation can be rewritten to the form

$$q_{t_s}^{can} = [V_{s,0}, \ \partial_x + q^{can} - I] , \qquad (10)$$

where q^{can} and I are defined by eq. (2) and the matrix $V_{s,0}$ is the zero-order coefficient in the polynomial $V_s(\hat{\Lambda}) = \sum_{i\geq 0} V_{s,i}\hat{\lambda}^i$. Due to eq. (7) one would expect that the entries of $V_{s,0}$ consist of functions shifted in their argument by different multiples of h. Now, the nontrivial result is that the entries of $V_{s,0}$ either depend on x or on (x - 2ih) only. More exactly **Theorem 2.** (i) Let

$$Grad \,\tilde{l}_X = \left\{ \begin{array}{cc} res \,\partial_x^{n-1} X \left(L \,\partial_x^{-(n+1)+j} \right)_+, & j \le i ; \\ -res \,\partial_x^{n-i} X \left(L \,\partial_x^{-(n+1)+j} \right)_- & \\ + \sum_{a=0}^{n-1} C_{a+j-i}^{a+n-i} \partial_x^{a+j-i} res \left(\partial_x^{-(a+1)} X L \right), & j > i \end{array} \right\}$$
(11)

where

$$X = \sum_{i=1}^{\infty} \partial_x^{-i} \circ X_i = \left[K(\partial_x) \partial_x^{s-n} K^-(\partial_x)^{-1} \right]_-$$
(12)

and $res(\Sigma a_i \partial_x^i) = a_{-1}$. Then $V_{s,0}$ defined by eq. (7) is equal to

$$V_{s,0} = Grad \,\tilde{l}_X \tag{13}$$

(ii) Equation (9) or (10) are equivalent to

$$L_{t_{s}} = (LX)_{+}L - L(XL)_{+}, \qquad (14)$$

where X is defined by eq. (12).

Summarizing, we have proved that eq. (9) is equivalent to eqs. (14), (12), which define the ILW_n hierarchy [3].

Furthermore, there is a Hamiltonian formulation of eq. (10). Following [5] let $\mathcal{M}_I = \{\mathcal{L} = \partial_x - I + q\}$, where $q(x) \in b_+$ and $b_+ = n_+ + h$. Here n_+ is the algebra of upper triangular matrices with zeros on the diagonal and h is the algebra of diagonal matrices. The group $\tilde{N} = e^{\tilde{n}_+}$ acts on the space \mathcal{M}_I by the gauge transformations. (Here \tilde{n}_+ denotes the Lie algebra of linear maps $R \to n_+$). Let \mathcal{M}_I be the quotient space \mathcal{M}_I/\tilde{N} . One can realize \mathcal{M}_I as the linear space of differential operators $\mathcal{L}^{can} = \partial_x - I + q^{can}$, where q^{can} is defined by (2). The Poisson bracket on the space of functionals on \mathcal{M}_I is given by the Poisson bracket on the space \mathcal{F} of gauge-invariant functionals on \mathcal{M}_I . This means that \mathcal{F} consists of the functionals satisfying the condition $f(q) = f(\tilde{q})$, where \tilde{q} is defined by $s^{-1}(\partial_x - I + q)s = \partial_x - I + \tilde{q}$. There is a natural Poisson bracket on \mathcal{F} :

$$\{f,g\} = \int tr \ grad_q f[grad_q g, \ \partial_x + q - I] \ dx , \qquad (15)$$

where the $n \times n$ matrix $grad_q f$ is determined by the following equation

$$\frac{d}{d\epsilon}f(q+\epsilon h)\mid_{\epsilon=0} = \int tr(grad_qf\ h)dx\ , \tag{16}$$

where $h(x) \in \tilde{b}_+$. Of course, the matrix $grad_q f$ is defined by eq. (16) up to addition of an arbitrary matrix $\theta(x) \in \tilde{n}_+$. But it is easy to check that the Poisson bracket (15) on the gauge invariant functionals does not depend on the choice of $grad_q f$, i.e. is correctly defined on the functionals from the space \mathcal{F} . It is also easy to see that $\{f, g\}(\tilde{q}) = \{f, g\}(q)$, i.e. the Poisson bracket (15) is gauge invariant. (cf. for the proofs [5]).

Now, we can state the following properties of eqs. (10–13):

Theorem 3. Let $\tilde{l}_X = \int res \ LX \ dx$, where L and X are defined by the eqs. (6) and (12). Then

(i) If

$$H_s = \int res_{\lambda} \left[\left(i\lambda^n + \frac{n}{2h}\lambda^{n-1} \right) \lambda^s ln \frac{K^-(\lambda)}{K^+(\lambda)} \right] dx , \qquad (17)$$

where $K(\partial_x)$ satisfies the condition (6) and $K^{\pm}(\lambda) = 1 + \sum_{i \ge 1} K_i^{\pm}(x)\lambda^{-i}$ with commutative parameter λ . Then

$$\delta H_{s-n} = \int tr \Big(\operatorname{Grad} \tilde{l}_X \, \delta q^{can} \Big) dx \tag{18}$$

(ii) The functionals $H_s \in \mathcal{F}$ are in involution under the Poisson bracket (15). (iii) The equation (10) is Hamiltonian under the Poisson bracket (15) with the Hamiltonian H_{s-n} .

3. $MILW_n$ Hierarchy in Zero-Curvature Representation with Quantized Spectral Parameter

To state the second block of theorems concerning $MILW_n$ hierarchy we introduce some further notation. Let

$$q^{diag} = diag(v_1(x,t),\cdots,v_n(x,t))$$
.

Define the matrix $S = ((S_{ij}))$ by

$$S_{ij} = res \left[\prod_{k=i+1}^{n} (\partial_x + v_k(x,t)) \partial_x^{-(n+1)+j} \right].$$
 (19)

Theorem 4. (i)

$$S\left(\partial_x - \hat{\Lambda} + q^{can}\right)S^{-1} = \partial_x - \hat{\Lambda} + q^{diag} .$$
⁽²⁰⁾

(ii) Let $\tilde{G}(\hat{\Lambda}) = SG(\hat{\Lambda})$, where $G(\hat{\Lambda})$ is the same as in Theorem 1, then $\tilde{G}(\hat{\Lambda})(\partial_x - \hat{\Lambda})\tilde{G}^{-1}(\hat{\Lambda}) = \partial_x - \hat{\Lambda} + q^{diag} \equiv \partial_x - \tilde{U}(\hat{\Lambda})$,

$$\tilde{G}\left(\hat{\Lambda}\right)\left(\partial_{t_{s}}-\hat{\Lambda}^{s}\right)\tilde{G}^{-1}\left(\hat{\Lambda}\right)=\partial_{t_{s}}-\tilde{V}_{s}\left(\hat{\Lambda}\right),$$
(22)

(21)

where $\tilde{V}_s(\hat{\Lambda}) = \sum_{\alpha=0}^{s} \tilde{V}_{s,\alpha} \hat{\lambda}^{\alpha}$. (iii) The equations (21)-(22) are equivalent to the following equations on $K(\partial_x)$:

$$K^{-}(\partial_x)\partial_x^n K(\partial_x)^{-1} = \prod_{i=1}^n (\partial_x + v_i)$$
⁽²³⁾

$$\left[K_{t_s}(\partial_x)K(\partial_x)^{-1} + K(\partial_x)\partial_x^s K(\partial_x)^{-1}\right]_{-} = 0.$$
⁽²⁴⁾

Using (21)-(22) one can construct the zero-curvature equation

$$\left[\partial_x - \tilde{U}(\hat{\Lambda}), \ \partial_{t_s} - \tilde{V}_s(\hat{\Lambda})\right] = 0 \ . \tag{25}$$

As in the previous, the last equation can be rewritten to the form

$$q_{t_{\bullet}}^{diag} = \left[\tilde{V}_{s,0}, \ \partial_{x} + q^{diag} - I\right], \qquad (26)$$

where $\tilde{V}_{s,0} = SV_{s,0}S^{-1} + S_t S^{-1}$ and $V_{s,o}$, S are defined by the equations (13) and (19). We will call eq. (26) as $MILW_n$ hierarchy. This equation satisfies the following properties: Theorem 5. (i) The equation (25) (or(26)) is equivalent to the equations on the functions v_i :

$$v_{i,t_s} = -\partial_x \left[SV_{s,0} S^{-1} \right]_{i,i}, \quad i = 1, \cdots, n .$$
⁽²⁷⁾

(ii) The Miura map defined by

$$\prod_{i=1}^{n} (\partial_x + v_i) = \partial_x^n + u_{n-1} \partial_x^{n-1} + \dots + u_0$$
(28)

transforms the $MILW_n$ hierarchy (25)-(27) into the ILW_n hierarchy (9)-(10).

(iii) Due to the Hamiltonian property of the Miura map, the conservation laws of $MILW_n$ hierarchy are given by eq. (17) where we changed from the variables u_i to v_i using eq. (28).

4. Nonlocal Partners for the Generalized Two-Dimensional Toda Lattice.

Let us define two first order differential operators

$$\mathcal{L} = \partial_x - \hat{\Lambda} + \phi' , \tilde{\mathcal{L}} = \partial_\tau - e^{-\phi} \hat{\Lambda}^{-1} e^{\phi} ,$$

$$(29)$$

where $\phi = diag(\phi_1, \dots, \phi_n)$, $\phi_i = \phi_i(x, \tau, t)$ and $\hat{\Lambda}$ is defined by the eq. (2). Consider the zero-curvature equation

$$\left[\mathcal{L}, \bar{\mathcal{L}}\right] = 0. \tag{30}$$

It is easy to check that eq. (30) is equivalent to the following equations on the fields ϕ_i :

$$\begin{cases} \phi_{1,x\tau} = e^{\phi_{1}(x,\tau,t) - \phi_{n}(x-2ih,\tau,t)} - e^{\phi_{2}(x,t) - \phi_{1}(x,t)} \\ \cdots \cdots \\ \phi_{i,x\tau} = e^{\phi_{i}(x,\tau,t) - \phi_{i-1}(x,\tau,t)} - e^{\phi_{i+1}(x,\tau,t) - \phi_{i}(x,\tau,t)} \\ \cdots \\ \phi_{n,x\tau} = e^{\phi_{n}(x,\tau,t) - \phi_{n-1}(x,\tau,t)} - e^{\phi_{1}(x+2ih,\tau,t) - \phi_{n}(x,\tau,t)} \end{cases}$$
(31)

One important property of the eqs. (31) is

Theorem 6. Let the t_s -evolution of \mathcal{L} coincide with the $MILW_n$ eq. (25) where we have set $q^{diag} = \phi'$. Then

$$\partial_{t_{\bullet}}[\mathcal{L},\bar{\mathcal{L}}]=0$$

i.e. the $MILW_n$ equations are the symmetry equations to the nonlocal generalized 2-dimensional Toda lattice. This property is very similar to that one which appeared in the theory of the generalized local two-dimensional Toda lattice [5]. **Remark 1.** It is impossible to reduce eqs. (29)-(31) putting $\phi_n = -\sum_{i=1}^{n-1} \phi_i$ i.e. to reduce the gl_n case to the sl_n one.

Remark 2. It is worth mentioning that eqs. (31) have a very similar structure to those in [9] but are different.

Acknowledgement

One of the authors (D.L.) would like to thank W. Nahm for pointing out the similarity between our approach to nonlocal integrable equations and A. Connes' ideas on non-commutative geometry. D.L. is also very grateful to the Max-Planck-Institut für Mathematik for financial support and extremely stimulating atmosphere.

References

1. A. Degasperis et al. Generalized Internal Long-Waves Hierarchy in Zero-Curvature Representation with Noncommutative Spectral Parameter: Preprint Roma University, 1990.

2. M. Ablowits, Y. Kodama, J. Satsuma: Phys. Rev. Lett. 46 (1981) 677; Phys. Lett. A 73 (1979) 283; J. Math. Phys. 23 (4) (1982) 564.

3. D. Lebedev, A. Radul: Comm. Math. Phys. 91 (1983) 543.

4. A. Degasperis et al. Nonlocal Integrable Partners to Generalized MKdV and Two-Dimensional Toda Lattice Equations in Formalism of Dressing Method with Quantized Spectral Parameter: Preprint Bonn-HE-90-14. Recent Developments for Integrable Integro-Differential Equations. Preprint Bonn-HE-90-13.

5. V. Drinfeld, V. Sokolov: Journal of Soviet Math. 30 (1985) 1975.

6. M. Pimsner, D. Voiculescu: J. of operator theory 4 (1980), 201-211.

A. Connes: C.R. Acad. Sc. Paris, t. 290 (1980) Serie A-599.

M. Rieffel: Pac. J. of Math. 95 (2) (1981), 415-429.

7. A. Connes and M. Rieffel: Contemp. Math. 62 (1987), 237.

M. Rieffel: J. of Diff. Geometry 31 (1990), 535.

8. A. Connes: Essay on Physics and Non-commutative Geometry, in The Interface of Mathematics and Particle Physics, Edited by D.G. Quillen, G.B. Segal, and Tsou S.T., Clarendon Press, Oxford, 1990.

9. M. Saveliev, A. Vershik: Comm. Math. Phys. 126 (1989) 367; Phys. Lett. A 143 (1990), 121.