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IMAGES OF LAGRANGIAN SUBMANIFOLDS, GENERATING 

FAMILIES FOR OPEN SWALLOWTAILS AND APPLICATIONS 

by 

StanIslaw JANECZKO 

Summary. In this paper we study the symplectic relations appea~ 

ring as the generalized cotangent bundle liftings of smooth stable 

mappings. Using this class of symplectic relations the classifi­

cation theorem for generic (pre)images of lagran~lan submanifolds 

is proved. The normal forms for the respective classified pull­

backs and pushforwards are provided and the connections between 

the singularity types of symplectic relation, ma.pped lagrangian 

submanifold and singular image, are established. The notion of 

special symplectic triplet is introduced and the generic local 

models of such triplets are studied. We show that the open swallow­

tails ~re canonically represented as pushforwards of the appropria­

te regular lagrangian submanifolds. USing the Sl2(IR) invariant 

symplectic structure on the space of binary forms of an appropriate 

dimension we derive the generating families for the open swallow­

tails and the respective generating functions for its regular 

resolutions. The reQularly intersecting pairs of holonomic com­

ponents are resolved using an appropriate reduction relation. 

Examples of singular images encountered in physics are given. 
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1. Introduction • . 
The classification of singular lagrangian sub.antfolds as the 

sets of rays tangent to the geodeSic flows on a hypersurface is 

carried out in the previous papers [15].[3]. This is connected to 

the theory of nested hypersurfaces in a symplectic manifold de­

scribing the geodesies on a Riemannian manifold with boundary £14]. 

In particular it 1s closely related to the problem of the sho.rtest 

bypassing of the obstacle represented by a smooth hypersurface 

£31.[2], which we can briefly formulate as follows: letfR2n _ 

{(x.y)} be a phase space of particle in a classical mechanics [1], 

let h(xtp) - ~(p2_ 1) be a Hamilton function for this particle. 

Then the space of btcharacteristics in H - {n-O}s say M. which 

forms a manifold of all oriented lines in IR n has a canonical sym­

plectic structure. Let K be a hypersurface inlan (an obstacle) 

and y a geodesic flow on K (e.g. this one defined on K by the 

variational problem of shortest bypassing of K). It is proved 

in [2J that the set of oriented lines tangent to y on K forms 

a lagrangian submantfold 1n M which is not necessary smooth. The 

appropriate local classification of these singular lagrangian 

submanifolds is carrted out in the cited paper. It turned out 

that the generic singularities of this classification so-called 

open swallowtails can be conveniently described in the 5120H) 

invariant symplectic space of binary forms of an appropriate deg­

ree. We find that the open swallowtails can be obtained as ima­

ges from the regular lagrangian submanifolds by means of a cano .. 

nieal symplectic procedure. This observation suggests the fur­

ther generalization of the problem and classification of images 

of lagrangian submanifolds by means of (widely used in physical 
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applications[5]) symplectic relations [16]. It appeared that the 

begining of the geometrical classification presented in this pa­

per provides the new types of singular lagrangian submanifolds 

(cf.[12J). 

The another motivation, for investigations presented here, 

cemes from thermodynamics of phase transitions [12] and indepen­

dently from statics.of controlled mechanical systems[18]. Let us 
I 

consider the simple one-component thermodynamical system (cf. (12) 

and admit the class of deformations onto two isolated subsystems 

of the same sample. The phase space for such deformations is follo­

wing (cf. [12], £17l), 

(T*Y1x T*Y 2, -SldTI-PldVl+~ldNl-S2dTZ-P2dVZ+~2dN2)' 

the phase spaces of the respective subsystems and Vi' Ti , Ni' Pi' 

Si'~i are the standard thermodynamical coordinates. Let a lag­

rangian submanifold L1X l2 C T*Y1X T*Y Z be a space of equilibrium 

states of a composite isolated system. After removing of all 

(chemical, thermical, mechanical) constraints the virtual states 

of the system are defined by the coisotropic submanifold C ~ 

T *y 1 x T *y 2 ( c f. [5 J ) • 

C = {T I = T2, PI:: P2,1l1= \.12' N1+ NZ =N=const.,N 1> 0, NZ> O} . 

C provides the canonical characteristic submersion, say p , onto 

the phase space of composite system (T*V,-SdT - pdV), : C 

* ~ T V, P(Vl,Tl,Nl,Pl,Sl'~1,V2tT2,NZ,P2'~2) = (V 1+ V2,T1,Pl'Sl+SZ)' 

Hence the space of equilibrium states of composite system is an 

image P(L1X l2) • which for the Van der Waals gas forms a singu­

lar lagrangian submanifold in T*Y well known in thermodynamics 

of coexistence states [12J • 
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The aim of this paper is to set up a method of formalizing 

and generalizing these examples and derive the first results for 

further applications. We now outline ~he organization of the 

paper. In Section 2, in the begining, we introduce some known 

but perhaps unfamiliar results of symplectic geometry, which we 

shall need later on. Then we formulate the problem of classifi­

cation of images of lagrangian submanifolds by means of the special 

classes of symplectic relations, namely these ones generated by 

modified pushforwards and pullbacks of smooth mappings. This 

classification forced us to introduce a notion of singular la­

grangian submanifold and to prove some results concerning the 

generating families (~seful physical potentials) of these classi­

fied images. Restricting considerations to the dimensions of 

symplectic' manifolds not greater than four we prove the classi­

fication theorem for the normal forms of generic, generating fa­

milies of the respective images of stable lagrangian submanifolds 

with respect to the stable mapping. This classification substan­

tially depends on the results of [13] but provides the more exact 

description of singular images and their maximally reduced gene­

rating families. Section 3 is devoted to the investigation of 

local properties of general symplectic triplets. We show here 

the classification theorem for the so-called special symplectic 

triplets and derive the respective generating families for the 

respective lagrangian sets which its provide. In Section 4 we 

introduce the basis of Arnold's theory of open swallowtails re­

presented in the symplectic space of binary forms. We show that 

the open swallowtails are provided by the appropriate special 

symplectic triplets. Using the methods of symplectic relations 

developed before we prove that the open swallowtails are images 
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from the regular lagrangian submanifolds by the canonical sym­

plectic reduction relation. This fact allow us to conduct the 

precise calculations for generating families of the open swallow­

tails and compare them to these ones for the respective special 

symplectic triplets. 

2. Symplectic relations and images of lagrangian submanifolds. 

Let (P1,w1), (P 2,w 2) be two symplectic manifolds (seell]). 

We define the product (P1,w1)x (P 2,w2) as the symplectic manifold 

(P l x PZ,prrwl+ priwz" where pr i : Plx Pz ---- Pi (i=l,Z) are the 

cartesian projections. We define a symplectic r-'elation from (Pl'wl) 

to (P2'w2) as an immersed lagrangian submanifold of (Pl,-wI) x 

(P 2 ,w 2 ) and denote it'by R (see [16],[5J). 

We recall a notion of symplectic relation of particular kind 

namely the symplectic reduction relation. Such relations are 

morphisms in the category of symplectic manifolds and are very 

widely used in mathematical physics (cf.[19],[17J,(18]'[S],[1],[14J). 

A submanifold C ~(P, w) is called coisotropic if at each xE C 

(1) (TxC}§;:: {VETxP; v UE:TxC <VJ\U,W> = O} c: TxC. 

Let 0;:: {vErC; VJ(w1c) ;:: O} ,we call 0 the characteristic di­

stribution of C. let B be the set of characteristics. We con­

sider the following relation from P to B: 

(2 ) R = {(x,b)EPxB; XEC, b = p{x)} 11 

where p,: C -+ B is the canonical projection. If B admits a di­

fferentiable structure and the map p is a submersion (cf. (191) then 

there is a unique symplectic structure B on B such that 

(3) p*B =wlc • 
In this case (B,B) is called the reduced symplectic manifold. 

and R is a symplectic relation from (P,w) to (BtB). R is called 
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the symplectic reduction relation of the symplectic manifold 

(P.to) with respect to a coisotropic submantfold C (see[5],[16]). 

* * let Rc:: (PI x '2' pr2w2- pr1w1 ) be a symplectic relation and 

L C::'1 be a lagrangian submanifold of (PI ,(01). The set 

(4) R(L) = {P2 € P2; there exists PIEL such that (PI ,P2> c R} 

is called an image of L under a symplectic relation R. Using the 

transpose relation tR (cf.[S]) we analogously define the counter­

image of N c(P2,002)' namely tR(N). 

According to the purpose of this paper we confine our atten~ 

tion to the typical example of symplectic manifold, namely to co­

tangent bundle (i.e. the symplectic manifolds found in most appli­

cations are isomorphic to cotangent bundles [16],(12],(1]) {T*X,wX} 

where Wx • deXI and eX is the LiOUVille form in the cotangent 

bundle T*X (over a smooth manifold X). 

Let (T*X,wX)' (T*Y,Wy) be two c,otangent bundles. The product 

f't #: (r* v x T*Y " * *) ll' A • pr2°OY- pr1 tux 
is a symplectic manifold which, for further purposes. will be iden­

tified with T*(X x Y).. Let f: X ..... Y be a smooth mapping.. By ff c:: 

X x Y we denote the graph of f, rf is a submanifold of Xx y. Any 

function on ff can be pulled-back onto X. so the smooth structure 

on rf is equivalent to the smooth structure on X. As we know 

{seelI7], Prop. 3.1} the set 

(S) {PCT*OCEY);'lTXEy(p)E rf and <u,p;>= <u,dg> for each uE 

T (f f) c:: T (X x Y) sue h th a t T Xx Y ( u ) = 'IT Xx Y ( p)} ,. 

is a symplectic relation in g. Here i is a smooth function on 

rf, nX~Y' t xxy are the projections for cotangent and tangent bund~ 

les respectively. Let g denotes the functton i pulled-back to X. 

Deftni~ton 2.1. let f:X ~ Y, g:X -.IR be smooth functions. A 

symplectic relation. defined in (5) and denoted by (f.g), is ca-
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lled f-constrained symplectic relation. By F we denote the set 

of all f-constrained symplectic relations in • 

In the present paper we are interested only in local pro­

perties of symplectic relations as well as in local properties 

of images of lagrangian submanifolds. Hence X. Y will be open 

subsets of IRn and IRm respectively. and instead of lagrangian sub ... 

manifolds or mappings we shall consider in fact their germs (see[&],. 

further on, to avoid an inessential rigour, we speak about mappings 

submanifolds etc. as representants of germs. 

Let us introduce in f an action of a subgroup of the group 

of symplectomorphisms (an equivalence relation) such that for the 

images of lagrangian submantfolds this action reduces to the stan­

dard action (see[4] ,[22]) of the group of symplectomorphisms pre­

serving the fibre structure of cotangent bundle. Hence w. intro­

duce in g the canonical action of the group G = GX ayt where by 

Gx (resp. Gy) we denote the group of symplectomorphisms preserving 

the fibre structure of T*X (resp. T*Y). It is evident that acts 

on n transforming a symplectic relation Rr.: ~~ onto ( ,!:t})(!t) t where 

As we know (see[7], ) a symplec 

G • local'Yt has the following form, 

IP(x$;) :;; ($(x)ttD~(x)"'l +d~(x)}) : T*X -.... X, 
(6) 

V(Ytll) = t -1 (1f{y), D~i!{Y) +d13(y} » : 'it: 
Y ............ T V t 

where Q:\, ?£i are diffeomorphismst 1(j'3:X -+ X. '1?:V -.... Y and 

smooth functions on X and V respectively. Thus the 

fined as a system of functions and diffeomorphisms : ( 

an appropriate composition formula. 

«l, ,are 

lS 

, tel 

By straightforward calculations t usi 

symplectic relation belonging to F t we obtain 

nd definition 

tle-

with 

Prolositio! 2.2~ For the pairs (f,g) determining the respective 
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symplectic relations belonging to F we have the following trans­

formation law 

(7) {f,g} __��'' (ip,IfI)(f,g) ;: ('¥ Qfo'¥-l,go<p-l+Bofoq> .. l.aoq>-l). 

Taking B • 0 and a =g we see that the second component in the 

right hand side of (7) vanishes. Thus we have 

Corollary 2.3. For any orbit of action (7) there exists a represen­

tative of the for.(f,O), i.e. a pure lifting of f to cotangent 

bundle n ; in the sequel denoted by T*f (cf.[19],[12]). 

If we take the subgroup of G, say Gf
t elements of whtch are 

determined by triplets (<P,a,'¥) and act on a relation R by means of 

symplectomorphism (<ptat'¥.aof) then immediately we obtain, 

Corollary 2.4. The action (7) restricted to the subgroup G'cG is 

well defined action on the space, say Fl, of canonical 1.iftings 

T*f of smooth mappings f: X -+ Y to n. An element of FIts re­

presented by a pair (f,O). 

Let R € F and L, N be lagrangian submanifolds in (T*X,wX) and 

* (T y,wy) respectively. 

Definition 2.5. Let R = (f,g). The subset R(L) C T*Y (tR(N)C T*X) 

is called the pushforward of L (pullback of N respectively) with 

respect to R. 

If f is an immersion (see[IG]) then the pushforwards are 

always smooth lagrangian submanifolds of T*Y. Analogously if 

f is a submersion then the respective pullbacks are smooth lagran­

gian submanifolds of 1*X. Moreover if 7fy IN! N --f'" Y and f:X -flo< Y 

are transversal mappings then the respective pullback tR(N) is a 

lagrangian submanifold of 1*X. Analogously for pushforwards if f 

has a constant rank and L is transversal to tR(T*Y) then R(L) is 

a lagrangian submanifold of T*Y. 

In this paper we study the more general situation when the 
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mentioned above, transversality conditions are not assumed and f 

is a stable mapping. The possible approach to classification of 

Singular images (pullbacks and pushforwards) by specifying the 

various types of respective nontransversalities we shall study 

in forthcoming paper. 

Let us denote a pushforward of L with respect to R by a pair 

(R,L) and similarly for a pullback of N with respect to R we use 

notation: (N,R). 

Definition 2.6. The pushforwards (R1,L1), (R2,L2), (pullbacks: 

(NpRl)' (N2,R2» are equivalent if there exists 9 E: G • 9 = (<1> ,'l') 

such that 

( 8) 

((N2,R2) = ('l'(N 1't9(R1» respectively). 

B~fore we prceed to classification of images we recall the 

very convenient notion of Morse family. It i~ well known (see[19], 

[5) that any lagrangian submanifold L of T*X, can be locally ge­

nerated by a family of functions, so-called Morse family, F: 

Xx IRk'~IR(for some kEtN, k ~dimX} so that 

(9 ) L :; {( x , ;); ~;: ,~( x ,A ), 0 :; ~(X ,A )} , 

where a2r a2F rank( ~ , ~x) = k in an appropriate source point of the 

germ F. Between Morse families, with a minimal number of parame­

ters (see[22). there is a following equivalence: two Morse fami­

lies (or generating families as below) F, F : XXIR k ~IR are equi­

valent if there exists a diffeomorphism E: XxlRk 
--P XxlR k, PxoE = 

PX' 'such that F ;: Ftc 5, where Px= XXIRk --II" X is the projection. 

Let us notice that the equivalent Morse families represent the 

same lagrangian submanifold of T*X For the proof of the inverse 

statement see e.g. [22]. In this paper, most frequently, we use 
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rather the following notion. 

Definition 2.7. A family of functions on X. which describes a la-

* grang;an subset in T X (it can be nondtfferenttable but endowed 

with the Whitney stratification [Ill, the maximal strata of which 

are lagrangian) by the formula (9), not necessary with the rank 

assumption, is called a generating family for the considered la­

grangian subset. 
'it * Proeositi,on 2.8. let leT X. NcT Y be lagrangian submanifolds 

generated by Morse famil i es I say G: X >dR k 
-flo IR and F: Y x IR 1 

-too IR 

respectively. let R • (f,9)E F ,then the image of land N with 

respect to R have the following generating families: 

i) for pushforward (R,Lh P: YxlRM --+IR, 
m 

P(y;l,~, v). ). ~(Yt-fi(~» + g(~) + G(~tv), 
i-I 

where S-I = (IJ 1-- • .. ~ n). v· (vl,.·.,V' k) • M ~ m+n+k t 

11) for pullback (NtRh H: X;J( IR' --II" IR t 

H(x;l) .. F(f(x),l) - g(x). 

in respective local Darboux coordinates on T*X and T*Y. 

Proof. On the basis of (5) and Lecture 6 in (19)(see also(17) 

a Morse family for the relation R is following 
m 

A(x ,y;:\) - >: '1 (y f'·f i (x)) ... gex), 
I-I 

i.e. R locally can be expressed by the following equations 
~ af ao 

-(j=" L)" axe>:) + -ax (x), 1 s j s n 
1=1 j j 

1 d ~ aG . aq L s· escribed by the equations "'til axj(Xtv), 0- lV .. (X,V), 

'1 sj ~n" 1 ~ i $ k .. Hence using (4) for (R,L) we obtain I) .. By the 

same way, reducing only an appropriate part of parameters (as for 

the stable equivalence in(221) we obtain il). 
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On the basis of (1), (8) and Proposition 2.8 we obtain 

immediately. 

Corollar,'! 2.9. Let Ply; A,lA,v) t Hlx;") be generating families for 

pushforward (R,Ll and pullback (N,R) respectively IS in Proposition 

2.8, then the respective generating families. for equivalent 

pushforward and pullback, are following 
- . m -1 -I. P(y,A,J..I,v) = I Ai (Yi-(If'<> fOq> )i(31»+got;) ha)+B 

1=1 

1 

R{x,;q • F(foql"'l(xl,A} _gotf)-l{x)+aotp .. l(x), 

where the equivalent symplectic relation R has a form ('). 

Now we provide the begining of classification of normal forms 

for the appropriate pushfarwards and pullbacks. Let us denate by 

Cr ,jk ,Ar ) for pushfarward and (Artlijk) for pullback, the types 

of the respective equivalence classes, where jk is a Boardman 

symbol of f: (X,xoJ -to Y (cf.Ull) and Ar is a singularity 

of L (or N't (cf.[4]) at a source or target paint of the 

symplectic relation R. 

Proeositiop2.10. Let dimX, dimY <3 t then the normal 

the generating families of generic pushforwarda and 11 I 

the appropriate types are given in the foHowing table 

A,m type 'P: Y )( IRN 

to ( ,At) ° fO { , ,A2} 'Ay + 3 1 

1,1 
(IIO ,AI) AY 

'''2) Ay 

AI) 1Y2 ) 0 

AZ) 3 
A f" ).1 Y 1 + "2y 2 ) 3 A +' x 

(AS 0) A4+~2x+ xl, 0) =: 0 
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1 (L ,AI) 0; A3 + Y A (A1,t
1

) ° 
(I1 ,A2 ) .y3+0(y4 )j A3 +ytV( A) ,tV' (0 ) FO (A 2 ,x l ) A 3+XIA 

2,1 , 

0:1 
tA3) y 2tV(Y) I 

( 120 
,AI) AY (A

1
,1.20) ° 

(I2O ,A2 ) AY (A 2 ,I 2O ) A
3

+ A(*Xi*X~) 
r20 . (. , A3 ) AY 

( IO ,AI) ° (Al,;:O) 0 

(IO,A2 ) A3+Y l A (A 2 ,IO) A3+ Xl A 

° . (L ,A3 ) A4+A2Yl+ Y2 A (A3 ,IO) 4 2 A +A x1+ X2 A 

I lO 
(. ,AI) 2 2 

- A2 Al:1- \ + A2y 2+ A.Iy 1 (ApI
IO

) ° 
( LID ,A

2
) 2 3 

Al Y 1 + A2y 2 - 111 Al - A2ll2 + v + (A 2 ,I 1O ) A3+ Xl A 

+V(lll+p2)+all~+ll2tV(lll'11~) 

(LlO ,A 3 ) 2 4 (A 3 ,I IO ) A4+A2x +A.{X 2 
Al Y 1 + A2Y 2 - AIlJ 1 - A2ll2 + v + I 2 + 

2,2 
+ J( III +ll2 )+vtV2 ( 111 ,11 2 )+a11~+ 

+q>{ xl» 

2 
+112 tVl (Ill' lJ2) 

( I llO 
,AI) 3 (Al';:llO) ° A I (y l-lJ 1 ) + A2 ( Y 2 -1l11l2 - 112 ) * ... 

2 3 
112+Il 2l.P( lllll2+ll 2) 

( I IIO ,A 2 ) 3 
Al (y I -lll ) + A2 (y 2 -lll ll2 - ll2 ) + (A 2 ,L llO ) A3tx l A 

3 3 
V +V(ll2+tV3(lll,lJ1lJ2+ll2»+ 

3 2 
1l2l.Pl (111 ,lll112+ll2)+ll2tV 2(lll , 

3 3 
11 III 2+11 2 }+a ll2 

( 1.11O ,A l ) 3 
AI(Yl-111)+A2(Y2-ll1112-llZ)+ (A

3
,I 11O) A4* A2X1 + 1.( tVl ( 

1 
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3 
+~2(xl){x2+xlx2»' 

<P2(0) > ° 

P-roof. By assumpti on d imX, dimY ~ 2. The types (cf. [4 L [11] ) 

for f, L, N are these ones listed in the table. Hence for the 

* respective germs, say for leT X, we use the following Morse 

families (cf.[221), 

AI: G{X,A) = 90 (X), 

(10) A2! G(X,A) =A 3+91(X)A +go{X)' 

A3: G(X,A) =A 4+91(X)A2+92{X)A+9 0 {X) •.. 

Followin9 [12]the classification of germs of pushforwards (R,L), 

restricting R to that one belonging to F {see Corollary 2.3),re­

duces to classification of germs of mapping diagrams 

f k ---........ (IR ,0), 

where s = 0,1,2, 9 = gl or 9 = (gl,g2) for s=1 or 2 respectively, 

with respect to the equivalence relation represented by the follo­

wing commuting diagram 

(IR lxlRs , 0) ... (go,g} (IRn ,0) 

idx(id+ a.f) 1 Ih 
(IR lxlRS ,0) ... (9 0 ,91 (IRn ,0) 

Analogous but a bit more simple situation there is for pull­

backs. Here any pullback of type (A1,Iijk ) can be reduced to nor­

mal form with the trivial Morse family. Hence the problem of cla­

ssification of pullbacks can be reduced to the problem of finding 

the normal forms for mapping diagrams (cf.[4),(121): 
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with a given type of singularity of the germ f and endowed with 

the following equivalence relation (cf. [4 J), 

,an,O) f • ORk,O) 

lh f ><R1,Ql 
(R'1,O) f' ... (Rk to) gt 

where 90
2 0. 9 = gl or 9 = (Sl.9f)· 

Apply~ng the Malgrange Preparation Theorem (cf.[61), the 

generalized Morse Lemma and method of liftable and lowerable 

vector fields ecf.[4l) we obtain the following list of normal 

forms for generic pairs (R,LI and (N,R) defining the pushforwards 

and pullbacks respectively (see also [13]). 

Pushforwards: 

f(x) = x: 

f{x) : x2: 

.1 ~~ k ) = t 1, ' 2) 

A2: (90 ,9)(X) = (O,x), 

= 2x2+ax3• A2: (90'9)(X)={ax2+x3~1(x2)t 
x+<P2(x2 » 

f(x)=(xtO): 90 • 0; A2: (go,g)(x) a (O,x) 

(n,k)=(2,ll 

fIx): Xl! At: 90(X)=*X~ or 90(X)=XIX2+x~; A2: (90 ,9)(X)=(x1x2+ 

+xi<P(X) ,x2) or (90,gH x l=e x2<P(x) ,xl:tx~}:. A3: (go :.9Hx)= 

:(x2<Pl(x).x2,x1+x 2q)2(x», 

f(x). xltl~: AI: 90(x)a2x~+ax~+xlq)1(f(x»+x2q)2{f(x»t all; 

A2: (90 ,9)( x) a( ax~+xlq)l (fe x) )+x2q)2( x), xr*'(()3( f( x)}); 

AS: (90 ,9)(X)a( ax l+Xl(()1 (f(x) )+x2(()2(x) ,xl+(()3(f(x», 

lP4 (x», 
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(n,k)=!!.!) 

f(x)=x: At: 90 • 0; A2: (9o,9)(X)={0,x1); A3: (9o,9)=(0'Xl'X1" 

f{X)=(X1,Xi): At: go(X)=xlxl*X~; AI:(gOIS)(x)=(ax~+x2~(f(X», 
xl+xl); A3:{go,g) = (axi+x2~1(f(X»'Xl+X!'~!{X». 

f{x)=(xltXlx2+X~): AI: go(X).txi+X2~(Xlx2+x~)+ax~; AZ:(So,g) = 

(x2<P1 (f(x) )+x~tP2(f(X) )+axi,x!+'P3(f(X»); A3= 

(9o'9)(X)={xZ~1(f(X»+x~~z(f(x»+ax~. 
xZ+<P3(f{x»,<P4(x». 

Pullbacks: 

(n,k)=(1,l) 

f(x)=x: AZ: g{x)=x, 

f{x)=x 2: AZ: g(x). tx2, 

(n,k);(1.Z) 

f(x'=(x,O): A2: g(x)=x; A3: g(x)=(x,~(x», 

,(n,k)=(Z,l) 

f(x)=xl: AZ: 9(x)=x1, 

f(x,= xftxi: A2! g(x)= xiili. 

( n ,k ) = ( 2 ",! ) 

f(x,=(xl,12): AZ! g(x'=Xll A3= g(x)=(x1,xI" 

f(X)=(Xl'x~): AI: g(x)=x1; A3: g(X)=(Xl'<P(ll)+X~)t 
f(X)=(Xl,x~.xlxZ): A2: g(x). tXII A3= g(x,.(txI (Xl'. 

+(x~.xIXZ)~Z(Xl»· 
USing these normal forms and Proposition 2.8 we can write 

down the generating families for the respective images of Lc T*X 

and Nc::r*V. It is easy to check that R(L), for the listed above 

types, are germs of smooth lagrangian submanifolds in T*V. Hence 

on the basis of [2ZJTheorem 4 and providing some calculations. we 

can conduct further reduction of number of parameters for gene­

rating families of pushforwards. Thus the proof of Proposition 2.10 
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is completed. 

let us abbreviate the notation for pullbacks and pushfor-

war d s w r itt i n g ( A r:t Ii j k ) ( n s m ) and (l.i j k • A r ) ( n , m) res p e c t i vel y • 

Thus on the basis of Proposition 2.10 almost immediately we obtain 

Corollary 2.11. For the generic pullbacks and pushforwards listed 

in Proposition 2.10 we have the following relations 

° (I sA i >(1.1)= Ai~ 

(t iO A ) _ (constrained lagrangian submanifold, unstable \) 
LSi (1,1)- in the standard sense (cf.[22],[12],[16]) 

o (1. ,A i )(1,2)=(constrained lagrangian submanifold),(i=1,2), 

1 (I ,A1)(2,l)= {Al,Ai ' 

1 (I ,A 2)(2,1)= iAl'Ai ' 

1 
<X sA 3)(2.1)= AI' 

(I.20 ,A;>(2,1)= (constrained lagrangian submanifold), (i=1,2,3), 

o (r ,A i ){2,2)= Ai' (i=1,2,3), 

10 (y. ,A i )(2,2):; (unstable), (;=1.2,3). 
110 (2. ,A;l(2,Z)= (unstable), (1=1,2,3), 

(Ai'LO)el,l)= Ai' (i=1,2), 

10 
(Al'I lel,l)= AI' 

10 (AZ'f. )(l,l)= (singular), 

(A i 'Io)(1,2)= Ai' (i=1,2), 

(A3,rO)(1,2)= (unstable smooth if (/)'(0)#0), 

1 (Ai'l )(2,1)= Ai' (i= 1,2,), 

20 
(Al" I )(2,1)= AI' 

(A2 t I.
20 )(2,1)= (singular), 

o 
(Ai'l. }(2,2)= Ai' (1*1,2,3), 



Ai' (i=I,2), 

(singular), 
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Ai' (i=I,2). 

(singular). 

Example 2.12. The analogous phenomenon as for the unstable push­

forwards in Proposition 2.10 appears in many mechanical and thermo­

dynamical systems (see e.g. [18J,[12]). let Y be the Euclidean 

plane. Equations 

nl= reDS at n2= rsin a, 

Yl=-k(r-a)cos a , Y2=-k(r-a)sin a 

describe a lagrangian submanifold N of T*Y with coordinates (S,r), 

o ~ e <21£ • _00 <r < 00 • eN can be obtained as a canonical pushfor-

ward,.~ee [18). N represents the position-force relation for 

a point subject to a simple restoring force whose centre of 

attraction is allowed to move freely on the circle n~+n~= a2• 

* We see that for r=a, ToY n N is the circle n1= acos a" n2= as1n e 

and for (Yl'Y2)F 0, N is transversal to the fibers T(Yl tY 2)V. 

Hence N is unstable lagrangian submanifold likes these ones listed 

in Proposition 2.10. The respective, physically realisable re­

duction relation R and lagrangian submanifold l is constructed 

in [18]. 

Remark 2.13. let us notice that an every symplectic relation R, 

in general, is locally generated by the Morse family (x,y,A.) ~ 

G (x ,y t A), (.A-paremeter). The cl ass ifi ca ti on of images (pre images) 

for more arbitrary (than these ones considered in this paper) sym­

plectic relations R can be conducted using the following symplec­

tic equivalence: let RX' Ry be two symplectic relations in 

* * * * * '* * * (T XxT X,1i20X-1i10X) and in (T yxT Y. 1i20y" 1i10y ) respectively, 
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representing the appropriate elements of the group of symplecto­

morphisms of T*X and T*' respecttvely(cf.[111). We say that the 

. * * * * symplectlc relations R, R' c: (T X xT Y, 1120," 1I{;)X) are equivalent 

if there exist relations RX' Ry such that 

R';: RXoRoRy ' (cf .. 10 ). 

If GX= X x X --.. IR, Gy:Y x Y --.. IR are Morse faml1 ies for Rx and Ry 

respectively then RJ has a following Morse famtly 

(ll) Gt(X,Y;ll,v,h}= GX(x,u}+ G(l-I,v.,.}+ Gy(v,y}. 

It is eas1'y seen that if X = IR1, Y = rn 1 and R is transversal to 

the fibres of 1*(Xx Y} then we can reduce G to the normal form: 

G(x,y;jJ,v) ,; xv+Yl-I+vjJf{Vtl-l}. 

It seems to be tnteresttng the classification problem for images 

of lagrangian submanifolds with respect to more general class (than 

this one considered here) of symplectic relations. The more con­

sequent analysis of this problem we leave to the forthcoming paper. 

Now we pass to the images of lagrangian submantfolds provided 

by symplectic reduction relation defined by hypersurface H In a 

symplectic manifold (Ptw). The first, nontrivial step "in the stu­

dy of mutual intersection of lagrangian submanifold X:P and hy­

persurface H= P was done in £151 and{21. It turned out that the 

nontransversal positions of X and H, i.e. a mutual tangency of the 

first order along the hypersurface HO X of X, so-called symplectic 

triplets (H, X, H n Xl provide the singular images P (X) (see [21 ). 

which are encountered tn variational calculus of physical systems 

[21l{31 and in boundary value problems for differential operators 

[14J ~ [15]. 

It is easy to establish that at any point, SlY P€ H 0 X, (for 



a symplectic triplet (H, X, H X) one car~ 

symplectic structure on P (see ! 1 a 

Weinstein symplectic structure T*X ';;;; P, 5 

H= {(Xlt; T *x; hex )= a.{x 
1 

(12) 

1= H n X = i X€Xi (x) is a 

where ai' X !II 1 ~ i ~ n are smooth 

~ X x IR has a first order tangency to 't, al 

Definition 3.1. let (H, X,l=H nlq be a 

(P,w). We say that it is a special 

exists Weinstein symplectic structure, say 

rates a hamiltonian flow preserving this s 

locally a special symplectic tri at is 

with an additional assumption that 

We see that the characteristics ( 

by the vector field V= . ai(x) 
1 

preserving an affine form h 

of special symplectic tri t see 

as well as the standard equivalence 

iff h = aht for some smooth 

the following result, 

Proeosition 3.2. Let (H,X.l) 

then generically in a nei 

tinn a, s 

a s i 

can be reduced to one from 
'* Hk= t{x,~)(T X; h= 

(13) 

Proof. We show, at first, that a 

e a 10ca spectal 

t 

in 

L 

actic 

t a 

aetic 

ere 

t h 

«U~) 

xi· 

a 
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symplectic triplet as in (12) can be brought to the form g2 for 

some smooth function-germ g:(X,O} --.IR defining hypersurface 1. 

Let us taKe the coordinates on X, and simultaneously the symplec-

* tic coordinates on T X by cotangent bundle lifting (see[lg)}, such 

that 1= {x EX; X1=O}. So X(x}=x I g1 (x) and, since 1 is a hyper­

surface of nonisolated critical pOints for f, i.e. Vx 1, =(91{x)+ 
d g1 ag1 og1 

+x1a-x(x).Xrax:(X)'."'x1-ax:::-(x» = 0, thus 91(x}=X192(x}, By 
1 2' n 

assumption of the first order tangency of graph X to X we have 

92{O}FO. Hence we can write X =:tg 2 , where g(x}=x 1/tg'2{X) 

The vector field V= ~ ai(x) ~~" can be straightened in a 
1 1 

neighbourhood of the considered point, so * a th'a t lP V= di":" for 
," xl 

some diffeomorphism lP:(!Rn,O) ..........,.. (lRn,O). Taking the canonical 

liftin9 of lP to r*x we obtain the following normal form for h 

(for an equivalent special symplectic triplet), namely 

(14) h{x,~) ::: ~l± g2(x). 

Now we have the natural group of equivalences for integral curves 
a of ax- ' i.e. diffeomorphisms germs preserving the fibre struc-

1 
ture (x1 ,x2, ••• ,x n) 

we reduce the problem 

w ~ (x2 , •.• ,xn). Using thes~ equivalences 

of description of mutual generic positions 

of characteristics of h and the submanifold l({g(x}=O}) to the 

classification problem for Whitney's projections (see[2}, [11J,[6J) 

w 11 = 1 -.. I'R n -1 . 

Hence (14) can be brought into the following normal form 

h(x,l;}=~b{x) t(X~+1+X2xt-l+ •.• +xk+l)2, 

where b{O)FO. Taking an equivalent Hamiltonian for H we obtain 

(13). Thus the proof of Proposition 3.2 is completed. 

For any special symplectic triplet (H,X,l) there exists a 

canonical speCial symplectic structure on the space (B,B) of cha-
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racteristics (bicharacteristics) on H (cf. (3», say T*Y such 

that for the reduction relation 

(15) 

where p : H ~ T Y is the canonical projection onto bicharac-

teristics, we have a foll owing commuting diagram 

T*X ::: H 
p 

po r*y 

(16 ) 

1 if xl H 1· y 

X if .. Y 

where 'IT is a submersion (along characteristics). 

Corollary 3.3. Let (H t X,l) be special symplectic, triplet, then 

a stationary lagrangian submanifold R(X) (cf.t2]) is a canonical 

pushforward t i.e. 

(17) R(X) = T*'IT{L), 

and for'the respective types of triplets described in Proposition 

3.2, we have: 

'IT: X ---tIl- Y, 'IT: (xl ,x2~'" .xn> ---fI'o (x2"" .x n)· 

Moreover L is generated (for the respective type of the triplet) 

by the following generating function 
+ JX 1 ,k + 1 k - 1 ) 2 (18) F(x1, ••• ,xn)=- a{s,x2'."'x n)(s +x2s +.,,+xk+l ds. 

o 
Proof. We see that the space of characteristics of H, described 

by the dynamical system 

x1= 1, x2= 0, •.• , xn= 0, 

• ah an 
~1=- aXl ' ••• , t;n=- aXn 

$ 

can be easily obtained; As the canonical variables (x1, ••• xn- 1, 

~l""'~n-l)' parametrizing the symplectic space of characteris­

tics, we can take the initial values for X2t.'.;~n,C2""'~n' 

where the initial value for Xl is equal to zero. The respective 
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* n symplectic form a, such that p B = ) d~; A dXil H' for this space 
1=1 

may be choosen in the Darboux form. Now it is easy to check that 

(17) holds for each type.of symplectic triplet of Proposition 3.2, 

with generating function (18) for t. 

4. Generating families for the open swallowtails. 

let us consider now the most representative example of the 

Arnold's theory[3J for singular lagrangian submanifolds. 

We are given the space of binary forms of degree d=2k+3, 

dimension of which is equal to 2k+4 (cf. [2]). This space can be 

endowed with the unique S1 2(m) - invariant symplectic form. 

In the appropriate Darboux coordinates (Qo' ••• 'qk+2'Po' •••• Pk+2) 

a binary for~, say ~(x,y) , can be written as follows 
x2k+3 x2k+2 xk+2yk+l 1 xk+1~k+l 

~(x,y)=qo(2k+3J!+ql(2k+2!1+···+qk+l (K+2)! +(-1) Pk+1 (k+l)! + •.• 

••• +(_1)k+l poy2k+3. 

We see that,the space of characteristics of the cOisotropic hyper­

surface {qo=l} identifies with the space of polynomials of degree 

2k+2 (derivatives of the respective polynomials ~(x,l», i.e. 

x2k+2 x2k+1 xk+l xk k 
T*Q = {(2k+2)!+ Q1{2k+l)1+ ... +Qk+l(k+l)!-Pk+lTI + ... +{-l) PI} , 

k+l 
wi th the reduced sympl ect ic form w = J dPi A dQi' where (Ql"'" Qk+ 1) 

1=1 
are coordinates on Q. 

Proposition 4.1. (cf.[2]), The triplet (H,Q,l), where H= {h(q,p)= 

= Pl+QlP2+ ••• +qkPk+l+q~+1/2 = O}, is a special symplectic triplet 

in (T*Q,w Q> such that p(1):: T*V is an open k-dimenslonal swallow­

tail. 

Proof. 

(19) 

The space of characteristics of the hamiltonian system 

ql- 1, q2= QI····' qk+l= qk' 
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can be identified to a space of polynomials of degree 2k+2 in H = 
T*Q, such that ql=O. We see that the zero section Q=T*Q inter" 

sected with H (i.e. l) forms the space of polynomials divisible 

by xk+2, so the canonical projection pCl) onto the space of 

characteristics T*Y (endowed with the Darboux coordinates (Q2" •• 

•• ,Qk+I.P2~ .•• ,Pk+l) can be identified with the polynomials of 

degree 2k+l of the form: 

x2k+1 x2k- 1 xK xk~l k-l 
<p(x,l)= {2k+l}!+C!2 (2k-l}!+· .. +Qk+lTI "'Pk+l{R" .. Tn+ u .+( ... 1) il2 

such that <P(x,l) = (x_s)k+l(x k+ ••• ) for some l;:EIR. But this is 

nothing else than the definition of open swallowtail introduced 

in [2]. 

We can also us~ the initial values of (QI, ••• Qk+l,Pl, ••• ,Pk+l' 

on characteristics to parametrize the space T*Y. Remembering that 

h is a Hamiltonian of translations along the variable x, for the 

polynomial parametrization Qf aracteristtcs we cln write the 

following identification 

~k+2 'x_t~k+l ii:f~~+l (x~tlk 
(20) ~! +Qlw+rT! + ••• Hlk+1 + .. "'Pk+l· fU- + •.• + 

k x2k+2 _ x2k _ xk+l k k-
+(-1) Pl= {2k+2)rr(j2 1"2R1!+en k+ll'K+lfi- .... +( ... 1) PI' 

where h{ijl, ••• ,ijk+l,jl~'.'I- 1)=0 IRd &1=0 implies ql=t. Hence 

we can take (ij2"'.$ijk+ls~2' •.• ~k+l) as a Darboux coordinates 
* ~ -on T Y where Y is parametrized by (q2~.·.,qk+l) Ind H= 

L i kaw i s e , i n (16) 'IT: ( q po. q q 1) ~ (.q 2 p " q q k + 1) h as a f 011 o-

wing form 

(21) 

Let R be a canonical symplectic 

with H, i.e. R is a graph of p in (T*Q 

ttio~ relation connected 
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Proeosition 4.2. An open, k-dimensional swallowtail, can be re­

presented as a canonical pushforward of a regular lagrangian sub­

ma n i f old, L e • 

* R(Q) • T n(Lk), dimQ II; k+l, 

where lk is a lagrangian subman1fold of (T*Q,W Q) with the following 

generating function: 

(22) 

where 
(k) k_rk+1 {_l)j-s 

°r,s·(-I) jts (j-s)!{2k+!-3-r)! t 

(k) k-r 1 k+l '.I)j(3-12 
Er -(-I) (t2k+!-rJ!- j~2 jl(2k+3-3-r)!)' 

(23) 

1 S r,s S 1<+1. 

Proof. 

1 < r S k+l. 

On the other hand, providing further calculations. for R we obtain 

k k-j f-l~k-j-1+1 _ k-j-i k k+l 2k+2-s-j 
'1- jt1 itoE- -3)1 Qj Pk-i+1Ql - j~l st2

Q1 qjO 

•. (k) k (k) .2k+2-j 1 2 
qsDj+l s· .r EJ·+1Qj Ql - yQk+l' 

t J=1 (R) 

k+l-r k 1 j 1. - k+l-r-j 
Pr • j~O (-1)'" -r- (K+I-r-jjjPk+l-jQl + 
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where 2 ~ r < k+l and nCk) E(k) are defined in (23). - - s,r' r 
Comparing both sets of equations for R and for T*~, and remembe~ 

ring that Q is described by equations Pl=P2= ••• =Pk+l after 

simple but long calculations we obtain (22). 

USing Proposition 2.8 and function e22} we obtain a genera­

ting family (not necessary Morse family) for the singular lagran­

gian submanifold in T*Y called the open swallowtail (sea£2J). 

Corol1arl 4.3. A generating family for an open, k~dimensional 

swallowtail can be written in the following form 

P k {q2 ' • • • , q k + 1; IIp •• ., Ilk + 1 $ A1,. •• , \ } = F k (~ P • • • til k+ 1) + 

k _ i-I 11 1 i i i+1 
+ • Y. 'if; (q i + 1 - r (-1) T 1'iJ IlJ i -1 + 1 + (-1) ( i + I plJ 1 ) $ 

1=1 1=0' • 

where Fk is defined in (22), lllt ••• ,Pk+l' A1, ••• k are pareme­

ters of the family. 

Examele 4.4. tet k= 1.2, then the respective generating functions 

for smooth (resolvents) lagrangian submanifolds lt, l2 are following 

'F1(Ql,q2)=- ~qi+ jqfq2- iqlq~, 
11 7 11 5 14 1 3 2 1 2 

F2(ql,G2 tQ 3)='" 1Prn'Ql''" m Qt Q2'" Wqlq:f' "5Ql q2+ IQ1Q2Q:f" 

L 2 
... '2"Ql q3" 

Now by Coronary 4.3 and the standard method for reduction of 

parameters in generating family we obtain the generating, one-pa­

rameter, families for the cusp singularity (see[6]) and the 

two-dimensional open swallowtail singularity (see(3 of lagran­

gian submanifold. 

cusp: 

open swallowtail: 
• - 17 1 5- 1 4M 1 3-2 1 2· - 2 

P2(Q2,Qa' A)=- UOA .. ~h q2- 14t• qa"" 6A Q2"" '2ACi2Qa'"' 3' 
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Remark 4.5. Taking a new coordinates on T*Q, defined by e21} 

-and formulae ql=ql we have ~:Q --. Y, ~(ql, ••• ,qk+l)=(q2, ••• ,qk+l)' 

So after straightforward calculations (cf.[l3]) we derive the 

following generating families for the respective open swallowtails 

R{Q), namely, A 
- - 1 J k+2 k+l k+l 1 - k-i+l 2 

Pk(q2'····qk+l'A)= ~ 0 {tK+IJ!x + i~2 (R-i+l}!qi x ) dx. 

Comparing this formula with Corollary 3.3 (formula (lS}) we see 

that the special symplectic triplets with k=n-l are diffeomorphic 

to these ones providing the open swallowtails. 

Remark 4.6. One of the most interesting appearance of the open 

swallowtail (k=2) is that one proposed by V.I. Arnold (and cowor­

kers)[2],[31 in variational calculus, which is frequently called 

"shortest bypassing of the obstacle". It has some precisely inde­

finite connection to geometrical optics (see[3]). Let us consider 

a piece D of a hypersurface (obstacle) in IR 3, and we define the 

geodesic flow on 0 by the time function ~:O --+IR. Hence (V~)2=1. 

An appropriate symplectic triplet connected with this situation 

is defined by $:T*R3 --+IR (defining H). ~ =p2_ 1 (all directions 

in the fibres) and the lagrangian submanifold L as all extensions 

to T4R3 of the I-forms p=d~lq defined on the tangent space to O. 

It turns out that (H,l,Hn L) is a symplectic triplet diffeomorphic 

to this one considered in §§ 3,4 of the present paper. 

5. Final remarks and applications. 

(5.1) As a simple mechanical example of singular image with 

respect to the symplectic reduction we consider the finite element 

analogue of the Euler beam problem. This system conSisting of two 

rigid rods of unit length connected by frictionless pins, is sub­

jected to a compressive force -Pq which is resisted by a torsion 
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where 2 ~ r S k+l and D~~~~ E~k) are defined in (23). 

Comparing both sets of equations for R and for 1'*'11. and remembe .. 

ring that Q is described by equations Pl=P2= ••• =Pk+l=O after 

simple but long calculations we obtain (22). 

Using Proposition 2.8 and function (22) we obtain a genera­

ting family (not necessary Marse family) for the singular lagran­

gian submanifo1d in r*v called the open swallowtail (see[2J). 

Corollary 4.3. A generating family for an open. k-dimensional 

swallowtail can be written in the following form 

Pk ( q 2 » ••• , q k + 1 ; III ' •• • , llk + 1 ' Al » •• • , Ak ) = J\( j.! 1 ' • • • ,11 k+ 1 ) + 
k _ i-I,I 1 i i i+l 

... Y. 7fi {q i ... 1- I (-I) T.11 1'1,1 i -1 + 1 ... ( ... 1) ( i + 1 ) Ill!) , i;:; 1 1 =0 • • 

where Fk is defined in (22), 11 1,nn l\+1' Al'**.,A k are pareme,., 

ters of the family. 

Exam!'e 4.4. Let k= 1,2, then the respective generating functions 

for smooth (resolvents) lagrangian submanifolds LIt l2 are following 

F1{Ql,q2)=- r%q~+ jqfq2- {qlqi, 
11 7 11 5 14 1 3 2 1 2 

F2(Ql,Q2 tq3}=- 1f.fQ'Ql+ m Ql Q2" 1jQ1Q3" ~Qlq2+ ~qlq2q:r" 

1 2 
- yQl Q3-

Now by Corollary 4.3 and the standard method for reduction of 

parameters in generating family we obtain the generati »one-pa­

rameter, famili·es for the cusp singularity (see[6]) and the 

two-dimensional open swallowtail singularity (588[31) of lagran­

gian submanifold. 

cusp: 

open swallowtail: 
- - 1 7 1 5- 1 4· 1 2 2- ~ 2 

P2(Q2,G3,A)=· i70A - ~h q2- ~h qs- 6A 2- q2q3~ 3· 
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Remark 4.5 .. Taking a new coordinates on T*Q, defined by (21) 

-and formulae ql=ql we have n:Q --. Y, n(Ql, ••• ,Qk+1)=(q2, •• ·,qk+l)· 

So after straightforward calculations (cf.[13J) we derive the 

following generating families for the respective open swallowtails 

R{Q), namely, A 
- - 1 f k+2 k+l k*l 1 - k-i+l 2 

Pk{Q2,···,Qk+l,A}= ~ 0 «k+IJ!X + i:2 (k-i+l}!qi x ) dx. 

Comparing this formula with Corollary 3.3 {formula (IS» we see < 

that the special symplectic triplets with k=n-l are diffeomorphic 

to these ones providing the open swallowtails. 

Remark 4.6. One of the most interesting appearance of the open 

swallowtail (k=2) is that one proposed by V.I. Arnold (and cowor­

kers)[2],[3J in variational calculus, which is frequently called 

"shortest bypassing of the obstacle". It has some precisely inde­

finite connection to geometrical optics (see[3J). let us consider 

a piece D of a hypersurface (obstacle) in 1R3, and we define the 

geodesic flow on 0 by the time function 1:0 --.IR. Hence (V1)2=1. 

An appropriate symplectic triplet connected with this situation 

is defined by $:T*R3 ~IR (defining H), ~ =p2_1 (all directions 

in the fibres) and the lagrangian submanifold L as all extensions 

to T~IR3 of the I-forms p=dTl q defined on the tangent space to D. 

It turns out that (HtL,H fI L) is a symplectic triplet diffeomorphic 

to this one considered in §§ 3,4 of the present paper. 

5. Final remarks and aee'ications. 

(5.1) As a simple meChanical example of singular image with 

respect to the symplectic reduction we consider the finite element 

analogue of the Euler beam problem. This system consisting of two 

rigid rods of unit length connected by frictionless pi~s, is sub­

jected to a compressive force -P q which is resisted by a torsion 
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spring of unit strength. The angle ~ and the force Pq are consi­

dered coordinates of a manifold X. Together with the torque P~ 

and the position q they form a canonical coordinate system 

(~'Pqtp~,-q) of T*X. The potential energy of this system (ge­

nerating function of the lagrangian submanifold NcT*X) has the form 

V(~'Pq) = ~2_ 2Pqcos ~. 
If we take the reduced phase ~pace T*Y with the localcoordinate 

system (Pq,-q) and the mapping f:X --+ Y, f(~'Pq)=Pq then we obtain 

for the image of N the following formula 

tr*f(N}={(Pq,·q}€T*Y; O=~~(q)'Pq)=~+2PqSin<p ,-q=~~ (~,Pq)=-2cos w}, 
q 

which is a space of equilibrium states (constitutive set) in the 

control phase space r*y. A simple calculation shows that if Pq=-t 

~=O; V is not Morse family and the set tT*f(N) has a standard 

singularity well known in the imperfect bifurcation theory (see 

fi g. below) 

o 2 q 

Unfortunately that singularity is not stable, it disappears after 

small deformation of V because the respective transversality con­

dition (cf. §2) is not fulfilled. However for examples of this 
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type we can construct the space of deformations and treat the 

unstable singular lagrangian submanifold as an element of a family 

of deformations (a kind of unfolding[9Jor more precisely Wasser­

mann's (r,s)-unfolding [26J). Number of parameters of this family 

is connected to the codimension according to the above classified 

singularity types. This approach leads to the classification of 

stable images according to the composition of two reduction rela­

tions. 

(5.2) Now we formulate the resolution problem for singular 

lagrangian submanifolds. let Le (P,w) be a germ of singular lagro 

submanifold. The question is: do there exist 

such that 

i) special symplectic structure (X,~,0,a) on (P,w), 

ii) a submersion p:A -- X, 
iii) a regular lagrangian submanifold Ne (T*A,w A) 

L = * T peN). 

Now we show that the regular geometric interaction between 

holonomic components (in the sense of Kashiwara [15],[19]) can be 

resolved in this way. 

let Vl' V2 be lagrangian submanifolds of a symplectic mani­

fold (P,w) (cf. [18]). 

Definition. The lagrangian subset VI U V2 (or pair (Vl'V 2)) of 

(P,w) is called a regular geometric interaction if the following 

conditions are fulfilled 

a) VI fl Vl is a submanifold of P, dimV 1fl V2 = dimV 1-"1, 

b) for every point pEV 1 flV 2 we have 

Tp(V10 V2) = TpVl fl TpV2. 

let (V1U V2,p) be a germ of a regular geometric interaction 

in (P,w). 
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""' "" Proposition. There exist a symplectic manifold (P,w) and a sym-

p 1 e c tic red u c t ion r e 1 at ion R c (Ii x P, Zi' E> W ) S U c h t hat for age rm 

of regular geometric interaction, say (VI U V2 ,p) c (P,w) we have 

a canonical resolution formulae 

,..., '" 
for some regular lagrangian submanifold Lc (P,W). 

Proof. On the basis of the Kostant-Weinstein theorem (see e.g. 

[10], [24]) we can isomorphically represent (P,w) by means of 

(T*V1,W V1 )' where VI is a zero-section of the bundle. Hence VI = 

={Pl=""'Pn=O} and a generating function for V2' in T*V 1 , can 

be written as H(q}=qiW(q), where W(O)FO (because of the point b) 

of the definition). So we can choose local Oarboux coordinates 

on T*Vl' near p, preserving the zero sectioR VI and such that the 

respective germ of generating function for V2 is following 
2 H{q)=ql' 

Taking the new Oarboux coordinates in T*Vl preserving VI' namely 
I 

<l> (q III • . • ,q n ' PI' • • • , P n ) = ( q 1 -"2" PI' q 2 ' • • • ,q n ' PI' • • • , p n ) 

we obtain the following local equations for Viand V2 respectively 

VI: PI= t·· .,= Pn=O' 

V2: P2= 0, ..• , Pn=O, ql=O. 

But for this germ of geometric interaction we can easily write the 

respective generating family: 

F(ql .... 'Qn').) = ql,,3 

* If T X is any initial, special symplectic structure on (P,w) then 

using the Morse family, say G: X x Q xlR N ---+-IR, for the respective 

sympl ectomorph isms in the above proced ure (accord i ng to [211 , (22 J) 

we can write down the desired generating family for V1U V2: 

F(x;v,l-l,).) ;; G,(xp •• .,xn,vl, ..• ,Vntl-ll' ••• ,l-lN) + v 1 ).3 

This completes the proof. 
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Having an analytical description of regular holonomic inter­

action we can formulate the appropriate stability problem and use 

it to determine the respective Gauss-Manin systems[18J,(19]. 

{5.3)s (Landau singularities). Let us consider the motion of 

a free particle of mass m in space-time IR4 endowed with the Min­

kowski metric tensor. The phase space is the cotangent bundle 
"" * 4 P = T rn. A mass surface or a first class constraint submanifold 

M C:P is defined by 

M = {{x,p)€P; p2=p~_p2::: m2 , Po>O}, 

where the respective Hamiltonian is defined as a zero function on M. 
In the elementary particle physics the collision processes 

constitute a one of the main subjects of interest (for the basis 

of the theory of multiple collistns processes see e.g.[20]). 

Let us consider a collision process I ~ J described by the co-
tV 

isotropic submanifold M{I,J) in IIp·, namely 
iElt.;J 1 

(*) M(l J}={{X'P} E TI Pi; (X',P)E n Mi' L Pi= 
, i E I UJ i E I uJ i € I 

r P
J
'} , 

jEJ 

where I, J are the numbering sets for the respective particles 

(as in Fig. below) in the collision process (I,J). 

1 4 

I ::: {1,2,3} J ::: {4,5,6} 

Let us consider an associate causal configuration for (I,J) corres­

ponding to the graph G of an appropriate multiple diffusion pro-
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cess (see fig. below). 

1 

I 

3 

9 ---.... --
\ 
\ 
\ G I 

7 \ 1 8 

\ / 
\ 

J 

let I resp. J denote the set of external lines incoming and resp_ 
,..., 

outgoing from S. Let MG be the coisotropic submanifold defined 

analogously as in (*) using the conservation laws. It is easy to 

check that the symplectic spaces M(I,J)/~ and MS/~ associated 

canonically to M{I,J) and MS resp. are isomorphic to T*M(I,J) and 

T*MS respectively, where 

I 4 N ::l 4 N • 2 -+2 2 \' \' R M(I,J)= {(p;)E"IR ,Poi- p,.=m i , p . > 0, l. p.= [. p.} 
01 i EI' j EJ J 

and analogously for MG" 

We have here the canonical projection 

ft MG ~ M(I,J)' 

which defines the respective symplectic relation 

T*f c M(I ,J /'" x' Ms/", 

responsible for the geometrical properties of the collision process. 

The set of critical values of f, say ff c M(I,J) (an apparent con­

tour of f) is called a Landau set corresponding to the graph G. 

The singularity type of f is responsible for singularity type of 

the Landau set and is frequently called the landau singularity. 

Corollary. The geometrical properties of a multiple diffusion pro-
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cess with a graph G are described by the following pair: 

(lff' T*f), 

where lrf is a constrained lagrangian submanifold over constraint 

rf (cf.[l~). Hence the classification of normal forms, as in the 

Pham approach to the landau singularities can be eastly derived 

using our classification theorem for pullbacks. 
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