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ON THE COMPLEX STRUCTURE
OF A MANIFOLD OF SECTIONS

Normiro KQISO*

Abstract. A canonical complex structure is defined on (infinite dimensional) spaces of
all C®°—cross sections. The moduli space of holomorphic mappings from a compact
complex manifold to a complex manifold, which forms a complex space by Douady,
turns out to be a complex analytic set of the space of C*°-mappings.

0. Introduction

There are two different classical approaches to the theory of deformations,
one is developed by Kodaira and Spencer [6], and the other by Douady [2]. Both
approaches have their own merits. For example, the former uses tensor analysis,
which allows relations with other geometric structures e.g. riemannian metrics.
On the other hand, the latter approach gives complex structures on the moduli
spaces more directly than the former. These approaches are unified in a sense in
[7] or [11], where Banach spaces are effectively used to construct moduli spaces
or structures on moduli spaces. :

The purpose of this paper is to extend the idea of the unified approach.
Our approach is similar to Douady’s, but we consider not only spaces of complex
analytic objects but also those of C'*°—objects, and discuss on almost complex
structures as far as possible.

Theorem A. Let E be a fiber bundle over a compact C*®-manifold M.
Assume that each fiber of E 13 a complez mansfold. Then the space C®(E) of all

sections forms an (infinite dimensional) complez manifold.

Theorem B. Let M be a compact almost complez manifold and N a com-
plez manifold. The space of all holomorphic maps (i.e., maps whose derivatives

commute with the almost compler structures) from M to N forms a complez
analytic set of C*°(M,N).

* This research was done when the author was staying in Max-Planck—Institut fiir Mathe-
matik in Bonn.
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ON THE COMPLEX STRUCTURE
OF A MANIFOLD OF SECTIONS

NorigitTo KQISO*

Abstract A canonical complex structure is defined on (infinite dimensional) spaces of all C°°-
cross sections. The moduli space of holomorphic mappings from a compact complex manifold
to a complex manifold, which forms a complex space by Douady, turns out to be a complex

analytic set of the space of C'°°-mappings.

0. Introduction

There are two different classical approaches to the theory of deformations,
one is developed by Kodaira and Spencer {6], and the other by Douady [2]. Both
approaches have their own merits. For example, the former uses tensor analysis,
which allows relations with other geometric structures e.g. riemannian metrics.
On the other hand, the latter approach gives complex structures on the moduli
spaces more directly than the former. These approaches are unified in a sense in
[7] or [11], where Banach spaces are effectively used to construct moduli spaces
or structures on moduli spaces.

The purpose of this paper is to extend the idea of the unified approach.
QOur approach is similar to Douady’s, but we consider not only spaces of complex
analytic objects but also those of C'*-objects, and discuss on almost complex
structures as far as possible.

Theorem A. ILet E be a fiber bundle over a compact C®-manifold M.
Assume that each fiber of E is a complex manifold. Then the space C°(E) of all

sections forms an (infinite dimensional) complez manifold.

Theorem B. Let M be a compact almost complex manifold and N a com-
plez manifold. The space of all holomorphic maps (i.e., maps whose derivatives

commute with the almost complez structures) from M to N forms a complez
analytic set of C°(M,N).

* This research was done when the author was staying in Max—Planck—Institut fiir Mathe-
matik in Bonn.
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This research was motivated by a discussion with A. Fischer. In particular,
Theorem A and Proposition 1.4 were got as answers to his question. The author
is grateful to him.

1. Definition of the complex structure

To state Theorem A more precisely, we need some basic definitions. Through-
out this paper, M denotes a compact C'*°—manifold. We call a fiber bundle E
over M an almost complez fiber bundle if each fiber E, is an almost complex
manifold (which depends C*°-ly on M). We call E a complez fiber bundle if each
almost complex structure is integrable, in other words, if E is a differentiable
family of complex manifolds with parameter space M. For an almost complex
fiber bundle E, we denote by J, the almost complex structure on each E, and
by V E the vertical distribution on E.

DEeFINITION 1.1. Let # : E — M be an almost complex fiber bundle. We
denote by C°°(E) the set of all C*™°~sections. The space C*°(E) is an (infinite
dimensional) manifold and the tangent space T,C°°(E) at the point s € C*®(E)
is the space C®(s7!VE), that is, £ € T,C°(E) is regarded as a map from M
to TE such that {(z) € T,(;)E and (dr)é(z) = 0 for each z € M. We define an
almost complez structure J on the space C*®°(E) by

(J:6)(=) = J=¢(2).

Theorem 1.2. If E is a complez fiber bundle, then the almost complex
manifold (C®(E),J) is a complez manifold.

In the above definition, we considered the set of C'*-sections. We can define
analogously the space of H"-sections, and the space C*°(E) becomes an ILH-
manifold. To prove propositions in this paper, we need standard techniques
developed by Omori [10], but we will omit details. For standard properties of
infinite dimensional complex manifold, we refer to [2] and {5, Chap. IV].

Now we will give two different proofs of Theorem 1.2. The first one directly
defines a holomorphic coordinate system and the second one uses an infinite

dimensional version of Newlander—Nirenberg’s theorem.

Proof (First). By [9], for any point e € E, there are an open neighbourhood
Wofein E and a C®-map f: W — C" (2r = dimr E;) such that the map
axf: W = n(W)x f(W)is a diffeomorphism and that the restriction f|(E;NW)
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is holomorphic for each z € 7(W). We fix a section sy € C°(E). Then we can
choose a finite open covering {W,}aea of the image of sy in E and maps {f, :
Wa — CT}aea with the property above. We define an open neighbourhood ¢4(s4)
of 39 in C*®°(E) by {s € C®(E); 3(Ua) C Wy}, where Uy = n(W,), and define a
map ¢ from 2{(s¢) into the complex vector space V = @qeaC®(n(W,); C") by

©(8)a(z) = fa(s(z)) for a € A,z € U,.
Since we have, for £ € T,C®(E),

(dp)s(§)a(z) = (dfa)s(z)€(),
the map ¢ is an imbedding. Moreover since f,|(E, N W, ) is holomorphic,

(d)s(T§)a(z) = (dfa)a(z)J=E(z) = Jo((dfa)s(z)€(2)),

where Jj is the linear almost complex structure of C", we see that ¢ is holomor-
phic, i.e., (dp)T¢ = Jo(dp)f where Jy is the linear almost complex structure
of V. As finite dimensional case, by the implicit function theorem, the image
of ¢ is a complex submanifold V' of V and the almost complex structure J of
U(sg) coincides with the pull-back of the complex structure of V' by the map .
It means that ¢ : (U(so),T) — (V',To) gives a holomorphic coordinate system
around the point so € C*(E). Q.E.D.

The second proof is based on the following

Proposition 1.3 ([4]). The Nijenhuis tensor N(J) of J vanishes if and
only if each J, is integrable.

Once one conjectures it, it is easy to prove it by usual tensor calculus. How-
ever, this observation is important because at first it gives the converse of Theo-
rem A, and next it directly means that, in Theorem B, the complex structure of
N is essential, while the almost complex structure of M is not important as we
will see in Remark 4.3.

Now the second proof is reduced to the following two propositions.

Proposition 1.4 (Newlander-Nirenberg’s theorem). A real analytic almost
complexz structure on a real analytic Hilbert manifold is ¢ complex structure if and

only if 1ts Niyjenhuis tensor vanishes.

Lemma 1.5. For a complez fiber bundle E, C*®(E) 13 a real analytic
manifold and the almost complex structure J 1s real analytic on C(E).
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Proof (of Lemma 1.5). We fix a section so € C°°(E) and choose a fiber
metric defined on an open neighbourhood of Im(sy) in E which is real analytic
along each fiber and the convergence radius of the Taylor expansion is uniformly
bounded from below on Im(sg). Such a fiber metric can be constructed, for
example, as follows. Let {(Wq, fa,Ua)}aca be as in the first proof of Theorem
1.2 and choose a partition of unity {u,} subordinate to the open covering {U,}
of M. Denoting by go the flat metric on C", we can define

g= Z Uo + fago-
oa€A
Now define J} = (exp,)*J, using the exponential map : T, (z)E; — E; of the
metric g; for each £ € M. The tensor field J* is defined on an open neighbour-
hood W of the zero-section of the vector bundle s;'VE over M and each J}
is real analytic with bounded convergence radius. Therefore the tensor field J*
defined by J* as Definition 1.1 has holomorphic extension and so is real analytic.
When we choose another section s; € C®°(FE), all transformations we used are

real analytic on each fiber, hence the manifold C*°(E) becomes a real analytic
manifold and the tensor field 7 is real analytic. See 7, Appendix]. Q.E.D.

In the finite dimensional real analytic category, Newlander—Nirenberg’s the-
orem is proved easily as follows ([3]). Take a holomorphic extension of the pair
(R?",J) to (C?",Jc). The holomorphic distribution D& on C?" defined by
{X € T*C?¥;JcX = /=1X} is involutive if and only if the Nijenhuis ten-
sor vanishes. Therefore by Frobenius’ theorem in holomorphic category, there is
a holomorphic map f : C?>" — Cr such that DY, = Ker(df), and the restriction
fIR?* : R?" — C" defines a holomorphic coordinate system of (R2",J) around
the origin. Thus to prove Proposition 1.4, the only point to check is Frobenius’
theorem in infinite dimensional holomorphic category, which we prove in below.

Proposition 1.6 (Frobenius’ theorem). Let X and Y be Hilbert spaces
and ¢ : X @Y — L(X,Y) a holomorphic map defined on an open neighbourhood
of the origin. Let D be an local distribution on X @Y defined by D(z,y) =
{(v,9(z,y)v);v € X}. If D is involutive, then there ezists a holomorphic map
f: X®Y =Y such that f(0,y) =y and {(v,(df )(z,y)(v,0))} = D(=, f(z,v)).

Proof. By (1], such map f exists provided that we require only that f
belongs in C"—category. Therefore it is sufficient to prove that the derivative df
is C-linear. Denote by dx, dy the derivatives for the direction X, Y, respectively.



Then, since

(de)(z,y) = g(:c, f(x:y))a
dx f is C-linear. On the other hand, since

(dxdy £)(v,0) = (dy dx )(w,v) = (dy g)((dy w, )
forv € X and w € Y, and ¢ is holomorphic, we see that

(dx[dy f, Jy])(v,w) = (dxdy f)(v, Jyw) — Jy (dxdy f)(v,w)
= (dv g)((dy £)Tyw,v) - Jy(dv)((dy f)w,v)
= (dyg)(ldy f, Jy]w,v),
where Jy is the linear almost complex structure of Y. Here the tensor field
[dy f, Jy] vanishes on 0 & Y. Thus the uniqueness of the solution of O.D.E.

implies that [dy f, Jy] vanishes on an open neighbourhood of the origin of X Y,
that is, also dy is C-linear. Q.E.D.

Finally in this section we remark that Definition 1.1 of the complex structure

on C*°(E) is natural. For example, the following is easy to see.

Proposition 1.7. Let E and F be complez fiber bundles over M and
f : E - F a complez fiber map, t.e., holomorphic on each fiber. Then the
canonically induced map

f:C®(E) = C®(F); s+ fos
18 holomorphic.
This proposition applies in particular to the cases that E is a subbundle of
F and that F' is a quotient bundle of E.
2. Compatibility with other structures

We consider a complex fiber bundle E over M with another geometric struc-

ture on each fiber. At first, let each fiber be a complex Lie group.

DEerFINITION 2.1. A complex fiber bundle E over M is called a complez Lie

group bundle if each fiber is a complex Lie group and the group operations depend
C>®-ly on M.
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Theorem 2.2.  For a complez Lie group bundle E over M, the space

C*®(E) becomes an (infinite dimensional) complez Lie group.

Proof. We know that C°°(FE) is a complex manifold and easily see that it
is a group. We check that the multiplying operator is holomorphic, which implies
also that the inverse operator is holomorphic by the implicit function theorem.
The multiplying operator is given by m(sy,s2)(z) = s1(z)-s2(z). Let § be a
tangent vector at s;. Then, since

(dm)(shsn)(&l’{?)(w) = dRa'z(T-)gl(m) + dLn(I)E?(‘T)a

and dR,,(;) and dL,,(,)y commute with the almost complex structure, we get

(dm)(ax,az)(‘j§1:~7§2)($) = J(dRh(-’c)é’l + dL-?t(I)§2)(m)
= (J(dm)(,l‘,2)(61,62))(27). QED

Next, we give

DEeFINITION 2.3. A complex fiber bundle E over M is called a Kdhler fiber
bundle if each fiber is a I{dhler manifold and the fiber metric tensor depends C'*>°-
ly on M. If a volume element vps on the base manifold M is given, we define a
metric on the space C*°(E) by

(61,62) = jM 0 (6(2), E2())om,

where g is the fiber metric of E and £;, {; tangent vectors at s € C°(E).

Theorem 2.4. For a Kahler fiber bundle E over M with a volume element
on M, the space C*°(E) becomes an (infinite dimensional) Kihler manifold.

Proof. 1t is clear that the metric {, } is a hermitian metric. We denote by
w the Kahler form of the fiber metric and by 2 that of (, ), and show that 2

is closed. Let £, £, and {3 be tangent vectors at s € C*°(E). As in the second
proof of Theorem 1.2, we may assume that E is a vector bundle over M (but the
Kahler structure may be non-linear on each fiber). If we extend ¢;’s parallelly,
then [£;,£2] etc. vanish, and so

(d92)(&1,62,8&3) = &1[{€2, T &) + alt.
=§1/ 9(&2, I )vm + alt. =f L1(2)w(&2,8&)var + alt.
M M

- fM(dw)(fl,fz,&.)vM vy QED.



3. Basic Examples

The most typical examples are complex fiber bundles associated with princi-
pal fiber bundles and trivial fiber bundles. Let P — M be a principal K~bundle
and the Lie group K act on a complex manifold N as holomorphic transforma-
tions. Then the associated fiber bundle Px g N is a complex fiber bundle over M
and C*°(Px g N) becomes a complex manifold. Moreover, if N is a complex Lie
group and the action of K preserves the structure, then the space C®°(P x g N)
becomes a complex Lie group. If NV is a Kahler manifold and K acts as isometries
and M is endowed with a volume element, then the space C°(P x N} becomes
a Kahler manifold.

In particular, when the Lie group K is trivial, the space C*®(M,N) of all
maps has the corresponding structure.

Remark that the transformation group bundle P X 44-1 K acts on Px g N as
automorphisms of fiber bundle. Therefore, Proposition 1.7 implies that the (real)
Lie group C°(P x g44-1 N) acts on C°(Px gN) as holomorphic transformations.

As a special case, we consider the set of all almost complex structures on
a compact manifold M. Let N be the set of all linear complex structures on
R", where n = dimg M. The manifold N is a homogeneous complex manifold
and the group GL(n,R) acts as holomorphic transformations. Thus the space
E = F(M) Xgr(n,r) N becomes a complex fiber bundle over M and the set of all
almost complex structures is nothing but the space C*°(E), which is a complex
manifold. Moreover, since this complex structure is invariant under the action of
the group D(M) of diffeomorphisms of M, the coset space C*(E)/D(M) admits
a complex space structure. These complex structures are nothing but those given

by the classical holomorphic coordinate system [8].

4. Compatibility with the classical deformation theory

In the previous section, we saw that at least the complex structure 7 is the
same as the classical one in the theory of deformations of complex structures.
However, to apply Definition 1.1 to deformation theory, we need one more anal-
ysis. That is, the space of holomorphic maps should be a complex analytic set.
Remark that Definition 1.1 of complex structure J does not require any complex
structure on the base manifold M.

Now let E be a complex fiber bundle over M and assume that ¥ is a complex

manifold. Since notations in below are complicated for general cases, we treat
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the trivial case E = M X N at first, and will reduce general cases to it later.
Let Jy be the almost complex structure of N. For a map s € C°(M, N), the
differential ds is a map from TM to TN, and Jn(ds) is defined by Jy(ds) : X —
Jn((ds)X). Since TM is not compact, we regard ds as a cross section Ds of the
bundle T*M @ TN (— M x N) over M. For z € M, the fiber of the bundle
T*M ® TN — M has the structure of the fiber bundle

T:M@r TN — N,
and choosing (real) basis of T, M| it is identified with the fiber bundle
TNg---®TN — N.

~
n times

If we pull-back the complex structure of (TN @ --- @ TN) to the space Ty M @r
TN, it is independent of the choice of basis of Ty M and is compatible with the
operation Jy above. In that sense the fiber Ty M Qg T'N is a holomorphic vector

bundle over NV, and has a complex structure. Thus D is a map from a complex

manifold C*°(M, N) to a complex manifold C*°(T*M @ TN).
Lemma 4.1. The map D i3 holomorphic.

Proof. By the definition of the complex structure J, we may consider
locally, i.e., we may replace M, N by open neighbourhoods of the origins of R,
CT, respectively. Then the space T*M @ TN is replaced by R*+ C"+R"® C",
and for a map s : R® — C”, the map

Ds:R" -R"+C"4+R"QC"
is given by Ds(z) = (z,s(z), Oms),

where Ops denotes the partial derivatives (8/9z?, --,8/0z"). Therefore for a
one parameter family {s:}, we see

(5750(2) = (s(2), Syse(@)) € €™ x C,

(5Ds0)(&) = 5 (2,5:(2), 03150

d d
= (3.7, 3(:{:), BMS, 0: as, aM ES)

Thus (T S 50)(®) = (s(2), In 2 30(a),
d

d d
(dD(JaS'))(x) = (z,(z),0ums, 0, JNES’aMJNES)’



d d d
(JdD(ast))(:c) = (z, s(z),O0nms, 0, JNES, INOm Es).
Since Jy is constant in the coordinate system, dD(J(ds,/dt)) and JdD(ds,/dt)
cotncides. . Q.E.D.

Now we use an almost complex structure Jas of the base manifold M. The
space T*M @ TN is decomposed to

H={(ecT'MQTN;tJy = Jnt}
A={ e T"M Q@TN; &Iy = —JInE}

and

Here, it is easy to check that the mappings Jasr and Jy are holomorphic on each
fiber Ty M @ TN, and so the projection maps from Ty M @ TN to H and A are
holomorphic, and H, and A, are complex submanifolds of Ty M ® TN. Thus if
we define a map D : C®(M, N) — C*(A) as the A~part of D, then the map D
is holomorphic by Proposition 1.7, and hence we get

Proposition 4.2. If N i3 a complez manifold and M an almost complez
manifold, then the space of all holomorphic maps = {s € C*®°(M,N); Ds = 0}
forms a complez analytic set of C°(M,N).

REMARK 4.3. In the above proposition, we do not use so essentially the
almost complex structure of M. In fact, from the proof, it is clear that the same

conclusion holds even for an almost contact manifold M.

When we treat general complex fiber bundle E over M, we may consider
the complex manifold C*°(F) as a complex submanifold of C*°(M, E) by Propo-
sition 1.7, and can apply the above result. However, to ensure that there is a
holomorphic section, we set a natural assumption that E is a holomorphic fiber
bundle over a complex manifold M, i.e., E and M are complex manifolds and

the projection map is holomorphic. We can state as

Theorem 4.4. Let E be a holomorphic fiber bundle over a compact complex

manifold M. Then the space of all holomorphic sections forms a complez analytic
set of the complez manifold C°(E).

It 1s clear that the complex structure of the set of holomorphic sections

coincides with the classical one.
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