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IMAGES OF LAGRANGIAN SUBMANIFOLDS, GENERATING

FAMILIES FOR OPEN SWALLOWTAILS AND APPLICATIONS
by
Stanlslaw JANECZKO

Summary. In this paper we study the symplectic relations appea-
ring as the generalized cotangent bundle 1iftings of smooth stable
mappings. Using this class of symy}ectic relations the c?éssifi~
cation theorem for generic (pre)images of lagrangian submanifolds
is proved. The normal forms for the respective classified puli-
backs and pushforwards are provided and the connections between

the singularity types of symplectic relation, mapped lagrangian
submani?oid and singular image, are established. The notion of
special sympltectic triplet is introduced and the generic local
models of such triplets are studied. We show that the open swallow-
tails are canonically represented as pushforwards of the appropria-
te regular lagrangian submanifolds. Using the S?aﬁR) inyariant
symplectic structure on the space of binary forms of an appropriate
dimension we derive the generating families for the open swallow-
tails and the respective generating functions for 1its regular
resolutions. The reqularly intersecting pairs of holonomic com-
ponents are resolved using an appropriate reduction relation.

Examples of singular images encountered in physics are given.



1. ingradu&%ina.

The classification of singular lagrangian submanifolds as the
sets of rays tangent to the geodesic flows on a hypersurface is
carried out in the previous papers [151,[31. This is connected to
the theory of nested hypersurfaces in a symplectic manifold de-~
scribing the geodesics on a Riemannian manifold with boundary [14].
In particular it is closely related to the problem of the shortest
bypassing of the obstacle represented by a smooth hypersurface
{31,021, which we can briefly formulate as follows: let IR?" =
{{x,y)} be a phase space of particle in a classical mechanics [1],
let hix,p) = %(pzu 1) be a Hamilton function for this particle.
Then the space of bicharacteristics in H = { h=0}, say M, which
forms a manifold of all oriented lines inIR™ has a canonical sym-
plectic structure. Let K be a hypersurface inIR" {an obstacle)
and y a geodesic flow on K {e.g. this one defined on K by the
variational problem of shortest bypassing of K). It is proved
in [2] that the set of oriented l1ines tangent to vy on K forms
a lagrangian submanifold in M which i{s not necessary smooth. The
appropriate local classification of these singular lagrangian
submanifolds is a&rriad out in the cited paper. It turned out
that the generic singularities of this classification so-called
open swallowtails can be conveniently described in the Slzﬁa}
invariant symplectic space of binary forms of an appropriate deg-
ree. We find that the open swallowtails can be obtained as ima-
ges from the regular lagrangian submanifolds by means of a cano-
nical symplectic procedure. This observation suggests the fur-
ther generalization of the problem and classification of images

of lagrangian submanifolds by means of {widely used in physical



applications{5]) symplectic relations[16]. It appeared that the
begining of the geometrical classification presented in this pa-
per provides the new types of singular lagrangian submanifolds
(cf.l[12]).

The another motivation, for investigations presented here,
comes from thermodynamics of phase transitions [12] and indepen-
dently from statics of controlled mechanical systems[l&]; Let us
consider the simple one-component thermodynamical system (cf.[12])
and admit the class of deformations onto two isolated subsystems
of the same sample. The phase space for such deformations is follo-
wing (cf.f[121,1171),

(T*leT*Yz, *SldlepldV1+ulle-Sszz-pde2+uszz),

where T*Yl’{vl’Tl’Nl"pl’“SI’”1}; T*Yz,{VZ,TZ,NZ,jpz,-Sz,uz} are
the phase spaces of the respective subsystems énd Vi’ Ti’ Ni’ Py
Si‘“i are the standard thermodynamical coordinates. Let a lag-
rangian submanifold le L2<: T*le T*Yz be a space of equilibrium
states of a composite isolated system. After removing of all
(chemical, thermical, mechanical) constraints the virtual states
of the system are defined by the coisotropic submanifold C <
T*le T*Yz (cf.l5]),

C = {T1= Togs P1= Ppsiy™ ugs Nyt Ny =N=const.,N;> 0, No> 0} .

C provides the canonical characteristic submersion, say p , onto

the phase space of composite system (T*Y,-SdT - pdV), : C
*

- 1Y, p(vl’Tl’nl’pi’sl’“}’VZ’TZ’NZ’F’Z’”Z) = (Vl* stTlaplasl*sz)-

Hence the space of equilibrium states of composite system is an

image 9(L1X Lz) » which for the Van der Waals gas forms a singu-

Tar lagrangian submanifold in T*Y well known in thermodynamics

of coexistence states [12].



The aim of this paper is to set up a method of formalizing
and generalizing these examples and derive the first results for
further applications. We now outline the organization of the
paper, In Section 2, in the begining, we introduce some known
but perhaps unfamiliar results of symplectic geometry, which we
shall need later on. Then we fo}mulate the problem of classifi-
cation of images of lagrangian submanifolds by means of the special
classes of symplectic relations, namely these ones generated by
modified pushforwards and pullbacks of smooth mappings. This
classification forced us to introduce a notion of singular la-
grangian submanifold and to prove some results concerning the
generating families (useful physical potentials) of these classi-
fied images. Restricting considerations to the dimensions of
symplectic manifolds not greater than four we prove the classi-
fication theorem for the normal forms of generic, generating fa-
milies of the respective images of stable lagrangian submanifolds
with respect to the stable mapping. This classification substan-
tially depends on the results of [13] but provides the more exact
description of singular images and their maximally reduced gene-
rating famiiies. Section 3 is devoted to the investigation of
local properties of general symplectic triplets. We show here
the classification theorem for the so-called special symplectic
triplets and derive the respective generating families for the
respective lagrangian sets which its provide. 1In Section 4 we
introduce the basis of Arnold®s theory of open swallowtails re-
presented in the symplectic space of binary forms. We show that
the open swallowtails are provided by the appropriate special
symplectic triplets. Using the methods of symplectic relations

developed before we prove that the open swallowtails are images



from the regular lagrangian submanifolds by the canonical sym-
p?ect%b reduction relation. This fact allow us to conduct the
precise calculations for generating families of the open swallow-
tails and compare them to these ones for the respective special

symplectic triplets.

2. Symplectic relations and jmages of lagrangian submanifolds,

Let (Py,w;), (Pyruwy) be two symplectic manifolds (seelll).

We define the product (Pl’ml)x (Pz,mz) as the symplectic manifold
(Py % Py,priug+ Prowy)s where pro: Pox P, —s P, (i=1,2) are the
cartesian projections. We define a symplectic relation from (Pl’wl)
to (Pz,mz) as an immersed lagrangian submanifold of (Pl,-wl)x
(Py,wy) and denote it by R (see [16],[5]).

We recall a notion of symplectic relation of particular kind
namely the symplectic reduction relation. Such relations are
morphisms in the category of symplectic manifolds and are very
widely used in mathematical physics (cf.[19]1,[171,1181,[51,[11,[141).
A submanifold C <(P, w) is called coisotropic if at each x€¢C

1§ . -
(1) (TXC) = {VETXP,b'HETxc <VAU,p> = 0} < T,.C.

Let D = {veTC; v I{w|.) = O} , we call D the characteristic di-
stribution of C. Let B be the set of characteristics. We con-
sider the following relation from P to B:

(2) R = {{x,b)ePxB; xeC, b = p(x)} .

where p: C —» B is the canonical projection. If B admits a di-
fferentiable structure and the map p is a submersion (cf. [19]) then
there is a unique symplectic structure B on B such that

(3) p*B =mic .

In this case (B,B) is called the reduced symplectic manifold,

and R i5s a symplectic relation from (P,w) to {B,B). R is called



ﬁﬁ“

the symplectic reduction relation of the symplectic manifold
(P,w)} with respect to a8 coisotropic submanifold C {see[5],[161).

Let Re (Pyx Py, prow,- pr;w}} be a symplectic relation and
L<:?1 be a lagrangian submanifold of (?I’wl)‘ The set
{4) R{L) = {ﬂze P,i there exists p;el such that (pyspp)C R}
is called an image of L under a symplectic relation R. Using the
transpose relation tR {cf.[5]) we analogously define the counter-
image of N c(Pz,wz}, namely tﬁ{ﬁ},

According to the purpose of this paper we confine our atten-
tion to the typical example of symplectic manifold, namely to co-
tangent bundle (i.e. the symplectic manifolds found ip most appli-
cations are isomorphic to cotangent bundles [16],{12],([11]) (T*X,mx}
where Wy = é@x, and Oy is the Liouville form in the cotangent
bundle T*X (over a smooth manifold X).

Let (T?x,wx), (T*Y,wy) be two cotangent bundles. The product

Q= (T"XxTY, pr‘;wyw ﬁr’{mx)

is a symplectic manifold which, for further purposes, will be iden~
tified with T*(Xx¥)., Let f: X —» Y be a smooth mapping. By I'fc
X*Y we denote the graph of f, I'f is a submanifold of Xx Y. Any
function on I'f can be pulled-back onto X, so the smooth structure
on I'f is equivalent to the smooth structure on X. As we know
{seell7}, Prop. 3.1) the set
(6) {pET™(XEY);5my (p)€TF and <u,p>= <u,dj> for each ue

T(rf)<T(XxY) such that ty ((u) =Ty y(p)} .

is a symplectic relation in 9. Here g is a smooth function on
rfs Tyxys ?XX¥ are the projections for cotangent and tangent bund-
les respectively. Let g denotes the function g pulled-back to X.
Definition 2.1, Let f:X —» ¥, g:X —» IR be smooth functions. A

symplectic relation, defined in (5) and denoted by {f.g), is ca-



1led f-constrained symplectic relation. By F we denote the setl
of all f-constrained symplectic relations in & ,

In the present paper we are interested only in local pro-
perties of symplectic relations as well as in Tocal properties
of images of lagrangian submanifolds., Hence X, Y will be open
subsets of R" and R™ respectively, and instead of lagrangian sub-
manifolds or mappings we shall consider in fact their germs {seel€]).
Further on, to avoid an inessential rigour, we speak about mappings
submanifolds etc. as represeniants of germs,

Let us introduce in F an action of a subgroup of the group
of symplectomorphisms (an equivalence relation) such that fﬁr the
images of lagrangian submanifolds this action reduces to the stan-
dard action {seel4],022]) of the group of symplectomorphisms pre-
serving the fibre structure of cotangent bundle. Hence we intro-
duce in & the canonical action of the group 6 = ﬁxz<ﬁyi where by
GX {resp. ﬁy) we denote the group of symplectomorphisms preserving
the fibre structure of T™X (resp. T*). It is evident that & acts
on £ transforming a symplectic relation Re@ onto (9,7){R}, where
(2,¥)C 6 . As we know (seei71,{22]) a symplectomerphism {O,V}€
G , lecally, has the following form,

L o(x,2) = (©(x),00(x)"HE +da(x))): TEX — TFY,
g(ysn) = (2(y),De(y) HnedBly))): TV —= TV,

where ¢, ¥ are diffeomorphisms, ¥:¥ —» X, ¥:Y ~» Y and «,8 are

#

{6}

i

smooth functions on X and Y respectively. Thus the group ¢ is de-
fined as a system of functions and diffeomorphisms : {w,a,y,B) with
an appropriate composition formula.

By straightforward calculations, usinglfland definition of
symplectic relation belonging to ¥ , we obtain

Proposition 2.2, For the pairs (f,g) determining the respective




symplectic relations belonging to F we have the following trans-

formation law

(1) (£,9) —> (0:¥)(F,g) = (¥ of oy ,go0 Lepororlgop™ly,
Taking 8 = 0 and o« =g we see that the second component in the

right hand side of (7) vanishes. Thus we have

Corollary 2.3, For any orbit of action (7) there exists a represen-

tative of the fore(f,0), i.e. a pure 1ifting of f to cotangent
bundle @ ; in the sequel denoted by T*f (cf.[191,[12]). '

If we take the subgroup of G, say G', elements of which are
determineé by triplets (¥,a,¥) and act on a relation R by means of
symplectomorphism {@,a,¥,0°f) then immediately we obtain,
Corollary 2.4, The action (7) restricted to the subgroup G'« G is

well defined action on the space, say F', of canonical 1iftings
T*f of smooth mappings f: X — Y to £ . An element of F'is re-
presented by a pair (f,0).

Let R € F and L, N be lagrangian submanifolds in {T*X,wx) and
(T*Y,wy) respectively.
Definition 2.5. Let R = (f,g). The subset R(L) € T*Y (PR(N)= T*X)

is called the pushforward of L (pullback of N respeétive}y) with
respect to R.

If f is an immersion {seell10]) then the pushforwards are
always smooth lagrangian submanifolds of T*Y, Analogously if
f is a submersion then the respective pullbacks are smooth lagran~-
gian submanifolds of T*X. Moreover if LR N =Y and f:X —» Y
are transversal mappings then the respective pullback tR(N} is a
lagrangian submanifold of T*X. Analogously for pushforwards if f
has a constant rank and L is transversal to tR(T*Y) then R(L) is
a lagrangian submanifold of T'Y.

In this paper we study the more general situation when the
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mentioned above, transversality conditions are not assumed and f
is a stable mapping. The possible approach to classification of
singular images {pullbacks and pushforwards) by specifying the
various types of respective nontransversalities we shall study
in forthcoming paper.

Let us denote a pushforward of L with respect to R by a pair
{(R,L) and similarly for a puliback of N with respect to R we use
notation: (N,R).

Definition 2.6. The pushforwards (Ry,lL4), (RysLs)s (pullbacks:
(Hl’Rz)’ (NysRy)) are equivalent if there exists g€ G, g = @ ,¥)
such that

(8) (Ryslp) = (g(Ry),2(Ly))

((Nz,Rz) = (?(Nl),g(ﬁl)) respectively).

Before we prceed to classification of images we recall the
very convenient notion of Morse family. It is well known (see[191],
[5]) that any lagrangian submanifold L of T*X, can be locally ge-
nerated by a family of functions, so-called Morse family, F:

Xx IRK ——» IR(for some keIN, k SdimX) so that

(9) L= ((x8)s 6= SExa), 0 = Ehenyy
2 2
where . a“F 9% F  _ . R R
rank( vk s?&M) = k in an appropriate source point of the

germ F, Between Morse families, with a minimal number of parame-
ters (seel22]), there is a following equivalence: two Morse fami-
lies {(or generating families as below) F, F : XX!Rk — [R are equi-

valent if there exists a diffeomorphism E: Xx!Rk

— Xx!Rk, pyes =
Px,'such that F = F'c 5, where Oy’ anRk —» X is the projection.
Let us notice that the equivalent Morse families represent the

same lagrangian submanifold of T*X . For the proof of the inverse

statement see e.g, [22]. 1In this paper, most frequently, we use



rather the following notion.

Definition 2.7. A family of functions on X, which describes a la-

grangian subset in "X {it can be nondifferentiable but endowed
with the Whitney stratification [11], the maximal strata of which
are lagrangian) by the formula (9), not necessary with the rank
assumption, is called a generating family for the considered la-
grangian subset.

Proposition 2.8. Let LeT™, NcT*Y be lagrangian submanifolds
1

generated by Morse families, say G: Xxiﬁk —= R and F: YxIR' —»[R
respectively, Let R = (f,g)€F , then the image of L and N with
respect to R have the following generating families:

i) for pushforward {(R,L); P: Y x iRM

m
P{yid,u, v) = iil}&;w’g“fi(&i“ + g{p) + G(u.v),

MiRQ

where = {4,..0,0,), V= {vzﬁ...,vk}, M £ mintk,
1) for pullback (N.R); H: XxIR' —» IR,
H{x:A) = F(f{x),2) - g(x),
in respective local Darboux coordinates on T*X and T'Y.
Proof. On the basis of {5) and Lecture 6 in [19](see alsoll7])
a8 Morse family for the relation R is following
m ‘
A(X,y31) = ii}k;{yi*fgixn + g{x),
i.e. R locally can be expressed by the following equations
¥ af dg e
~£j* _ L 3%‘{x} + 5% {x}, Isjsna
=1 1 3%y i
M= Ao 1srsm,
L is described by the equations ﬁjx %%six,v}g O %%f{x,v},
1 5j<n, 115k, Hence using {4) for (R,L) we obtain i}. By the

same way, reducing only an appropriate part of parameters {as for

the stable equivalence inl22]) we obtain ii).
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On the basis of (7), {8) and Proposition 2.8 we obtain
immediately.

Corollary 2.9, Let P{y;A,u,v), H{x;2) be generating families for
pushforward {R,L) and puliback (N,R) respectively as in Proposition
2.8, then the respective generating families, for equivalent
pushforward and pullback, are following

. m - - - -
Flyarain) = ) agygmtee o000 () rgow™ () 4BoFes™ ()46 (a7 060000,

H(x21) = F(Fo® 1(x),1) ~go®™ }{x)+ae@ (x),
where the equivalent symplectic relation R has a form (7).

Now we provide the begining of classification of normal forms
for the appropriate pushforwards and pullbacks. Let us denote by
(Ziék,ﬁr} for pushforward and (A?,§§5k) for pullback, the types
of the respective equivalence classes, where Eiék is a Boardman
symbol of f: (X,x,) —» Y (cf.[11]) and A, is a singularity type
of L {or N}, {(cf.[4]) at a source or target point of the gern of
symplectic relation R.

Proposition 2,10, Let dimX, dim¥Y <3, then the normal forns for

the generating families of generic pushforwards and pullbacks of

the appropriate types are given in the following table

n,m| type | P:Y xRN —» R g type | H: X= R —> R
(1%4,) 0 ﬁial,jg 0
{Eg,&gi Ay + h3 %{Agggﬁ} 33+ X

1,1 (gzg,ﬁ}} vy ﬁ(ﬁisgiﬁﬁ o
(1'%,4,) by 1 110 SERTS
(1%.47) Ay, (A, 1% 0

e {iﬁ*aﬁ }*%“ MYt RYs {ﬁg:‘r?f:ﬁ? E«;g‘i‘ A%

{ﬁgaﬁg} %ﬁ%&QX$%${x3, {0} = 0
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1
(s'.8)) 0; X+ ya (A.Ih) 0
(Thag) | -v3+0tr®)s Paye(r) B0yl 0h) | adexp
2,1 $1 9
(175A3) yoo(y)
(220,%) Ay (AI’XZQ) 0
(129,a,) Ay (A5.120) | 2+ x(2xbexd)
0 0
(y aAl) 0 (Ala; ) 0
(1%.4,) Be y, (1% | 23+ 12
(EG,A3§ A4+k2y1+ Yok (A3,ZO) 4+k2x1+ Xg
10 2.2 10
10
(T05R) | Myt hgypmi-hguse®s Ay, 110 | 2% 5
+v(u1+wé)+au§+ugm( My uz)
10
(1 sA3) kzyl**zyz’*xux‘lzﬂg*“ﬁ+ (A3,210) A4+32x1+A(x§+
2,2 *\?(u1+u2)+vw2(u1,u2)+au§+ +¢(x1))
'l'pzwl(piﬂv‘%)
5110,1\1) 1(Yj“'“l)"’}sz(.)’g‘”luz’ug)* (Al:;.llo) 0
byt p9(uquptu3)
v3+v(p2+w3(p1,u1p2+ug))+
“g“’i(“1’“1“2"“2)“‘%“’2(“1’
u1u2+ug)+au§
i '
(XlleiAg)‘ Al(YI"U1)+}‘2(,Y2‘11}H2“3}§)+ (A3,E110)’ }ﬁ*lle’!' A(wl(x1)+

i

)
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3
sut e (uptoy(uquptugang )+ #0,(Xq) (X34X1%,) )
3
V0 (Hy s Mo )+ 150, (Hy s By Hobls )+ mZ(P) > 0

2
+ zmz(ul,u1u2+u§)+ aug

Proof. By assumption dimX, dimY <2. The types (cf.[4],[11])
for f, L, N are these ones listed in the table. Hence for the
respective germs, say for Lc:T*X, we use the following Morse
families (cf.[22]),

Ayt G(x,A) = go(x),
(10) Ryt G(x,2) =A3+gl(x)x +9,(x),

Ayt G(x,2) =atagy (x)2%4g, (x)2eg (x). ..
Following [12]1the classification of germs of pushforwards (R,L),
restricting R to that one belonging to F (see Corollary 2.3),re-

duces to classification of germs of mapping diagrams

(RIxRS,0) <f9029)  (rM,0) —F o r¥,0),
where s = 0,1,2, g = gy or g = (91’92) for s=1 or 2 respectively,
with respect to the equivalence relation represented by the follo-

wing commuting diagram
(RIRS,0) «{90:9)  R",0) —F & (R¥,0)

idx(id+ aof) h h

(R™IRS,0) <{92:9) ", 0) —F o (r¥,0)

Analogous but a bit more simple situation there is for pull-
backs. Here any pullback of type (Al,Zijk) can be reduced to nor-
mal form with the trivial Morse family. Hence the problem of cla-
ssification of pullbacks can be reduced to the problem of finding

the normal forms for mapping diagrams (cf.(4},{ié]):
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(R",0) ——F o (rR¥,0) —93—& (r',0), (1-1,2)
with a given type of singularity of the germ f and endowed with
the following equivalence relation (cf. {41},

(R",0) ———Iteew (R¥,0)

Lv "fi \ (r1,0)

-f‘!

(R",0) - (R0 g
where g = 0, g = g4 or g = (g4,9,).

Applying the Malgrange Preparation Theorem (cf.[61), the
generalized Morse Legma and method of 1iftable and lowerable
vector fields (cf.l4]) we obtain the following 1ist of normal
forms for generic pairs (R,L) and (N,R) defining the pushforwards
and pullbacks respectively (see also [131},

Pushforwards:
(n,k)=(1,1)
F(x) = x: Ays go= 03 Ay (g,,9)(x) = (0,x),

f(x} = x3: Ai: gﬁ(x} = *xz$a33; AB: (gﬁ,g}{x)ﬁ{axg*x3w1{xz}*

x+0y(x”))
(n.k)=(1,2)

£(x)=(x,0): g, = 0 Ayt (9,.9)(x) = (0,x)
(nk)=(2,1)

f{x)= xq: Ay gﬁ{x}u*xg or ga{x}wxixz+xg; Aot {8458} (X)=(XyXp%
+50(x),%,) or (g,,9) (x)=(xp0(x)%,%x3), Agi(g,-9)(x)=
=(Xp1 (X} %o s X +X50, (X)) s
fix})= x%ix%: Ay gﬁix)a*x§+ax§$xiwi(f(x}}+x2w2{f{x}3, afl;
Ryt (9528 (x)=(axiex 0, (F(%))4x,0,(x) X 40,(F(x)));
 Ag: {ga¥§§{x}a{ax§%x1w1§f(x}}%x3¢2{x},xl+m3{f{x}}a
05(x}),
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{(n.k)}=(2,2)

Fx)=x: Ay g =03 Ayt {g,,9)(x)=(0,%1)5 Agt (9,59)5(0:%1:%5},
f(x}a(xl,xg}z Ay gg(x}=x1x2*x§; ﬁzz(gﬂ,g}{x}a{ax§+x2m{f(x}},
X1+Xp)3 As:{gﬁ,g) = (axgéxzwi(f(x33,x1+x2,@2(x}},
f{x)a(xl,x1x2+xg}: ﬁl: ga{x)a$x§+x2w(xzx2&x§)$axg; %2:{§ﬁ,g} =
(xawl{f(x})+x§m2(f{x)}+axg,32*@3{f{x}}3; Ag:
(9409) (%) =(x,01 (F(x))+x50,(F(x))+ax3,
Xp+ 03 (£(%)),0,(%)).
Pullbacks:
{n,k)={1,1)

fFlx)=x: Ap: g(x)=x,

f{x}=xzz Ay g{x)= ﬁng

(n,k)=(1,2)

F(1)=(x,0): Ayt g(x)=x; Azt g(x)=(x,0(x)),
(n,k)=(2,1)

f{X}zxi: ﬁg: Q(X}gxza
f(x)= x%ixgt azz g{x})= xf&xg,
(n,k)=(2,2)

f{x}w(xl,xz}: Ryt g{x)=xy3 ﬁzz g{x}a{xl,xg},

f(x}:{xz,xg}: Apt a{x)=x4; Ag: g(x}ﬁ(xi,@{xi}%xg}*

f(x}ﬁ(xz,xg%xlxziz Rot g(x)= txiz Agt g{x)&{ixl,wi(x1}+
+(xg+xix2}$g{x}3}‘

Using these normal forms and Proposition 2.8 we can write
down the generating families for the respective images of L= T¥Y
and NeT*. 1t is easy to check that R{L), for the listed above
types, are germs of smooth lagrangian submanifolds in %Y. Hence
on the basis of [22] Theorem 4 and providing some calculations, we
can conduct further reduction of number of parameters for gene-

rating families of pushforwards. Thus the proof of Proposition 2.10
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is completed.
Let us abbreviate the notation for pullbacks and pushfor-
R ijk ijk .
wards writting (AP,Z )(n,m) and () ’Ar)(n,m) respectively.
Thus on the basis of Proposition 2.10 aimost immediately we obtain

Corollary 2.11, For the generic pullbacks and pushforwards listed

in Proposition 2.10 we have the following relations

0
(IR 1, 1)" Ay

( 10 A:) ~ (constrained lagrangian submanifold, unstable
1 *Ri1(1,1)" \in the standard sense (cf.[221,[121,[161)

(yc,Ai)(1,2)=(constrained lagrangian submanifold),(i=1,2),
fil*A13(2,1)=‘“1'A§ >

(El'Az)(2,1)={A1*A2 ,

(Zl*As)(z,l)‘ Ay

(ZZQ,&i)(231)= (constrained lagrangian submanifold), (i=1,2,3),
(15800 (2,29 Ag» (i=1,2,3),

(ylgski)(z’z) {unstable), (i=1,2,3),
(leﬁaﬁi)(z,z)z (unstable), (i=1,2,3),

"

(A1) (1,1)" Ap» (is1,2),

A3+ 5 N 1,1) Ars

(A 7% (1,1)= (singular),

(Ai> 1) (1,2)" A4 (is1.2),

(A3:1°)(1,2)= (unstable smooth if ©'(0)#0),
(A1) (2,1)" Ag» (i= 1,2.),

(“1’220)(2,1)” Ay

(A2~226)(2,1)= (singular},

(A>10) (2,27 Ayr (i=1.2,3),



- 17 -

(A2 10 5,097 Ape (i=122),
(A3 10) (5 5y= (singular),

(A 110 (2,27 Aye (i=122),
(A3,2110)(2’2)= (singular).

Example 2.12. The analogous phenomenon as for the unstable push-

forwards in Proposition 2.10 appears in many mechanical and thermo-
dynamical systems (see e.g. [18],[12]). Let Y be the Eucl%dean
plane, Equations

M= reos 6, n,= rsin g,

y1=—k(r-a)cos 8, yz=~k(r-a)sin 9
describe a lagrangian submanifold N of T*Y with coordinates {(6,r),
0 £6<27, ~o<p<x , (N can be obtained as a canonical pushfor-
ward,. see [181). N represents the position-force relation for
a point subject to a simple restoring force whose centre of
attraction is allowed to move freely on the circle n§+n§= az.
We see tﬁat for r=a, T:YI1N is the circle Ny= aC0S 65 Ty= asin g
and for (yl,yz)f 0, N is transversal to the fibers szl’yz)y'
Hence N is unstable lagrangian submanifold likes these ones listed
in Proposition 2.10. The respective, physically realisable re-
duction relation R and lTagrangian submanifold L is constructed
in [181.

Remark 2.13. Let us notice that an every symplgptic relation R,
in general, is locally generated by the Morse family (Xx,y,») —»
G(x,y,A), (A-paremeter). The classification of images (preimages)
for more arbitrary (than these ones considered in this paper) sym-
plectic relations R can be conducted using the following symplec-
tic equivalence: let RX’ RY be two symplectic relations in

(T™X xT™X,m30y-170,) and in (T*Y xT°Y, m70,- T,0y) respectively,
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representing the appropriate elements of the group of symplecto-
morphisms of T*X and T*Y respectively(cf.[171). We say that the
symplectic relations R, R < (?*x Ty, “ZGY" “ﬁjx) are equivalent
if there exist relations Rys R¥ such that
R'= Ry°R°Ry, (cf. 10 ).

If Gy: XXX —s IR, Gy:¥Yx Y —» IR are Morse families for Ry and Ry
respectively then R' has a following Morse family
{11} G'(%,¥3u, v, 4)= Gx(x,u)+ G(u v oA )+ Gylv,y).
It is easily seen that if X x%RI, Y :iR} and R is transversal to
the fibres of T*(Xx Y) then we can reduce G to the normal form:

G{Xs¥iusv) = xviyprupf(v,u).
It seems to be interesting the classification problem for images
of lagrangian submanifolds with respect to more general class (than
this one considered here) of symplectic relations. The more con-

sequent analysis of this problem we leave to the forthcoming paper.

3. Special symplectic triplets.

Now we pass to the images of lagrangian submanifolds provided
by symplectic reduction relation defined by hypersurface H in a
symplectic manifold (P,w). The first, nontrivial step 'in the stu-
dy of mutual intersection of lagrangian submanifold X <P and hy-
persurface HS P was done in [15] andl{2]. It turned out that the
nontransversal positions of X and H, i.e. a mutual tangency of the
first order along the hypersurface Hn X of X, so-called symplectic
tripiets (H, X, Hn X} provide the singular images P{X) {see [2] )},
which are encountered in variational calculus of physical systems
{21,(3] and in boundary value problems for differential operators

{14} , 151,
It is easy to establish that at any point, say pe HnX, (for



a symplectic triplet [H, ¥, HOX)} one can chosse 3 local special
symplectic structure on P {see {17]and {20}, Theorem 4.1.} so-called
Weinstein sympiectic structure T X ® P, such that

He {{x,)eT™; h{x,@}m } a§§§¢b}c»* x{x) =0}
(12) =1

-

1= Hn X = {x€X; X{x)=0] is 2 submanifeld ef cedim. i,
where ass Xo 1£12n are smooth functions and in additien, graphy
£ XxRR has a first order tangency to ¥ aleng 1.

Definition 3.1. Let (H, X,i=H 0¥} be a symplectic triplet in

{P,w). We say that it is a special symp%&ﬂtﬁﬂ tripiet if there
exists Weinstein symplectic structure, say %, such that h gene~
rates a hamiltonian flow preserving this structure,

Locally a special symplectic triplet is described by {12}

n .
with an addz%%&aai assumption that h{x.,g}l= gzaﬁgx}gﬁ% x{%}.
j=l

We see that the characteristics fﬁ?ﬁ¥§&%ﬁ by h) on X are defined

by the vector field V= ) a;{x}) =¢ (x . Using the symplectomorphisms
‘i 5 m
preserving an affine form of h and zers sectior

g;
e
extey
oy
»
e
®
&
£
=43
s
3

of special symplectic triplets, see 18] for contact equivalence)
as well as the standard equivalence for Hamiltenians [f.2. h~h

iff h = ah' for some smooth function 2, such that a{0);

st
"B
(==

Sl
&
ey
o
w
oF
E-
g
=

the following result,

Proposition 3.2. Let {H,¥,1) be a specizal symplectic triplet,
1

Rk: {{%,8 }ﬁm X h= g
(13) M
“&w@a”&‘x‘%*g‘m @ \i}‘&

where k=dimX~1, a:{T"X,0) — 2 and a{0}#0.

Proof. We show, at first, that a gern y:s{¥,0) iR, defining a

i‘ﬁ
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symplectic triplet as in (12) can be brought to the form 92 for
some smooth function-germ g:(X,0) —= [R defining hypersurface 1.
Let us take the coordinates on X, and simultaneously the symplec-
tic coordinates on T°X by cotangent bundle l1ifting (seef{19]), such
that 1= {x €X; x1=3} . So X(x)=xyg,(x) and, since 1 is a hyper-
sarface of noniso%ated critica! points for f, i.e. lex"(gl(x)+
+x13x (x), lﬁwn{x),...,xi (x}) = 0, thus g,(x)= xlgz(x} By

assumption of the first order tangency of graph X to X we have
' 2

9,(0)#0. Hence we can write X —tg , where g(x)=x1/%gz(x) .

The vector field V= | (x) g- can be straightened in a
neighbourhood of the cons1dered pn1nt, so that o *y= g%; for
some diffeomorphism ¢tURn,ﬁ) —r ﬂR ,0). Taking the canonical
1ifting of © to T*X we obtain the following normal form for h
(for an equivalent special symplectic triplet), namely
(14) h(x,E) = £4% g?(x).

Now we have the natural group of equivalences for integral curves

of » 1.e. diffeomorphisms germs preserving the fibre struc-

ture (xl,xz,...,xn) — (Xgs...5x,). Using these equivalences

o
3)(1

we reduce the problem of description of mutual generic positions

of characteristics of h and the submanifold 1({g(x)=0}) to the

classification problem for Whitney’s projections (seel2],[11],[61)
LTI e Lt

Hence (14) can be brought into the following normal form

h{x,8)= Elb(x} +(xk+1+x2xk 1+...+xk+1)2

where b{0)#0. Taking an equivalent Hamiltonian for H we obtain
(13). Thus the proof of Proposition 3.2 is completed.
For any special symplectic triplet (H,X,1) there exists a

canonical special symplectic structure on the space (B,B) of cha-
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racteristics (bicharacteristics) on H (cf. {3)), say T°Y such
that for the reduction relation

(15) R= {(pyapy) € T"X XT™Y5 py= p(py)s pyEHY ,
where p: H —» T Y is the canonical projection onto bicharac-

teristics, we have a following commuting diagram
P

T*X 2 H =T Y

(16) TxlH Y

X - » Y
where 7 1is a submersion (along characteristics).

Corollary 3.3. Let (H,X,1) be special sympYecti¢,triplet, then

a stationary lagrangian submanifold R(X) (c¢f.[21) is a canonical
pushforward, i.e.
(17) R(X) = T*n (L),
and for the respective types of triplets described in Proposition
3.2, we have:

7 X —»Y, T (xl’x2’°"’xn} —pr (xz,...,xn),
Moreover L is generated (for the respective type of the triplet)
by the following generaiing function

(18)  Flxgseooox)=t | a(s,xga.eoang) (5 s e any 1) %ds,

0
Proof. We see that the space of characteristics of H, described

by the dynamical system

il"" 1, &2= gg .0 % 2 X = Gs

]
- ah - Bh
E45= mm— 5 see 3 5 B e
1 3Xq n IXy

can be easily obtained . As the canonical variables (il,...in_l,
51,...,§n_1}, parametrizing the symplectic space of characteris-
tics, we can take the initial values for xz,...;xn,gg,..‘,ﬁn,

where theé initial value for Xy is equal to zero. The respective
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symplectic form B, such that p*B Z dg A dxslys for this space
may be choosen in the Darboux fcrm. ﬂuw it is easy to check that
{(17) holds for each type. of symplectic triplet of Proposition 3.2,
with generating funcfien (18) for L.

4. Generating families for the open swallowtails.

Let us consider now the most representative example of the
Arnold’s theory{3] for singular lagrangian submanifolds.

We are given the space of binary forms of degree d=2k+3,
dimension of which is equal to 2k+4 (cf.[2]). This space can be
endowed with the unique S!z(m) - invariant symplectic form,

In the appropriate Darboux coordinates (qo*“"qk+2’pa"'"Pk+2)

a2 binary form, say ¢{x,y) , can be written as follows
2k+3 2k+2 k+2 k+1 k+1 k+1

w(x,y) qgm "!‘qi-(ﬁi‘i'...'?qk*‘lmv 4’( 1) pk.;.l”‘rr’{‘)—r Faoo
...+(~1)k+1p0y2k+3.

We see that the space of characteristics of the coisotropic hyper-
surface {q,=1} identifies with the space of polynomials of degree

2k+2 (derivatives of the respective po?yacmials w{x,1})), i.e.

x2k+2 x2k+l x K+l
BTS2 PRICIY ¢ o FREER PG 1 o T Pmm et (-1
k+1
with the reduced symplectic form w = iél dp; A dgy, where (qp,...5q;,4)

are coordinates on Q.

Proposition 4.1, (cf.[2]), The triplet (H,Q,1), where H= { h(g,p)=
= Pl*qlpg**~.+qkpk+1+q§*1}2 = 0}, is a special symplectic triplet
in (T*Q,wg} such that p(1) < T*Y is an open k-dimensional swallow-
tail.

Proof. The space of characteristics of the hamiltonian system

(19) 917 1s 8= Gpseens Qyiq® 9o

P1®-Pgseres pk#“pk+l’ Prs1™ " 9ks1
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can be identified to a space of polynomials of degree 2k+2 in Hc
T™Q, such that q,=0. We see that the zero section QcT7Q inter-
sected with H (i.e. 1) forms the space of polynomials divisible

by xk+2

» S0 the canonical projection o{1) onto the space of
characteristics T°Y (endowad with the Darboux coordinates (qz,.,.
..,qg+1,p2,...,pk+i) can be identified with the polynomials of

degree 2k+1 of the form:
2k+1 2k 1 k k 1 L
®x,1 + o +o.4(-1yk1
)= 126y 1H 92 TZEET) 1 O 1R a1 TRETY I+ P2
such that ©{x,1}) = {x- ;)kfl{x + ...) for seme £€[R. But this is
nothing else than the definition of open swallowtail introduced
in [21].

We can also use the initial values of (ql,.,’qk$1,p1,...,pk*l)
on characteristics to parametrize the space Y, Remembering that
h is a Hamiltonian of transiations along the variable x, for the
polynomial paramatr#zation of chavacteristics we can write the

following identification
2k+2 2k+1 k+1 k
X-1 % % g %
K 2k+2 - ka xk+1 _
+(=1)py= Toproyi i ot kT §k+1¥T (=155

where h(al""’qk+13?1"*'9§k%1}=g and ql:Q implies g,=t. Hence

we can take (62,5.g,ﬁkéisé?gggggék%%§ as a Darboux coordinates

%, " N - . I e
on T Y where Y is parametrized by (qg,..,qu+1} and wggﬁ- @*my.
Likewise, in {16) = : {qzﬁe.oqu%ig ~—% {f3s50..5Gp 1) has a follo-
wing form

| 72 1y iGs1) 3
(21) i -0 afa, -1 6l 5 s 2 ke,

'E..h

Let R be a canonical symplectic reduction relation connected

with H, i.e. R is a graph of o in (T°gxT° ?,szy~ ﬁiwg3‘
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Proposition 4.2, An open , k-dimensional swallowtail, can be re-

presented as a canonical pushforward of a regular lagrangian sub~
manifold, i.e.

R(Q) = Tm(L,), dimQ = ks,
where L, is a lagrangian submanifold of (T*Qng) with the following

generating function:

k-2 k-i-
- (k) k+i-s+3 ‘
Felapseeoatpeqd= 1 5,% Dk-i,sh 9k 1*
k-2
1 (k 2i+3 2 (k) k+i*3 1.(k} 2
(22) w3 1 ot} jay" e g 5 o5k U-1+20ks1, k191 %41
£ (k)
{k) k+2 2 _2k+3
Epe191 Gke1m TEET 1 o
where
B(k}&(~1)k~r 5 {'1}j S
Y5 j=s (J=s)1(2k+3=-3~=r)! *
(23}

k+l J
(k) r g k-r 1 - ~1
Ey Y-k +3-7)! jiz JT(2k%3- ~r)*)’
1 sr,s s k+l.

Proof. On the basis of (21), T'n can be written as follows
k

" J 1 1 11
Pr= 1 Pger (L DT orEmnn et

k Jer+l
= B " R - ~r+l
Pp= Pyt 3ér§j+1%3%%$TT! Qg » 1 o<r skl

On the other hand, providing further calculations, for R we obtain

(T™n)

K k-3 k~§‘i+1 ko kil
1 - k-j=1_ 2k+2 -5~ j
321 Lo t 93Pk-i41% ? R a3-
k
o olk) (k). 2k+2-3_ 1
(R) 9505+1,s7 L B9y 217
ktlepr
) K+lep-j +1-r=j
Pem Ly (D) =Ty 1 Pke 1501 +

k+1
{ ﬁﬁqu q2x+3 s-r, i(k} 2k+3~r
sm2 »



where 2 < < k+1 and ﬁékz, E(k) are defined in (23},
Comparing both sets of equations for R and for T%, and remembe-
ring that Q is described by equations pzupzz,..sgk%laﬁ after
simple but long calculations we obtain {22).

Using Proposition 2.8 and function {22) we obtain a genera-
ting family (not necessary Morse family) for the singular lagran-
gian submanifold in T°Y called the open swallowtail (seei2]).

Corollary 4.3. A generating family for an open, k-dimensional

swallowtail can be written in the following form

k(qz**“*qkn*ﬁz* “’%—1’ 1200 )= kaz*“”pkﬂ”
i i+l
) s

+ f ﬂ1fq}+1 Z ( 1) ?}ﬂ;b,*}*g + (- 1} TIFITH1

where F, is defined in (22), ¥y,..o5H 40 2 yseuesty are pareme-
ters of the family.

Example 4.4, Let k= 1,2, then the respective generating functions

for smooth (resolvents) lagrangian submanifolds Lis Ly are foliowing

.. 15,13 1 2
10 Fplagsap)=- 15a3+ 397957 59195,

) 1.7, 115 _ 14 3.2, 1.2
Lo:  Faolay.95.93)=- ga591% 1259192 §9193" 3‘*1’42 ‘2‘*1%”’*3

L

- 39195
Now by Corollary 4.2 and the standard method for reduction of
parameters in generating family we obtain the generating, one~pa-
rameter, families for the cusp singularity (seel6l} and the
two~dimensional open swallowtail singularity (seel3]) of lagran~
gian submanifold.

open swallowtail:

3(‘?2:@3& A)== mk - 'ﬁ@“”ﬁ qz* ‘*?%‘2%
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Remark 4.5, Taking a new coordinates on T*Q, defined by (21)

and formulae qy=q, we have m:Q —» VY, T(Qyseeesfpaq)=(Apaerealyyq).
So after straightforward calculations {(cf.[13]) we derive the
following generating families for the respective open swallowtails

R{Q), namely,

A
k+2 _k+1 K&l 1o keiely2g

- - .1
Pligs-+afipM)= 7 L Oy L s
Comparing this formula with Corollary 3.3 (formula (18)) we see
that the special symplectic triplets with k=n-1 are diffeomorphic
to these ones providing the open swallowtails.

Remark 4,.6. One of the most interesting appearance of the open

swallowtail (k=2) is that one proposed by VZI‘ Arnold (and cowor-
kers)[21,[3] in variational calculus, which is frequently called
“shortest bypassing of the obstacle”. It has some precisely inde-
finite connection to geometrical optics (see[3]). Let us consider

a piece D of a hypersurface {obstacle) inER3

, and we define the
geodesic flow on D by the time functien 7:0 —» IR, Hence (VT)2$1,
An appropriate symplectic triplet connected with this situation
is defined by ¢:T R> —= R (defining H), @ =p®-1 (all directions
in the fibres) and the lagrangian submanifold L as all extensions
to T§R3 of the 1-forms p:dvlq
It turns out that (H,L,HNnL) is a symplectic triplet diffeomorphic

defined on the tangent space to D.

to this one considered in §§ 3,4 of the present paper.

5. Final remarks and applications.

{5.1) As a simple mechanical example of singular jimage with
respect to the symplectic reduction we consider the finite element
analogue of the Euler beam problem. This system consisting of two
rigid rods of unit length connected by frictionless pins, is sub-

jected to a compressive force “Pq which is resisted by a torsion
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where 2 < r < k+1 and Bifz, Eik} are defined in {23).
Comparing both sets of equations for R and for T"w, and remembe-
ring that § is described by equations pivpgﬁg.*wpk+ima after
simple but long calculations we obtain (22).

Using Proposition 2.8 and function {22) we obtain a genera-
ting family {(not necessary Morse family) for the singular lagran-
gian submanifold in 1Y called the open swallowtail (seel21]).

Corollary 4.3, A generating family for an open, k-dimensional

swallowtail can be written in the following form

pk(qz""'qk+1;“1*"'=“k+1* qreeeaty)= Fk‘“z*'* Mpp)t

q i i+l
+ izlﬁf(qi+; Z ( 1)! T*“l”i-}+1 + (- 1) TIFITI* ),

where Fy 1s defined in (22), ¥ PR T L 1"“‘Ak are pareme-

ters of the family.

Example 4.4, Let k= 1,2, then the respective generating functions

for smooth (resolvents) lagrangian submanifolds Lys Ly are following

) 15 13 1 2
Lyt Fplagsap)=- 139;% 39192~ 59;93s
. 117, 116 14 _ 132 12
ba: Folay.a,.q5)=- ﬁ@@qz 1759192 %ﬁxﬂs Fa3as+ ga5a,a,-
2
B ?“1@3’

Now by Corollary 4.3 and the standard method for reduction of
parameters in generating family we obtain the generating, one-pa-
rameter, families for the cusp singularity {seel€l) and the
two-~dimensional open swallowtail singuiarity {seel31]) of lagran-
gian submanifold.

cusp: p}{EZ*A; P ﬁék

open swallowtail:

2{{32;‘233 A)=- mk - %?QQ“ ‘fg‘%‘;& Q3"‘ TA §
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Remark 4.5, Taking a new coordinates on T*Q, defined by (21)

and formulae §1=q1 we have m:Q —» ¥, 7(gyse.esQp,1)=(0psecealy,q)-
So after straightforward calculations (cf.[13]) we derive the
following generating families for the respective open swallowtails

R{(Q), namely,

A
ke2_ k1, <31 s k-itly2g,

p = . 1 1
Prlags e vslyyysh)= z'é S (TR iZz =r3paiils

Comparing this formula with Corollary 3.3 {formula (18)) we see
that the special symplectic triplets with k=n-1 are diffeomorphic
to these ones providing the open swallowtails.

Remark 4.6. One of the most interesting appearance of the open

swallowtail (k=2) is that one proposed by VxI. Arnold {(and cowor-
kers)[21,[3] in variationa? calculus, which is frequently called
"shortest bypassing of the obstacle". It has some precisely inde-
finite connection to geometrical optics (see[31). Leé us consider

a piece D of a hypersurface {obstacle) in§R3

, and we define the
geodesic flow on D by the time function 7:D — IR, Hence (VT)2=1~
An appropriate symplectic triplet connected with this situation
is defined by ¢:T RS —= R (defining H), ® =p2-1 (all directions
in the fibres) and the lagrangian submanifold L as all extensions
to T§R3

of the 1-forms p=dr|_  defined on the tangent space to D.

q
It turns out that (H,L,HNL) is a symplectic triplet diffeomorphic

to this one considered in §§ 3,4 of the present paper.

5., Final remarks and applications.

(6.1) As a simple mechanical example of singular image with
respect to the symplectic reduction we consider the finite element
analogue of the Euler beam problem. This system consisting of two
rigid rods of unit length connected by frictionless pins, is sub-

jected to a compressive force -pq which is resisted by a torsion
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spring of unit strength. The angle ¢ and the force pq are consi-

dered coordinates of a manifold X. Together with the torque Py

and the position g they form a canonical coordinate system

(m,pq,pw,-q) of T*X. The potential energy of this system {ge-

nerating function of the lagrangian submanifold Nc T*X) has the form
V(©.pg) = 3o°-

If we take the reduced phase space T*Y with the localcoordinate

2pqcos Q.

system (pq,-q) and the mapping f:X —» Y, f(m,pq)zpq then we obtain

for the image of N the following formula

ay
3P

which is a space of equilibrium states (constitutive set) in the

t* = v--*':-—a——\i = i - = =g
THE(N)=1(pgs=a)€T™Y; O=55(0,p)=0+2p s in® s -g=mp (@.pg)=-2c0S @ ],
control phase space TY. A simple calculation shows that if pq=-%
©=0; V is not Morse family and the set “T*f(N) has a standard
singularity well known in the imperfect bifurcation theory (see
fig. beiow)

4 pq

Unfortunately thatsingularity is not stable, it disappears after
small deformation of V because the respective transversality con-

dition (cf. §2) is not fulfilled. However for examples of this
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type we can construct the space of deformations and treat the
unstable singular lagrangian submanifold as an element of a family
of deformations (a kind of unfolding[9]or more precisely Wasser-
mann’s (r,s)-unfolding [26]). Number of parameters of this family
is connected to the codimension according to the above classified
singularity types. This approach leads to the classification of
stable images according to the composition of two reduction rela-
tions.

(5.2) Now we formulate the resolution problem for singular
lagrangian submanifolds. Let L< (P,w) be a germ of singular lagr.
submanife]d.’ The question is: do there exist

i) special symplectic structure (X,m,0,a) on {(P,w),
i1) a submersion p:A — X,
i11) a regular lagrangian submanifold Nc (T¥4,w,)

such that
L= T p(N).

Now we show that the regular geometric interaction between
holonomic components (in the sense of Kashiwara [15],[19]) can be
resolved in this way.

Let Vl’ Vz be lagrangian submanifolds of a symplectic mani-
fold (P,w) (cf.[181).

Definition. The lagrangian subset V1LJV2 {(or pair (vl,vz)) of

(P.w) is called a regular geometric interaction if the following
conditions are fulfilled
a) V1f1V2 is a submanifold of P, dimvln Vz = dimvlv“l,
b) for every point p€ V0V, we have
- n
TP(V10 Vz) Tpvl Tpvz.
Let (V;u V,,p) be a germ of a regular geometric interaction

in (P,w).
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Proposition. There exist a symplectic manifold (5,5) and a sym-

plectic reduction relation R © (§x P,z; © W ) such that for a germ
of regular geometric interaction, say (V,VYV,,p) < (P,w) we have
a canonical resolution formulae
VUV, = R(L),
for some regular lagrangian submanifold L< (Pw),
Proof. On the basis of the Kostant-Weinstein theorem (see e.g.
(101, {241) we can isomorphically represent (P,») by means of
(T*Vl,wvl), where V1 is a zero-section of the bundle. Hence V1=
={py=s...,p,=0} and a generating function for V,, in T*V,, can
be written as H(q)=q%w(q), where ©{0)#0 (because of the point b)
of the definition). So we can choose local Darboux coordinates
on T*Vl, near p, preserving the zero section Vl and such that the
respective germ of generating function for Vz is following
H(q) = q%-
Taking the new Darboux coordinates in T*V1 presgrving Vys namely
0 (ql,...,qn»pl,--.,pn)=(q1-%p1,q2,---,qn,pl,...,pn)

we obtain the following local equations for Vland V2 respectively

Vlz P1= 20009 pn=0,

Vz: Py= O0yenns pn=0, q1=0.
But for this germ of geometric interaction we can easily write the

respective generating family:

3
F(ql’-usqn’;\) = qqr.

If 77X is any initial, special symplectic structure on (P,w) then
using the Morse family, say G: X><Q>QRN —= R, for the respective
symplectomorphisms in the above procedure {according to{21],[22])
we can write down the desired generating family for vy v VE:
iy 3
F(x;\)’u’)\) = Gj(Xl)uun;xngv\l,-nos\)n:plgvtpgvn) “}‘ \)1>\

This completes the proof.
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Having an analytical description of regular holonomic inter-
action we can formulate the appropriate stability problem and use
it to determine the respective Gauss-Manin systems{[18],[19].

{5.3), (Landau singularities). Let us consider the motion of

4 endowed with the Min-

a free particle of mass m in space~time IR
kowski metric tensor. The phase space is the cotangent bundle
P = T*RQ. A mass surface or a first class constraint submanifold
McP is defined by
M = {(x,p)eP; p2=p§-§2’= mz, Py > 01,

where the respective Hamiltonian is defined as a zero function on M.

In the elementary particle physics the collision processes
constitute a one of ihe main subjects of interest {(for the basis
of the theory of multiple collisins proéesses see e.g.[201).

Let us consider a collision process I —» J described by the co-

isotropic submanifold g(l J) in | | P.. namely
5 : 308

(*) M =((X,p) € Pos (XoB)e TT Meo L pi= L pst s
(1,J) mTi—ug i ietud 3 qer U jea d

where I, J are the numbering sets for the respective particles

(as in Fig. below) in the collision process (I,J).

1 4

= {1,2,3} J = {4,5,6}
Let us consider an associate causal configuration for (I,J) corres-

ponding to the graph G of an appropriate multiple diffusion pro-
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cess (see fig. below).

1 4
9
2 TR
\
\ K 5
N A
I 7\//8 J
\
\
3 6

Let I resp. J denote the set of external lines incoming and resp.
outgoing from G. Let ﬁg be the coisotropic submanifold defined
analogously as in (*) using the conservation laws. It is easy to
check that the symplectic spaces E(I J)AV and ﬁéﬁv associated
: o o . " %
canonically to M(I,J) and MG resp. are isomorphic to T M(I,J) and

T*MG respectively, where

R4V 2 _ 2 2 T o,

= M<I,J)= {(pi)€R4N; Poi~ Pi=Mys Py 0s
and analogously for Mg.

We have here the canonical projection

f: Mg — M(I,J)’
which defines the respective symplectic relation
T e Wy gy~ ¥ Hg/e

responsible for the geometrical properties of the collision process.
The set of critical values of f, say I'f c M(I,J) (an apparent con-
tour of f) is called a Landau set corresponding to the graph G.
The singularity type of f is responsible for singularity type of
the Landau set and is frequently called the Landau singularity.

Corollary. The geometrical properties of a multih1e diffusion pro-
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cess with a graph 6 are described by the following pair:

(Lrgs THF),
where Lyf is a constrained lagrangian submanifold over constraint
I'f (cf.l141). Hence the classification of normal forms, as in the
Pham approach to the Landau singularities can be easily derived

using our classification theorem for pullbacks.
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