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Introduction

In this paper we study complete surfaces (M, g) which have finite area and hyberbolic
ends or, what is the same, complete surfaces of finite area whose Gaussian curvature equals
—1 in the complement of some compact subset of M. Such a surface has a decomposition
into a compact surface with smooth boundary and a finite number of ends called cusps.
Examples are compactly supported conformal deformations of hyperbolic surfaces of finite
area. Let A be the Laplace operator on M associated to the metric g. Since g is complete,
A, regarded as an operator in LZ(M) with domain C§°(M) , is essentially self-adjoint [Ch]

and we shall denote its unique self-adjoint extension by A.
If M is compact then the spectrum of A is a discrete sequence of eigenvalues

D= A< A S <..9

where each eigenvalue A; has finite multiplicity. A great deal of work has been done to
understand the following problem:



(0.1) To what extent do the eigenvalues determine the geometric structure of (M, g) and
vice versa?

See for example [Huj, [Mc], [OPS1], [OPS2], [Su], [V], [W]. Part of this theory may be
regarded as inverse spectral theory for compact surfaces.

Our purpose is to study the analogous problem for the class of complete surfaces
defined above. To start with we have to find appropriate spectral data which can replace
the eigenvalues in the compact case. The spectrum of the Laplace operator on a complete
surface M of finite area and with hyperbolic ends consists of a sequence of eigenvalues
0 = Ao < A\; € Az £ ... and an absolut continuous spectrum which is the interval [1/4, o)
with multiplicity equal to the number of ends of M. Furthermore, Colin de Verdiere
[C2] has shown that, for a generic metric on M, the Laplace operator has only finitely
many eigenvalues and all of them lie below the continuous spectrum. Thus eigenvalues are
certainly not sufficient for the purpose of spectral geometry.

The additional spectral information is providéd by scattering theory. The stationary
approach to scattering theory gives rise to a scattering matrix C(s) which is a meromorphic
matrix valued function of s € C. Its coefficients may be interpreted as follows: A plane
wave is sent in from a given cusp and scattered by the compact part of the surface,
transmitting some part into the other cusps and reflecting another part into the given one.
The asymptotic behaviour of the scattered plane waves obtained in this way is described
by the scattering matrix C(s). In analogy to quantum mechanics we call poles of C(s)
resonances. Actually we are working with the poles of the meromorphic function

6(s) = det C(s)

and call also these poles resonances. The resonances are the complementary spectral
parameters to the eigenvalues which we are going to use to develop spectral geometry for
the surfaces described above. To combine resonances and eigenvalues in a common set we
write each eigenvalue A; as

Aj=s;(1-395), s;€C

and associate to A; the points s; given by this equality. Then we introduce the set (M)
which is the union of the following three sets:

(a) The set of all poles and zeros of ¢(s) in the half-plane Re(s) < 1/2.
(b) The set of all s; € C such that s;(1 — s;) is an eigenvalue of A.

(©) {z}

Each point n € o(M) occurs with a certain multiplicity m(n) (cf. Definition 5.20).
In abuse of notation we call (M) the resonance set and we think of the s;-th as being
resonances corresponding to L? bound states. By means of Lax-Phillips scattering theory
one can identify o(M) with the spectrum of a certain non-self-adjoint operator B+1 1. Here
B is the generator of the Lax-Phillips semi-group Z(t),t > 0, associated to the hyperbolic
wave equation on M. This operator has a compact resolvent and therefore, we can employ
standard perturbation theory to study the behaviour of ¢(M) under perturbations of the
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metric. For hyberbolic surfaces this approach was first used by Phillips and Sarnak [PS1]
to study o(M) as a function on Teichmiiller space. The problem analogous to (0.1) can
now be stated as follows:

(0.2) To what eztent does the resonance set o(M) determine the geometric structure of
(M, g) and vice versa?

This may be compared with the forward and inverse problem of scattering on the real
line (cf. [DT]). The role of the potential is played by the metric on M. But now we have
also to deal with the topological structure of the surface.

Of course, we can not expect to get a complete answer to (0.2) at the present state
of our knowledge. Even in the compact case there are many open problems related to
(0.1). Our purpose in this paper is to develop some of the machinery which is available for
compact surfaces and to extend some of the results from the compact case.

Now we shall describe the content of this paper. In section 1 we recall the basic facts
about the spectral decomposition of A and we introduce the scattering matrix C(s). In
section 2 we review some results of [Mii] concerning the heat kernel K(z), z2, 1), including
the trace formula for the truncated heat kernel and the related asymptotic expansion.
Then we study in section 3 the analytic properties of the scattering matrix C(s). This
is the forward problem of scattering theory. One of the main results is Theorem 3.20
which says that the determinant ¢(s) of C(s) is a meromorphic function of order < 4. For
hyperbolic surfaces this result is due to Selberg [Sel]. Our method is different from his
and it is based on Colin de Verdiere’s method of the analytic continuation of Eisenstein
series [C1]. Another result of section 3 is the following product formula:

(0.3) ORYall | =

p STF

where p runs over all poles of ¢(s), counted with the order, and ¢ is a certain constant.
This is again due to Selberg [Sel] if M is hyperbolic. An important consequence of (0.3)
is the following formula for the logarithmic derivative of ¢ along the line Re(s) = 1/2:

2Re(p) — 1
e(p))? + (A — Im(p))?

(0.4). 3(1/2 +1iA) = log ¢ + ; i R

This formula is important for the further investigation of o(M).
In section 4 we study the distribution of poles of ¢(s) and the main result - Theorem
4.23 - can be restated as follows:

(05) #in € o(M)|In| < 7) ~ 2220

as T — oo. This may be regarded as an analogue of Wey!’s formula.
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Next we consider in section 5 the following integral

+o00 '
% /_oo AZ/2+ i

where h is the Fourier transform of some function ¢ in C§°(R.).

We wish to express this integral in terms of the poles of ¢(s). The Cauchy residue
theorem can not be applied directly, because the integral obtained by shifting the contour
of integration to the line Re(s) = ¢ does not disappear in the limit ¢ — —oo. Nevertheless,
using (0.4), we are able to prove the following result (Theorem 5.15):

Let ¢ be an even function in the Schwartz space S(R). Set h = § and h4(z) =
Jo~ 9(y)e*¥dy , Re(z) < 0. Then

(0.6)
+o0 ' o
_ﬁf_ h(A)%(l/Q +iA)dA = _lﬁrq g(0) + % Y n(p){ht(p —1/2) + by (5 —1/2)},

where ¢ is the constant occurring in (0.3) , p runs over all poles and zeros of ¢(s) in
Re(s) < 1/2 and n(p) is the order of the pole or the negative of the order of the zero
of ¢(s) at p. If M is hyperbolic and g has compact support with support contained in
(0, 00), this formula was proved by Lax and Phillips [LP,Chapter IX]. For M hyperbolic,
(0.6) allows us to rewrite the Selberg trace formula in a way which, up to some inessential
terms, resembles the trace formula for a compact surface (cf. Theorem 5.31). In the same
way we can rewrite the trace formula for the truncated heat kernel and combined with the
asymptotic expansion for the trace of the truncated heat operator we obtain that o(M)
determines Area(M), the Euler characteristic (M) of M and the number m of ends of
M. In particular, o(M) determines the conformal type (h,m) of M where h is the genus
of the surface M obtained by compactifying M.

In section 6 we introduce two different zeta functions associated with the Laplace
operator A. The first one is the speciral zeta function (a(s) which is essentially the Mellin
transform of the trace of the truncated heat operator and the second one is the resonance
zeta function

(B(s) = Z '(1 —1)"°% Re(s)>2

n€a(M)

where Y means the sum over all 7 # 1. Here the index B denotes the generator of
the Lax-Phillips semi-group associated to the hyperbolic wave equation. According to
Theorem 5.27 we have o(M) = Spec(B + 1I). Therefore we may regard (g(s) as the zeta
function of the non-self-adjoint operator By = —B + %I :

The meromorphic continuation of (a(s) is obtained in the well-known way from the
asymptotic expansion of the trace of the truncated heat operator . Then we use an extended
version of {0.6) to express (a(s) in terms of o(M). This formula establishes a relation
between (a{s) and an infinite linear combination of resonance zeta functions with shifted
argument (p(2s + k), k € N and it leads finally to the meromorphic continuation of (p(s).



Both zeta functions are holomorphic at s = 0 and we can introduce the corresponding
determinants

det'A = e~ and det'B; = e ¢80,

The complecated relation between (a(s) and (p(s) is reduced to the following simple
equality for the determinants

Area(M) 3y o
8w

(0.7) det'A = exp( ) det' B,

where -y denotes Euler’s constant and m is the number of ends of M. For z € C,Re(z) > 1,
we also introduce regularized determinants det(A 4 z(z—1)) and det(B; +(z—1)) and (0.7)
extends to a corresponding identity for these determinants. If the surface is hyperbolic,
we use results of L.Efrat [E1], [E2] to express det(B; + (z — 1)) in terms of ¢(s) and the
Selberg zeta function.

Throughout sections 7 and 8 we assume that M is hyperbolic and we study the inverse
problem of scattering theory for hyperbolic surfaces. In section 7 we use the version of the
Selberg trace formula established in section 5 to show that o(M) determines the length
spectrum of the closed geodesics of M and vice versa.

Finally, in section 8 we prove that the resonance set determines a hyperbolic surface of
finite area up to finitely many possibilities. For compact hyperbolic surfaces this result is
due to H.McKean [Mc]. According to S.Wolpert [W] we also know that a generic compact
hyperbolic surface is uniquely determined by the eigenvalues of its Laplacian. In other
words, the eigenvalues are moduli for generic compact hyperbolic surfaces. We can ask
the same question: Are the points n € o(M) moduli for a generic hyperbolic surface of
finite area? The answer is very likely to be yes. We may also try to extend T.Sunada’s
results concerning isospectral manifolds [Su]. In our context two surfaces M; and M, are
called isospectral if the resonance sets o(M;) and o(M,) coincide. We shall not pursue
any of these problems in the present paper, but we shall return to these questions in a
forthcoming publication.

We expect that most of the theory developed in this paper can be done for larger
classes of surfaces. For example, the condition on the ends can certainly be relaxed. In
place of hyperbolic ends we may assume that the metric is asymptotic (in a sense to
be made precise) to the metric of constant curvature —1. Since this is technically more
complicated we have chosen to work with the surfaces introduced above.

Acknoledgment: This work was done during the author’s visit at the Institute for
Advanced Study at Princeton and the Max-Planck-Institut fiir Mathematik at Bonn. I am
very grateful to both institutions for financial support and hospitality.



1.The spectral resolution of the Laplacian
on admissible surfaces

As in the introduction we let (M, g) be a complete surface of finite area whose Gaussian
curvature equals —1 in the complement of some compact subset of M. In other words,
(M, g) is a two-dimensional Riemannian manifold which admits a decomposition of the
form

M=MUZ U ---UZ,,

where M is a compact surface with smooth boundary and
Zgé[a,-,oo)xsl, 1=1,..,m,
with a; > 0 and the metric on Z; equals

_ dy? + da?

2

ds J:

where (y,z) € [a;,00) x S!. Each end Z; will be called cusp and the surface M will be
called admissible.

Any admissible surface is diffeomorphic to the complement of a finite number of points
Z1,..., Zm in a compact surface M. Let h be the genus of M. The pair (k,m) is called the
conformal type of the surface M. If the metric ¢ on M has constant curvature —1, then
we call M a hyperbolic surface. Any hyperbolic surface is of the form '\ H where H is the
upper half-plane and T is a torsion free discrete subgroup of SL(2,R). Finally, we note
that for an admissible surface M the Gauss-Bonnet theorem holds:

x(M) = % /M K(z)d=.

Here x(M) is the Euler characteristic and K(z) the Gaussian curvature of M at z € M
(cf. [CG]). '

Now let A : C°(M) — C*(M) be the Laplace operator on M. We denote by L*(M)
the Hilbert space of measurable functions on M which are square integrable with respect
to the measure du defined by the Riemannian metric g. Since (M, ¢) is complete, it follows
from [Ch] that A, regarded as an operator in L?(M) with domain C$°(M), is essentially
self-adjoint. We denote its unique self-adjoint extension by A. In this section we recall
some facts about the spectral resolution of A. Details are contained in [Mii] and [C2).

The spectrum of A is the union of a point spectrum o, and a continuous spectrum
oc. The point spectrum o, is a sequence of eigenvalues

0:/\0(/\15.«\25...,

where each eigenvalue A; has finite multiplicity and it is repeated in this sequence according
to its multiplicity. For a generic metric on M this sequence is finite (cf. {C2]). Let N(T)
be the counting function, i.e.,

(1.1) N(T) = #{A|X; £ T%)
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where T is a given positive real number. Then

. N(T) _ Area(M)
. 1 < .
42 T ST
Remark. This is not the standard definition of the counting function. But in the surface

case one usually writes the eigenvalues as \; = 1/4 +r%,7; € RU{[—1/2,1/2], and counts
the number of r; with |r;| < T.

The continuous spectrum o, is the interval [1/4,00) with multiplicity equal to the
number of cusps of M. The spectral decomposition of the absolutely continuous part of A
is described by generalized eigenfunctions F;(z,s),7 = 1,...,m, which have the following
properties:

Each E;(z,s) is a meromorphic function of s € C with poles contained in the union
of the half-plane Re(s) < 1/2 and the interval (1/2,1]. Furthermore, each E;i(z,s) is a
smooth function of 2 € M and satisfies
(1.3) AE(z,s) = s(1 — s)E(z,3).
If we expand E;(z, s) in a Fourier series on the cusp Z; then the zeroth Fourier coefficient
takes the form
(1.4) 8i5y] + Cis(shy; ~°,
where y; € [aj, 00) is the radial variable for the cusp Z; = [a;, 00) x S!. Put

(15) C(S) = (C,J(S))

Then C(s) is a m X m matrix which is a meromorphic function of s € C and satisfies

(1.6) C(s)C(1-s)=1Id, C(s)=C(5) and C(s)* = C(3).

All poles of C(s) are contained in the union of the half-plane Re(s) < 1/2 and the interval
(1/2,1] and those contained in (1/2, 1] are simple. In analogy to quantum mechanics we
shall call C(s) scattering matriz and its poles resonances. Set

Ei(z,s)
(1.7) E(z,8) =

En(z,$)
Regarded as a vector valued function it satisfies the following functional equation
(1.8) E(z,s) = C(s)E(z,1 — s).

Let L2(M) be the subspace of L2(M) which is spanned by the eigenfunctions of A and let
©0, 1, ... be an orthonormal basis for L3(M) consisting of eigenfunctions with eigenvalues
0= Xp < A £.... Then the Fourier expansion of a given f € C§°(M) takes the form

f(2) =D (%4> e

(1.9) 1’ A | |
ta [ Bz [ B, 12 - i f(wduwyin



2.The heat kernel and Weyl!’s formula.

In this section we review some results concerning the heat kernel of the Laplace op-
erator A on an admissible surface M. In section 4 of [Mii] we constructed a unique kernel
K (21, z2,t) for the heat operator exp(—tA) which satisfies the following properties:

(a) K(z1,22,t) is a smooth function on M x M x R* which is symmetric with respect to
(21, 22) and satisfies the semi-group property.

(b) (& +A,,)K(21,22,t) = 0.
(c) lim,, ., K(zy,22,t) = 6(21 — 22), the Dirac delta measure.
(d) Let 7 be the function on M which is defined as

Ly |1, if z € intMy;
2(2) = Yi ifze Z‘7 and z = (yj,ﬂf)

For each T > 0 there exist constants C;, Cy > 0 such that

dz
|K (21, 22, 1) < C1(i(21)i(22)) /2t exp (—CQM)
uniformly for 0 < ¢ < T and zy,2z3 € M. Here d(z, z3) denotes the geodesic distance
of z; and z,.
See [DM] for another proof of (d).

For each j,1 < j < m, let kj(z1,22,t) € C°(Z; x Z; x RT) be defined as

ki((y,2),(y',2"),t) = %pr(_z B W).

Then kj(z1, z2,t) is the constant term of the heat kernel K (21, 22,t) on the cusp Z;. Set

ki(z1,22,t), if z1,20 € Z; for some 3,1 < 7 < m;
k(z],zg,t)={01( b oth:erx:ise. ’ ’ ’

In other words, k is the sum of the constant terms k;. Then one can show that K(z,z,t)—
k(z,z,t) is an absolutely integrable function on M (cf. section 8 in [Mii]). Furthermore,
set

(2.1) #(s) = det C(s),

where C(s) is the scattering matrix and let du be the measure on M associated to the
Riemannian metric on M. Then, by Theorem 8.13 in [Mii], we have the following trace
formula:

/ (I’( t) k( t )d ( ) = —Ajt 1 /+ —(1/4+i,\2) é’ (1 2 /\ d/\
(2,2, 2y 2, ) HlZ) = EJ € ar | € ¢ / ? )
(2.2)

e—t/t 2

Z loga;.

+ Ze"/"Tr(C(l/iZ)



Using Theorem 8.20 of [Mii] we obtain the following asymptotic expansion as ¢t — 0:

(2.3)

_ Arca(M)  m logt 3ym o a 1
[ (Gayt) = ke 2 )tz = A LB L (T 57y ) L

+ 3‘—(?) + O(V1),

j=1

where x(M) is the Euler characteristic of M, m is the number of cusps of M and ~
denotes Euler’s constant. To obtain (2.3) we simply have to determine the constants
occurring in the asymptotic expansion of Theorem 8.20 of [Mii]. In our case we have
(;(s) = 2¢(2s) where ((s) denotes the Riemann zeta function. There are also two misprints
in the statement of the theorem. Namely log a; has to be 2 log a; and b; y = (;(0)+1. We
note that the asymptotic expansion (2.3) exists to all orders. This can be easily extracted
from the proof of Theorem 8.20 of [Mii]. It is of the form

o]

(2.4) / (Kz,2,t) — k(z, 2,t))du(z) ~ Zaﬁ‘”k/z + Eb t7 1k 2og ¢ .
k=0 k=1
as t — 0.
As usually, we write the eigenvalues as
(2.5) Aj=1/4+7% with r; € RU[-1/2,1/2].

Note that each eigenvalue A; # 1/4 determines two points r; and —r;. Then (2.2) combined
with (2.3) gives

(2.6) Z -r? ‘—G/ e S1/2+ i = —Arz‘ff” +0(1‘1§;).

Let N(T) be the counting function (1.1). If we apply a standard Tauberian theorem to
(2.6) we get the following analogue of the Weyl theorem for admissible surfaces

Theorem 2.7. As T — oo, we have

Area(M) T2
T

N(T)——/ Y 1/2 4 iN)dr ~

For hyperbolic surfaces this result is due to Selberg [Sel]. In this case the asymptotic
expansion can be improved and includes two remainder terms

Area(M)

T
N(T)—‘:—W/T%(l/2+iz\)d/\= TQ—ngogT

1—log 2
_l_m( og 2)

(2.8) .
- T+O(log T)'




(cE.[Se2)).

For a generic metric on M the number of eigenvalues is finite and all eigenvalues are
contained in [0,1/4) (cf. [C2]), i.e., there are no eigenvalues embedded in the continuous
spectrum. By Theorem 2.7, we get in this case

Area(M) T2

s

T 4t
(2.9) - f %(1/2+iA)d/\~
T J-T

as T — oo. In other words, the spectral information is essentially contained in ¢. Note
that this is analogous to the behaviour of the spectrum of the self-adjoint extension H
associated to the Schrodinger operator —d?/dz? + ¢ where ¢ € C$°(R.).

On the other hand, for congruence subgroups of SL(2,Z) it is known that

T 11
/ %(1/2 +iA)dA = O(T log T).
-T

This follows from the explicit description of ¢ (cf. [Hx]) in terms of Dirichlet L-functions
and standard results from analytic number theory.
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3.Analytic properties of the scattering matrix

As before let M be an admissible surface and ¢(s) the determinant of the corre-
sponding scattering matrix. In this section we shall further investigate this meromorphic
function. It follows from (1.6) that ¢(s) satisfies

(3.1) #(s)p(l—s)=1, ¢(s)=¢(5), seC.
Note that (3.1) implies
(3.2) [¢(1/24+iN) =1, AeER.

Furthermore, we know that the poles of ¢(s) are contained in the union of the half-plane
Re(s) < 1/2 and the interval (1/2,1].

If M is a surface of constant negative curvature, Selberg [Sel] proved that ¢(s) has
the following two important properties:

1 ) ¢(s) is a meromorphic function of order < 4.
2 ) The poles of #(3) are contained in a strip Cy < Re(s) < C,.

We shall extend 1) to all admissible surfaces. Our method to establish 1) is different
from the one used by Selberg. It is based on Colin de Verdiere’s approach to obtain the
analytic continuation of Eisenstein series (cf. [C1l]). We briefly recall this method. Colin
de Verdiere works with the assumption that the surface has a single cusp, but there is no
difficulty to extend everything to the case of several cusps.

Let M = My UZ,U...UZ,, be the decomposition of M into a compact surface M
and the hyperbolic ends Z; 2 [a;,00) X §',a; > 0,7 = 1,..m. Let b = maz{l,q,,...,a,}
and choose ¢ € C§°(R) satisfying ¢(y) = 0 for y < b and ¢(y) =1 for y > b+ 1. For
7,1 < j <m, and s € C we set

| _ o, fze M~ 7
(3.3) 0;(z,5) = {Lp(y)yj, if z=(y,z) € Z;.

Note that, for each s € C, §;(.,s) € C®(M). Put
(3.4) By = (A= s(1= D), F=1,0m.

Then 1; is a smooth function on M with compact support. In particular, it belongs to
L?(M) and, for Re(s) > 1, the generalized eigenfunction E;(z,s) is given by

(3.5) . Ei(z,8) = 6i(z,8) = (B = s(1 = )" (%:(., )

(cf. [C2]). To obtain the analytic continuation we have to introduce a cut-off Laplacian
A,. We denote by H(M) the first Sobolev space. For f € H'(M) we define its constant

term f;o) in the j-th cusp as the zeroth Fourier coeflicient of f; = f|z;, i.e,

2n
(36) ROEY T
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Note that fJ(-O)(y) exists for allmost all y € (a;, 00) and fJ(.O) belongs to H*((a;,00)). Given
a > b, we introduce the following subspace of the Sobolev space

(3.7) HY M) = {f € H(M)| f}"’[(m) =0,j=1,..,m}.

This is a closed subspace of H'(M). Its closure in L?*(M) will be denoted by H,. Now
consider the quadratic form ¢, on H}(M) which is given by

(3.8) w(f) =l df II*, f€ H(M)

This quadratic form is closed and therefore it is represented by a self-adjoint operator A,
acting in the Hilbert space H,. The operator A, has a pure point spectrum consisting of
eigenvalues of finite multiplicity. In particular, the resolvent of A, is a compact operator
in H,. Now assume that a > b+ 2. Then it follows from (3.3) and (3.4) that each
Yi,t = 1,...,m, belongs to H,. Hence we can define the following functions

(3.9) Fi(z,8) = 6i(2,8) = (Aa — s(1 — 8)) ' (¥i(,8)), i=1,...,m.

Since the resolvent of A, is compact, each F;(z, s} is a meromorphic function of s € C. As
a function of z € M it is smooth in the complement of the curves {a;} x S* C Z, C M,j =
1,...,m. Moreover the nonzero Fourier coefficients of Fj(z, )]z, are smooth on (a;,00).

The zeroth Fourier coeflicient F'-(’g-)(y, s) of Fi(.,s)|z; has the form
(0) _ ) &5yt if y > a;
(310) F.’- (y} 5) = {Aij(s)ys + Bij(s)yl—a, if a; < y < a,

where A;;(s) and B;;(s) are meromorphic functions of s € C.
Let xq,; be the characteristic function of [a,c0) X S! regarded as a submanifold of
Z; 2 [aj,00) x S! and set

Gilz,8) = Fi(z,5) + ) Xas(2){Ais(8)y5 + Bis(s)y; ™" — 895 )

=1

where y; denotes the radial variable with respect to the cusp Z;. This is a meromorphic
function of s € C. Now set

A(s) = (4i;(s)), B(s) = (Bij(s))

Gl(z, S)
G(z,8) = :
Gm(z,$)

One can show that detA(s) # 0. Therefore A(s)™! is a meromorphic function of s € C.
Furthermore, for Re(s) > 1, one has

(3.11) E(z,s) = A(s)_lG(z, s)
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where E(z, s) is defined by (1.7). The right hand side provides the analytic continuation
of E(z, s). Moreover, the scattering matrix is given by

(3.12) C(s) = A(s)"' o B(s), s€C.

We shall employ this description of the scattering matrix to show that ¢(s) is of order
< 4. Let

0 < po(a) € pfa) £ ...

be the eigenvalues of A,. It follows from Theorem 5 in [C2] that zero is not an eigenvalue
of A4. Moreover, by the estimations on pp. 96, 97 in [C2], there exists C > 0 such that

(3.13) #{ni(@)| ui(a) <A} < CA+N), A0
This implies that

(3.14) Z,uj(a)'““ < o0

i=0
for o > 1. Given p € N, let

u? uP
e(u,p) =(1 - u)exp(u et -p—), u € C.

By (3.14), the infinite product

P(z) = JLe(;-0)

converges uniformly on compact subsets of C and P(z) is an entire function of order 1
whose zeros are g, ft1,... (cf. pp. 18-19 in [Bo]). For s € C put

P(s)=(s— 1/2)]5(3(1 — 3)).

Lemma 3.15. Let A;;(s) and Byj(s),%,7 = 1,...,m, be the meromorphic functions defined
by (3.10). Then P(s)A;;(s) and P(s)B;;(s) are entire.

Proof. First recall that (A, — zId)™! is a meromorphic function of z € C with simple
poles at z = po, f11, ... . By (3.9) it follows that P(s(1—s))Fi(z,8),7 = 1,...,mm, is an entire
function of s. Its constant term along Z; is also entire. In view of (3.10) this implies that
P(s(1 — 8))(Ai;(s)y* + Bi;(s)y'~*) is entire for a; < y < a. Hence P(s(1 — 5))A4;;(s) and
P(s(1 — s))Bi;(s) are holomorphic on C — {1/2} and they can have at most simple poles
at s =1/2. Q.E.D.

We shall now estimate the order of growth of P(s)A;;(s) and P(s)By;(s), 4,7 =1,...,m.
First we need an auxiliary lemma. For each 7 € N, put

Pi(z) = [] e(-=,1).

ket Hi
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Lemma 3.16. There exists a constant C > 0 such that
|Pi(2)] < €€, zeCjeN.
Proof. We have

log | B;(= ( Y ) logle(.i,l)] =5+ 5,

pr <2}z wae>2s|
kAj k#j

To estimate S; observe that |z|/ux > 1/2 and

logll — il < H
Kk i
Hence
log|e( ==, 1)| <4l
Kk ol

Together with (3.14) we obtain

Si<4lel Do uit=Calal.

na <2z

Now consider S;. In this case |z|/ux < 1/2. Using 2.6.3 in [Bo], we get

Izl2
lo —, )| £2—
gle(- 1)l 2
and, by (3.14),
Sy <2z D ppt=Calzft
2|z <pe
Q.E.D.

Lemma 3.17. Let R,(s) = (As — s(1 = 5))~! and let v:(s) be defined by (3.4), where
s € C. Then P(s)R,(s)(+i(s)) is entire and there exist constants C;,C> > 0 such that ,
for f € L*(M),s € C and i=1,...,m,

| P(s)l|(Ra(s)(#i(s)), )l < Cr exp(Cals|*) || £1I-

Proof. Let T, ; € D'(M),j7 = 1,...,m, be defined by (T, ;|g) = gg )(a) where g( )y
given by (3.6). If we extend Theorem 1 in [C2] to the case of several cusps, it follows thd.t
the domain of A, consists of all f in H(M) for which there exist C; € C,j = 1,...,m,
such that Af — Zm C,;T,,; is contained in L?(M). Moreover, if they exist the constants

C; are uniquely determined and A,f = Af - Zm C;T, ; where Af is defined in the
dlstnbutlona.l sense. Using the definition of 1;(s) it follows immediately that %;(s) belongs
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to the domain of A, and A.¥i(s) = Ayi(s). Now let {¢;};en be an orthonormal basis of
eigenfunctions of A, corresponding to the eigenvalues pp < py < ... . Using the observation
above, we get

(3.18) 1i(%i(s), pi) = (AYi(s),pj), JEN,i=1,..,m.

Let f € L2(M). Then by (3.18)

Ai(s), 0;)wss f)
pi(p; —s(l—s))

Ba() () f) = 3 &

i=0

Note that by (3.14) the series is absolutely convergent. By (3.14) and Lemma 3.16, it
follows that the right hand side, multiplied by P(s) , is entire and can be estimated by

Co 1 A%i(s) 1| £ 1] exp(Cals|*)

for certain constants Cy, C2 > 0. Using the definition of %;(s), one can estimate || Api(s) ||
by exp(C|s|) for some C > 0.Q.E.D.

Let f € C§°(M) with supp f contained in (aj,a) x S' C Z;. Using (3.9) and Lemma
3.17, it follows that there exist constants C3, C4 > 0 (which depend on a) such that

(3.19) |P(s)| |(Fi(s), f)] < Caexp(Cqls|*) || £ I -

If we assume that f depends only on the radial variable y, i.e., f € C®°(R) with supp f
contained in (a;, a) then, by (3.10), we obtain

(Fi(s) f) = Aij(s) [a y* f(y) j—Z + Bij(s) /a TG g%_

Now we make a special choice for f. Let ¢ € C*®(R) with suppg C (a;, a) and set

) =~y ;jiy(y-ﬁ“g(y)).

Then the second integral involving f vanishes and the first one equals (2s — 1) [ g(y)dy.
Assume that g > 0,g # 0. Together with (3.19) we obtain

|P(s)Aij(s)] < Cexp(cels]'), s€C,
for some constants C,¢ > 0 and ¢,7 = 1,...,m. In the same way we get
|P(5)Bi;(s)| € Cexp(c|s|!), s€C,i,j=1,..,m.

Combining our results, we have proved that P(s)™det A(s) and P(s)™det B(s) are entire
functions of order < 4 and ,by (3.12), we get

15



Theorem3.20. Let ¢(s) be the determinant of the scattering matrix associated to the
Laplacian on an admissible surface M. There exist entire functions Fy(s) and F5(s) of
order < 4 such that '

To continue the investigation of the scattering miatrix we need the following

Lemma 3.21. There exists g1 > 1 and g > 1 such that

-R 1
a16(s)l <
for Re(s) > oy.

Proof. Let Re(s) > 1. By (3.3) we have 6i(z,s) = y! for z = (yi,z) € Z;, y: > b+ 1.
Using (1.4) and (3.5), it follows that the zeroth Fourier coefficient of (A—s(1—~3s))~! (¥:(s))

on Z; equals
—y; *Cij(s)
for y; > b+ 1. Now observe that

1
dist(s(1 — s), Spec(A))

(3.22) (A =s1-s)7" =

(cf. Ch.V,3.8 in [K]). But Spec(A) C [0, 00). This implies
(3.23) dist(s(1 — s), Spec(A)) > |s|

for Re(s) 2 2. Put p = b+ 1. A simple computation shows that
(3.24) | 9i6s) 1< C 1ol PR, i =1,.m,

for Re(s) > 2 and some constant C > 0. Using the description of the constant term of
(A — s(1 — s))~(xi(s)) given above and (3.22)-(3.24) we obtain

~Re(s)+1/2

(3.25) P = 1Cis()] <) (B = s(1 = )W) 1< € P

V2Re(s) — 1
for Re(s) 2 2. Since p > 1, (3.25) implies

|Cij(s) < Cy PR, 45 =1,..,m,
for Re(s) > 2. This implies
|det C(s)| < Cy p¥™Re() * Re(s) < 2.
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Put ¢; = p*™ and 0y = log2 C3(2mlogp)~!. Then our lemma follows with these constants.

Q.E.D.

Now we can proceed in essentially the same way as on pp. 655 - 656 in [Sel] and
factorize ¢(s). At some place the method of Selberg has to be modified, because (8.3) in
[Sel] is not available in our case. For the convenience of the reader we include details.

Let 0q,...,04 € (1/2,1] be the poles of ¢(s) in Re(s) > 1/2. Put

h
(3.26) e =0 JI 75 /2

L W‘ﬁ( s+1/2).

Then £(s) has the following properties:

1 ) €(s)(—s)=1,s€C.
2 ) |€(s)| =1 for Re(s)=0.
3 ) £(s) is holomorphicin the half-plane Re(s) > 0 and satisfies |£(s)| < 1 for Re(s) > 0.

1) and 2) follow from (3.1). The first part of 3) is clear from the definition of £(s).
To prove the second part consider any strip S, = {s € C| 0 < Re(s) € ¢},0 > 0. By
Lemma 8.8 in [M1t], ¢(s) is bounded in the domain 1/2 < Re(s) < 0 +1/2,|Im(s)| > 1 and
therefore, £(s) is bounded in S,. If o is sufficiently large it follows from Lemma 3.21 that
[€(s)] < 1 on the vertical line Re(s) = ¢. Finally, by (3.1), £(s) satisfies £(s) = £(5),s € C.
Combining these observations with 2) and a Phragmen - Lindeldf type theorem, we obtain
the desired result.

Next consider the series

(3.27) 3 Re(n)

7|2

where 7 runs over all zeros, counted with the order, of £(s) in the half-plane Re(s) > 0.
Then we have

Lemma 3.28. The series (3.27) converges.

Proof. By 3), £(s) is analytic in the half-plane Re(s) > 0 and continuous and bounded
in Re(s) > 0. The convergence follows from Carleman’s theorem [T, section 3.71]. Q.E.D.

Corollary 3.29. Let p run over all poles, counted with the order , of ¢(s) in Re(s) < 1/2.
Then
Z 1 — 2Re( p)
p—1/22 <
Proof. This follows from Lemma 3.28, (3.26) and (3.1). Q.E.D.
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Now observe that, by Theorem 3.20,

e C

where H,(s) and H,(s) are entire functions of order < 4. Let n be a zero of £(s). Then it
follows from (3.1) that 7 is a zero and —n, —7j are poles of £(s). By Hadamard’s factorization

theorem we get
Ie(59)(34)

Me(54)(54)

n

(3.30) £(s) = eP®

where 7 runs over half the zeros of £(s) in Re(s) > 0 and we have chosen one representative
for each pair {n,7} of zeros. Moreover P(s) is a polynomial in s of degree < 4 and e(z, 4)
is the Weierstrass elementary factor defined above.

Now consider the expression

1 1
L) = 56+ 55 = e =

n
for 1 < k< 4,n€ C.If kis even then I, = 0. For k =1 we have I,(n) = 4Re()/|7{* and
it follows from Lemma 3.28 that

(3.31) > L)l < oo

It remains to investigate Is. Put 7 = |n| ¢'”. Then

| 4|3 cos(39).

Now | cos(39)| < 4| cos|. Hence |I3(n)| < 4|n|~2|1(n)|. Together with (3.31) this implies

(3.32) Z |I(n)l < oo.

Ii(n) =

In view of (3.31) and (3.32) the exponential factors in (3.30) can be combined to give

=< It

for some polynomial Q(s) of degree < 4. The infinite product can be rewritten as

II (1 T +Ev:§(gi)+ ﬁ))

n
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and by Lemma 3.28, this product is absolutely convergent.
Now consider @(s). The equation {(:A)é(—iA) = 1, A € R, imphlies Q(zA) 4- Q(—1A) =
27l for some | € Z. Thus
Q(s) = azs® + ays +mil.

By (3.1),6(s) = £(5). Hence aj,a; € R. Assume that az # 0. If ag > 0 then £(o) ~
exp(aza?®) for ¢ € R, 0 — co. This contradicts [£(s)| < 1 in Re(s) > 0. Next assume that
a3 < 0. Then we can choose s in the half-plane Re(s) > 0 so that Re(s®) < 0 and Re(s®)
tends to —oo as s — oco. Again we get |£(s)] — oo. Thus Q(s) = a5+ mil. Repeating this
argument it follows that a; < 0. Put

(3.33) ¢=q expa

where g, is the constant from Lemma 3.21. Combining our results and using the definition

(3.26) of £(s) we obtain

Theorem 3.34. Let p run over all poles of ¢(s), counted with the order, and let ¢ be

given by (3.33). Then
é(s) = ¢(1/2) ¢*~ 1/2 H 1+p

This allows us to compute the logarithmic derivative of ¢(s).
Corollary 3.35. Let the notation be the same as in Theorem 3.34. Then

2Re(p) —

T+ O—tmip)e R

(3.36) ;(1/2+iz\)=1ogq+2p:(1/2_R

The convergence of the series on the right hand side follows from Corollary 3.29.
Indeed, let ( =1/2+ A Then

Z 1—2Re(p)<4zl——2Re(p

2 2

which is convergent by Corollary 3.29, because only finitely many poles occur in Re(s) >
1/2. The same argument gives

Lemma 3.37. The series on the right hand side of (3.36) is uniformly convergent for A
in any finite interval [-T,T).
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4.0n the distribution of poles of the
scattering matrix

We continue in this section with the investigation of the poles of ¢(s). To begin with
we shall estimate the winding number of ¢(1/2 + z)):

Proposition 4.1. There exists a constant C' > 0 such that

T 41
fL(1/2-FiA)dA

<CT?
-7 ¢ -

for all T > 0.

Proof. Let a > max{a,,...,a,} and set
Ca(s) = a'~2C(s).

By (1.6), C,(8) is unitary for Re(s) = 1/2 and hence, can be diagonalized. Moreover,
C.(8) is holomorphic in a neighborhood of Re(s) = 1/2. Therefore we can apply Rel-
lich’s theorem [Bau,p.142] which implies that there exist real-valued real analytic functions
B1(A), ..., Bm(A) of A € R such that eV e¥m(A) are the eigenvalues of Co(1/2 4 1))
Each $;()) is only determined up to 27Z. Furthermore, the functional equation (1.6)
implies C,(1/2)* = Id. Hence §;(0) = mnj,n; € Z,5 =1,...,m. Put

) A
By = [ i du i =1m,

Then we can choose either 8; = Bj or f#; = ﬁj + 7 and we get

T
d
(4.2) l / — log det Co(1/2 +2A)dA
-T ds

<2 1B(T)] < 2m max (7))
i=1

Let n;(T) be the number of points w € [0, T] such that % (®) = —1,i.e., B;(w) = (2k+1)7
for some k € Z. Obviously we have

(4.3) 18;(T)| < 47n;(T), j=1,..,m.
Let n(T') be the number of w € [0, T] such that C,(1/2 + w) has at least one eigenvalue
equal to —1. Then n;(T) < n(T),j =1,...,m, and by (4.2) and (4.3), we get

T
(4.4) / ad— log det C,(1/2 +1A) dA| < 8nmn(T).
s

=T

Thus it 1s sufficient to estimate n(7"). For hyperbolic surfaces Lax and Phillips proved in
[LP,pp. 205-216] that n(T') is bounded by the number of eigenvalues of A, which are less
than 1/4 + T2. Their method extends without any difficulty to our case.
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Assume that (by, ..., by ) is an eigenvector of Co(1/2+417w) with eigenvalue —1 for some
w € [0,T]. Then

(45) bja1/2+iw + Z b;.CL,(l/Z + iw)GI/Q—iw —0.
k=1
Set
(4.6) p(z) = Z b;E;(2z,1/2 + iw).
=1

Then ¢ is a C* function on M and , by (1.3), it satisfies
(4.7) Ap = (1/4 +w?)p.
Moreover, by (1.4), the constant term npg.o) of ¢ on the j-th cusp is given by

. ' m -
(4.8) eV (y5) = byl T+ 3 b Cry(1/2 + iw) 4P

k=1

This shows that ¢ # 0. Now observe that in view of (4.5), the constant terms satisfy
(4.9) w&o)(a) =0, j7=1,..,m.
Let xq,; be the characteristic function of [a,00) x S! regarded as a submanifold of Z; =
[a;,00) x S1. Set

m
(4.10) Pa =¥ — 2 Xa.jﬁ"_(jm-
i=1

Then ¢, is smooth except for the 0-th Fourier coeflicients which, by (4.9), are continous
and smooth for y; # a,j = 1,...,m. Hence ¢, belongs to the Sobolev space H!(M). Using
(4.7), (4.10) and the description of the domain of A, (cf. proof of Lemma 3.17), a direct
computation shows that ¢, belongs to the domain of A, and

Agps = (1/4 4+ w?)p,.

Let
No(X) = #{pj(a) | uj(e) < A}

where po(a) € pi(a) < ... are the eigenvalues of A,. Then our discussion above implies
that

(4.11) n(T) < N.(1/4 + T?).
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Combining (4.4), (4.11) and (3.13) gives the desired estimate. Q.E.D.

Now we can proceed and estimate the number of poles of ¢(s) in the half-plane Re(s) <
1/2. If we use Corollary 3.35 combined with Proposition 4.1, it follows that

- 1 — 2Re(p) 2
e L., L AR+ O ST

for T > 1. Here p runs over all poles of ¢(s) in Re(s) < 1/2, counted with the order of the
poles. Since all terms on the left hand side are positive, we obtain

T 1 — 2Re(p) 9
(413) 2 | e W=+ Tt BT

for T > 1. Since |Re(p)| < T and |Im(p)| < T, each of the integrals occurring in (4.13) is
bounded from below by [1 (1 + A?)~'dX. Thus

Y11, T
lpl<T

This proves

Theorem 4.14. Let N,(T) be the number of poles p of ¢(s) satisfying |p| < T. There
exists a constant C > 0 such that

N(T)<SCT? T>1.
An immediate consequence is the following

Corollary 4.15. For Re(s) > 2,

Sl < o0

where p runs over the poles of ¢(s), counted with the order of the poles.

Next we shall relate N,(T') to the winding number of ¢. For a hyperbolic surface of
finite area Selberg has shown that

1 T ¢|'

Actually, Selberg uses a slightly different counting function N,(T) which is the number
of poles of ¢(s) in 0 < Im(s) < T. However it is not difficult to show that N,(T") =

2N,(T) + O(T) (cf. (0.15) in [Se2]). Combined with (2.8) this implies

(4.16). (1/2 4 iA)d) = é () + O(T)

Area(M)

(417)  N(T) + %N,,(T) =—

T~ 2T log T+ O(T) as T — oo.
w
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We shall establish a similar but weaker result for an arbitrary admissible surface M. By
Corollary 3.35 and Lemma 3.37 we have

1 [T ¢ , N r [T 1-28
(4.18) —E[T$(1/2+3A)d,\_ > E/_T(ﬁ—l/z)“r(fy—)\)? dx +0(T)

p=p+iy

where p runs over all poles of ¢(s). Assume that § < 1/2. Then

T — 28 - T
L= @ =2 () wson(5575)

Now we use that

T : .
arctan z -+ arctany = arctan ty + { 0, fzy<l;

— zy m, ifzy>1l,2>0.

Then we get

T 1-28 9 aretan a-28T(  T? -1
L=t aoy &= e {Ip—1/2|2(1 1) }

+ 0, if|p—1/2{>T;
2m, iflp—-1/2] < T.

Combined with (4.18) this implies

(4.19) - &1;/_25’5(1/2“/\) d\ =

1 1 wretand 1= 2Re(p) T N\
gDy 2w {Ip—1/2|2T(1 o 173) }*O(T)'

Re(p)<1/2

We split the sum over p as follows

(4.20) > + >

|T—|p~1/2||>VT |T—|p—1/2||<VT

To estimate the first sum we remark that | arctan z| < |z]. Furthermore, if |T—|p—1/2|| >

\/T then

T2 |7

l-——7r
lp—1/2]

This implies that the first sum can be estimated by

< 2VT.

2 Z 1- 2Re(p) T3/2

— 2|2
Re(pye1/2 1P~ 112l
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By Corollary 3.29, the series over p converges and therefore, the first sum in (4.20) is
O(T?/?). Since |arctanz| < 7/2 the second sum can be estimated by

(No(T + VT) = N(T - VT)).

N

Lemma 4.21. We have
Ny(T + VT) — Ny(T — VT) = o(T?)
Proof. By Theorem 4.14 we know that
<c, T

o< (T VT)

for some constant C > 0. Let a > 0 be any point of accumulation of N,(T + VT) T2,
Then a is also a point of accumulation of N,(T — VT) T~% and vice versa. Hence

=0

sy (N7 V) = Ny(T = V)

T—o0 T2

Q.ED.

This lemma implies that the second sum is o(T?). Together with (4.19) we obtain

1 T ¢l ) 1 )

Remark. For a hyperbolic surface we know from [Se2,(0.15)] that the remainder term
is actually O(T'). We conjecture that this is true for an arbitrary admissible surface.

If we combine Theorem 2.7 and (4.22), we get
Theorem 4.23. AsT — oo,

Area( M)

T2
4r '

N(T) + 3N(T) ~

This is another analogue of Weyl’s formula for an admissible surface. In contrast to

Theorem 2.7 we are now dealing with a discrete set of spectral parameters. Theorem 4.23

also suggests that the right set of spectral parameters for an admissible surface is the union

of the eigenvalues and the set of poles of ¢(s). On the spectral side this set should replace

the eigenvalues in the case of a compact surface. We shall return to this point in the next
section.
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In view of (4.17) we expect that the remainder term in the asymptotic formula of The-
orem 4.23 is O(T log T'). We also remark that in general it is very difficult to study N(T')
and Np(T) separately. However Colin de Verdiere [C2] has shown that a generic compactly
supported conformal deformation of the metric will destroy all embedded eigenvalues and
convert them into poles of ¢(s). In this case there are only finitely many eigenvalues which
are all contained in [0,1/4). Hence we get

Corollary 4.24. For a generic metric on M,

Area(M)

NP(T) = o

T? + o(T*)
as T — oo.

On the other hand, if M = I'(N)\H where I'(N) denotes the principal congruence
subgroup of level N of SL(2,Z), then the determinant ¢(s) of the scattering matrix can
be computed explicitely [Hx] and it turns out that, up to a Gamma factor, ¢(s) is the
product of certain Dirichlet L-series. Standard results from analytic number theory [P]
imply then

1 [Ty .

and, by (4.16) and (4.17), we get

(4.25) N,(T) = O(T logT)

(4.26) - N(T) = T? 4+ O(T logT).

Area(M)
4r

In view of the results of Colin de Verdiere [C2] and Phillips-Sarnak [PS2] one may conjec-

ture that (4.25) is the minimal growth for an admissible surface with x(M) < 0 and that

in this case N(7T') has the maximal possible growth.

For further results about the distribution of poles of ¢(s) in the hyperbolic case we
refer the reader to [Se2).

Another important feature of the scattering matrix for a hyperbolic surface is property
2) mentioned at the begining of section 3. We do not know if this continues to hold for an
arbitrary admissible surface.
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5.The resonance set and a trace formula

Let g € C°(R™) and let A = §. For a hyperbolic surface M = I'\H, Lax and Phillips
proved in section 9 of [LP] the following mini-trace formula

(5.1) ——/ h(y "’S' (1/2 +1A) d,\_zh (1/2-,0))-211 (i(1/2 — o})).

J.—

Here p runs over the poles of ¢(s) in Re(s) < 1/2,0,.. € (1/2,1} are the poles of
#(s) in Re(s) > 1/2 and each pole is counted according to lts order. For (5.1) to hold it
is important that the support of g is contained in (0, 00). We wish to extend (5.1) to all
admissible surfaces and we want a formula which works for functions like A()) = (a®+)2)™*
or h()) = exp(—(a? + A%)t),a > 0. Our approach to this problem is based on Corollary
3.35.

Let ¢ € C§°(R) and assume that g is even. Let h = § and T > 0. From (3.36) and
Lemma 3.37 it follows that

¢f
/_T BNS(1/2+i3) dr = logq/ h(A) dA

261
S |G

p=f+iv " T

(5.2)

If we integrate by parts, the left hand side equals

(5.3) h(T)/_i%(l/Q-}-iA)dA—f / 8 (172 + iu)du dr.

Since h is rapidly decreasing it follows from Proposition 4.1 that the limit as T — oo of
(5.3) exists and therefore

f e (1/2+z,\)d/\_ l1m/ h(A)E,(l/2+i,\)d,\

is well-defined.

To compute the right hand side , we consider the individual integrals

e 260 —1
(5:4) [ G oo

We would like to shift the contour of integration and apply the residue theorem to compute
(5.4). However this works only if the support of g is contained in (0, 00). We proceed as
follows: Given 0 < € < 1/2 let x. € C®(R*) be such that 0 < x, <1, x.(y) = 1 for
2¢ < y < (2¢)"! and x.(y) =0fory < ¢ and y > 1/c.
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Set
he(z) = ] xe()9 () dy.

Then, for Im(z) > 0,
(5.5) lin‘(n) he(z) =] g(y)e'?* dy
e 0

uniformly in the half-plane Im(z) > 0. Furthermore,

26-1
(B-1/2)* + (A —7)?

converges to (5.4) as ¢ — 0. Now observe that (5.6) can be written as

dA

(5.6) |Gt

1

51 - / (he(i(1/2 = )) + he(—i(1/2 = 8)) —m2ReR) 4
Re(s)=1/2

(s=p)(s—1+p)

Assume that Re(p) < 1/2 and let o > Re(1 — p). By the residue theorem, (5.7) equals

2

=27 he(i(1/2 — p)) — he(i(1/2 - p))

1 ; s 1 — 2Re(p)
(58) +2 /Re(a)'—"—a h"’( (1/2 )) (S - p) (S -1+ 15) as
_]; L (—1 -5 1- '2Re(p) s
+I Ae(a):afe( (1/2 ))(S—P) (3_1+I5) ds.

From the definiton of &, it follows that, for Im(z) > 0,
|hg(2)| < e—Im(z)c.

This shows that the itegrals in (5.8) can be made arbitrarily small as ¢ — co and therefore,
they are identically zero. Thus (5.6) equals

—2mh,(i(1/2 - p)) - 2rhe(i(1/2 - B)).

Since Im(#(1/2 — p)) = 1/2 — Re(p) > 0, it follows from (5.5) that the limit as ¢ — 0 exists
and (5.4) equals

(5.9) —2n [ ga)e vy —2m [ gl vy,
0

0

The case Re(p) > 1/2 can be treated in the same way. Any such pole is real and (5.4)
equals

o0
(5.9") 47r/0 g(y)el/ 2Py,
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Note that there are only finitely many poles in Re(s) > 1/2.

Next we shall investigate the convergence of the series which we obtain by summing
(5.9) over all poles p. If we integrate by parts and employ the fact that ¢'(0) = 0, it follows
that (5.9) can be estimated by

1 — 2Re(p) C
lp—1/212 " |p—1/2)

where the constant C is independent of p. Hence, by Corollary 3.29 and Corollary 4.15,
the sum of (5.9) over all p, Re(p) < 1/2, is absolutely convergent and therefore, the series

28 -1
(510) > [ gmrsay

p=B+iv

27

is absolutely convergent.

Our next goal is to show that the limit as 7' — oo of the series on the right hand side
of (5.2) equals (5.10). For this purpose we observe that the series (5.10) remains absolutely
convergent if we replace h by (1 + A?)~3. This function is not of the form §,¢ € CP(R),
but the method used above can be easily extended to cover this case too. Let R > 0. Then

28— 1
> [ OG o ‘“l

|el >R
p=0+iy

128 — 1|
<C § (1+A%)~ d\
ot / — 1722 + (A —v)?
p=p iy

for all T > 0. By the remark above, for every ¢ > 0, we can choose Ry such that the right
hand side is < ¢ for R > Ry. This gives the desired result. Set

hy(2) =/ g(y)e*¥dy, z¢€ C.
0

Combining our results we have established the following equality

(5.11) -—f ,\)—(1/2+ A) dA = — li’éq 4(0)

+é zp:{h+(p —1/2)+ hy(p - 1/2)} - hi(1/2-0;)

j=1

where p runs over all poles of ¢(s) in Re(s) < 1/2, counted with the order of the pole,
and a,,...,0, are the poles of ¢(s) in Re(s) > 1/2, also counted with the order of the
corresponding pole. This agrees with the formula of Lax and Phillips if the support of ¢
is contained in (0, co). In this case the series ) hi(p —1/2) is absolutely convergent.
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It is not difficult to extend (5.11) to a larger class of functions, say to all even ¢
in the Schwartz space S(R). Let ¢ € S(R) be even. We choose x € C®°(R) satifying
0<x<1,x(y) =1for |y| < 1/2 and x(y) = 0 for |y| > 1. For ¢ > 0 we define x, by
Xe(y) = x(ey). Then (5.11) can be applied to g. = x.g and we have to investigate the
behaviour of (5.11) as ¢ — 0. Let A = § and, for ¢ > 0, let h, = §.. If we integrate by
parts and use Proposition 4.1, it follows that

oo

(5.12) lim /m he(A)%(l/Q +id) d = / h(,\)g’(l/’z +1iA) dA.

-0

Now consider the right hand side of (5.11). Set

oC
B (2) = / xeg(v)edy, z€GC,
and -~
hy(z) = ] g(y)e*¥dy, Re(z) <0.
0

Assume that Re(z) < 0. Integrating by parts it follows that there exists a constant C > 0
such that

Py g(0) C
. | < —
(5.13) h+(z)+ = |z|3’
for all € > 0 and
g(0) C
. = <L —
(5 14) ih+(z) + 2 |z|3

This implies

. 2Re(p
;|h+( p—1/2)+h% (P“1/2)|<Clz! 1/212 C2Z| —1/27

which is finite by Corollary 3.29 and Corollary 4.15. The constants C; and C; are inde-
pendent of e. From (5.14) follows in the same way that

S (halp — 1/2) + ha(5 - 1/2))

1s absolutely convergent and it is the limit as ¢ — 0 of

Y (h5(p—1/2) + hS(p - 1/2)).

p

Finally we observe that by (3.1), s — 1 — s sets up a one-to-one correspondence between
the poles of ¢(s) in Re(s) > 1/2 and the zeros of ¢(s) in Re(s) < 1/2. Let p be a pole or a
zero of ¢(s). Then we denote by n(p) the order of the pole p or the negative of the order
of the zero p. With this notation we can summarize our results as follows:
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Theorem 5.15. Let g € S(R) beeven. Set h = § and hy(z) = f0°° g(y)e*¥dy, Re(z) <0.
Then

__/ 1/2+ iA) A= Jqu 9(0)
(5.16)
+ = Z (oY hi(p—1/2) + hy(p - 1/2)}

where p runs over all poles and zeros of ¢(s) in Re(s) < 1/2.

We apply Theorem 5.15 to the function g(y) = (47t)~ % exp(—y?/4t). According to
[B1], p.146, we have

1 > 2 1 2
— eV 4te* W dy = — o!% Erfe(—v/t
i o Y 2 T c( z)
where Erfc denotes the complementary error function. Thus, by (5.16)
1 [ gy ¢ : logq e /4
. - —GHA T g MNdy=—-—227
1) - [ e Rapr iy a- -

+ i Z n(p){e_tp(l—”)Erfc(ﬁ (1/2 = p)) + e~ #PU=PErfc(V/t (1 — p)}-

Now let A; be an eigenvalue of A. As usually, write A; = s;(1 — s;) with s; € C,Re(s;) >
1/2 and Im(s;) > 0. First assume that A; > 1/4. Then Re(s;) =1/2 and it follows that

(318) e = 5 0T Brte(VE (1/2 - 7)) + 50T Belo(VE (1/2 - 5y))

(SR

On the other hand, if A; < 1/4 then Im(s;) =0 and s; € (1/2,1]. In this case we get

(5.19) e~ Nt = -12— e~ =) (Brfe(Vt (s; — 1/2)) + Erfe(Vt (1 - s5) — 1/2)).

This allows us to combine the contribution of the eigenvalues and resonances to the trace
formula (2.2) in a single formula. For this purpose we assign to each point n in C a certain
multiplicity m(n) as follows:

1 ) If Re(n) 2 1/2,n # 1/2, we define m(n) to be the dimension of the eigenspace of A
for the eigenvalue n(1 — 7).

2 ) If Re(n) < 1/2 then m(n) is the dimension of the eigenspace for the eigenvalue
n(1 —7n) plus the order of the pole or the negative of the order of the zero of ¢(s) at 7.

3 ) m(1/2) equals (Tr(C(1/2))+m)}/2, where m is the number of cusps of M, plus twice

the dimension of the eigenspace with eigenvalue 1/4.

4 ) For all other points 7 in C which are not among 1) - 3) we set m(yn) =
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Definition 5.20. The resonance set o{ M) is the set of all  in C such that m(n) > 0.

Remarks.

1 ) Note that , by (1.6) , C(1/2)? = Id. Therefore the eigenvalues of C(1/2) are +1.
Hence (Tr(C(1/2)) + m)/2 equals the number of eigenvalues +1 of C(1/2).

2 ) For a hyperbolic surface M = T'\H the resonance set was first introduced by
R.Phillips and P.Sarnak in [PS1]. They actually use a slightly different definition called
the singular set o(T"). Tt is related to our definition by n € (M) — i(1/2 —17) € o(T).

Assumption. To simplify notation we shall use the following convention from now
on. Whenever we sum over o(M) or some subset of o(M) we count each point 7 in this
subset according to its multiplicity m(n).

If we employ (2.3) we obtain the following asymptoytic expansion as t — 0:

(5.22) % 3 {e'"’(l—") Erfe(VE (1/2 — ) + e~ 0= Erfc(\/t_f(l/Q—ﬁ))}

n€a(M)
Area(M) m logt 3ym  loggy 1 x(M) m
= = - 5.
47t + 2 /4nt ( 2 4r )\/4;¢t + 6 + +O(\/—)

This implies

Theorem 5.23. Let M be an admissible surface. The resonance set o(M) determines
Area(M) , the number m of cusps of M and x(M). In particular, the conformal type
(h,m) of M is determined by the resonance set.

This is the analogue of a known result for compact surfaces. Another property satisfied
by the resonance set is the following asymptotic formula

Area(M)

(5.24) #ineo(M) | nl < T} = 252

T* +o(T*), T — oo,
which is an immediate consequence of Theorem 4.23. This is our final version of Weyl’s

law for admissible surfaces. For later use we note that (5.24) implies

Proposition 5.25. For Re(s) > 2, the series

> Il

n#0

is absolutely convergent.

For hyperbolic surfaces Phillips and Sarnak showed in [PS1] that the resonance set
can be identified with the spectrum of the generator of a cut-off wave equation. This is
very useful, because one may employ standard techniques of perturbation theory to study
the resonance set. The approach used by Phillips and Sarnak to prove the result above is
based on Lax-Phillips scattering theory applied to the hyperbolic wave equation [LP]. The
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assumption that the surface is hyperbolic is not essential for this theory to work, because
at most places one uses only the structure of the cusps. An important tool to establish
the main result of [PS1] is the mini-trace formula (5.1). By Theorem 5.15, this formula is
available for all admissible surfaces. Hence the main result of [PS1] extends to admissible
surfaces.

To make the statement precise we have to introduce some notation. Set
L=-A+;I
The hyperbolic wave equation is then

2
a—u = Lu

at2
with initial values f = {f1, f2}

u(z,0) = fi(z) and gt—u(z,O) = f2(2).

Let Hg be the completion of C§P(M) x C§°(M) with respect to the modified energy norm
G (cf. section 5 of [LP]). One may rewrite the wave equation in the form

g
§f=Af

where the infinitesimal generator A is given by

0 I
- (2 o)
defined as the closure of A | restricted to C§°(M) x C§°(M). The operator A generates a
group of bounded operators U(t) in Hg.
The incoming subspace D_ and the outgoing subspace Dy of Hg are defined in the
same way as in [LP], [PS1]. Let ‘H be the orthogonal complement of D_ @ Dy in Hg and

let P denote the G-orthogonal projection of Hg onto H. Let a > max{ay,...,a,,}. Then
P is given by

Pf=f except for the zero Fourier coefficients in each cusp
(PHP () = {(1){"(a) (v/a)'/?,0} for y > a'in the cusp Z;.
Set

(5.26) Zty=PU@)P, t>0.

As in [LP], Theorem 2.7, it can be shown that Z (t) is a strongly continuous semigroup of
operators in H. Let B denote the infinitesimal generator of Z(t). Then B has pure point
spectrum of finite multiplicity and one has
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Theorem 5.27. Let M be an admissible surface and B the generator of the corresponding
semigroup (5.26). Then
o(M) = Spec(B + 11)

and, for each n € o(M), m(n) equals the dimension of the generalized eigenspace of B with
eigenvalue n — 1/2.

Thus in place of (M) we may as well study the operator B. For example, let g,,u €
(—¢€,€), be a real analytic family of metrics on an admissible surface M and assume that
gu = go,u € (—¢,¢€), outside a fixed compact subset of M. Let B, be the infinitesimal
generator of the cut-off wave equation on (M, g,). In the same way as in [PS1] one can
prove

Theorem 5.28. The resolvent (B, — M)~ is real analytic in u on the resolvent set of
By for |u| sufficiently small.

This theorem tells us how the resonance set (M, g, ) varies with respect to w.

At the end of this section we consider the case of a hyperbolic surface M = I'\H.
Then (5.16) allows us to rewrite the Selberg trace formula in a way which resembles the
trace formula for a compact hyperbolic surface.

As above let A; be an eigenvalue of A and assume that A; = s;(1 — s;). If 5; =
3 +1irj,r; € R, then it follows from the definition of h and k4 that

(5.29) () = halss = 1/2) + ha(5; = 1/2)
and, if s; € (1/2,1] and s; = 1 +ir;, we have
(5.30) h(rj) = ha(ss = 1/2) + ha (1 — 55) — 1/2)

Let o(T") denote the resonance set in the present case. Then the Selberg trace formula
[H1), [H3] can be rewritten as

Theorem 5.31. Let g € C{°(R) be even and set h = §, hy(z) = fooo g(y)e*¥dy,z € C.
Then

% S (hy(n=1/2)+ ha(i— 1/2)) = f‘i‘f;ﬁ’f—) / " B tanh(r)) dA
n€0(T) T

= log N(v) o m 1
532) 323 e ok sV ) [ AN T(1L+i3)

logg
0 log 2 )
-g( )(m og 2+ e
where {v} runs over all primitive hyperbolic conjugacy classes in T’ and N(7) is the norm

of the hyperbolic element v (cf. [H1)).
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Remark. In our case I has no fixed points. If we consider discrete subgroups of
SL(2,R) which are not torsion free we have to add the usual fixed point contribution to
the right hand side of (5.32).

Apart from the inessential last two terms the right hand side of (5.32) agrees with the
right hand side of the Selberg trace formula for a compact quotient.

34



6.The zeta function and the determinant
of the Laplacian

The determinant of the Laplacian on a compact surface is a very useful functional in
spectral geometry (cf. [OPS1], [OPS2]). We wish to have a similar functional available for
admissible surfaces. Since for a compact surface the determinant is defined via the zeta
function of the Laplacian we begin with the study of the zeta function of Laplacians on
admissible surfaces . To define the zeta function we take the Mellin transform of (2.2) and
collect all terms which involve spectral invariants. The resulting analytic function is the
spectral zeta function

61) o) = ¥ 47— [ @/ Sa/zain) o HIER) +m)(2)

A #0

Actually we have modified the last term by adding 2(3)™*. The reason for it will become
clear below when we introduce the second kind of zeta functlons —the resomance zeta
functions—and relate (a(s) to them.

By (1.2) and Proposition 4.1, the series and the integral are absolutely convergent for
Re(s) > 1. Furthermore, by (2.2) we have

m 4_8

(6.2) Ca(s) = F(l"s‘) /0 Ty /M(K(z,z,t)— bz, 2,1)) du(z) dt —

Using (2.3) and (2.4), we obtain

Theorem 6.3. (a(s) admits a meromorphic extension to C. The only poles in the half-
plane Re(s) > —1/2 occur at s = 1 and s = 1/2. The pole at s = 1 is sunple with
residue Area(M)/4n and the pole at s = 1/2 has order 2. Let y be Euler’s constant. The
coefficients of (s —1/2)™2 and (s —1/2)"? in the Laurent expansion at s = 1/2 are 3m~y/2
and m/2, respectively. In particular, (a(s) is holomorphic at s = 0.

Remarks.

1)Since the asymptotic expansion (2.4) involves fractional powers of ¢ and logt,(a(s)
has in general infinite many poles which may have order > 1. This is the main difference
to the zeta function of the Laplacian on a compact surface.

2) The right hand side of (6.2) may be regarded as a relative zeta function in the fol-
lowing sense: The kernel (21, 22, 1) is the heat kernel of the self-adjoint operator obtained
by restricting the Laplacian to the zero Fourier coeflicients on each cusp and imposing
Dirichlet boundary conditions. In other words, this operator is the direct sum of operators
of the form —y? d?/dy? acting in the Hilbert space L?([a, o0), dy/y?) with an appropri-
ate choice of the domain. In this sense we compare the Laplacian with the direct sum
of 1-dimensional Laplacians on a half-line and the difference of the corresponding heat
operators turns out to be trace class. A similar definition of a relative zeta function was
used by R.Lundelius [L] in his thesis. The advantage of our definition is that (6.1) s an
intrinsic definition.
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3)For hyperbolic surfaces I.Efrat introduced a zeta function similar to (6.1) [E2].

Using the zeta function (5 (s) we define the regularized determinant of the Laplacian
A in the same way as in the compact case as

(6.4) det’'A = ¢~%a(®),

In view of (3.36), the zeta function is completely determined by o(M) and ¢ and our next
goal is to find an explicit formula expressing the zeta function in terms of o(M). Note
that (5.16) is not applicable, because the functions h and ¢ are not in S(R), but we may
proceed in the same way as in the previous section and extend (5.16) so that the zeta
function is included.

The function h equals now (1/4 + A2)~* and therefore, for Re(s) > 1, we have

|Z‘/|’—l/2 K,_ 1/2 ( Igl)

)= g7 [ Qe = o

(cf. [B1],p.11,(7)), where K, denotes the modified Bessel function. For Re(v) > —1/2 we
have the following integral representation of K,:

K0 =S ), ) e

(cf. [MO]), which shows that g is rapidly decreasing at infinity, but it is not smooth at
the origin. However, smoothness at the origin is not necessary to derive (5.16). We need
only formulas (5.13) and (5.14) and for these to hold it is sufficient to know that ¢ is three
times continuously differntiable at the origin. If Re(s) > 2 then g is contained in C*(R).
Furthermore, by formula (23) on p.131 in [B2], we have

I'(2s) —2s ) z+1/2
)(1/2——3) F(2s,s,s+1,z_1/2), Re(z) < 0

he(2) = T3 TG 41

where F(a, §; v; w) denotes the hypergeometric series. Now recall that the hypergeometric
series admits an analytic continuation to C — [1,00). If we employ arguments similar to
those used to prove Theorem 5.15, we obtain

(6.5) Cals)= % )Flg‘?.:)-i- ) Z{(l ~2s F(23 s;8 +1; 1;?_1)

+(1—m)"% F(zs s;8 +1; nfl)} _ i(\)/gzinr(lgis;l)

for Re(s) > 2. Note that Re(n) < 1 for all n € o(M) — {1}. Therefore, (1 —n)~%* is well-
defined as exp(—2s log(1 — 1)) where log z is the branch of the logarithm which satisfies
log1 = 0. Furthermore note that n/(n—1) € C ~ [1,00) for n € o(M) — {1} and on this
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domain the hypergeometric function is defined by analytic continuation. The series (6.5)
is absolutely convergent for Re(s) > 2.

We consider a single term of this series and compute its derivative at s = 0. If n is
a pole or a zero of ¢ in Re(s) < 1/2 then |n/(n—1)] <1 and F(2s,s;8 +1;n/(n—1)) is
given by the usual power series and from its definition follows immediately that

ii—F(2s, $;84+1; L)

ds n—1 =0

=0

Furthermore, I'(2s) (T'(s) T'(s+1))~! =1/2(2s+1) I'(s+1)~? and a direct comnputation
shows that the derivative at 3 = 0 vanishes. Hence the derivative of a single term of the
series (6.5) equals —log|1 — 7|, so that formally

log g
0)=—- ) log|l—n|+ X
CA( ) ; Og' 7]' 8\/2—7l'

This suggests to introduce the following zeta function

(6.6) Ca(s)=) (1-n)"*

n#l

which by Proposition 5.25 converges for Re(s) > 2. Here B denotes the generator of the
Lax-Phillips semi-group Z(t),t > 0, associated to the hyperbolic wave equation on M. We
call (g(s) the resonance zeta function. As explained in the introduction, we may regard
(B(s) as the zeta function of the non-self-adjoint operator B; = —B + %I. Our next goal
1s to show that (p(s) admits a meromorphic continuation to C which is holomorphic at
s = 0 and to compare its derivative at s = 0 with (4 (0). This is then the rigorous version
of the formal equality above.

We employ formula (1) of section 2.10 in [B3] for the analytic continuation of the
hypergeometric series . It gives

I'(2s)
I'(s) T(s+1)

_ —2s . . Ui )
(1-n) F(23’3’8+1’7)—1

_ I'(2s) I'(1 — 2s)

2 1
(6.7) r T (7 2 F(23,s;23,1_n)
'2s-1) 1 ' 1
oy l_nF(l—s',1,2w2s,1_n)

which holds if both sides are defined. For example, this is the case if |1 — 5| > 1 and
Re(s) £ 1/2. Let
oy =0(M)—{neo(M)|[1 -n| <1}
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Then we consider the following series

Z (1- n)—za F(Zs,’s; 2s; 1 i "?).

nE€o,

For each s € C, there exists C > 0 such that |F(2s,s;2s;1/(1 — 7))} £ C for 5 € 0.
Hence, by Proposition 5.25, the series is absolutely convergent for Re(s) > 1. Since(6.5) is
absolutely convergent for Re(s) > 2, it follows that

(6.8) Z{ﬁ F(l—s,1;2—2s;1_1_n)+ li _F(1—3,1;2—25;1iﬁ>}

n€o,; "

is also absolutely convergent for Re(s) > 2. Using the definition of the hypergeometric
series and Proposition 5.25, it follows that

3 1,1 1 1 11
-9 1-=7 2(1-9)? 2(1-7)?

n7#1

is absolutely convergent too. This series equals

Z(1 — 2Re(n) (1~ Re(n))? )

11— n|? 11— 7l

n#£l

If (1 — n) is an eigenvalue > 1/4, then Re(n) = 1/2. Hence, by Corollary 3.29

(6.9) Z 1= 2Re(n) < 0

___ 2
et |1 =]

This implies

Proposition 6.10. The series

is convergent.

Remark. For a hyperbolic surface we know that there exists C' > —oo such that C <
Re(n) <1 for all n € o(M). Proposition 6.10 is then a consequence of Proposition 5.25.
However, for an arbitrary admissible surface we don’t have this estimate and Proposition
6.10 sheds some new light on the distribution of poles of ¢(s) in the general case. For
example, it implies that, for any € > 0,

1
E W < oC.
ngl n
|Ren|> ¢]lmn]
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This can be restated as follows. Given T'> 0 and ¢ > 0, let

N(T,e) = #{n € o(M) | In| < T, |Ren| > e|Imn]}.

Then

N(T
lim sup (T,e)

=0
T—o0 T?

In other words, the main contribution to the asymptotic formula (5.24) comes from reso-
nances which are "close” to the line Re(s) = 1/2.

Now (6.9) and Proposition 6.10 combined with Proposition 5.25 imply that the series
(6.8) is absolutely convergent for all s # k+ 3, k € N, and defines a meromorphic function
on C with simple poles at s = k + 3 1 keN.

Lemma 6.11. The series

Z (1 —n)~2 F(2s, 8; 2s; llTn)

n€o,

is absolutely convergent for Re(s) > 1 and admits a meromorphic continuation to C. The
only poles in the half-plane Re(s) > —1/2 occur at s =1 and s = 1/2 and they are simple.
The residue at s = 1 equals —Area(M)/27 and the residue at s = 1/2 equals —3wm~y where
~ 1s Euler’s constant.

Proof. The fact that the series is absolutely convergent for Re(s) > 1, was proved
above. Furthermore, by (6.5) and (6.7), we have for Re(s) > 1

—2 oo L Yy _ T(s)T(1 - ) I'l—s) logg
(6.12) ,?;1(1"7) F (25,925, 1_n) Foe) T 25 ) To) re = 25) 2vor

r(1—s) 1 1 1 o1
+HTTE= 55 2 Z{—F(l s,1;2-2s: 1_n)+1_ﬁF(l—s,l,Z—?s,l_ﬁ)}

where (a(s) is the right hand side of (6.5) with the sum running over 1 € o, in place of
n # 1. Note that (a(s) differs from (a(s) by an entire function. By Theorem 6.3 and the
observation above, the right hand side is a meromorphic function on C. Now recall that
1/I'(s) is entire with zeros at the negative integers. This shows that the last two terms

on the right hand side of (6.12) are entire functions. The rest follows from Theorem 6.3.
Q.E.D.
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Corollary 6.13. The series

Ca(s) =) (1-m)"

n#1

is absolutely convergent for Re(s) > 2 and admits a meromorphic continuation to C. The
only poles in the half-plane Re(s) > ~1 occur at s = 2 and s = 1 and they are simple. The
residue at s = 2 equals —Area(M)/n and the residue at s = 1 equals Area(M) /27 — 67m~.

Proof. It suffices to prove the Corollary for the following partial zeta function

(6.14) )= S a-n"

n€oy

The first statement follows from Proposition 5.25. Suppose that (;(s) has been analytically
continued to the half-plane Re(s) > 2—k,k € N. Using the definition of the hypergeometric
series and Lemma 6.11, it follows that, for Re(s) > 1,

Gi(s) = —% Gs+1)—---— (s/j)k Gi(s + k)
(6.15) ©  (4/9). .
_ Z (1 _ n)—a-—-k—l Z ( /'2)1 (1 _ n)k+]-—] + F(S)
n€01 j=ktr T

where F(s) is a meromorphic function on C. The double series is absolutely convergent
for Re(s) > 2 — k — 1 and defines a holomorphic function on this half-plane. This follows
from Proposition 5.25. All remaining terms on the right hand side are meromorphic on
Re(s) > 2 — k — 1. Hence (;(s) admits a meromorphic continuation to Re(s) > 2 —k — 1.

To determine the poles of {;1(s) in Re(s) > —1 we first note that, by Proposition 5.25
and Lemma 6.11, the right hand side is holomorphic in Re(s) > 2 and the only pole in
Re(s) > 3/2 occurs at s = 2 which is the pole of F(s) at s = 2. If we repeat this argument,
we can determine all poles and their residues in Re(s) > —1. Q.E.D.

By Corollary 6.13, (g(s) is holomorphic at s = 0 and therefore we may compute its
first derivative at s = 0. We use again the partial zeta function {;(s). By (6.14)

d d
ECB(S)I.B:O = d_SCI(S)Iazo - Z lOgll - 7?|
0<|1—94|<1

Furthermore, by (6.15)

d 1d 1d

Eg(l(s)l,:[, = "5@(56(5 +1)],20 - §d_.s(s(s +2)0i(s +2))|,
=1 . d
IDICEFSONN

k=3

1
2
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To compute d/dsF(s)|s=0 we shall employ (6.12). This gives

d d log q 1 —
P ONimo = om0 = gumm +3 5 G0+ 3 dogh—l
k=3 0<|1—7|<1

+ Z S
1--17 1—-7 2(1-n)2 20-92)

'iEU

?~|+—l

To compute the remaining terms we use again (6.15) with s replaced by s + 1 and s + 2,
respectively. The final result is

d d 1 d
£CB(3)|5=0 = ECA(S)L:() + = Res,—oCp(s) + 32(32@(3 +1/2))|,_,-

8

Finally, we use Theorem 6.3 and Corollary 6.13 to compute the last two terms on the right
hand side. This proves

Proposition 6.16. We have

d _d Area(M) = 3nvy
780 = @) - —5,

where v denotes Euler’s constant.

Since (p(s) is the zeta function of the operator B; = —B + -12-I, we can introduce its
regularized determinant by

(6.17) det'B; = =80,

Note that formally

det'By = [ A [ —ol%

N#O  p#l

where p runs over the poles of ¢(s). By Proposition 6.16, we get

Corollary 6.18. We have the identity

det'A = exp(AreSa(M) - 327 m) det'B;. |
s

This equality is important for the further investigation of the determinant. For ex-
ample, det' A is well-suited for deriving variational formulas similar to those in [OPS1].
On the other hand, det’ B, is defined via the resonance zeta function and this makes it
transparent how the determinant depends on the resonance set.
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Let z € C,Re(z) > 1. In the same way as above one can define the determinant of the
operator A + 2(z — 1)I. For Re(s) > 1, the corresponding spectral zeta function is defined
as

(alz,8) = Z(,\,- +2(z =1))7° - é/m ((z—1/2) + 2877 ¢ (1/2 +2X) dA
Aj e
4 Tr(C(l{f)) +m (z = 1/2)~2

As a function of s, {a(z, s) admits a meromorphic continuation to C which is holomorphic
at s = 0. Then we define the determinant of A + 2(z — 1) to be

(6.19) det(A+2(z—-1)) = exp(—%(A(z, s)[8=0).

Similarly we can also introduce the following resonance zeta function

¢B(z,s) Z (z—1n)

n€o(M)

Since Re(n) < 1 for all 7 € (M), the complex powers are well-defined and the series is ab-
solutely and uniformly convergent on any compact subset of Re(s) > 1. As above, (p(z,s)
may be regarded as the zeta function of the operator B; + (z — 1). Furthermore, (g(z, s)
can be analytically continued to a meromorphic function of s € C which is holomorphic
at s = 0 and the same method that we used to prove Proposition 6.16 gives

Area(M)

5 22U+ 2 (2 1),

d d
(6.20) ECB(z,s)L:o = E;C,;(z, 3)|,=o -
Set
det(By + (2 —1)) = exp(—%(g(z, S)|s=0)'

Then (6.20) leads to the following relation between the two determinants

Proposition 6.21. We have the identity
det(A + z(z — 1)) = e(z) det(By + (2 — 1))

where

( Area(M) 37r'ym
s

e(z) = exp (22 —1)2 —

(2 - 1)).
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Now let '\H be a hyperbolic surface of finite area. Recall that the Selberg zeta
function of I'\H is defined as

Z(s) = ﬁ (1 - e"”“”“), Re(s) > 1,

{7} k=0

where the {v} run through the primitive hyperbolic conjugacy classes in I and {(+) denotes
the length of the closed geodesic on '\ H which is determined by {v}(cf. [H3], [Sel],[Mc]).

The Selberg zeta function Z{s) has a meromorphic continuation to C. I.Efrat has
shown how the determinant det(A + 2(z — 1)) is related to Z(s) [El], [E2], and therefore,
we can also express det(B; + (z — 1)) by the Selberg zeta function. We simply have to
use (1.7) in [E1l] combined with Proposition 6.21. However note that in the corrected
version of (1.7) in [E2] one has to use the determinant defined by (6.19) multiplied by
(z — 1/2)(m=TrC(/2) | Using these remarks we get

Theorem 6.22. We have
det2(31 +(z - 1)) = é(2) Z(z)2 Zoo(z)z T(z + 1/2)—2m ec(22—1)+d

where
¢ = m(3wy — log 2)

d= M(zg’(—l) — log(V27)) + 2m log V2r
e
Here ( denotes the Riemann zeta function and
s Area(M)/2nw
Zoo{s) = ((2m)" Ta(s)" /()

with ['y(s) being the double Gamma function (cf.[Bar]).

Note that Theorem 6.22 implies that det?(B; + (z — 1)) admits a meromorphic con-
tinuation to C.
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7. The léngth spectrum and the resonance set

In this section we consider only hyperbolic surfaces I'\H. Recall that the length
spectrum of '\ H is defined as follows: Each hyperbolic conjugacy class {7} in I" determines
a unique closed geodesic in '\ H whose length I(v) is given by

I(v) =2 cosh™" Ltr(7).

Note that I(y) = log N(v) where N() € (1,00) is the norm of . The length spectrum is
then by definition the set of all I(y) where {7} runs over all hyperbolic conjugacy classes in
I'. Each I(7y) is counted with multiplicity m(+y) which is the number of different hyperbolic
conjugacy classes with length {(y). As pointed out by Selberg [Sel] and [Hu], for a compact
hyperbolic surface '\ H the Selberg trace formula has the following important consequence:

( 7.1) The eigenvalues of A determine the length spectrum of T\H and vice versa.

We shall employ the trace formula (5.32) to establish a similar result for a non compact
hyperbolic surface ['\H of finite area. The role of the eigenvalues is now played by the
resonance set o(I') and the statement corresponding to (7.1) is the following

Proposition 7.2. Let I'\H be a hyperbolic surface of finite area. The resonance set o(I")
determines the length spectrum of T\H and vice versa. Moreover, the length spectrum
also determines Area(I'\H) and the number m of cusps of '\ H.

Proof. We apply (5.32) to g(y) = exp(—y?/4t). By Proposition 5.24, Area(T'\H) and
m are determined by o(T'). Therefore, o(I') determines also

108‘1 ’(7) R LCOIZT:
; Z sinh 1 l

and , as explained in section 3.4 of [Mc], from the latter one can determine logq and the
length spectrum. To prove the converse we apply the trace formula to the function

g(y) =lyI"" e7¥,  n> 2 Re(s) > 1/2.

Note that g is not smooth at the origin. However, in the same way as above, we can extend
the trace formula to cover this case. Then (5.32), extended to g, gives

S (s+1/2-n) " = -"%H—) /_m {(s =)™ + (s +4X) ™} A tanh(r3) dx

n€a(T)

log N log" !N s
o " Ol oSl
—21"; :{(s N (s iA)‘"} 1%(1 +1A) dA.
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Here {~} runs over all hyperbolic conjugacy classes in I and {74} denotes the primitive
conjugacy class associated to {7}. The series over {7} is convergent for Re(s) > 1/2 (cf.
p.429 in [H3]). Since n > 2, the left hand side is absolutely convergent by Proposition 5.25
and the convergence is uniform for s in any compact subset of C which contains no points
of o(T"). Therefore, the left hand side is a meromorphic function of s € C whose poles
are the points n — 1/2,n7 € o(I"). By shifting the contour of integration appropriately it
follows that the first and the third term on the right hand side also admit meromorphic
continuations to C with poles at k+ 1/2,k € Z, and k, k € Z, respectively. Since o(T') is
contained in Re(s) < 2, this implies that the length spectrum determines Area(M) and
m. Hence it also determines the meromorphic function on the left hand side of (7.3) and
therefore its pole divisor, i.e., o(T"). Q.E.D.
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8. Moduli and the spectrum

Let T'\H be a compact hyperbolic surface. I.M.Gelfand raised in [G] the following
question:

To what extent is the surface T\ H determined by the eigenvalues of 1ts Laplace oper-
ator?

H.P.McKean [Mc| has shown that a compact hyperbolic surface is determined by its
eigenvalue spectrum up to finitely many possibilities.. Then S.Wolpert [W] proved that in
the Teichmiiller space 73 of compact Riemann surfaces of genus h there exists a proper real
analytic subvariety V), which is invariant under the extended Teichmiiller modular group I';,
such that a surface '\H € 7, /T"), is uniquely determined by its eigenvalue spectrum if and
only if '\ H is contained in the complement of V,/T'}. Thus a generic compact hyperbolic
surface is uniquely determined by its eigenvalue spectrum. There exist also examples of
non-isometric isospectral surfaces [V], [Su]. Actually, T.Sunada [Su] has shown that V),
has positive dimension for special values of A.

In this section we shall briefly dicuss the same problem for noncompact hyperbolic
surfaces '\ H of finite area. The question is then:

To what extent is the surface T\H determined by its resonance set o(I")¥?

We do not intend to answer this question in all generality in the present paper, but
we shall return to this point in a forthcoming paper. Here we shall extend McKean’s result
to the noncompact case.

By Proposition 5.23 and Proposition 7.2, the resonance set o(I') determines the con-
formal type (g, m) of the surface I'\H and its length spectrum, or what is the same, the
common absolute trace |tr()| of the elements of each hyperbolic conjugacy class {7} in
I'. Now we recall some facts from the theory of Fricke and Klein [FK]. Note that , by
assumption, I" is a torsion free discrete subgroup of SL(2,R) of cofinite area. A standard
set of generators for T' consists of hyperbolic elements A;, B; € I',z = 1, ..., ¢ and parabolic
elements D; € T', 5 = 1,...m, which satisfy the single relation

(8.1) Dp--- DBy A7 ByAy -+ B TAT BiA; =1
(cf. [Ke]). Then we have the following result which is due to Fricke and Klein if m = 0:

Theorem 8.2. Let I' be a torsion free discrete subgroup of SL(2, R) of cofinite area. Let
(g, m) be the conformal type of '\ H and choose a standard set of generators v1,...,Y2g+m
for I'. Then the single , double and triple traces

tr(y:), tr(vivs )yt < 7, tr(viysme ), i < j <k, 4,5,k=1,..,2¢ +m,

determine ' up to a conjugation in SL(2,R)/{£1} and a possible reflection

e (5 205 )
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Proof. Let I and I be two torsion free discrete subgroups of SL(2, R) with cofinite
area and of conformal type (g, m). If g > 1 then we just repeat the proof given by McKean
for the compact case (cf. pp.243-244 in [Mc]). It works equally well for m # 0. What
remains is the case ¢ = 0. Letyy, ..., v (resp. 71,...;7m) be a set of standard generators
for T (resp. T"). All these elements are parabolic. Suppose that the single, double and
triple traces of corresponding elements coincide. After a couple of conjugations, we may

assume that
1 1 /
M= 0 1 = 71‘
_fai b d y fal b
V= e di) T TT A\ )

8.3 a;+d;=2=ad 4+ d.
( 3 1

Let

Then, for ¢ > 1, we have

and
(070 = i s = (217 = al + df +
Note also that ¢; # 0 for : > 1. Hence

(8.4) ci=c: and ¢; #0,i> 1.

L 1 —02/62 r_ 1 —a&/c'z
L—(O 1 ) and k_.(O 1 .

kyok™! = ( 0 ”12/62) = k'yh k'Y

Ca

Set

Then, by (8.4),

Hence, after another couple of conjugations, we have

11 0 -1
’71:’7;=<0 1) and ’72=’75=($ 2/$)

for some z #% 0. Then, for i > 2,

i !
tr(y2yi) = —'% + biz + 2d; = tr(vyvyi) = —% + bl + 2d.
and, by (8.4),
(8.5) (b = b))z = 2(d} — d;).

Furthermore, we also have

¢

tr(viveys) = (@i + bi)z — % +2¢i + 2d; = tr(71727)) = (af + b))z — % + 2¢; + 2d;.
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By (8.3) and (8.4), we get
(b= 8o = (2 - 2)(d} — ).

Since z # 0, this equality combined with (8.5) implies b; = b}, d; = d’,¢ > 2. Thus v; = v/
for all z. Q.E.D.

Actually a smaller number of traces suffices to determine I' up to conjugation and/or
a reflection. This is a consequence of the following remarkable result proved by Fricke and
Klein (cf. pp.366 in [FK]):

Proposition 8.6. Let ¢1,92,93 € SL(2,R). Then the triple trace t;23 = tr(g19293)
is an algebraic function of degree two of the single and double traces t; = tr(g;) and
tij = tr(g,-gj),i < 7.

McKean’s proof of the fact that a compact hyperbolic surface I'\H is determined by

the spectrum of its Laplacian up to finitely many possibilities depends on the following
bound due to D.Mumford [Mf):

diam(T\H) - min{l(y) | y € I' hyperbolic} < Area(I'\H)

where diam(I'\ /) denotes the diameter of the surface '\ H. This bound is not available
in the noncompact case and we have to find an appropriate substitute.

Let p € R U {oo} be a parabolic fixed point of I’ and let T, be the stabilizer of pin
I'. Let U, be the domain interior to a horocycle through p, chosen so that I',\U, has area

equal to 1. If I’ is generated by ({1] (1)) then

Uy, ={z€ C|Im(z) > 1}.

It 1s known that two points in U, are I’ equivalent only if they are I'; equivalent. Hence
I'p\U, is isometric to a subset of T'\H. Furthermore, if p,g € R U {co} are two different
parabolic fixed points of " then

(8.7) U,NU, = 0.

This can be seen as follows. After conjugation we may assume that p = co and T',, is

generated by ([1) ;]) yel =Ty, 7= ((:: 2), then v does not fix oo, hence ¢ # 0.

But then we know that ¢ must satisfy |c| > 1 (cf. p.58 in [Kr]) which implies (8.7).
Let Q(T') denote the complement in H of the union of all U, where p runs over the
parabolic fixed points of I'. Then §(T') is a closed I’ invariant subset of H. Set

My = T\Q(T).

This is a compact hyperbolic surface with boundary. The following lemma is a consequence
of Lemma 5 in [Be}:
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Lemma 8.8. There exists a constant ¢ > 0 which depends only on the conformal type
(g,m) of T\H such that

diam(Mr) - min{l(v) | 7 € T hyperbolic} < c.

Lemma 8.9. Let vy,...,729+m be a standard set of generators for I'. Then the absolute
values of the single, double and triple traces tr(7;), tr(7iy;) and tr(~;v;vx) are bounded by

6 cosh(c/ minl(vy))

where ¢ is the same constant as in Lemma 8.8.

Proof. The generators i, ..., Y2g+m of I' are connected with a distinguished funda-
mental domain D for T called Fricke polygon (cf. [Ke]). The polygon D is bounded by
4g + 2m geodesic arcs in H and, if the sides of D are suitably labeled in order, say

!

H f ! ! !
ay, by, ay, by, .. a4,bg,a,,b,,¢1,¢1,...,cm, Crpy

grMgr Vg
then

71(‘11) = _03!72(1)1) = _b'1= ey 72y(bg) = _b;n Y2g+1 (cl) = ""Clls S 729+m(cm) = "C:w
Let q1,...,gm € RU {00} denote the fixed points of the parabolic elements y2g41, ..., Y2g+m

and set
mn

D'=D- | J(U,nD).
1=1
Then D' is a fundamental domain for I" acting on Q(T'). Each generator v; maps D' to an
adjacent fundamental domain ;(D'). This shows that |tr(y;)], [tr(viv;)| and [tr(yiv;ve)l
are bounded by 6 cosh(diam(Mr)) and our estimate follows from Lemma 8.8.Q.E.D.

We are now ready to prove the main result of this section

Theorem 8.10. Let I'\H be a hyperbolic surface of finite area. Then the resonance set
o(T") determines T\H up to finitely many possibilities.

Proof. The resonance set determines the conformal type (g, m) of '\ H and the length
spectrum of '\ H. Hence it determines the numbers

i(v)
[tr(y}| = 2 cosh 5

for all hyperbolic elements v in I'. Let v,,...,y29+m be a standard set of generators for
I'. Since T' is torsion free each of the products v, 7iv;, 7ivjve is either parabolic or
hyperbolic. Hence we know [tr(v;)|, [tr(7iv;)|, [tr(yivjve)| and those which are > 2 are
of the form 2 cosh(i(v)/2) for some hyperbolic element v € I'. Now recall that for every
C > 0 there exist only finitely many hyberbolic conjugacy classes {v} in I" with I(v) < C
(cf. p.475 in [H3]). Since minl(y) = [; is fixed, it follows from Lemma 8.9 that the set of
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possible values for the single , double and triple traces is finite . The theorem follows from
Theorem 8.2. Q.E.D.

If we recall the definition of the resonance set o(T"), then Theorem 8.10 can be restated
as follows:

A hyperbolic surface '\ H of finite area is determined , up to finitely many possibilities,
by the following numbers:

1 ) The eigenvalues 0 = A9 < A; < Ay < --- of the Laplace operator Ar on I'\H.
2 ) The poles of the determinant ¢(s) of the scattering matrix together with their orders.
3 ) Tr(C(1/2)) which occurs in the multiplicity of the special point 1/2.
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