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HIGHER SPHERICAL POLYNOMIALS

TOMOYOSHI IBUKIYAMA AND DON ZAGIER

ABSTRACT. In this paper, we study a new class of special functions. Specifically, we study a vector
space P(™(d) (n € N, d € C) of polynomials P(T) in n x n symmetric matrices T = (;;). For
integral d > n these are the polynomials on (Rd)" that are invariant with respect to the diagonal
action of O(d) and harmonic on each R¢, and for general d they are the polynomial solutions of a
certain system of differential equations. For n = 2 these are the classical Legendre and Gegenbauer
polynomials, but for n > 2 they are new and are interesting for several reasons, including an
application to the theory of Siegel modular forms and the fact that for n = 3 the associated system
of differential equations is holonomic. When n = 3, each homogeneous component of P(™)(d) is
one-dimensional, so there is a canonical basis. Even here the structure of the polynomials turns out
to be very subtle. For n > 3 there is no obvious basis. We construct two canonical bases, dual
to one another, and a generating function (generalizing the classical one for n = 2, and algebraic
if n = 3 but not in general) for one of them. We also provide tables that illustrate some of the
idiosyncracies of the theory.

INTRODUCTION

For two natural numbers n and d and a scalar product ( , ) on R? we have a map (3, from
(R?)™ to the space S, of real symmetric n x n matrices, given by

Buit (w1, ,20) =T = (tijhi<ij<n, tij = (Ti,25). (1)

Thus any polynomial P on S, defines a polynomial P = P o 3, on (RH)™. If d > n, then we
denote by P(")(d) the space of polynomials P on S,, for which P is harmonic with respect to
x; for each i = 1,... ,n. For each multidegree a = (a1,... ,ay,) € (Z>o)" we denote by Pa(d)
the subspace of P € P (d) for which Pisa homogeneous of degree a; with respect to z; for
each i = 1,... ,n. (Here the superscript “(n)” can be omitted since n is just the length of a.)
Later in the paper we will generalize the definitions of both P (d) and Pa(d) to arbitrary
complex values of d. The elements of P(™)(d) will be called higher spherical polynomials. There
are several motivations for studying them:

(i) If n = 2, then P(q, 4,)(d) is one-dimensional if a; = ay (it is 0 otherwise) and is then
spanned by a polynomial in ¢11¢29 and t12 which is the homogeneous version of one of the classi-
cal families of orthogonal polynomials (Legendre polynomials if d = 3, Chebyshev polynomials if
d =2 or d =4, and Gegenbauer polynomial for d arbitrary). These classical polynomials occur
in many places in mathematics and mathematical physics and have many nice properties: differ-
ential equations, orthogonality properties, recursions, generating functions, closed formulas, etc.
It is natural to try to generalize these.

(ii) The polynomials in P(™)(d) have an application in the theory of Siegel modular forms.
This is described in detail in [7] (similar differential operators are given in [2] and [4]) and will
1



not be pursued in this paper, but was our original reason for studying this particular space of
polynomials. Briefly, the connection is as follows. If P € Pa(d) (d > n) and if

F(Z)= Z c(T) 2™ T (T2) (Z € $,, = Siegel upper half-space)

T
is a holomorphic Siegel modular form of weight d/2, then the function
14+4d;; O _
pP(~% Y pz)| = D o(T) P(T) e nartetinnzn) (52 €51)  (2)
2 8Zij Hr
1 T
is an elliptic modular form of weight d/2+a; in z; for each i = 1,... ,n. (By considering images

g(H™) C H,, where g is a suitable element of Spa,(R), one also gets maps from Siegel modular
forms of degree n to Hilbert modular forms on totally real number fields of degree n, or to
products of Hilbert modular forms on several totally real fields with degrees adding up to n.)
We can understand why this should be true by taking F' to be a Siegel theta series, say

F(Z) _ Z eQﬂ'iTr(ﬁn(zl,...,mn) Z)

(%1yeen sy )EL™

where L C R? is a lattice on which the quadratic form (x,z) takes rational values. Then the
function defined by (2) is the series

Z . . Z ﬁ(l.h o ’$n) q%m,rl) N ‘qrgla:n,zn) (Qi _ eZﬂﬁzi)

r1EL T, €L

and for P € Pa(d) this is a modular form of weight d/2 + a; in z; by the classical Hecke-
Schoeneberg theory of theta series with harmonic polynomial coefficients. A deeper direct
application of our theory to critical values of triple L function is found in [10] (see also [5])
and another direct application is given in [3]. There are various other theories of differential
operators and applications of a similar kind (for example, see [8], [9], [11]).

(iii) The spaces Pa(d) can be looked at from the point of view of representation theory.
Specifically, the map P — P gives an isomorphism between Pa(d) and the space of “invariant
harmonic polynomials,” i.e., polynomials in n variables z; € R? which are harmonic and ho-
mogeneous (of degree a;) in each z; and invariant under the simultaneous action of O(d), the
orthogonal group of the scalar product ( , ), on all z;; this space can be analyzed in terms
of the classical representation theory of O(d). However, apart from a brief mention of this in
connection with the dimension formula proved in §2, we will not use this interpretation, but
will work directly with the functions P on S, since this is more elementary, gives more explicit
results, and is applicable in greater generality.

(iv) If n = 3, then the dimension of P,(d) is always O or 1, so that the higher spherical
polynomials are particularly canonical in this case. The higher spherical polynomials of varying
multidegree give an orthogonal basis of L? functions in three variables with respect to a certain
scalar product, and the coefficients of these polynomials also turn out to be combinatorially very
interesting expressions, including as special cases the classical 3j-symbol (or Clebsch-Gordan
coefficients) of quantum mechanics.

(v) In a sequel to this paper [12], we will show that the system of differential equations defining
the higher spherical polynomials (generalized Legendre differential equations) in the case n = 3
is equivalent to an integrable Pfaffian system of rank 8, so that there are precisely eight linearly
independent solutions, generalizing the Legendre functions of the first and second kinds in the
classical case n = 2. In the general theory of differential equations, such systems are very
rare: systems of linear partial differential equations with polynomial coefficients generally have
a solution space which is either zero- or infinite-dimensional, and it is non-trivial to construct
Pfaffian systems satisfying the necessary integrability conditions. The system arising from the
study of higher spherical polynomials is therefore also interesting from this point of view.
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The contents of the paper are as follows. Chapter I describes the general theory, for arbitrary
n and d. In the first two sections, which are basic for everything that follows, we write down
the differential equations defining the space P,(d) (now for any d € C), prove a formula for
the dimensions of its homogeneous pieces Pa(d), and construct a specific basis PM (“monomial
basis”) characterized by the property that its restriction to the subspace t1; = -+ = tp, = 0
consists of monomials. We also give a brief description of the behavior of P, (d) at certain special
values of d (in 2Z<() where its dimension changes. Sections 3 and 4 contain the definition of a
scalar product with respect to which the various spaces Pa(d) are mutually orthogonal, gener-
alizing one of the basic properties of the classical polynomials for n = 2, and of a Lie algebra g,
isomorphic to sp(n, R), of differential operators on polynomials on S,,. This is then applied in §5
to construct two further canonical bases of P, (d), the “ascending” and the “descending” basis,
whose elements are inductively defined by the property that two adjacent basis elements are
related by the action of a specific element of the universal enveloping algebra of g. The first of
these two bases is proportional in each fixed multidegree to the monomial basis, and the two
bases are mutually dual with respect to the canonical scalar product. Finally, in §6 we study
the situation when d is a positive integer less than n and describe the relationship between the
spaces Py (d) and {P | P is harmonic in each z;}, which now no longer coincide, in this case.

Chapter II is devoted to explicit constructions of higher spherical polynomials. In §7 we use
the relationship between O(4) and GL(2) to construct specific elements of P, (d) when d = 4 and
show that they can be obtained as the coefficients of an explicit algebraic generating function.
The next section, which is quite long, concerns the case n = 3. This case is especially interesting
both because it is the first one beyond the classical case and because the dimension of P,(d) here
is always 0 or 1, so that the polynomials are especially canonical. Specifically, the dimension
is 1 if and only if ay +ag + a3 —2max{a,as,az} is even and non-negative, i.e., if we can write

a1 = vy + 3, as = V1 + Vs, a3 = v1 + o (3)

for some triple v = (11, 12, v3) of integers v; > 0, which we then call the index of the polynomial.
In Subsection A we generalize the generating function given for d = 4 in §7 (now specialized
to n = 3) to construct an explicit generating function for n = 3 and generic values of d € C
whose coefficients give polynomials P, generating the 1-dimensional space Pa(d). The next
three subsections give explicit formulas for the scalar products of these special polynomials,
their relations to the three general bases (monomial, ascending and descending), the recursion
relations satisfied by their coefficients, and for the coefficients themselves, while Subsection E
discusses the geometry and symmetry of the 3-dimensional space on which these polynomials
naturally live. Section 9 contains the construction of generating functions for arbitrary n and d
whose coefficients span the spaces of higher spherical polynomials of any given multidegree (and
in fact turn out to be proportional to the elements of the descending basis). We also describe how
these coefficients can be obtained inductively by the repeated application of certain differential
operators and give a number of special cases and explicit formulas. Finally, in §10 we study the
bases of higher spherical polynomials coming from these generating functions in the case n = 4
and show that the generating functions themselves, which were given by algebraic expressions
for n < 3, now usually are not algebraic, but that for even integral values of d > 4 they become
algebraic after being differentiated a finite number of times. The paper ends with some tables of
higher spherical polynomials and their scalar products for 3 < n < 5, revealing many interesting
regularities and irregularities of these objects.

A list of the principal notations used (omitting standard ones like N = Z~() is given at the
end of the paper. Theorems are numbered consecutively throughout the paper, but propositions,
proposition-definitions, lemmas and corollaries are numbered separately in each section, and not
numbered at all if there is only one of them in a given section. Readers who are primarily
interested in the n = 3 case can read just §8, in which we have repeated a few definitions and
notations so that it can be read independently of the preceding sections.
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Finally, we should perhaps also say a few words about the history of this paper, since it
has been in preparation for a very long time and earlier versions circulated for several years
and were quoted by several authors. The project originally started well over twenty years
ago with a letter sent by the second author to B. Gross and S. Kudla in connection with
a plan (later abandoned) to compute the arithmetic height pairings of modularly embedded
curves in the modular 3-fold ($)/SL(2,7))3. This letter concerned spherical polynomials on
GL(2)\GL(2)3/GL(2), corresponding to the case n = 3, d = 4 of the present paper, and gave
for that case the generating function for the polynomials and some explicit calculations of their
coefficients (now given in Sections 7 and 8). During the second author’s visits to Kyushu in the
early 1990’s the first author suggested the formulation in terms of orthogonal groups and the
generalization to arbitrary n and d, developed a more general theory (later published separately
in [7]), and obtained a number of the results given in this paper, including the generating function
for n = 3 and arbitrary d. The preliminary version mentioned above was primarily concerned
with the case n = 3 and corresponded to parts of Sections 1-3 and all of Sections 7 and 8, while
the remaining results in Sections 2 and 3 and all the material in Sections 4, 5, 6, 9 and 10 was
found and written up much later. We delayed publication for many years as new results for
higher n emerged, in order to be able to present a more complete and coherent picture.

The first author would like to thank the Max-Planck-Institut fir Mathematik in Bonn and
the College de France in Paris, and the second author the mathematics departments of Kyushu
University and Osaka University, for their repeated hospitality during the period when this work
was being carried out.



CHAPTER I. GENERAL THEORY

§1. The generalized Legendre differential equation

The definition of P,(d) which was given in the introduction makes sense only if d is a positive
integer and gives a finite-dimensional space only if d > n, since for d < n the map P +— P
is not injective (because the (z;,x;) are then algebraically dependent, the relations being the
vanishing of all (d + 1) x (d 4+ 1) minors of 7). In this section we generalize the definition of
Pa(d), first to d < n and then even to complex values of d, by thinking of the elements of P, (d)
as polynomial solutions of a certain system of differential equations generalizing the classical
Legendre equation. This system of differential equations will be used in §2 to calculate the
dimension of P, (d). As illustrations of the general situation we discuss the two examples n = 2,
a = (a,a), and n = 4, a = (2,2,2,2) in some detail. At the end of the section we also give
a brief discussion of the inhomogeneous version of the higher spherical polynomials and their
differential equations.

First, we must say something about the coordinates on the space S,. Of course we could
use the n(n + 1)/2 independent numbers ¢;; with 1 <4 < j < n, but this does not respect the
symmetry. Instead, we will use all n? components t;; of T'€ S, as variables, with t;; = t;;, and
will write elements' of C[S,,] symmetrically as polynomials in the variables \/f;;T;; (= t;;), i.e.

n tyij/z

we take as a basis for C[S,] the set of monomials 7% := [[;",_, ;' with v ranging over the set

N =Ny = {v=(i)icijen | Vij = vji € Zz0, vii =0 (mod 2)}

of even symmetric n X n matrices with non-negative entries. There is a canonical isomorphism
C[S,] = CV given by mapping a polynomial 3" C, T to its set of coefficients {C,,}. For the
differentiation operator with respect to t;; we take 0;; = (1 + 9;;)0/0t;;. (Note: We had to
do something similar in eq. (2) for the same reason, namely, that the coordinates z;; are not
independent variables. There we also included a normalizing factor 1/2, because for Siegel
modular forms the diagonal elements are the most important ones and one wants a natural
generalization of n = 1, but in our situation the non-diagonal entries of the matrix are equally
important and we have chosen a normalization which preserves the lattice of polynomials with
integral coefficients.) The action of 9;; on our chosen basis of C[S,,] is given by T% + v;; T~ .
Here e;; denotes the n x n matrix with (a,b)-component 6;,0;, + 6;50;4(i-€., the matrix with
(i,7) and (j,4) entries equal to 1 and all other entries equal to 0 if i # j, and with (,7)-entry 2
and all other entries 0 if ¢ = j), so that A is the free abelian semigroup generated by the e;;.

We define the multidegree of the monomial T% to be the vector v-1 € ZZ,, where 1 is the
vector of length n with all components equal to 1, and denote by C[S,]a the subspace of C[S,,]
spanned by all monomials of given multidegree a. Thus

ClSnla = CVN® (N@)={reN|vli=a})
with respect to the above isomorphism C[S,,] = C, while more intrinsically
ClSu]a = {P € C[S,] | P(ATA) = N\*P(T) for all X € diag(C")}, (4)

where A = [ A} for A = diag(\1,...,\,). For P € C[S,]a and (R, (, )) as in the introduc-
tion, the function P : (R%)” — C has multidegree a. Hence, if d > n (so that the map P+ P is

L Abusing notation slightly, we will use K[R¢] or K[C? (or more generally K[V]) to denote the algebra of
polynomials in d variables (or more generally of polynomials on an arbitrary vector space V') with coefficients in
a field K.
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injective), then the space P,(d) as defined in the introduction is a subspace of the space C[S,,]a.
Specifically, it is the space of all polynomials P € C[S,]a for which the polynomial P (which is

now automatically multihomogeneous of multidegree a in the z’s) is harmonic with respect to
each x;. We would like to define P,(d) for all values of d as a subspace of P € C[S,,]a. To do this,

we must express the condition that P is multiharmonic directly in terms of the polynomial P.
The answer will be a system of differential equations with coefficients depending polynomially
on d; these will then make sense for any complex number d.

The calculation is straightforward. The harmonicity conditions are AP=0forl1<i< n,
where A; denotes the Laplacian? with respect to the variable x; € R? (and with respect to the
chosen scalar product in RY). Let z;, (o = 1,...,d) be the coordinates of x; in a coordinate
system for which the scalar product (and hence also the Laplacian) is the standard one. Then
tij = Za LTiaLjay SO _

oP
E?xm

= > _wja (9P)7,
j=1

with 0;; defined as above. Applying this formula a second time, we get

82]3 ~ n ~
o = (0:P)" + Y o wha (050P)"
1 J.k=1

and summing this over o gives A;(P) = (D;P)~, where

D;=D" =dd;+ Y tj0y0n  (1<i<n). (5)
j.k=1

(Recall that 9;; = 20/0t;;.) We therefore have the following:

Proposition-Definition. Forn € N, a € 2%y, and arbitrary d € C, set
Pa(d) ={P € C[Sp]a | D1P =...=D,P =0}

with D; = D' as in (5). For integral d > n, this agrees with the definitions given in the

T
troduction.

Remark. The space C[S,]a is itself the solution set of the system of linear differential
equations F;P = a;P (1 < i < n), where E; is the Euler operator Z?Zl t;j0;;. Thus one

could also define P,(d) as the subspace of C[S,,] annihilated by the operators Dl(d) and E; — a;
for 1 < i < n. We also observe that the spaces C[S,]a and Pa(d) are 0 unless the integer
a:l =ay + -+ ay (total degree) is even. From now on we will usually assume this.

Since the space P,(d) is always a subset of C[S,,]a, its dimension for any d € C is at most
N(a) := #N(a), the number of nonnegative even symmetric matrices with row sums ay, ... , a,.
We will show in §2 that (except possibly for d belonging to a finite set of nonpositive even
integers) the dimension of P,(d) is independent of d and equals Ny(a), the cardinality of the set
No(a) = {v € N(a) | v;; = 0 (Vi) }. We illustrate this with two examples.

Example 1: n = 2. In this case the operator tlngd) — tggDéd) acts on polynomials of
bidegree (a1, az) as multiplication by (a1 — as)(a1 + az + d — 2), so if d is a positive integer, or

2Note that, since everything is purely algebraic, we could also work over C rather than R, but the condition
for an element of C[(C%)"] to be harmonic in the ith variable z; = (2;1,. .., 2iq) € C% would still be with respect
to the complexified real Laplacian 5. 8%/0z2, , not the complex Laplacian 3, 8%/02; 00%; o -

1’
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indeed any complex number except 2 —a; — as, then P,(d) can be non-zero only if a = (a, a) for
some a € Zx>g, as was already mentioned in §1. If a = (a,a), then N (a) is the set of matrices

(a Elﬂ “ ;l%) with 0 <1 < a/2, so N(a) = [a/2] + 1, while Ny(a) contains only the matrix

0 a
(4 0

we find after a short calculation that each of the two equations ng)P = 0 and Déd)P =0is
equivalent to the recursion

), SO No(a) =1.1If P(T) = zl[(i/g] Cl(tlltgg)l(tlgtgl)(a_2l)/2 is a polynomial in C[SQ], then

4l(a—l+g—l)cl+(a—21+2)(a—2l+1)cl_1 =0 (1<1<]a/2])

and that this recursion has a one-dimensional space of solutions for every complex number d,
even though the recursion itself behaves slightly differently for certain exceptional values of d
(namely, the even integers in the interval [4 — 2a,2 — a]). Thus the dimension of P,(d) is always
equal to Ny(a) = 1, as claimed, with the generator of the space being the homogeneous form of a
Gegenbauer polynomial (respectively a Legendre polynomial if d = 3 or a Chebyshev polynomial
of the first or second kind if d = 2 or 4). We also see in this example that the dimension formula
dim P,(d) = Ny(a) fails in the exceptional case d = 2 — a; — ag, the simplest example being
a=(2,0) and d = 0, when P,(d) contains the polynomial ¢1; and hence has dimension N(a) = 1,
whereas No(a) = 0. In fact, P4, 4,)(2 — a1 —a2) has dimension 1 for any a1, az > 0 with a; = a
(mod 2), while Ny(a1,az) =0 unless a; = as.

Example 2: n =4, a=(2,2,2,2). In this case N(a) = 17, a basis for C[S,,]a being given
by the monomials t11t22t33t44, t11t22t§4, t11t23t34t42, t13t14t23t24, t%2t§4 and their permutations
(1+6+4+3+3=17). The system of differential equations D1 P = DyP = D3P = D,P =0
imposes 4 x 5 = 20 conditions. (For instance, D; maps P to the 5-dimensional space spanned
by t22t33t44, t22t§4, t33t%4, t44t%3, and t23t34t42.) A pT’L'OT’Z' one would not expect a System of 20
linear equations in 17 unknowns to have any solutions at all, but our claim dim P,(d) = Ny(a)
implies that there should in fact be Ny(a) = 6 linearly independent ones, i.e. the rank of the
20 x 17 matrix of coefficients should be only 11. Writing down this matrix, we find that this is
indeed the case and that the solution space is spanned by the following:

1) (tiitoe — dtiy)(tastas — d13,), (tiitas — dtis)(tastas — dts,), (t11tas — dt]y)(tastss — dtss),
il) t1ats4(t1stas — tratas), tiatos(tiatss — tistas), tistos(t1atas — t12tss),

iii) t11t03t3atan + toatistaatar + tastiotaatar + tastiotostsr — (Fiat3s + tistas + tiatss) — dtiatistaatss |

(This list actually contains seven solutions, but the three in group (ii) have sum zero and we
have given all three only to preserve the symmetry, while the solution (iii), although written
asymmetrically, is symmetric in ¢ = 1,... ,4 modulo linear combinations of the solutions (ii).)

We end this section by saying something about the inhomogeneous versions of our higher
spherical polynomials. In the classical n = 2, the polynomials in P, (d) (here a = (a, a) for some
integer a > 0) are interpreted as polynomials of one variable via the correspondence

t11 ti12 a/2 t12 1 ¢
PePiad = P = (t11t , t) = P ,
(a, )( ) <t12 t22> ( 11 22) P( ,7]5117522) p(t) (t 1)

in which case the two differential equations defining P,(d) are equivalent to a single differential

equation (Legendre or Gegenbauer differential equation) for the polynomial p(¢). In the same

way, for n > 2 we can pass back and forth via homogenization and dehomogenization between the
7




spaces of multihomogeneous polynomials of multidegree a on S,, and polynomials of multidegree
< a and multi-parity aon S} ={T' €S, |t;; =1 (Vi)}, the correspondence being given by

PeC[S,]a & p= P\S}L € C[S}], P(T)=d(T)**p(TW),
(6)

~~
S

n
where 0(T)%/2 = Ht;l;/Z, TW = (1ij), Ty =

(The conditions on the degree and parity of p ensure that the function of 7' defined by the
expression on the right is a polynomial.) Just as in the classical case, we have (eq. (10) below)
that every polynomial on S} is the restriction of a unique higher spherical polynomial (element
of Py, (d)). More interestingly, the system of differential equations in n(n+1)/2 variables defining
the space Pa(d) will correspond to a system of n diffential equations in the n(n—1)/2 coordinates
of S!. For instance, for n = 3, if we define coordinates ¢; on Si by

1 t3 to
S3 > T = [tz 1 t (7)
ty t1 1

(so that t; = 7o3 etc.), then the condition on a polynomial Q(t1,t2,t3) to be the restriction to
S1 of an element of P,(d) is that Q satisfy the system of differential equations given by

2@ 9°Q 2y 0%Q
) )
—(d—1) (tgag + t382) Fa(a+d—2)Q = 0

and its two cyclic permutations. This system of differential equations will be studied in detail
in [12], while some special properties of the coordinates (1, t2, t3) defined by (7) for the case n = 3
will be discussed in §8.E of the present paper.

§2. Dimension formula and decomposition theorem

Let NV (a) and Ny(a) C N(a) be as in the last section and ® : Pu(d) — CNo(®) the natural
projection map (the composite of the inclusion Pu(d) C C[S,]a = CV®) with the projection
map CN(@) — CNo(@)) which corresponds to the operation of restricting a polynomial P(T) to
the subspace SY C S, of matrices T whose diagonal coefficients vanish. The main result of this
section is:

Theorem 1. Let a € Z%, be a multidegree. Then for any complex number d not belonging to
the finite subset -
E(a) == 2Z N U 4—2a;,2 — a;]
a;>2

of 2Z<q, the map ® : Pa(d) — CNo@) s an isomorphism. In particular, the dimension of Pqa(d)
for such d equals Ny(a), the cardinality of No(a).
Proof. Let P(T) = >, C(v)T" be an element of Pa(d), i.e. P is annihilated by each of the

operators D; = D @) Jefined in (5). The action of D; on monomials is given by

D; (Tu) =V (2&1' — vy +d— 2) TV —®u Z Vz’j(l/ik — 6]1:) TV —eij—eirtejk ,

4.k
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where the sum runs over j, k € {1,... ,? ... ,n} and e, has the same meaning as in §2, and using
this we can rewrite the differential equation D; P = 0 as a recursion formula for the coefficients,
as we did for the example n = 2 in the last section. This recursion for ¢ = 1, together with
the assumption that 2a; — 111 + d — 2 does not vanish for any even integer v1; € (0, a;], shows
that the coefficients C(v) with v1; > 0 can be expressed as linear combinations of those with a
smaller value of v1; and hence that P is determined by the C'(v) with 147 = 0. Similarly, the
equation Dy P = 0 shows that the coefficients C(v) with v1; = 0 and 95 > 0 are combinations of
C¥') with v{; = 0 and v, < 22, so that they are determined by the coefficients with 92 = 0.
Continuing in this way, we see by induction that the coefficients C(v) with v € Ny(a) determine
P completely. Hence ® on P,(d) is injective and dim Pa(d) < Ny(a).

To show directly that ® is also surjective, we would have to show that the system of equations
D; P = 0 can be solved for any choice of the coefficients C'(v) with v € Ny(a). But this is not
at all obvious, as the examples in §2 make clear. Instead, we will prove by induction on % the
stronger statement that the dimension of K; = K;(a) := Ker(D;) N---N Ker(D;) is exactly
NG (a) for each i between 0 and n, where N()(a) is the number of matrices in A(a) with
v11 = ... = vy = 0. The case ¢ = n gives the assertion we want. The main observation
for the proof is that the various operators D; commute. This is obvious when d is a positive
integer because of the interpretation of the D;’s as the Laplacians with respect to disjoint sets
of variables z; € R?, and it then remains true for all d because the coefficients of the operators
are polynomials in d and no polynomial has infinitely many zeros. It follows that D; maps K;_1
to K;_1 or more precisely, since D; clearly decreases a = v -1 by 2e; (where e; as before denotes
the vector with 1 in the ith place and 0’s elsewhere), K;_;(a) to K;_1(a — 2e;). If we therefore
assume inductively that dim K;_;(a) = N0~ (a) for all a, then it follows that

dim K;(a) = dim Ker(D; : K;_1(a) = K;_1(a — 2e;))
> dimKi_l(a) — dimKi_l(a — 281)
= N0"D(a) - NO~Y(a —2¢;) = N(a),

and since the previous argument gives the reverse inequality, this completes the proof. [

Remark 1. The definitions of N(a) and Ny(a) are equivalent to the generating functions

ZN(a)z‘fl---sz": H 1_1%, ZNO(a)z‘fl---sz”: H _12,1%

a>0 1<i<j<n a>0 1<i<j<n

Remark 2. There are simple expressions for Ny(a) if n < 4. First note that, for any n, a
necessary condition for Ny(a) # 0 is that the sum of the a;’s is even and that no a; is strictly
bigger than the sum of the others, i.e., that the number ¢ := %Z a; — maxa; is a nonnegative

; (2

(3
integer. Assuming that a satisfies this condition, we have the following formulas for n < 4:

No(al,ag) = 1, Ng(al,CLQ,ag) = 1, No(al,ag,ag,a4) = (S—f—l)z(s—f—2)’
where s in the last case is min{aj, as,as,aq,d}. Note that for n = 2 and n = 3 the condition
d > 0 is equivalent to a; = as and to the triangle inequality, respectively. For general values
of n, there is no simple formula for Ny(a), but assuming that n > 4 and that no a; vanishes, we
have Np(a) = 1 if and only if 6 = 0. Under the same assumption, one has the following partial
results:

9



0 No(a)
<0 0

0 1

1 ("2")

2 (M) where M = (";") — #{i | a; = 1}
>3 n? /2°8! + O(n*1)

Notice that the dimension is a triangular number whenever n < 4 or § < 2, but this is not true
in general, the smallest counterexample being Ny(2,2,2,2,2) = 22.

Remark 3. As mentioned in the introduction, in the case where d is an integer > n, one can
also see the dimension formula via the interpretation of Pa(d) as the O(d)-invariant subspace
of Hey (RN @ ... 0 Ha, (R?), where H,(R?) denotes the space of homogeneous harmonic poly-
nomials of degree a in R? and O(d) acts diagonally on (R?)". Let p,, be the symmetric tensor
representation of GL(d) of degree a;, that is, the representation on degree a; homogeneous poly-
nomials. We denote by x,, the character of p,,. Now consider the tensor product representation
@I 1 pa; of GL(d). We take the restriction of this representation to O(d). For d > n, the iso-
typic component of the trivial representation is spanned by the linearly independent polynomials
szzl(xi,mj)”w‘/z with v;; € Z>o, vy € 27 and a; = E?Zl vij, by classical invariant theory
(Weyl [16], pages 53 and 75). Their number is exactly N(a). On the other hand, the charac-
ter of the representation of O(d) on harmonic polynomials of degree a; is X4, — Xa,—2. What
we want to know is the multiplicity of the trivial representation of O(d) in [[\;(Xa; — Xa;—2)-
Hence, expanding the parenthesis and counting the multiplicities of the trivial character for each
product, we can see that the multiplicity in [[\;(xa; — Xa;—2) is the coefficient of []2{" in

n

[[a-2) [I -zzpt= J[ -zz)"",

i=1 1<i<j<n 1<i<j<n
as asserted.

Remark 4. From the proof of Theorem 1 we deduce the analogue for the operators D; of the
classical fact that any collection of functions f;(z1,...,2,) (1 = 1,...,n) satisfying 0f;/0z; =
0f;/0z; for all i and j is the collection of partial derivatives dg/0x; of a single function g. Here
the assertion is that, if d € =(a), then any collection of functions P; € C[S,]a—2e;, (i =1,...,n)
satisfying D;(P;) = D;(FP;) for all i and j has the form P, = D;(Q) for some @ € C[S,]a.
Indeed, the proof of Theorem 1 implies (in the notations there) that the map D, : K;_;(a) —
K;_1(a — 2e;) is surjective for all i. Applying this with ¢ = 1 (where Ky(a) = C[S,]a and
Ko(a — 2e1) = C[Syla—2e,), we can find @1 € C[S]a such that D1Q; = P;. Then D (P —
DyQ1) = DaPy — Do Py =0, 80 Po — D2Q1 € Kq(a—2e3). Now the surjectivity of Dy : Ki(a) —
Ki(a — 2es) implies that there is a Q2 € C[S,]a with D1Q2 = 0 and D2Qo = P> — D@4, or
equivalently D1(Q1 + Q2) = Py and D2(Q1 + Q2) = P>. Continuing in this way, we obtain the
statement claimed, which will be used again in the Remark following Proposition 2 below and
at several later points in the paper.

Theorem 1 has two interesting consequences. The first one, which is a refinement of the
dimension statement, is an analogue of the classical fact that every polynomial on R? has a
unique decomposition into summands of the form (x,z)’ Pj(z) with each P;(z) harmonic.

Corollary. For any d € C\ 2Z<o we have

C[S,] = P™(d)[t11, taz, - . - ton] -
10



More precisely, for a and d be as in Theorem 1, the space C[S,]a of all polynomials on S, of
multidegree a has a direct sum decomposition as

ClSula = B (1) Pasm(d), (9)
0<mc<a/2
where the sum ranges over all m € Z™ satisfying 0 < m; < a;/2 and §(T)™ =[]/, ti".

Proof. The proof of Theorem 1 shows that the map ®; : K;(a) — CN @) where N@ (a) is
the set of ¥ € N(a) with v;; = -+ = v; = 0, is injective (i.e., any P € K;(a) is determined
by its coefficients C(v) with v € AN'()(a)) and surjective (for dimension reasons), and that the
sequence 0 — K;(a) - K,;_1(a) B K;_i1(a—2e;) = 0 is exact. Now let P(T") be an arbitrary
element of C[S,]a = CV®@ . TIts canonical projection to CV “(a) equals ®1(Qp) for a unique
element @)y of K1(a). But this means that the restrictions of P and Qg to t11 = 0 agree, so we
have P(T) = Qo(T) 4 t11P1(T) for some P; € C[S,]a—2e,, and this decomposition is unique.
Applying the same argument to P;, we get P, = Q1 + t11 P> with Q1 € Ki(a—2e1) and P, €
C[Sn]a—4e,, and continuing in this way we find that P has a unique decomposition of the form
P(T) =3 0<mi<ar 2 11 @ma (T) with @i, € Ki(a—2myey) for each m;. Now we use the same
argument to show that each @y, can be decomposed uniquely as >, <4, /2 155 Qmi,m, (1)
with Qpmy.m, € Ko(a — 2mie; — 2mgey), etc., obtaining in the end precisely the direct sum
decomposition asserted by the corollary. [

The decomposition (9), which will be shown in the next section to be orthogonal with respect
to a natural scalar product on C[S,,], is one of the key properties of higher spherical polynomials.
Note that it can also be formulated in terms of the inhomogeneous coordinates discussed in the
final paragraph of §1 as the assertion that the restriction of the projection map C[S,] — C[S}]
to the space of higher spherical polynomials is an isomorphism:

s (10)

Cist = Pud)g, = @ Pald)
a
For n = 2 this is just the classical decomposition of polynomials in one variable into linear
combinations of Legendre or Gegenbauer polynomials

The second consequence of Theorem 1 which we want to mention is that it gives us canonical
bases of the spaces Pa(d) and P (d). Let Ny = [JNo(a) be the set of all matrices v € N with
all v;; = 0. Then by pulling back the basis of monomials T% under the isomorphism & of the
theorem, we obtain:

Proposition 1. Let a € Z%, and d € C \ E(a). Then for every v € Ny(a) there is a unique

element P,,% c P (d) whose restriction to SV is the monomial T¥, and these polynomials form

a basis of Pa(d).

The polynomials PM(T) (the index d will usually be dropped when no confusion can result)
will be called the monomial basis of P, (d). In Section 5 we will study this basis (and its dual
basis with respect to a canonical scalar product) in more detail. We will also give explicit
constructions of these polynomials there. This also gives another proof of Theorem 1 and its
corollary.

Finally, let us make a few remarks concerning the degenerate case d € Z(a). In this case
the dimension of P, (d) can be larger than Ny(a), as we saw in Example 1. However, there is a
natural way to define a subspace P (d) of Pa(d) of the correct dimension, because it is not hard
to see that the subspaces Pa(d’) C C[S,] have a limiting value as d’ — d. For example, the six
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polynomials in Py 22 2)(d) given in Example 2 become linearly dependent if d = 0 (the three
polynomials in i) become equal), but we can make a change of basis over Q(d) to give six other
polynomials, still with coefficients depending polynomially on d, which are linearly independent
for all d. (Replace the second and third solutions in i) by their differences with the first solution
divided by d.) This means that if we replace the space Pa(d) by the limiting space

Pi(d) = lim Pa(d) (11)

whenever d belongs to Z(a), then the dimension formula dim P,(d) = Ny(a) holds for all d € C
and the map P} from C to the Grassmannian of Ny(a)-dimensional subspaces of C[S,]a is
continuous, and in fact analytic, everywhere. For this reason, we could equally reasonably have
taken Pz (d) rather than NKerD; as the definition of P,(d) for values of d belonging to Z(a).
On the other hand, P}(d) is not as nicely behaved as Pa(d) for generic d: the “constant term”
map from P}(d) to CNo(@) g no longer an isomorphism, even though the dimensions are equal,
and the decomposition (9) also breaks down, as the following examples show.
Example 1: If n =2 and a = (2,0), then we have Pa(d) = 0 for d # 0 and Pa(0) = Ct;4, but
we have P%(0) = 0.
Example 2: If n =2 and a = (4,4), then for d ¢ Z(a) = {—2, —4}, the space Pa(d) is spanned
by (d+4)(d+2)t]y — 6(d+2)t11t22t3, + 33,135, while Pa(—2) and Pa(—4) are spanned by 3,13,
and 4tq1taat?y + t3,t2,, respectively. So in this case Pa(—2) = Pz (—2) and Pa(—4) = P:(—4).
In particular, for d = —2 and —4, there exists no monomial basis.

We end this section by giving an alternative, purely algebraic, definition of P} (d).

Proposition 2. Fora € ZY, and arbitrary d € C the space P;(d) defined by (11) coincides with
the space of polynomials P belonging to a sequence (..., Py, P, Py= P, P_1=0) of polynomials
P, € C[S,,]a satisfying the system of differential equations

DZ(PT):aZ’L(Prfl) (T:07 17 27"-7 1§Z§n) (12)

Moreover, the polynomials P, can be chosen such that only finitely many of them are non-zero.

Proof. By the discussion preceding the statement of the proposition, any P € Px(d) can be
deformed to a (convergent or formal) power series P(T';¢) € C[S,][[¢]] belonging to P} (d—¢) for
any (complex or infinitesimal) value of e. (Choose a basis {P)(T,d’)}1<;<ny(a) of Pz (d) for all
d’ near to d, or even for all d’ € C, where each P)(T,d’) is a polynomial in T and d’, write P(T)
as 3., a; P (T, d), choose any convergent or formal power series a;(¢) with a;(0) = a;, and set
P(T;e) =Y, ai(e)PO(T,d — ¢).) Write P(T;¢) as Y., P-(T)e". From the definition (5) we
get

D) = (0 — o) (S PD) = SR — o)
r=0

r=0

for each 1 <4 < n, so the condition P(T;¢) € Pi(d—¢) is equivalent to the system of differential
equations (12). If we choose the power series a;(¢) in the above argument to be polynomials
(e.g., constant polynomials) in ¢, then P(T;¢) € C[S,][¢] and the polynomials P,(7") vanish for
all but finitely many r. O

Remark. In the generic case d ¢ Z(a), we can also deduce the existence of polynomials
P.(T) as above for any P € Pa(d) by using the fact given in Remark 4 above. Indeed, if we set
P_; =0and Py = P, then (12) is satisfied for » = 0 by the definition of P,(d). Now suppose by
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induction that for some R > 0 we have found polynomials (Pg, ..., Py = P, P_1 = 0) satisfying
equation (12) for 0 < r < R. Then from the commutation relation

[Diaajj] = Z[tk@,ajj]aikaif = _283]
kL

we find that D;(0;;(Pr)) = 0;;0ii(Pr-1) — 28%(133), which is symmetric in ¢ and j, so the
result of Remark 4 implies there exists some Pry1 € C[S,]a with D;(Pr41) = 0,;(Pr) for all j,
completing the induction. We also observe that the freedom in choosing each new polynomial
P, (r > 1) in the inductive system (12) is precisely Pa(d), corresponding to the freedom of the
choice of a;(¢) € a; + ¢ C[[¢]] in the proof above.

§3. Scalar product and orthogonality

One of the most important properties of the classical Legendre and Gegenbauer polynomials
is that they are orthogonal with respect to a suitable scalar product. In this section we prove an
analogous property for the higher spherical polynomials by constructing natural scalar products
on the spaces C[S,] and C[S}], proportional to each other in each fixed multidegree, such that
the direct sum decompositions (9) and (10) given in the last section are orthogonal. For n = 2
this is equivalent to the classical orthogonality property just mentioned, and for n = 3 it is
exactly analogous, because each summand in (9) and (10) has dimension < 1, so that we again
obtain a canonical orthogonal basis of the space of all polynomials on S} . For n > 4 the spaces
Pa(d) in general have dimension greater than 1, and we could not find any natural orthogonal
basis. However, it will turn out that there are two natural bases of P,(d), one of them being
the “monomial basis” constructed in the last section, that are dual to each other (at least up to
scalar factors; the normalizations of both bases are not entirely canonical) with respect to the
scalar product. This will be discussed in §5.

The definitions of both scalar products will be motivated by the case when d is an integer > n,
so that Pa(d) can be identified with (@H,,(R%))P(D. In the classical theory of harmonic poly-
nomials, one defines a scalar product ( , )ga—1 on C[RY] by

(95 = g [, (@@ (fgeCRY),

where dx denotes the standard volume form on the sphere, and shows that the spaces H,(R?)
and H,(RY) are orthogonal with respect to this inner product if a # b. Furthermore, the
restriction map to S9! is injective on H,(R?) and the space of all polynomial functions on
S9=1is the direct sum of these spaces. (In fact the space H,(R?%)ga-1 is just the eigenspace of
the Laplacian operator Aga—1 of the Riemannian manifold S%~! with eigenvalue a(a + d — 2),
and this orthogonal decomposition simply corresponds to the spectral decomposition of L?(S91)
with respect to the Laplacian.)

For purposes of calculation it is convenient to relate the scalar product ( , )ga—1 to a second
scalar product ( , )ga on C[R?], defined by

(F9)e = Cr)™2 [ S@) o) e dar

where the normalizing factor (27)~%2 has been chosen so that (1,1)ge = 1. We can write the

definitions of (f, g)ga-1 and (f, g)re as Ega—1 [fg] and Ega [f?], where Ega—1 [f] = (f,1)ga-1 and

Era [ f] = (f,1)ga denote the expectation values of f with respect to the probability measure
13



Vol($4-1)~1dz and (2r)~4/2e~117/2dz on S9! and R?, respectively. For (the restrictions to
S9=1 of) homogeneous polynomials these two measures are proportional: if f € C[R?],, then

Ega[f] = (2m)~¥2 /Ooo e/ </Sd1f(m) d(m)) dr

Vol Sdil > 1 —r2/2
= cu(d)Egas [f] (13)
with J J
cald) = 2a/21“(‘“2r )/T(5) = d(d+2)(d+a-2)  (aeven). (14)

(The definition of £,(d) for a odd does not matter because in that case f(z) is odd and both
measures under consideration vanish trivially.)

The scalar products ( , )ge and (, )ga—1 on C[R?] extend in the obvious way to scalar
products (, )gayn and (, )(ga-1y» on C[(R?)"] and induce scalar products ( , )g and ( , )}

on C[S,,] by the formulas (in which elements of (R¢)™ are thought of as n x d matrices)

(P.Q)a = (P,Q)gay = (2m)7"/2 /R CP(XXH) QXX e "XI2ax, (15)

~ ~ 1
(P’ Q)Ell) = (P, Q)(Sd_l)" = W [Sd_l)nP(XXt) Q(XXt) dX (16)
for P, Q € C[S,,], where P=Po Bns @ = @ o B, as usual. The properties reviewed above then
immediately imply the corresponding properties for these new scalar products, namely, that the
spaces Pa(d) = (9Ha, (Rd))o(d) and Pp(d) = (@Has, (Rd))o(d) are orthogonal to each other if
the multi-indices a and b are distinct, and that the two scalar products are proportional in each
multidegree:

(P.Q)q = carn(d)(P,Q)Y  for P e ClSula, Q € TSyl (17)
with e,(d) € Z[d] defined by
€a(d) = Hfiai (d) (ae€Zl). (18)

(Again this definition is relevant only if a is divisible by 2, since, as one can see easily, polynomials
whose multidegrees are not congruent modulo 2 are orthogonal with respect to both scalar
products.) We now show that these definitions can be extended to arbitrary complex values
of d, with the same properties.

Denote by S;7 C S,, the space of positive definite symmetric n x n matrices and by S1'+ its
intersection with the space S} of n x n matrices with all diagonal coefficients equal to 1. The
spaces S,, and S} are isomorphic to the Euclidean spaces R™"+1)/2 and R*("=1)/2 respectively,
and have natural Lebesgue measures d1' = [], ., ;- dt;; and d'T = [1i<icj<n dtij which we
can restrict to their open subsets S;7 and S!'*. For R(d) sufficiently large we define

(P.Qu = eald) [ e "M/ PD)QIT) den(r) @ D2 ar (19
St
and
(P.Q)} = chd) [ PT)Q) der() " V2 aT, (20)
Sy
where ¢, (d) and c}(d) are normalizing constants defined by
n—1 .
d\—n d—i\—1
nd/2 _ “w 1 — ——n(n-1)/4
2nd/2 ¢ (d) F(2> cl(d) =« H) r( > ) . (21)
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Theorem 2. (a) The integrals in (19) and (20) converge absolutely for d € C with R(d) > n—1
and their right-hand sides agree with (15) and (16) if d is an integer > n.

(b) The values of (P,Q)q or (P,Q)} for P and Q multihomogeneous are related as in (17) for
all complez values of d, with e5(d) defined by equations (14) and (18).

(c) For fixed P, Q € C[S,] and variable d, the scalar product (P,Q)q is a polynomial in d,
belonging to Z[d] if P and Q have integral coefficients, and (1,1)g = 1.

(d) The spaces Pa(d) and Py (d) with distinct multi-indices a and b are orthogonal.

Remark 1. Parts (b) and (c) give the holomorphic continuation of ( , ); and the mero-
morphic continuation of ( )Cli to all complex values of d, with the poles of the latter occurring
only for d € {0,—2,—4,...}. These are the same exceptional values as in Theorem 1.

Remark 2. Part (d) (in which we do not have to specify which scalar product is meant, by
part (b)) implies that both the direct sum decomposition C[S,] = @, Pa(d) @ Clti1,... ,tnn]
given by the corollary to Theorem 1 and the direct sum decomposition of C[S,]a given in (9)
are orthogonal with respect to either scalar product, and that the direct sum decomposition of
C[S}] given in (10) is orthogonal with respect to the scalar product ( , )} on C[S}].

Remark 3. If d is real and > n — 1, then the convergent integral representation (19) shows
that the scalar product ( , )4 on C[S,] is positive definite and hence non-degenerate. For other
values of d, ( , )q may be degenerate. We will show in Theorem 11 that this can happen only
if d is an integer. Numerical examples can be found at the end of §5 and in Tables 2 and 3 at
the end of the paper.

Remark 4. Under the correspondence P <« p between functions in P € C[S,]a and
p € C[Sp*] given in (6), we have D;(P) «» (ID;+a;(a;+d—2))p for some second order differential
operators D; (depending on d but not on a) on S} . (Compare (8) for the case n =3, i =1.)
The spaces Pa(d) therefore correspond to spaces of simultaneous eigenfunctions of the opera-
tors ;, with eigenvalues a;(a; +d — 2). If d is real and > n — 1, then we can define a Hilbert
space L?(S}T) using the positive definite scalar product (20). Since S}'F is compact and the
restrictions to S} of polynomials on S,, separate points, these restrictions are dense in L?(S} ™)
by the Stone-Weierstrass theorem. It follows that L?(S} ™) has an orthogonal Hilbert space di-
rect sum decomposition as @@, Pa(d) ‘ 51+ and that this is simply the eigenspace decomposition
of the collection of commuting Self—adj(;int operators D;.

Proof of Theorem 2. We begin by proving (b), the relationship between the two scalar products
(P,Q)q and (P,Q)} when P and @ are multihomogeneous, after which we can work only with
(P,Q)a, which is easier. We can also simplify by observing that (P,Q)q and (P,Q)} can be
written as E4[PQ] and EL[PQ)], respectively, where E; and E} are the maps from C[S,] to C
defined by E4[P] = (P,1)4 and E}[P] = (P,1)}. This is more convenient since these functions
depend on only one rather than on two arguments. The statement of (b) then becomes that
Ea[P] = a(d) E}[P] for P € C[S,]a. To prove it, we observe that every 7' € S;" can be written
uniquely as AT} \ where ) is a diagonal matrix with positive entries and T} € S}, the values of A
and T being given by t;; = )\12 and t;; = \jAj7; for i # j, where 7;; are the entries of 7. We
then have

dT’ = H(z)‘id/\i)'H(/\i)\deij> = (2A\1 - M) dTy d),
i=1 i<j
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and of course det(T) = (A1 -+ A\, )2 det(T1), so (4) and the definitions of E; and E} give

Eq[P] = 2" cn(d) /n /S+ e~ IMF/2 xa Ty (g -+ )P det(Ty) @ D/2 4Ty dA
+ n

i L o) = omin

n

- EllP) -

for P € C[S,]a, where the last equality follows from by (18), (14) and the first of equations (21)
because the expression in parentheses equals 24/2T'(d/2) ,,(d) for a; even and because both
Eq[P] and E}[P] vanish if a; is odd (as one sees by replacing T by AT'A, where X is the diagonal
matrix with \; = —1 and A\; =1 for j # 7).

We next show the equality of the right-hand sides of (19) and (15) when d is an integer > n.
(The equality of the right-hand sides of (20) and (16) then also follows since we have proved the
proportionality result (17) for both definitions of the scalar products.) We must show that

cn(d) / F(T) det(T)4="=D/2qT = (27)~ /2 / F(XXYdX . (22)
Sy (Rd)m

for rapidly decreasing functions F : S} — C. (Apply this to F(T) = P(T) Q(T) e~*(T)/2)) To
do this, we will decompose the Lebesgue measure on R into a T-part and another part. We
first decompose X as SV where S is a lower triangular n X n matrix with positive diagonal
entries and V' an n x d matrix with orthonormal rows, i.e., we write each z; (1 < i < n)
as Zl<j<i8ij v; with s;; > 0 and vq,...,v, orthogonal unit vectors in R4 (Gram-Schmidt
orthonormalization process). The numbers s;; and the components of the vectors v; can be
taken as local coordinates, so we can decompose dX into an S-part and a V-part. The vector
v1 belongs to the unit sphere in R9, so for the vector z1 = s11v1 we get dxr, = sill_l dsy11 dprg—1,
where djg_1 denotes the appropriately normalized standard measure on the sphere S?~1. Once
we have fixed vy, then the vector vy belongs to a (d — 2)-dimensional sphere and for the vector
To = S91U1 + So2v2 We get dry = 352_2 dss1dsss dpg_o. Continuing the process, we get

aXx = [ & [ dsi;av,

1<i<n 1<j<i<n

where dV = dug—1 dppg—s - - - dptg—n is the measure on the V-coordinates. By definition, we have
T=XX!=SVVtSt = S8t This gives

ar = [[dt:; = 2" ﬁs;;""“ [T dsi;- (23)
=1

1<j 127

(We have t;; = s%i +--- and t;; = 84485 +--- for j > ¢, where - - - denotes terms of higher index
if we order the pairs (4, 7) lexicographically.) Comparing the last two formulas and noting that
[T, sii = det(T)/2, we get

dX =27" det(T) 5 [[ drav,

1<

and since V' runs over H?:_[)l Sd=i=1 this implies (22), with ¢, (d) given by

n—1 n—1 .
) d—1i._
Cn(d) — 9 (27T)—nd/2 | | Vol(sd—z—l) — 2—nd/2 W—n(n—l)/4 l [ P( . Z) 17
1=0 =0
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in agreement with the formula in (21).

We now see that essentially the same calculation works also for non-integral values of d,
because the decomposition 7" = SS* did not involve the V-part of the variable X € R™® but
only the n X n matrix S. The maps S — SS? defines a bijection between the space £ of lower
triangular n x n matrices S with positive diagonal entries and the space S,, of positive definite
symmetric n X n matrices. The space £ is an open subset of a Euclidean space with coordinates
sij (1 < j <1 < n) and natural Lebesgue measure dS =[], dsi;, so by (23) we find

3

Eq[P] = 2" ¢, (d) /2 . 5502 p(g) [ sé" dS = ES[P) (24)

for any P € C[S,], where P € C[£,]°" (the space of polynomials on lower triangular n x n
matrices that are invariant under S +— S\ for any diagonal matrix A\ with all entries +1) is
defined by P(S) = P(SS?). (The formula for P(S) is the same as the formula for P(S) in the
special case n = d if we consider £,, as a subspace of the space (R™)" of all n x n matrices,
but the roles of X and S are quite different and we prefer to use a different notation.) This
formula makes it clear that the integral converges for all polynomials if (and only if) d is a
complex number with real part > n — 1, since for convergence in (24) we need d —i > —1 for all
1 <4 < n. This completes the proof of part (a) of the theorem, but part (c¢) now also follows
immediately, since we have the explicit formula

oo (o]
ES [H Sm”] = 2"¢c,(d) H </ sMid s /2 ds) . H (/ gmiitd=—ig=s®/2 ds>
i<i 1<j<i<n N~ 1<i<n N0
H (mg; — DI H €my; (d—1+1) if all m;; are even
= 1<j<i<n 1<i<n (25)
0 otherwise,

where (m — 1)!! is defined as usual as 1 for m =0 and as 1 x 3 x --- x (m — 1) for m > 0 odd.
(Here one has to note that the integral over ds;; for j < ¢ vanishes if m;; is odd because we are
integrating an odd function over all of R, and that if all of the Mg with j # ¢ are even then
the diagonal entries are always even because for a monomial || s”” in C[£,]®" the sum of the
exponents m;; for any fixed value of j is even. We are therefore in the case where the second
formula in equation (14) can be applied.) It thus follows that E4[P] = Ed’:[ﬁ] € Z[d] for any
polynomial P € Z[S,], and that E4[1] = 1, proving (c).

Finally, we observe that the orthogonality statement (d), the most important part of the
theorem, now follows formally from the other parts, since we already know that it is true when
d is an integer > n and a polynomial which vanishes for infinitely many values of its argument
must be identically zero. A more direct proof for arbitrary d will follow from results given in
the next section, where we will show that

for every P € C[S,]a, @ € C[S,]b and every 1 < i < n, and hence (a; — b;)(P,Q)q = 0 if
P, Q€ Ker(D;). O

We now discuss the actual calculation of the scalar products. In the case when d > n is an
integer, this is easy because the expression Era [ f] can be calculated trivially for monomials. (For
d =1 one has Eg [2™] = (m — 1)!! for m even and Eg [2™] = 0 for m odd, and the values for R?
or (R4)™ are obtained from this by multiplicativity.) For d complex the integral (19), although

17



it is convergent if d is large enough, is useless for computations since it involves a complex power
of a polynomial with many terms. We mention three® quite different effective methods—each
of which could be used as an alternative definition instead of the integral (19)—for calculating
the scalar products (P, Q)4 explicitly as polynomials in d.

(i) The first way is to use the formula (24) together with the explicit evaluation (25). This can
be programmed very easily.

(ii) The second method is to use rules that will be given in the next section (Proposition 1)
to write the value of E; on any polynomial of the form ¢;; P in terms of its values on P and
derivatives of P. This gives E; for all monomials inductively starting from the value E4[1] = 1.

(iii) The third, and in some sense most explicit, method comes from the following theorem,
which gives a generating function for all monomials P(T) = T%. To state it, we introduce the

notation
1<i<n 1<i<j<n

for v = (vij), ., i<n € N, where v!! is defined as 2¥/%(v/2)! for v even. Then we have:

Theorem 3. Let Y be a symmetric matriz with complex entries with 1 —YYt > 0. Then
v

> Eq[T"] % = det(1 — V) ? = exp@ Ztr(w)> : (28)

r
veN, r=1

Proof. Both series in (28) converge exponentially under the condition stated, since then all
eigenvalues of Y are less than 1 in absolute value. (This is actually not very important for us,
since in applications of the theorem Y will always be a formal variable.) By analytic continuation,
we can assume that Y is real. The second equality in (28) is standard, so we need only prove
the first. The basic calculation is

A - % = ay; 1
Yo (X)) I (X5) —oolz X ).
veN 1<i<n ‘wv=0 1<i<j<n “w=0 1<i,j<n

valid for any symmetric n X n matrix A. Applying it to the matrix with entries a;; = t;;v:; gives

Z my” — tr(TY)/2 (29)
V!
veN
for any T, Y € §,, and hence
YI/
Z Ed [TU] 7 = C’I’L(d) / e_tr(T(l_Y))/Q det(T)(d—n—l)/Q dT
- S;i_

vEN,

for sufficiently small Y € S,,. We can write 1 —Y = U? for some invertible n x n matrix U € S,,.
Then tr(7'(1 —Y)) = tr(UTU). The change of variables from 7' to UTU is a bijection from
S to itself and sends det(T) to det(U)?det(T) and dT to det(U)"T1dT, so the value of the
expression on the right is det(U)~¢ times its value for U = 1, which equals 1 by the definition
of the normalizing constant ¢, (d). O

3 Another effective method uses the Corollary to Proposition 2 in §4 below. All values given in the tables at
the end of the paper were computed independently from at least two of these four formulas.
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We remark that a related, but somewhat simpler proof of Theorem 3 can be given in the case
when d > n is an integer (which suffices to prove the general case since (28) is equivalent to a
collection of polynomial identities in d). Again using the identity (29), we find in this case

v

Z Ea[1%] 2 = (27[_)—nd/2/ (XX A-Y))/2 g
ven, v: (R)»

_ (27T)—nd/2/ e—tr(X(l—Y)Xt)/Q dXx (X_>Xt)
(Rm)d
d
= ((%)‘””/ e_’”(l_y)mt/zda:> = det(1 - V)2,

where we have used the standard identity 7="/2 [, e~A2" = (det A)"1/2 for A € S
As a simple example of the application of the theorem, we have

i Ealty] o = (1—y) 2 = i 22m(d) .

2mm/! 2mm!

m=0

Of course here we knew the answer already since Eq4 [t;’ﬂ = e (d) E} [t;ﬂ = o (d) EL[1] =
gam(d). As a less trivial example, we take Y = ye;; (e;; as in §1) for i # j to get

0 m
3 Ealt] % = det(1 — yey) ¥ = (1-y2) Y2

m=0

and hence
(m— 1) - 2™/2(d/2),,/» if m is even,

Eq|tl}] = 30
d[”] { 0 if m is odd. (30)

§4. The Lie algebra of mixed Laplacians

Let us return for the moment to the case that d is an integer > n and that our polynomials
on S, correspond via P +— P to the O(d)-invariant polynomials on (R%)™. Then as well as the
“pure” Laplace operators

SAVACAY Zd 0?
A@ Am <axz) (8371) —~ 81,2 (1 N n)

(2o

on C[(R%)"] that were used to define Pa(d), we also have the “mixed” Laplace operators

8 a t d 82
AU (81:7,) <al‘]> Ozz::l 81‘1@ al‘ja (1 5L J% n)

The same calculation as for A; shows that these correspond under the map (1) to the differential
operators

n
Dij = Dz(;l) =d 0 + Z tkt OiOji - (31)
k=1

The D;;, which can now be defined for this equation also for d < n or d ¢ Z, commute with
one other and in particular with the pure Laplacians D; = D;;, so they preserve the condition
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of being harmonic, i.e. D;j (i # j) maps Pa(d) to Pa—e,—e,(d), where e; is the vector with 1 in
the ith place and 0’s elsewhere. These “intertwining” operators will turn out to be very useful.

In exactly the same way, as well as the operators E; : C[S,]a — C[S,]a corresponding to
the Euler operators ) x;,,0/0x; o (Remark following the Proposition-Definition in §1) we also
have maps Ej; : C[S,]a — C[Sy]ate,—e, for i # j, given explicitly by F;; = > ry tik Ojk, which
correspond when d is integral and T' = X X* to the “mixed Euler operators” Y ;,,0/0x; o (be-
cause these are again O(d)-invariant). Finally, we have operators Fj; : C[Sy]a — C[Sh]ate,+e,
for all 4, 7 = 1,...,n given by multiplication with ¢;;. In this section we will show that the
vector space spanned by all of these operators and by the identity is closed under commutators
and also under adjoints with respect to the scalar product defined in the previous section.

To check the Lie property involves computing a large number of different commutators. We
have six kinds of commutators ([D, D], [D, E], [D, F|, [E,E], [E,F] and [F, F]) and for each
one a number of different special cases depending on which indices are distinct and which are
equal. For instance, to give the commutators of the operators D;; with Fj; we have to consider
seven different cases, obtaining after somewhat tedious computations the seven formulas

[Dii, Fii) =4E; +2d, [Dy;, Fix) = 2Ey;,  [Dyi, Fu] =0,
[Di;, Fijl = E;+ E;+d, [Dij,Fi;| =2E;;, [Dij,Fixl] =Ey;j, [Dij,Fr]=0

for i # j and k, I # i, j. If we modify the definition of E;; for i = j by setting E;; = E; +d/2
rather than by the more natural-seeming formula E;; = FE;, then the scalar terms “2d” and “d”
in these equations drop out and the seven cases can be written in a uniform way. Moreover,
somewhat surprisingly, the corresponding simplification also occurs in all the other types of
commutators if we make the same substitution; in other words, the vector space spanned by the
operators D;;, E;; and Fj; is already closed under commutators, without having to include also
the identity operator. More precisely, we have:

Theorem 4. For fized n € Z>o and d € C, the vector space g C End(C[S,,]) spanned by

D;; = do;; + k;1 L0y, Eij = 5 dij + ;tz’kajky Fj =t; (1<i,j<n) (32

1s a Lie subalgebra, with commutators given by

[Dij, Dii] =0, [Dij, Ewt] = 6iDji + 86 Dits  [Dij, Frul = dirnErj + 6By + duEri + 651 B,
[Eij, Exi] = 0Bt — 0uErj,  [Eij, Fri]l = 0juFi + 01 Fik,  [Fij, Fral =0 (1 <14,5,k,1<n).

Proof. As already indicated, this is just a straightforward but lengthy computation, with many
cases to be checked. We give the proof of the second commutation relation as an example. From
the definitions we have

[Dij, Ey) = d Z[aija thmOim] + Z [trs0irOjs, tkmOim] »

r,8,Mm

where all indices run from 1 to n. The first term is equal to d ), (0ik0jm + dim0jk)0im =
d (6;x051 + 9;5041), and the second to

Z [(5]k55m + 5jm6ks)trsair8lm + (51k67‘m + 5im5rk)t7‘sajsalm - (5l7’5ms + 6ls5mr)tkmairajs]

T,8, M

= 04k Z t’rsa’irals + (1 - ]-) Z tkrairajl + 6ik Ztrsajrals + (]- - ]—) Z tksajsail .

T, s T, s
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Adding these gives the desired result [D;;, Exi] = 0;xDji + 61 Dj; . The other statements in the
theorem can be checked in the same way. Alternatively, since each of the commutation relations
among the generators of g is polynomial in d and therefore need only be checked for values of
d € Z>y , we can work instead with the mixed Laplace and Euler operators and the operations
of multiplying by (x;,z;) on the space of polynomials in (R?)" and check the commutation
relations there; then the calculations are different but the final result is the same. [

Observe that the operators D;; and F;; are symmetric in the two indices ¢ and j, whereas E;;
n(n+1) n(n+1)
2

5 = 2n% + n.
This is the same as the dimension of the simple Lie algebra

is not, so the dimension of the Lie algebra g is equal to +n?+

sp(2n,R) = {X € Moo (R) | X,y = —J, X1}, J":<10 _3”>’

and indeed (working over R) we have an isomorphism g 2 sp(2n,R), as we can see explicitly by
making the assignments

3 0 0 - €ij 0 B 0 61‘]‘4‘6]‘1‘
i H<_eij_€ji 0)’ Eij H(O _eji>’ i H(O 0

(where e;; (1 <4, j < n) is the elementary n x n matrix with 1 in the (4, j)th place and zeros
elsewhere) and comparing the commutators in g as given in the proposition with those in the
Lie algebra sp(2n). A better understanding of why sp(2n) occurs comes from the discussion
given in §1 about the connection between higher spherical polynomials and Siegel modular
forms. The Lie group Sp(2n,R) acts on the space of holomorphic functions F' : §,, — C by
(Flg)(2) = det(CZ + D)~%2F((AZ + B)(CZ + D)™') for g = (2 7) € G. (This is the action
used to define Siegel modular forms of weight d/2.) The action of G induces an action F +— F|X
of its Lie algebra sp(2n,R) via FlefX = F + (F|X)e + O(?), and from the calculation (setting
e2=0and X = (ég))

—d/2

FI(*Te* 1585)(Z2) = det(1+e(CZ + D)) F((Z+¢e(AZ+B))(1+e(CZ+D))™")

(1 — £ St(CZ+ D) F(Z + <(AZ + B~ 2(CZ + D))

we see that this action is given explicitly by

FI(A5)(2) = - gtr(CZ +D)F(Z) + Y (AZ+B-2(CZ+ D)), 0;,F(2),

i,j=1

where 0j; = 5(1+6;5)0/9z;; . Using the above isomorphism g = sp(2n,R), we then find

n n
d
Di; — dz; + E ZikZjl o Ei; — B dij + E Zik 8]*k ., Fyo— 8;}
k=1 k=1

and this agrees with the definition of the generators in g if we remember from the discussion

in §1 that the variables 7' (argument of the higher spherical polynomials) and Z (argument of

the Siegel modular forms) are dual variables with respect to the Fourier expansion, so that t;;

and 0;; correspond to 9; and z;;. In fact, we can use this correspondence to see directly that the

generators of g correspond to the standard generators of sp(2n), thus obtaining yet a third proof
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of the commutation relations in Theorem 2. This is certainly related to the Weil representation
([15], [13]), but we will not discuss this any further here because the identification of g with
sp(2n,R) will not play any role in this paper.

We now relate the operators in g to the scalar products that were defined in §3. Since each
of the generators in (32) is homogeneous, in the sense that it sends C[S,,]a to C[S,]ats for some
fixed 8 € Z™, and since the two scalar products ( , )gand ( , )} are proportional in each multi-
degree, we only have to give the formulas for ( , )4, where they are simpler. Recall from §3

that (P, Q)4 = Eq[PQ)] for the linear map E,4 : C[S,] — C defined by E4[P] = E(ga)n [ﬁ]

Proposition 1. For arbirary d € C, i, j € {1,... ,n} and P € C[S,,] we have
d

EalF;P] = Ba[(Ey + 505)P] = Eal(Dij + doy;) P (33)

Proof. Since each expression in (33) is a polynomial in d for any P, we may assume that d € Z>,,
. [e’¢) o

and that ( , )q is defined by (15). Note first that the operator Er[f] = \/% Joo flx)e™ /2 dx
(the special case n = d = 1 of E;) satisfies the relation Eg [l’f} = Eg [f’] for any f € C[z], as
one can see either from the explicit formulas Eg [2?™] = (2m — 1)!! and Eg [2?™ '] = 0 or, more
naturally, by using the identity

Eal] ~ Ealof] = <= [ d(e @) = 0,

i.e., by integration by parts. This immediately gives Ega [maf] = Epa [8f/693a] (a=1,...,4d).
for any f € C[R? and hence
af
Fr
for any f € C[(R?)"]. These formulas allow us to compute Eg, Ega and E(ra)» on all monomials
(and hence on all polynomials) by induction on the degree.
Using (34) twice, we find, for all F' € C[(RY)"] and all 1 <4,j <n,1<a <d,

E(Rd)n [:Jcmf] = E(Rd)n[ (’L = 1,...,??,, o = 1,...,d). (34)

0
E(Rd)n [-’EiaxjaF(X)] = E(Rd)n [%(acmF)]
oF 0’F
- E(Rd)” [5ijF + xia@] = E(Rd)n [5ijF + m]

and hence, summing over «,

d oF
E(Rd)n[(l‘i,l‘j)F] = E(Rd)n[ddijF + X_:l.l‘ia%] = E(Rd)n[ddijF + AZJF] . (35)

Applying this to F = P with P € C[S,,], we obtain (33) for all d € Z>, and hence for all d. O

Notice that either of the equalities E4[t;; P] = E4[(Eij+%0;;)P] or Eq[ti; P] = Eq[(D;;+d6i;) P
in (33), together with the normalization E4[1] = 1, defines E; uniquely, because the argument
of E4 on the right has lower degree than the one on the left. Proposition 1 therefore gives us
a new definition (to be added to the three previous definitions (19), (24)/(25) and (28)) of the
functional E4 : C[S,,] — C and hence of the scalar product ( , )4 for arbitrary d € C. Notice
also that the first equality in (33) for that ¢ = j gives the useful identity

Ed[tiiP] = (d + CLZ') Ed[P] for P € (C[Sn]a . (36)
This also follows from (17), since Eg4[t;; P] = €at2e, (d)E}[tii P] = cat2e; (A)EL[P] = (d+a;)Eq4[P].

Proposition 1 describes the relation between the Lie algebra g and the functional P — (P, 1),.
The following more precise result describes its relation to the whole scalar product.
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Proposition 2. The Lie algebra g is equal to its own adjoint with respect to the action on the
space C[S,,] with the inner product (P, Q)q. Exzplicitly, the adjoint operators of the standard basis
elements of g are given by

D} = Dy —E;—Eji+Fy, Ej = -E;+F;, F,=F;. (37)

Proof. The third equality in (37) is trivial since (t;;P) Q = P (t;;Q) for any P and @; notice
that it does not matter whether we write “Q” or “Q” since the integrations defining the scalar
products are taken over real-valued variables. The second equality (which includes the third
since E;; + E; is self-adjoint) follows from the first equality in (33) because Ej; — 26, is a
derivation. To prove the first equality, we assume once again that d € Z>,, and that the scalar

product is defined by (15). For F and G in C[(R%)"] we have

oF 0G oF 8G>

8:Eia 8LL‘ja 8([)ja &Um

d

and hence, denoting by = congruence modulo the kernel of E; and using (34) and (35),

c%zm al'ja c%cja 8:cm

FA;(G) = Aj(F)G = —A;(FG) + i[ ’ (F 8G> * ; (F . ﬂ

oG oG )

— + T ——
8.Z'ja J 8mia

d
— ((xi,mj) — d(;”)FG + F Z <£L’ia
a=1
= F(Ez] + Eji — FZ])G

The identity now follows by applying Egay» to both sides and replacing F' and G by P and @
with P, @ € C[S,]. O

Observe that equation (26), which was used in the last section to give a second and more
direct proof of the orthogonality of P,(d) and Py (d) for a # b, follows from (36) and the special
case ¢ = j of the first identity in (37).

As a further consequence of Proposition 2, we get the following nice formula for the scalar
product of §3 with respect to the monomial basis of P(d).

Corollary. For any two multi-indices g and v of the same total degree, the scalar product of
Pli\/[ and PM is given by
(B, P, = D*(BY), (39

where D denotes [[,_; D

Proof. Let TI = TI{” be the projection from C[S,]a onto the summand P,(d) in the decompo-
sition (9). (We will give an explicit formula for this projection operator in eq. (44) of §5 using
the results of this section, but we do not need it here.) Then we have

(DijP, Q)d = (P, tijQ)d = (P, H(tijQ))d for P € Pa(d), Qe ,Pa—ei—ej (d), (39)

where the second equality follows from the definition of II together with the second remark after

Theorem 2, and the first from the first formula in (37) together with the fact that spherical

polynomials are orthogonal to all polynomials of smaller degree (which is needed because the
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operator Dj;, like E;, is not homogeneous). On the other hand, for i # j, the definition of the
monomial basis implies that

pM = n®(t;p)Y, )  forall veNy(a), (40)

since t;; PM e, differs from 7% by something belonging to the ideal of C[Sn]a generated by the iy
and since the decomposition (9) implies (by induction on the total degree) that C[S,]a is the
direct sum of P,(d) and this ideal. Combining equations (40) and (39), we find

(Pli\/[’ Plfw)d = (Pli\/[’ H(tijPV]\{eij))d = (DU(PI—{'V[)’ P’/]\{eij))d :
Applying this identity repeatedly we find finally that this scalar product equals (D¥(F,), PM.

But D¥(P,) is a constant (polynomial of degree 0), PJ? = 1, and (1, 1)4 has been normalized to
be equal to 1. [

Proposition 2 shows that each of the 3- or 4-dimensional subspaces (D;;, E;;, Eji, F;;) of
which g is composed is already closed under taking adjoints. More precisely, the elements

1 . .
Fj = Fji = Fy (1<i<j<n), (41)
By = —Ej = By — Eji (1<i<j<n),
Fj = F;; = Fj — By — Ej (1<i<j<n)

give a basis of g consisting of selfdual or anti-selfdual elements. In particular, the subspaces
gt ={X € g| X* = £X} of g have dimensions n? 4 n and n2, respectively, and g~ is a sub-Lie
algebra of g, since [X,Y]* = —[X*,Y*]. More concretely we have

R o

Finally, we remark that instead of proving Propositions 1 and 2 for integral values of d > n
and deducing the general case by polynomiality, one could prove them directly for all d € C
by using the description of ( , )g in (24) together with the identity (again easily proved by
integration by parts)

N—=

F d—i
0 + 0i; 'F for all F' e C[£,]°".
0sij Sii

£ [siy F] = Ef|

However, this calculation is much more complicated than the one with the X-variables because
the expressions for the operators E;; and D;; in terms of the S-variables are no longer polynomial,
but involve powers of the diagonal elements si, of S in their denominators.

§5. The two canonical bases of P,(d)

In §2 (Proposition 1 and the following remark) we observed that Theorem 1 implies the
existence of a canonical basis { P} },en, (a) of Pa(d), characterized by the property that P (T)
becomes equal to TV if one sets all t;; equal to 0. In this section we will study this monomial
basis in detail. First, we will give an explicit construction of the polynomials P in terms of a
certain “harmonic projection operator” (Proposition 1). This at the same time gives a second,
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more constructive, proof of Theorem 1 and its corollary. Next, as an application of the Lie
algebra g of differential operators introduced above, we will give an inductive construction of the
polynomials PM in terms of certain “raising operators” belonging to the universal enveloping
algebra of g. We then discuss the dual basis {PP} of the basis {PM} with respect to the
scalar product from §3 (for generic values of d € C) and show that its members satisfy (and in
fact are determined by) the recursive property D;;(PP) = PP ei;» Where Dj; are the “mixed
Laplace operators” from §4. Finally, again using the scalar product, we will show that each
product t;; PM(T) can be written as a linear combination with constant coefficients of a bounded
number of basis elements P (T'). This gives another recursive way to obtain the basis elements,
generalizing the classical recursion relations for Legendre and Gegenbauer polynomials.

We start with the construction of the PM by a projection operator. Denote by H(RY) =
Ker(A) C C[R? the subspace of harmonic polynomials on R?. As we mentioned before the
corollary to Theorem 1 in §2, it is well-known that every polynomial P on R? can be written
uniquely as

P(a) = Y Pn(x) (z,2)" (42)

Jj=0
where each P,, is harmonic (and homogeneous of degree a —2m if P is homogeneous of degree a).
Denote by 7(® : C[RY] — H(R?) the projection map sending P to Py, i.e., to the unique harmonic
polynomial which is congruent to P modulo the ideal in C[R?] generated by (z,z). The following
formula for 7(®) is surely well-known, but we include its proof for lack of a convenient reference.

Lemma. Suppose that P € C[R?] is homogeneous of degree a. Then

= (P()) = 0<j§<:a/2 Ty Er iy M P@) oy (43)

where (x); = x(x+1)--- (x + j — 1) is the ascending Pochhammer symbol.
Proof. We have A(PQ) = A(P)Q + 25 2299 | pA(Q) for any P, Q € C[R?. Apply this

a Ozq OTa
to Q(x) = (z,z)7, for which we have

2Q -1 0%Q

Ot 2j xq (x,2) 7, 012 2j (z,2) =" + 4j(j — 1) a2 (z,2) 72,

to get
A(P(z)(z,2)?) = A(P(z)) (z,2)! + 45 (E(P(2)) + (d/2 +j — 1) P(2)) (z,z)’ 7",

where £ =) xa% is the Euler operator on C[R?]. Replacing P by A7(P) in this formula,
where P is homogeneous of degree a, we find

A(A(P(2)) (,2)) = ATTH(P(2)) (z,2) + 45 (a+d/2—j = 1) A (P(2)) (v,2) 7",

since A7(P) has degree a — 2j. It follows that the expression Y ~; A(P(z)) (z,z)? is in the
kernel of Aif v;_1 +4j(a+d/2—j—1)y; =0 for all j > 1, and combining this recursion with
the condition vy = 1, which ensures that this expression is congruent to P(x) modulo (z,x),
gives the formula stated. [

Now using the correspondence between the operators D; on C[S,] and A; on C[(R?)"], we
find from the lemma that for each a € Z%, the product operator

n

ti. DI
m =1 = H< ) 412 - d/2)j> -

i=1 \0<j<a;/2
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(in which the order of the product does not matter since the operators for different i commute)
sends any P € C[S,]a to the unique element of P,(d) which is congruent to P modulo the ideal
(t11, ... tnn) of C[S,], i.e., it gives the projection onto the g = 0-component of the direct sum
decomposition (9). (More precisely, the lemma gives this when d is an integer > n, and the
general case follows by “analytic continuation” since it is equivalent to a collection of identities
between rational functions of d, each true for infinitely many values of d.) In particular, we have
the following extension of eq. (40):

Proposition 1. The monomial basis of Pa(d) for d € C \ E(a) is given by
P, =0 (1)  (veNy(a)), (45)

where TIE - C[Sn]a = Pal(d) is the operator defined by equation (44).

We observe that the same argument as was used in the above calculation leads to a second
proof of Theorem 1 of §2 and to an explicit form of the decomposition (44) of polynomials on S,,.
Indeed, almost the same argument as the one used to prove (43) shows that the mth component
P,.(z) of the decomposition (42) of a polynomial P € C[RY], is given by the formula

_ 1 (z,2)? A" (P(x))
Pn(w) = 4mm! (a +d/2 — 2m)., O<j<za/:2_m 4951 (2m+2—a—d/2); (46)

(One first checks that the expression on the right is annihilated by A either by repeating the
calculation in the lemma or by observing that the sum is simply 7(¥(A™P(z)), and then ver-
ifies the equality (42) for the polynomials defined by (46) using a simple binomial coefficient
identity.*) We immediately deduce:

Proposition 2. The projection from C[S,]a t0 Pa—om (0 < m < a/2) defined by the direct
sum decomposition (9) is given explicitly by the operator

n

1 it
H(d) — H Z i [}
am 4mi mz'(az—i—d/Q—Zmz) 4{7'(2m1+2—al —d/2>J

i=1 M 0<j<a;/2—m;

and is, up to a scalar factor, equal to the map P 1 (D;ﬂ1 e D;?”P) with I as in (40).

a—2m

We now turn to the construction of the monomial basis, starting with the constant function
PM =1, using “raising operators.” For all i # j we define elements R;; = Rj; in the universal
enveloping algebra of g by

Rij = FulyjDi; — 2(Ej; — 2)FiEji — 2(Ey — 2)FyEij + 4(Ey — 2)(Ej; —2)Fy; . (47)
An alternative way to write this definition, since F;;, F;; and Fj;; change the multidegree, is

Rij = FiulyiDijy — 2FEyi(Ej; — 1) — 2F;E5(Ey — 1) + 4F;(Ey —1)(Ej; — 1), (48)

As operators on C[S,], these operators map C[Sy]a to C[Sy]ate;+e, and in particular increase
the total degree by 2. We will explain the origin of the formulas (47) and (48) below.

‘namely (with n =m+j and A =a+d/2 — 1), that >_1"_ (A —2m) (;;41) (27::7?) =0ifn > 0.
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Theorem 5. The raising operators R;; commute with one another and map the space P (d)
of higher spherical polynomials to itself. For a € (Z>o)"™ and v € Ny(a) the monomial basis
element P} € P,(d) is given by

1

pM = ——
v 52a(d—2)

RY (1) (deC, d¢€27Z<«), (49)

where €2a(d — 2) is defined by equations (14) and (18) and R” =[], R;’;j )

Proof. The identities
[Rij, Ru] =0, DyRij = REODy  (i#], k#1) (50)

in the universal enveloping algebra of g, where Ry;} is defined like R;; but with Ej;; — 2 and
E;; — 2 in (47) replaced by E;; — 2 + 20;, and Ej; — 2 + 20, can be checked directly from
the commutation relations given in §4. (However, this is very tedious. Two better ways will be
given at the end of the proof.) These identities prove the first two statements of the theorem.
For the last one, it suffices by induction to show that

Rij(B)) = (d+2a; —2)(d+2a; —2) B}, (51)
But this is almost obvious: The first three terms in (48) are divisible by t;; or t;; and the
operator 4(E;; — 1)(E;; — 1) acts on C[S,]a as multiplication by (d + 2a; — 2)(d + 2a; — 2), so

t11="=tpn=0 t11==tpn=0

= (d+2a; —2) (d+ 2a; —2)T""®

Ri;(B)(T)

and now (51) follows from the definition of the monomial basis and the fact that R;; sends
P (d) to itself. [

The proof just given is short, but has two disadvantages: the definition (47) (or (48)) is
completely unmotivated, and the commutation relations (50) are proved by a lengthy brute force
calculation. We describe two other approaches that are more illuminating and also illustrate
ideas that will be used again later.

(I) For 4, j € {1,...,n} and a € C" we define an operator R;;(a) by
Rij(a) _ 6(T)a+ei+ej7(27d)1/2 Dij 5(T)(27d)1/27a7 (52)

where §(T)™ is defined as in the Corollary to Theorem 1. (Note that 6(7')™ is not well-defined
for non-integral m, but the right-hand side of (52) is well-defined because the ambiguity of
phase of the two 6(7T")* terms cancel out.) This definition is motivated by the symmetry of
the inhomogeneous form of the differential system defining P,(d) under a — (2 — d)1 — a, a
symmetry which is implicit in Remark 4 of §3 and explicit in equation (8) in the case n = 3. A
direct calculation shows that

Ry(P)  ifi#}. 53)

PEC[Sn]a = Rl—j(a)P = {

This makes the fact that the operators R;; commute almost obvious, because applying R;; to

C[S,]a is the same as applying D;; to §(T)(2~D1/2-aC[S, ], and the operators D;; all commute

with one another, and an exactly similar argument shows that the operators I?;; map spherical
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polynomials to spherical polynomials, because (53) shows that the spherical polynomials in
C[Sn]a are precisely the polynomials killed by all Ry (a).

(IT) The second approach is to prove equation (51) directly using the harmonic projection
operators Hgd) discussed in the first part of this section. This equation then implies equation (49)
and the facts that the operators R;; preserve P (d) and (at least when restricted to this
space) that they commute with one another (because v + e;; + ey = v + ey + €;;). Because of
equation (40), all we have to do to establish (51) (in which we take i = 1, j = 2 for convenience)
is to show that

(d + 2&1 — 2)(d + 2&2 — 2) Hgd) (tlgp) = 4(d + 2&1 — 2)(d + 2&2 — Q)tlgp

(54)
— 2(d+ 2&2 — 2)t11E21(P) — 2(d+ 2@1 — 2)t22E12(P> + t11t22 Dlg(P>

for all P € Pa(d). We do this using the commutation relations given in Theorem 4.
Denote by m, = ﬂ,gd) the kth factor in (44), so that Hgd) =T - Tp. Since 7, commutes with

Fy5 for k > 3 and projects P to itself, we have H;(,d) (tlgP): T (tlgP). From the commutation
relations given in Theorem 4 and the fact that D; = D,; annihilates P for all i, we find

Dy (t12P) = [Ds, Fi2](P) = 2E2(P), D3(t12P) = 2[Dy, Ep](P) = 0,
so that only the first two terms in the series defining w5 contribute to m2(t12P) and we have

1

P) = twP — —
™ (h2P) =t 2(2a5 + d — 2)

too E12(P) .

By the same argument, and since m; commutes with Fyo, we find

1 1

7-[-171-2(‘[/‘12P) = F12(P) — mtllE21(P) - m

tao 1 (E12P),

and since an exactly similar argument using the commutation relation [Dy, E12] = 2D;5 gives

1

1 D(P
20ay +d—2) 12(P),

7T1(E12P) = Elg(P) -
this completes the proof of (54) and hence also of (49). It also explains the motivation for
the artificial-looking definition of R;;: this operator is the simplest element of the universal
enveloping algebra of the Lie algebra of §4 that is (up to a scalar factor in each homogeneous
component) adjoint to the mixed Laplace operator D;; with respect to the restriction of the
scalar product (-, - )4 to P(d).

We now come to the definition of the second canonical basis of P(")(d). Theorem 5 tells us
that, for generic d, the monomial basis {PM(T) | v € Ny(a)} of P(™(d) is the same, up to
scalar factors, as the “ascending basis” defined by taking 1 as the basis element of Po(d) and
then applying the raising operators R;; to obtain the higher basis elements by induction. The
descending basis is defined, again for generic d, by a similar process in reverse.

Proposition-Definition. For generic d, there exists a unique basis { PP (T) | v € No(a)} of
P(")(d), called the descending basis, characterized by the property

Dy(B)) = Ple,  (i#]) (55)
(where the right-hand side is to be taken as 0 if v;; = 0) and the initial condition PP (T) = 1.

This follows immediately from the following lemma, in which P,(d) = {0} if a; < 0 for some i.
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Lemma. Let a # 0 and d a complex number such that the inner product in Pa(d) is non-
degenerate. Suppose that for all i # j we are given polynomials Gij = Gj; € Pa_e,—e,(d) such
that Dii(Gij) = Dij(Gr) for all i # j and k # 1. Then there exists a unique polynomial
G € Pa(d) such that D;;(G) = G;j for all i # j.

Proof. The proof is similar to that of Theorem 1. We will show by induction on |S| that, for
any set S of (unordered) pairs (i,j) with 1 <1i,5 <mn, ¢ # j, the following statements hold:
(i) The dimension of the space Ka(S) :=((; jes Ker(D;;), where Ker(D;;) = {P € Pa(d) |
D;; P = 0}, is equal to the number of v € Ny(a) with v;; = 0 for all (4, j) € S.
(ii) The map D;; : Ka(S) = Ka—e,—¢,(S) is surjective whenever (i, j) € S.
(iii) Assume that for all (i,j) € S, polynomials Gi; € Pa_e,—e,(d) are given which satisfy
Dyi(Gij) = Di;j(Gy) for all (k,1) € S. Then there exists G € Pa(d) such that D;;(G) =
G, for all (i,j5) € S.

We denote by IT = 1Y the harmonic projection. We saw earlier (eq. (39)) that the scalar
product (Q, D;; P)q equals (II(t;;Q), P)q for any P in Pa(d) and Q in Pa_e, e, (d). It follows
that D;; P = 0 if and only if P is orthogonal to all monomial basis polynomials PM with
vi; > 0, and hence that the dimension of K,(S) equals Ny(a) minus the number of v € Ny(a)
with v;; > 0 for some pair (i,j) € S, which is precisely the statement of (i). Statement (ii)
follows immediately from (i) by comparing the dimensions. We now prove (iii) by induction on
the cardinality of S. The claim is true when |S| = 1 since D;; : Pa(d) — Pa—e,—e, (d) is surjective
by (ii). Now assume that (iii) is true for some S and that G;; are given for (i, j) € SU{(k,[)} and
satisfy the compatibility condition. By the inductive assumption, there exists Gy € Pa(d) such
that D;;(Go) = G;j for any (i,5) € S. We have D;;(Gr; — Dri(Go)) = Dy (Gij — Dij(Go)) =0,
50 G — Dii(Go) € Ka—ep—e,(S). Since Dy maps Ka(S) to Ka_e,—¢, (S) surjectively by (ii),
there exists G € Ka(S) such that Dy (G1) = Gr — Dri(Go). So if we set G = Gg + G then
Dyi(G) = Gy and, since D;;G1 = 0 for any (4, j) € S, also D;;(G) = Gj;. The uniqueness of G
follows from (i), which implies that the dimension of K,(S) is 0 if S is the set of all (7, j) with
i#janda#0. O

Remark. The Lemma, and therefore also the Proposition-Definition, apply only to generic
values of d for which the scalar product on P,(d) is non-degenerate. In fact this assumption
holds for all d ¢ Z,,. This will follow from the results in §9, where we will give an independent
proof of the existence of { P°} satisfying (55) using a generating function. To prove it directly,
we would need an a priori proof that 1, ; Ker(D;;) = {0} for d ¢ Z. We were not able to
give this, since the argument used for Theorem 1 does not generalize in any obvious way. For
example, for a = (1,1,1,1), then the space of harmonic polynomials is spanned by the three
monomials t15t34, t13t24 and t14t23; their images under D14 are t34 times d, 1 and 1, respectively,
so that there would seem to be a problem only if d = 0, but in fact the trouble occurs for the
two values d = —2 (where there is a 1-dimensional radical, with basis the sum of the three
polynomials above) and d = 1 (where the radical is 2-dimensional, spanned by their differences).

Theorem 6. The monomial and descending bases of Pa(d) are dual to one another with respect
to the scalar product.

Proof. Let p, v € Ny. We have to show that (P,f‘/f, P,P)d = 0pu. We can assume that v and
p have the same multidegree a, since otherwise the inner product vanishes automatically. We
proceed by induction on the total degree. If a = 0, then P} = P“D =1land (1,1)g=1=16,,.
Otherwise, we have v; ; > 0 for some 7 # j and we find, using the properties of the projection
operator II, equation (39) and the induction assumption,

(B, PY), = (W(ti;P)e,), PY), = (tiyBe,, BY),

v—e;j; v—e;; )
— M . pDy  — M D —
- (Pu—eiﬂ DZJPM )d - (PV—eij? Py,—eij)d - 5'/7# : O
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In the preceding theorem we did not specify what d was. In fact there are two possible
interpretations. One is to assume, as we did in the preceding Proposition-Definition and Lemma,
that d is a specific complex number for which the scalar product is non-degenerate (i.e., in view
of the Remark above, that d ¢ Z.,,). The other is to consider d as a variable. In that case the
coefficients of the canonical basis elements P} and PP, and the coefficients of the scalar products
(X,Y)y for any X, Y € Q[S,], are elements of the field £ := Q(d), and Theorem 6 becomes
an identity over the field K. To make this clearer, take the example n = 4, a = (1,1,1,1),
considered above. Here Ny(a) = 3, My(a) consists of the three 4 x 4 matrices ¥, = ej2 + esq,
Vy = €13 + €a4, V3 = €14 + €33, and the space Pa(d) is spanned by the three monomials
Py(T) = tiatss, Po(T) = tistog and P3(T) = t14tes. (This is obviously the monomial basis,
which here consists of actual monomials.) The corresponding Gram matrix is given by

> d d
(P Pi) i jes = | 4 & d (56)
d d d?
and the descending basis by
Pli(T) 1 d+1 -1 -1 P(T)
o) a0 ) B )

in which, by virtue of Theorem 6, the 3 x 3 matrix is just the inverse of the matrix in (56).
Many more examples can be found in Table 2 in the appendix at the end of the paper.

We make one final observation. Define degree-preserving operators C;; (4,5 =1,...,n) by
Cij = FijDij — EijEji + Ei; .

From the commutation relations given in Theorem 2, we find that C;; = C}; (because [E;;, E;;] =
E;;—Ej;) and that the C;; commute with all Dj. The latter property implies that the operators
C;j act on each space Pa(d). For i = j the operator Cy; = Fj;D; — E;;(E;; — 1) corresponds to
the usual Casimir operator in the Lie algebra s[(2) generated by the three operators D;, F;; and
F;; on (Rd)i , so we can think of the C;; as a kind of “mixed Casimir operators.” On Pa(d), the
operator Cj; is equal to the scalar —(a; +d/2)(a; +d/2 — 1) and the mixed operator Cj; is given
by the commutator relation

[Dij, RZJ] = 4(@1‘ +a; — 2) (CU —a; —aj; + aiaj) ,

but the operators C;; for ¢ # j do not act as scalars and do not even commute with each other.
We do not know whether these operators have interesting applications.

§6. Higher spherical polynomials and invariant harmonic polynomials

In this section we look in more detail at what happens with the spaces P(™)(d) when d is a
positive integer smaller than n.

Our original motivation for the definition of P (d) was to consider functions P(T) whose
pull-back P = P o 3, to (RY)" is harmonic in each component z; € R% Because the map
B% : P~ P is not injective for d < n, we did not use this as the definition of P(")(d) in that
case, but instead defined P (d) as (;_, Ker(D;). In this section we study the relationship of
the three vector spaces

(i)  Pa(d) = {PeC[Sp]a| D1P=---=D,P =0},
(i) Ha(d) = (Hay(RY®...0H,, (RY)Y,
(iil)  Va

d) = {PeC[S)a| PeHald)},
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where H,,(R%) in (ii) is defined as in Remark 3 of §2. For d > n, all three spaces are isomorphic.
In general, we have Pa(d) C Va(d) (because A;(P) = D;(P)~ ), and we will show that the map
B : Pa(d) — Ha(d) is surjective (Theorem 7). In particular, we have

dim Ha(d) < dimPa(d) < dimVa(d). (57)

At the end of this section we will show that in general all three dimensions are distinct, and will
determine all three of them exactly in the special case when d =n — 1.

Let us define two further spaces

Ka(d) = Ker(ﬁ: : ClSnla — (C[Rd]al R C[Rd]an)o(d) ) :
Ka(d) = Ka(d) N Pa(d).

Clearly Ka(d) C Va(d).

Theorem 7. The diagram

0 = Kald) — C[Sila 22 (®i-, C[RY,
[ U U

0 = Kald) — Vald) o Ha(d) — 0
U U |
0 = Ki(d) — Pad) In Ha(d) — 0

18 commutative with exact rows.

Proof. Only the surjectivity of 3 in each of the three rows has to be proved, since the spaces
on the left are by definition the kernel of 3 in each case. The surjectivity of 3 in the first row
is a classical result (“first fundamental theorem of invariant theory,” [16]), and the surjectivity
in the second row an immediate consequence of this, since Va(d) is defined as the inverse image
of Ha(d) in C[S,]a. Thus the real assertion of the theorem is the statement that the map
B+ Pa(d) — Ha(d) is surjective for all n and d (or equivalently, that the space Va(d) is the
sum of its two subspaces Ka(d) and Pa(d)). We prove this using the two following lemmas.

Lemma 1. For any P € C[S,]a and m € Z%, we have
D;(6(T)™ P(T)) = &6(T)™ D;(P(T)) + 2m;(d+2a;+2m;—2) §(T)™ % P(T) (i=1,...,n).
Proof. This follows by induction on the non-negative integer m; from the commutation relations

Lemma 2. Let P =) 6(T)™ Pm(T) be the decomposition of a polynomial P € C[S,] given
by the corollary to Theorem 1, where d is a positive integer. If P = 0, then Py = 0 for every m.

Proof. This follows immediately from the commutativity of the diagram
C[Sﬂ]a — @OSmS%aPﬁ_Qm(d)
Bl 1 By

CRYy, ® @ CRY,, ¢ Boemeia Har—2m, (R @+ @ Ha, _om, (R



in which the horizontal isomorphisms are those given by the decompositions (9) and (42). O

Returning to the proof of Theorem 7, let F' € Ha(d) and choose P € C[S,]a with P = F. By
definition we have P € V,(d) and by the relationship between D; and the Laplacian A; on (R%);
discussed in §1 we have (D;P)™ = A;(P) = Ay(F) = 0 for all i. Let P = Y 6(T)™ Peu(T)
be the decomposition of P given by (9). Applying D; to both sides of this equality and using
Lemma 1 (with P replaced by Py, and a by a — 2m), we find

Di(P) = Y 2m;(d+2a; — 2m; — 2) 5(T)™ % P (T).

m>0

The fact that D;(P)~ = 0 and Lemma 2 then imply that P = 0 for all m with m; > 0, because
the factor 2m;(d+ 2a; — 2m; — 2) is non-zero for d > 0 and 0 < m; < a;/2, and since this is true
for every 1, it follows that Py, =0 for all m # 0, so F = P = Py € 3 (Pa(d)). O

From Theorem 7 we see that Va(d) = Ka(d) + Pa(d) and hence that
dimHa(d) = dimVa(d) — dimKa(d) = dimPa(d) — dim K, (d) (58)

so that the claim that both inequalities in (57) are in general strict is equivalent to the claim that
both inclusions 0 C K.(d) C Ka(d) are in general proper. We will prove this by computing
all three spaces in question in the special case d =n — 1.

Proposition 1. For d =n — 1 we have the dimension formulas

dimHa(n —1) = No(a) — No(a—2),
dimPa(n —1) = Ny(a),
dimVa(n—1) = Ny(a) + N(a—2) — No(a—2),

where 2=2-1=(2,...,2).

Proof. In general, it is known (“second fundamental theorem of invariant theory”) that for d < n
the kernel of the map G is the ideal in C[S,,] generated by all (d + 1) x (d + 1) minors of the
coordinate T' € §,,. In particular, if d = n — 1 then this kernel is the ideal generated by the
single polynomial D € C[S,, ]2 defined by D(T') = det T. In other words, we have

Ka(n—1) = D-C[S,]a-2- (59)
To complete the proof, we will show that
Kiin—1) = D-Pa_2(n+3). (60)

Equations (59) and (60) and Theorem 1 give dimKa(n — 1) = N(a — 2) and dim K, (n — 1) =
No(a — 2), and together with the exact sequences of Theorem 7 these imply the dimension
formulas given in the proposition.

To prove (60), we have to compute the effect of the ith Laplace operator D; on products of
the form P = D - Q. Since the formulas depend on the value of d, we will temporarily write
DEd) rather than simply D; to denote the differential operator on C[S,]| defined by (5).
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Lemma 3. We have
D" YD) =0 (1<i<n) (61)

and more generally
D" "(DQ) = DD"I(Q)  (1<i<n) (62)

for any polynomial Q € C[S,,] .
Proof. The partial derivatives of D are easily seen to be given by
0D = 2Dy (1<4,j<n)

where D;;(T') is the (i, j)-cofactor of T'. (In checking this for i = j, one has to remember that
0ii = 20/0t;; .) Using this and the formula

n
thk D;, = 6;; D
k=1

(the product of T" and its adjoint matrix equals det(7") times the identity matrix), we find

n
]7k_1

= 2dD” + 2 Z ij jkDZk - al](tjk)le)
7, k=1

— 24D, + 2 Zaw (Z% le> “2Y 54(144,)D
J, k=1
= 2dDy; + 4Dy; — 22 (146,;)D
j=1
and assertion (61) follows. (Another proof, more in keeping with the contents of this section, is as
follows. Let D =} o ,o; 6(7)™ Dm with Dy € P2_2m(d—1) be the canonical decomposition

of D as given by Theorem 1. From D = 0 and Lemma 2 we deduce that ]/DTn = 0 for all m.
But then Dy, € Ker(8}) = D - C[S,], and since the degree of Dy, is smaller than that of D for
m # 0, this implies that Dy, = 0 for all m # 0 and hence that D = Dg € P2(n—1).) To prove
the second assertion, we apply the easily proved general formula

Dz(d)(PQ) = Dz(d)(P)Q + 2 Z tir 0i;(P) 0in(Q) + PDEd)(Q)
jk=1

with d =n —1, P =D and use (61) to find
D DQ) =2 Z( Zmnw) Q) + DDV (Q)
k=1
= D (D" V(@) + 194(Q)) = DDV (Q). 0

Formula (60) follows immediately: If P € Ka(n — 1), we can write P = DQ with Q €
C[S,]a—2, and equation (62) shows that P € Po(n — 1) if and only if Q € Pa_2(n+3). O
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We end this section with a final remark. As we mentioned before the Corollary of Theorem 1
and have used several times, given a non-degenerate quadratic form Q(z) = (x,z) on R? we
have a direct sum decomposition C[RY] = @9, +, Q(z)™ H(R?) of the space C[R? and hence a
direct sum decomposition -

R = B (ﬁ@(xnmi)mw)@" = HE)™ @ I,

m>0 ‘=1

of its nth tensor power, where I,, is the ideal generated by the polynomials Q(x1),...,Q(zn)
in C[R"] = C[z1,...,x,], the splitting being given explicitly by the product of the projection
operators 7T§d) (1 < i < n) defined in (43). In particular, a polynomial P(x1,...,z,) that is
harmonic with respect to each variable z; € R? and that belongs to the ideal I,, vanishes. But,
at least for d > 3, the elements of I,, are precisely the polynomials vanishing on the discriminant
variety D,, = {(21,...,7,) € C¥" | Q(z1) = -+ = Q(z,) = 0}. (Proof The quadratic form Q
is irreducible because a reducible form Q(z) = (a'z)(b'x) corresponds to the symmetric matrix
a'b + ab® of rank < 2, so cannot be non-degenerate if d > 3. But then D, is the product of n
irreducible varieties and hence irreducible, so its associated ideal I,, is prime and hence equal
to its own radical. The assertion then follows from Hilbert’s Nullstellensatz.) This proves the
following statement, which will be used at the end of the next section in the case whenn > d = 4.

Proposition 2. A polynomial belonging to H(RY)®™ is completely determined by its restriction
to the set {Q(z1) = -+ = Q(x,) = 0} C C¥. In particular, if this restriction is O(d)-invariant,
then so is the original polynomial.
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CHAPTER II. ExpPLICIT CONSTRUCTIONS

§7. Construction of invariant harmonic polynomials for d =4

In this section we will give a construction of higher spherical polynomials for the special case
d = 4 by identifying C? in this case with the space M(2,C) of 2 x 2 complex matrices,” with
the quadratic form g = (Z Z) — det(g) = ad —bc. The group G = SL(2,C) acts on M (2,C) by
both right and left multiplication, and the combined action of G' x G on M (2, C) = C* identifies
(G x G)/{£1} with the special orthogonal group SO(4).

Let V; denote the standard 2-dimensional representation of G and V, (a € N) its ath sym-
metric power, the (a + 1)-dimensional space of homogeneous polynomials of degree a in two
variables = and y. We have a G-invariant scalar product in V, given by

(zPy?, 2 y7) = (=1)P plq! 6.y (p+q=p+¢ =a), (63)

so we obtain by tensor product a G™-invariant scalar product (, )on Vo =V, ®---®@V, . Now
for each multi-index v € Ny(a) we have the G-invariant vector

). — .y \Vij
Wy = H (xly'] x]yZ) S Va,

Vs
1<i<j<n v

where (z;,y;) are the coordinates on V,,. We define a function F,, on My(C)™ by

F,(g) = (gwy, wy,) (g=1(91,--,9n) € Mx(C)"),
and more generally set F), ,,(g) = (gwy, wy) for any p, v € Ny(a).

Proposition 1. The polynomial F), , is a homogeneous harmonic polynomial of degree a; with
respect to g; € Mo(C) =2 C* for each index i =1,... ,n. It is SO(4)-invariant for any p and v,
and is O(4)-invariant if p = v.

Proof. The homogeneity property is obvious. For the harmonicity we must show that A;F, ,, =0

for each ¢, where ¢g; = (Z ZZ), A, = 4(8a 5 %207;)' This follows from the observation
that A; annihilates F'(a;z + b;y, c;x + d;y) for any twice differentiable function F'(x,y), whence
A;(gwy) = 0 and a fortiori A;((gwy,wy)) = 0 for any v. Finally, since w, is (left) invariant
under the diagonal action of G on Vj, and the scalar product ( , ) is G-invariant, it is clear that
Fuv(8) = (8wy,w,y) is invariant under both right and left multiplication of g by elements of
G, i.e., it is invariant under the action of SO(4). The G-invariance and (—1)%-symmetry of the

scalar product on V,, and the assumption that a;+- - -+a,, is even imply that F), ,(g*) = F,, .(8),

where g +— g* is the involution on M5(C)"™ induced by the involution * : ((CL Z) > (_dc _ab) of
M>5(C). Since this involution represents the non-trivial coset of SO(4) in O(4), it follows that
the polynomials F), ,, + F, ., and hence in particular also the polynomials F,, = F,, ,,, are O(4)-

invariant. O

We next define a generating function which has all of the polynomials F, ,(g) as its coeffi-
cients. Let U = (U;;) and V = (V};) be antisymmetric n x n matrices with variable coefficients
(so that each is coordinatized by n(n —1)/2 independent variables U,;, V;; with i < j) and set

F(g;U,V) ZF,“, UHVY

5Here we work over C rather than R (cf. footnote 2 in §1) because the determinant form on 2 x 2 matrices is
not isomorphic to the standard quadratic form 2411 azf over R, but is over C.
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where U¥ means [[,_,; U; ;7 and we set F), , equal to 0 if g and v have different multidegrees.
The homogeneity of the F), , implies that this generating function is unchanged if we replace g;
by gi/Ai and U;; by A;A;U;; for any non-zero constants \;, so we may restrict ourselves to the

case when all the g; are unimodular.

Theorem 8. The generating function F(g; U, V) for g € SL(2,R)™ is given by
F(g;U,V) = D(g:U, V)2,

where D(g; U, V), a polynomial in the coefficients a;, b;, ¢;, d; of g and U;;, Vi; of U and V, is
defined as the determinant of the symmetric 4n X 4n matric

0, U a b

-U 0, c d
a c On Vv ’
b d -V 0,

where a, b, ¢, d are the n x n diagonal matrices with diagonal entries a;, b;, c;, d;, respectively.

Proof. Extend the scalar product (63) to be 0 for polynomials of different degree, i.e., replace
the right-hand side of (63) by (zPy?, xp/yq,) = (—1)Pplqldpq dprq. Then (u,v) =0 for u € W,
v € W, with v-1 # p-1, so that the definition of F), ,(g) as (gwy,w,) holds for all p and v.
From the definition of w, we have

Zw“ U+ = H Ui (Tiyj—zjyi) — eXp(Z Uijxiyj) ,
m

1<i<j<n i,j

and hence

F(g;U,V) = ZW;,wu) UrVY = <eXp(Z Ui x;yy), eXp(Z Viiziy;))

pv %,J ,J

* .
where (zi > =g (;131 ) Using the identity (easily proved using polar coordinates)
i

7
' 1 p=a,—|z|?
Opg P! = — | afzle ditz (P, q € Z>0),
C

where du, denotes the standard Lebesgue measure in C, we obtain the integral representation

/ / 1 ! 2_ 2
(P, a? y? ) = 7TQ/(CQ(_QC)z)yqyp 3 P 1 gp dy

or (changing z to —x) (f1, fo) = 72 f(c2 fi(z,y) f2(7, —:E)e*mt'y'zdurduy for the scalar prod-
uct (-,-) on @, V,. This gives the integral representation

n

1
F(gU,V)=—- /C% exp (— [Z(wm +uili) — > (Ugaiy; + Vz‘jfz‘ﬂj)} > dp

™ ; -
=1 2,7

for F(g; U, V), where du = dy, - -dpu,, is the Lebesgue measure on C?". Now this integral

equals D~1/2 where D is the determinant of the quadratic form in square brackets, considered

as a form of rank 4n over R. The matrix representing this quadratic form with respect to
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the variables (yi,... ,y5, —a%,..., =25, J1,.-+ yUn, —T1,... , —Ty) is half of the one given in the
proposition, where we have to remember that g* (? _01 ) g= (2 _01 ) But we are taking the usual
Lebesgue measure with respect to real parts and imaginary parts of x; and y; for the integral

and we have R(z) = (x + &) /2, S(z) = (x — &)/2i, so the factors of 2 cancel. [

Theorem 8 in principle gives us a way to calculate the polynomials F), ,, for arbitrary n and
for arbitrary p and v, but these polynomials can be written uniquely in terms of the numbers
tij = Tr(g;g;) only if p = v and n < 4, because if p # v then they are only SO(4)- rather than
O(4)-invariant, while if n > 4 then there are non-trivial relations among the ¢;; (vanishing of
all 5 x 5 minors) which mean that the representation of F,(g) as a polynomial in the ¢;; is not
unique. Therefore the most important cases of the theorem are n = 3 (which will be treated
in detail in the next section) and n = 4 (where we have not been able to do any interesting
calculations). However, using the results of §5 we can prove the following result for arbitrary
values of n.

Proposition 2. The polynomials F,, for d =4 for any value of n coincide up to a scalar factor
with PM | the pull-backs under B3, of the monomial basis polynomials PM € P (4).

Proof. Since both F, and Iglf\v/[ are harmonic with respect to each variable g; € M>(R) = R%, it
suffices by Proposition 2 of §6 to show that they agree up to a constant factor when all the g;
have determinant 0. In view of the definition of P}, this means that we must prove that

! I/Z‘j .
(gwy, wy) = % IT (9 9) if det(g1) = --- = det(gn) =0, (64)

1<i<j<n

where we have now inserted the constant, using the abbreviations v! =[], _ ; vi;l, al =11, ai!.
To prove (64), we first observe that a 2 x 2 matrix of determinant 0 has rank < 1 and hence
can be written as € r’ for some column vectors £ and r. So we can write each g; as &;r} for some
column vectors §; = (f]) and r; = (Z) We first claim that the scalar product (g;,g;) is then
given as the product of the two determinants |§;&;| and |r;r;|. This can be proved either by
multiplying everything out and checking or, slightly more elegantly, by observing that

(9i> 95) = tr(gi g;) = tr(=Jg{ Jg;) = tr(=Jr:i&; JE;r;) = (=€;JE;) tr(Jrirs) = [€:&5] Irivy]|.
(Here J = (? :)1) as usual.) Next, we observe that g; (zl) = (ryz; + siy:) &€ , so we have

Vij

1 ~ .
guwy = H(Ti$i+5iyi)al' H 1€ ¢;
1=

1<i<j<n

Finally, the definition of the G-invariant scalar product in V,, as defined in (63) is easily seen to
be equivalent to

((re + sy)*, P(z,y)) = alP(s,—r) forall P € V.

Combining these three facts, we get the desired equality (64):

n
. <H(?“z$z + siyi) ", wu>

1
<gwua wu> = ; H‘gzﬁj

i<j i=1
= oo H(e&llrnl) " = 5 Mowa)™. O
S i<y
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Remark. The proof of Proposition 2 did not use the O(4)-invariance of F,,, and hence gives
another proof of this invariance, because of the second statement in Proposition 2 of §6.

§8. Higher spherical polynomials for n = 3

In the case n = 3, we have the extra fact that the polynomials F}, , all vanish except those
1 = v, since there is only one triple ¥ with any given multidegree a, as given in (3), and the
polynomials F), ,, with indices of different multidegrees vanish by definition. This case, which
will be treated in detail in this section, is therefore particularly interesting.

It will be convenient to rename the coordinates of S,, for n = 3. We set

2m1 T3 )
2T = < rs3 2m2 1 > (65)
T2 T1 2m3

We will use the notations m and r to denote the triples (my, mo, m3) and (71,72, 73) and will
consistently use the evident vector notation, e.g. m* for a triple A = (A1, A2, A3) denotes [ m;\

0 v3 v2
The indices i are taken modulo 3. We write a typical element of ANy(a) as <l/3 0 Vl) with

Vo V1 0
v; > 0, so that v; is the same as what was denoted v;y; 42 in the last section. According

to the result of §2, we know that P,(d) is spanned by a unique (up to a scalar multiple)
polynomial P, (T) = P,(m,r) whenever a and v are related as in (3). It is easily seen that
P, is a homogeneous polynomial of tridegree v if we assign to r1, 72, 73, m1, mso, and mg the
tridegrees (1,0,0), (0,1,0), (0,0,1), (—1,1,1), (1,—1,1), and (1,1,—1), respectively.
In terms of the coordinates (65), the differential operator D; computed in §1 is given by
2 2 2
d 0 0 0 ) 0 0 0 0 (66)

1
D= (= = i I B I v I
i (2 tm omy e ory i Ors ) Omy oms or3 tn Ora0rs ome or3

(and Dy and Dj3 by the same formula with the indices permuted cyclically).

This section, which is fairly long, will be divided into five subsections. In the first, we construct
generating functions whose coefficients give us a canonical generator P, (T") of the 1-dimensional
space Pa(d). In the second, we compute the relation between the new basis elements and the
ones constructed in §5 and use this to compute the scalar products of the P, with themselves,
while the third and fourth subsections contain various recursion relations and explicit formulas
for the coefficients of these polynomials. The last subsection contains a brief discussion of the
n = 3 case of the inhomogeneous coordinates defined at the end of §1, of the related angular
coordinates, and of a somewhat surprising extra symmetry of these coordinates.

A. Generating function. We begin by writing out the generating function of Proposition 2
explicitly for n = 3. This generating function will then be generalized to arbitrary d.

For the case d = 4, we can choose P,(T") canonically as F,(g) = (gwy,w,) defined as
in §6, where g = (g1, g2,93) is a triple of matrices in Ms(R) related to the 3 x 3 matrix T by
m; = det(g;), ri = Tr(git+1975). We introduce dummy variables X;, X5, X3 and define X” as
usual as X7 X2 X%,

Proposition 1. The polynomials P,(T) for n =3, d =4 are given by the generating function

1
/AT, X)2 —4d(T) X1 X5 X3
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where
3

Ao(T, X) = 1- Z(’FZXZ — miriXi+1Xi+2 — mi+1mi+2Xi2)
i=1

and

3 3 3
d(T) = 4det(T) = Hri — Zmzrf + 4Hmi.
i=1 i=1 i=1

Proof. This is just Theorem 8 for the special case n = 3, since we have already seen that in
that case the terms with g # v in the generating function vanish. To compute the generating
function explicitly we must calculate the 12 x 12 determinant D(g; U, V) defined in Theorem 8.
By direct calculation we find D(g; U, V) = Ag(T, X)? — 4d(T) X, X2 X3 when all m; = 1, where
T is determined by g as explained above and X; = U1 i4+2Vit1,i42, and the general case then
follows by homogeneity. [

Proposition 1 makes it easy to compute any polynomial P, explicitly. Here is a table for all v
with |v| < 4, where we give only one representative for each G3-orbit of indices v:

Pooo = 1; Prop =115 Paoo =17 —mams, Piio = 2rire — mars;

Pspo = T’:f — 2momsry , P19 = 37“%7’2 — 2WL3<7’17’3 + mng) ,
P11 = 8rirers — 4(m17‘% + mgrg + mgrg) + 8mimeoms;

Pioo = r% — 3m2m3r% + mgmg , P39 = 47“‘5’1”2 — 3m3r%r3 — 6maomariry + 2m2m§7“3 ,
Pyoo = 61212 — 6marirars — 3ms(myr? 4+ mor2) + mar: + 2mymams

Po11 = 1872ror3 — 9mars — 12r) (maor? + m::,?"%) — 4dmomsarars + 26mimomsry .
We now state a generalization of Proposition 1 which gives explicit higher spherical polyno-
mials for n = 3 and for arbitrary values of v and d as the coefficients of a generating function.

Theorem 9. For T € Sz as in (65) and X = (X3, Xo, X3) let Ao(T,X) and d(T) be as in
Proposition 1 and set

Ao(T,X) + /Ao(T,X)2 — 4d(T) X1 X2 X3

R(T,X) = 5

(68)
For any d € C, define polynomials P, 4(T) (v = (v1,v2,v3) € Zgzo) by the generating function

B R(T,X)~*®
VAT, X)2 —4d(T) X, X5 X3

(69)

> Pa(T)X¥

where s = d/2—2. Then P, 4(T) belongs to the space Pa(d), where a is related to v by (3), and
generates this space if d & {2, 0, =2, —4, ...} orif d =2 and all v; are strictly positive.

Proof. Using the formula for D; given in (66), we find by direct calculation that

1 d(T)"
dmaomsg — 12 ! (AO(T, X)2"+5+1)
d(T)"!
Ao(T, X)2itst1

d(T)" X1 X2 X3
Ao(T, X)2n+s+3 "

=n(n+s)

—2n+s+1)2n+s+2)
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Applying this identity to the expansion

1 (Ao+\/w>_s_i(%+s>(dm){)" (70)

AZ —4d(T)X n ) AFet

n=0

shows that D;(P, 4) = 0. The vanishing of the other D; follows in the same way or by symmetry.
The final statement of the theorem follows because dimPa(d) = 1 for d ¢ 2Z<( and since
P, 4 # 0 for —s ¢ N by the calculation of its leading term as given in Proposition 2 below. [

Using Theorem 9, we can compute the polynomials B, 4 of any given degree, a typical value
(generalizing to arbitrary s the one given above for s = 0) being

Ps11,4(T) = %(s +2)2(s + 3)*r2rors — %(s +2)(5 +3)%myr — (s + 2)%(s + 3)(mar3 + msr3)r
— (s +1)(s 4+ 2)*mamarars + (s + 2)(5s + 13)mimamsr .

The polynomials P, 4(T) for all v with |v| < 6 are given in Table 1 at the end of the paper.

Remark 1. The expressions Ag(7, X) and d(7)X;X2X3 appearing in the theorem can be
written as (1 — 01/2)? — 02 and 203, respectively, where the o; are the elementary symmetric
polynomials in the eigenvalues (= coefficients of the characteristic polynomial up to sign) of the

0 X3 X
3 X 3 matrix <X3 03 X? )T . This remark, and the generating function of Theorem 8, will be
greatly generaliz);ii)i(rll §09.

Remark 2. In the above proof, we simply wrote down the right-hand side of (69) as a
generalization of (67) and verified that its coefficients were spherical polynomials, which was an
easy calculation. The main point here is how to guess the correct formula (69). This was done
(roughly) in the following way. We wish to define for all d a generator B, 4 of the 1-dimensional
space Pa(d) in such a way that the sum ), P, 4(7)X" is algebraic and agrees with (67) if d = 4.
Because of the one-dimensionality, we know that these functions, if they exist, must be scalar
multiples of both the monomial basis elements PM and the descending basis elements P as
defined in §5, where the multiples are determined by computing the constant term and the effect
of the mixed Laplace operators D;;, respectively. So we begin by computing these things in the
already known case d = 4 (cf. Subsection B below, where these computations are done, assuming
the definition (69), for all d), and then insert s into the formulas obtained in the simplest way
possible such that the coefficients of P, do not acquire any denominators (which are prohibited
if > P, X" is to be an algebraic function). This led to formulas (74) and (77) below, after which
the generating function (69) was found more or less by doing the calculations of Subsection B
in the reverse order.

Remark 3. It is interesting to compare the computations for n = 3 in the last two sections
(Proposition 1 and Theorem 9) with the classical case n = 2. In this case the polynomial F, ,(g)
defined in §7 equals P,(T) if p = v = (2 g) for some integer ¢ > 0 and is 0 otherwise, where

T= (" T/Q) with m; = det(g1) and r = tr(g195). The 8 X 8 determinant D(g; U, V) occurring

r/2 mo
in Theorem &, for U = (2 _0“) and V = (2 _OU), is easily calculated to be (X2 —rX +myms)?,
where X = uv, so we obtain the generating function Y oo | P,(T) X* = (1 — rX + mymoX?)™*
for the spherical polynomials P,(T") when d = 4. On the other hand, in Example 1 of §1
we calculated a generator of the one-dimensional space P(q,4)(d) for any a > 0 and any d ¢

2Z N [4 — 2a,2 — al, obtaining (with a suitable normalization) the formula

Paa([ie) = 20 (a . l) (a Slrane 2) (=mymg)' r* =, (71)

0<i<a/2 a—1
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which in turn is equivalent to the more general generating function

r/2 mo

ST Pua(ULT2Y X = (10X + myma X212 (72)
a=0

The formulas (71) and (72) are of course classical, the polynomials P, 4 being called Gegenbauer
polynomials in that case (with the special names Legendre polynomials if d = 3 and Chebyshev
polynomials if d = 2 or 4). In §9 we will show how to produce natural generating functions
generalizing (72) and (69) that give us canonical bases of P,(d) for arbitrary values of n.

Notation. Let us fix the notation for the coefficients of the polynomials B, = P, 5. We
write T as in equation (65) and denote by C(A; ) the coefficient of m*r# in P,. Clearly this
coefficient is 0 unless v, A and p are related by

Vi = Wi — Ai +Aix1 + Aiga, Ai = (Vi+1 + Vigo — fit1 — ,Uz‘+2) (73)

| =

(here i is considered modulo 3), so that we can omit the subscript v in C'(A; ), but we can
also write Cy (A; ) if this is needed for emphasis or clarity. We will also almost always omit
the “d” from the notation for the coefficients of B, 4, but of course these coefficients depend
(polynomially) on this parameter. As usual, we also work with s, where d = 2s + 4.

B. Ratios of the various basis elements. In Chapter I, we gave two special bases
{PM} and {PP} for P,(d). In the special case n = 3, we have now given a third basis {P,}
from the generating function (69). Since the (non-zero) spaces Pa(d) for n = 3 are all one-
dimensional, all three bases agree up to constants. In this subsection we compute these constants
of proportionality and at the same time the constant terms and the norms (with respect to the
canonical scalar product) of the polynomials P,.

Proposition 2. The higher spherical polynomial P,(T) defined by the generating function (69)
for n =3 is related to the monomial basis by

_ ouitvatry W1 H V2 ) (v H v+ 8) 2+ v +8)! oy

B,(T
I/( ) Ul!UQ!Ug!(I/l+8)!(V2+S)!(V3+S)! v

(T) . (74)

Proof. In view of the definition of the monomial basis, this is equivalent to the statement that
the leading coefficient of the polynomial B, 4 is given by

Cl0:v) = <V1+V2+S><V2+V3+8>(V3+V1+8). (75)

V1 vy V3

Taking T" with m; = mga = m3 = 0 in (69) and (70), so that P,(T) = C(0;v)r”, and setting
t; = r; X;, we find

v [2n+s (titots)”
;C(Oﬂl)t _7;)< n > (1_t1_t2_t3)2n+s+1
2 2
= Z < TH_S)( n—l—s—i—e) (trtats)" (t1 + 12 +13)°

n e
n,e>0

_ Z (2n+s+a+b+c)!ta+ntb+ntc+n
n!(n+s)alble "+ 2 3
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Hence
min(vy,v2,v3)

(v1 + 12 + v +3_n)!
CO;v) = Z n! (n+s)!(u1—n)!?m—n)!(%—”)! .

n=0

(76)

This expression is symmetric in the three arguments v;, but more complicated than the formula
given in the proposition. To prove that formula, we first break the symmetry. We rewrite (76)
as C(0;v) = (”ﬁy”f“) C'(v) with C’'(v) defined by

min(vy,v2,v3)
121 Vo + 8 Vi+ve+rv3s+s—n
C'v) = g .
(V) <n><y2_n>< Vv3—mn )

n=0

Then for fixed v1 we find the generating function

Z Cl(l/l, vy, 1/3) XV2 YV?’

vo,v32>0
V1 [e%) oo
V1 Vo + S vit+uvat+rvs+s—n
= X" Yyvs
,Z;J(”)Z(Vz—”) Z( vy —mn )

Vo=n V3=n
_ i 2] i Vs + s Xr2yn
“\n vo —n) (1 =Y )ntvatstl
n= vo=n

B i n Xnyn 1
- o n (1 _ Y)z/l—l—n—i-s—i-l (1 _ X/(l _ Y))n—‘,—s—i—l

- 1 XY “
(1Y) (1-X—Y)st! 1-X-Y
B (1-X)n B i v+ 5+ 3 Yvs
= (1 - X — Y)y1+5+1 - : Vs (1 _ X)I/3+S+1
V3=
:ii VLTS (VeSS sy
Vs 1)

vo=0r3=0

proving (75). O

We now give the relationship between P, and P”. The following proposition is just the
special case n = 3 of equation (135) of §9 below, which says that for any n the higher spherical
polynomials defined by a generalization (117) of the generating series (69) are proportional to
the descending basis elements, with a proportionality factor depending only on the total weight
k= 3 a-1. Recall the Pochhammer symbol (z); = z(z+1)--- (z + k — 1).

Proposition 3. The polynomial P,(T) is related to the descending basis by
PAT) = 2" (5 + 25 (25 + 2 B2(T), (77)
where k = v1 4+ vy + v3.

Now combining Proposition 2 and 3 with Theorem 6, we deduce the formula for the scalar
product of P, € Pa(d) with itself:

Corollary. For everyv = (v1,v3,v3) € ZSZO we have

(P, Py)g = 22 <l/1+1/2+5><1/2+V3+s><1/3+1/1+s
V) v -

V1 1P 3

> (s+2)k (25 + 2), (78)



where d =2s+4 and k =v1 +vs +v3. 0O

Equation (78) can be used to simplify the computation of one of the coefficients in the
recursion (82) in Proposition 5 below. Conversely, as explained in the proof of that proposition,
one can also obtain the coefficient in question by direct computation and then derive (78) from
it, after which one can derive Proposition 3 using Theorem 6 and the fact that all of our bases
are a priori proportional, without needing to rely on the considerably harder results from §9.

C. Recursion relations. In Subsection A we defined canonical polynomials P, € P(®) (d) by
means of a generating function. We now give five different recursion relations for the coefficients
of these polynomials, coming from the differential equation, the scalar product, the raising
operators, the mixed Laplacians, and the generating function, respectively.

1. Recursion relation coming from the differential equation. The first recursion is for
the coefficients of a single polynomial P,. According to Theorem 1 and its proof, all of the
coefficients of P, are determined (in fact, overdetermined) recursively by the harmonicity and
homogeneity properties from the “constant term” (specialization to t1; = taa = t33 = 0, or to
my = mg = mg = 0 in the notation (65)). We make this explicit. In Subsection A we gave
the formula for the differential operator D; in terms of the new coordinates (65), and of course
the formulas for the other D; are obtained by cyclic permutation of the indices. The equation
D, P, = 0 gives the recursion (with s = d/2 — 2 as before)

A(A1+ po+ ps+ s+ 1) C(A1, Ao, Az i, pa, 143)
+ (p2 + 1) (p2 +2) C( A — 1, A2, A3 — 15 puq, pio + 2, p3)
+ (p2 + 1) (3 + 1) C(Ar — 1, A2, Ay pn — 1, o 4+ 1, 3 + 1)
+ (s + 1) (s +2) C(A — 1, A2 — 1, Ags i, o, s +2) = 0. (79)
This gives any C(\;p) in terms of C(X;p/) with \] < A; and hence by induction reduces
everything to the case A\; = 0. Now the recurrence given by Do P, = 0 gives
A2(Az + g1 + p3 + s+ 1) C(0, A2, As; i, pa, f13)
+ (1 +1)(p1 +2)C(0, A2 — 1, A3 — 13y + 2, po, p13)
+ (p1+ 1) (s + 1) C(0, A — L Ags i + 1,0 — Lps +1) = 0, (80)
which lets us get down to Ay = 0, and similarly the recurrence from D3 gives

Az3(Az +p1 + p2 +5+1) C(0,0, As; pa, po, p3)
+ (/’Ll+1)(M2+1)C(0a0a)‘3_1aM1+17M2+17H3_1) = Oa (81)

which gets us down to A = (0,0,0). But for fixed v there is only one coefficient C'(A; p) with
A = (0,0,0), namely C(0;v), which is given by Proposition 2 above. (This is the only point
where our specific normalization of the basis element of P,(d) for n = 3 is used.) Summarizing,
we have:

Proposition 4. The coefficients of C'(A;u) are determined by the recursive formulas (79)-(81)
together with the initial conditions (75).

We note, however, that determining the coefficients explicitly from the recursions (79)—(81)
is quite difficult. We will discuss this problem, and solve it in some cases, in Subsection D.

2. Recursion relation coming from the scalar product. In the method just described, we
fixed the index v and gave a recursive relation for the coefficients C'(A\;u) = C,(A;p) of B, (T)
by using the differential equation which this polynomial satisfies. A different approach is to
give a recursive formula for the polynomials P, themselves (and hence implicitly also for their
coefficients), as follows:
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Proposition 5. For all v1,v9,v3 > 0 we have

i1+ 8) Py vy = W1+ 1ve+8)(v14+vs+8)r1 Poy—1.0s.0s
—(ra+1D)(va+s+1)ma P 1 0pt10s—1
—(r3s+1)(vs+s+1)ms Py _10y—105+1
—(n+rvetuvs+s)(v1+rve+v3+28)mams Py 20, 0

with the convention that any term having a negative index is to be interpreted as zero.

Proof. The idea is similar to the classical proof of the 3-term recursion for orthogonal poly-
nomials {P,(z)} in one variable (corresponding to n = 2 in our setup). There one observes
that, since the polynomial P,(z) has degree exactly v, one can write zP,_1(z) as a linear
combination of P,_;(x) (i = 0, 1,...), and that the coefficient of P,_; in this combination
vanishes for ¢ > 3 because then (xP,_y, P,_;) = (P,_1, xP,_;) = 0 by orthogonality. This
gives zP, 1 = a, P, + b,P,_1 + ¢,P,_5. The coefficient a, can be computed by comparing
the coefficients of ¥ on both sides. The coefficient b, can be computed in a similar way, but
by a longer calculation, if one knows the subleading coefficients of the polynomials, and the
coefficient ¢, by a similar but even longer calculation if one knows the third coefficients from
the top. Alternatively, the coefficients ¢, can be obtained from the calculation

Cy+1 (Pu—la PV—l) — (33P,,, Pl/—l) — (PIJ7 xPl/—l) = aV(PVa PI/)

if one knows the norms of the polynomials P,, or alternatively one can turn this calculation
around to obtain a recursive formula for these norms if one knows the c¢,. Here the same
arguments apply. Write the product r1P,_1 5, .,(T) as a linear combination of other higher
spherical polynomials P,/ (T'), where we can use the homogeneity of the polynomials to simplify
the formulas by setting m; = ms = mgz = 1. Then the same scalar product argument as
before gives that the coefficients of P, in this linear combination vanish for all multi-indices v’
except those occurring in (82). The coefficient of P,, ,, ., in (82) is found easily by comparing
the coefficients of r]*r5?r;® on both sides of the equation, using formula (75). The coefficient of
P, _1.u,+1,05—1 is only slightly harder, because its top monomial rlylflrgﬁlrgrl does not occur
in any of the other terms on the right-hand side of (82) and the coefficient of this monomial
in P, ,, ., (where it corresponds to A = (0,1,0)) can be obtained easily from (75) and the
recursion (81) or as a special case of Proposition 8 below. The calculation for P, 1 ,,—1 5+1
is of course exactly similar. Finally, the coefficient of P, _3 ,, ., can be obtained in a similar
way, though with a little more computation, using the recursion (80) above or Proposition 9 in
Subsection D below. (Alternatively, they can be obtained with less computation by computing
the scalar products of both sides of (82) with P,, _2 ,, ., and using the orthogonality of the higher
spherical polynomials together with the explicit formula (78) for their norms. Conversely, as
already mentioned at the end of Subsection B, we can use the direct computation to obtain
alternative proofs of (78) and then of (77) that do not require appealing to the more general
results in §9.) The calculations are straightforward, though lengthy, and will be omitted. [

As well as (82) one of course also has the corresponding formulas for any cyclic permutation
of the indices i of v;, m;, and r;, since P, (T') is symmetric under these permutations. This result
lets one compute all of these polynomials recursively starting with the initial value Py oo = 1:
equation (81) lets one successively reduce the value of v1 by (at least) one and hence expresses
any Py, v, v, in terms of polynomials Py ,; ., , and then applying equation (81) with the indices
cyclically permuted one reduces in turn to polynomials of the form Fo,0,07 and finally to Py 0.

3. Recursion relation coming from the raising operators. The recursion just given
expresses the polynomial P, as a linear combination of four polynomials P, with “smaller”
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values of ¥/. The raising operators introduced in §5 permit us to do even better in the sense that
we can express P, in terms of a single predecessor (which can be chosen at will to be P, 1 1, v,
P, vy—1s OF Py, 1y 0s—1), but at the expense of using second order differential operators. More
concretely, equation (51) gives us the relation

A +va+8) i +vs+s) P, . = Ros(PY_1 ...,

where Rys is the operator defined in (47) (and of course similar formulas with Ry3 and Rj2),
and then we can use (74) to reexpress this identity in terms of our preferred basis {P,} as

2V1(V1 + 8) PU1,V27V3 - R23(PV1—1,V27V3) : (83)

Notice that this recursion, unlike the others discussed here, works equally well for all values of n,
not just for n = 3.

4. Recursion relation coming from the mixed Laplacians. A fourth approach is to use
the defining property (55) of the descending basis elements P,”, together with the relation (77)
between these functions and our preferred basis elements P,. We do not write this out in detail
since it is not particularly illuminating.

5. Recursion relation coming from the generating function. Finally, we can try to
compute all of the coefficients of the P,(T') from the generating function (69), rather than
only the constant terms as was done in Proposition 2. A closed formula seems very hard to
obtain in this way, but we can obtain yet one more recursive formula for these coefficients, of
a somewhat peculiar type, as follows. The quantity R = R(T,X) defined in (68) satisfies the
quadratic equation R? — A¢(T,X)R + d(T)X1X2X3 = 0, where Ag(T,X) and d(T) are given
in Proposition 1, so from (69) we deduce the generating function identity

Y Pa(T)X” = Ao(T,X) > Braa(T) XY + d(T)X1X2X5 Y Pyasa(T)X” = 0,

and by comparing coefficients we obtain from this a formula for P, 4 as a linear combination of
11 values of PII’,d+2 and Pyl7d+4 .

D. Explicit formulas for the coefficients of P, ;. In this subsection we compute as far
as we are able the coefficients of the polynomials P, 5. The calculations require, and reveal,
some quite surprising combinatorial identities. However, the formulas are rather complicated
and are not used again, so that the reader who does not like this sort of thing can skip to
Susbsection E without any loss of continuity. We use the recursions given in the first paragraph
of Subsection B, i.e., we use (81), (80) and (79) in succession. The first step is easy, since from
formulas (81) and (75) we immediately find by induction the formula for C(X;p) when two of
the \; vanish:

Proposition 6. Let A = (0,0, \3) and p = (u1, pio, pu3) > X. Then

CA;p) = (=D (g + pr2 + A3 + 8)! (g1 + s + 5)!(p2 + s + 3)!
; Aslpn o (s — A3)!(pe1 4+ As + 8)! (g + Az 4+ 8)! (3 — Az + s)!

Note that this is again a simple closed multiplicative formula, whereas using the generating
function directly would have given a formula for C(0,0, A3; ) as a double sum.

We next consider the C'(A; u) where only one of the \; vanishes. Here the formula which we will
obtain is no longer multiplicative, but it is a simple sum of products of binomial coefficients rather
than the four-fold sum that we would get if we simply expanded the generating function (69).

45



Equation (80) is equivalent by induction over As to the formula

min()‘Q 7“‘2)

(3 +n)! (1 + 2X0 — n)!
n! (A2 —n)!

(=1)*2 (1 + p3 + Ao + 5)!
C(0, A2, A3; ) =
(0,22, A3 1) pi! ps! (pn + ps 4 2X9 + 5)!

x C(0,0, A3 — Ao +n5p1 + 2\ — n, o — n, i3 +n) .

n=max (0, \2—A3)

Substituting into this the formula from Proposition 6, we find the expression

(_1>>\3 (NQ + ps + S)! (Ml + o + A3 + S)!(,u,l + puz + Ao + 3)!
pr! (va + ) (vs + s)!
X S(—=p350, A2 — A35 Ag, pio; 1 + pio + A2 + Az + ), (84)

C(0, A3, Ag; ) = =

where S(a; b, c;d,e; f) for integers a < b,c < d,e < f is defined by
! "N )t - )
(b—a)l(c—a)l(f —d)(f—e)! Z (n—=">0)!(n—2c)l(d—n)!(e—n)"

n=max(b,c)

S(a;b,c;d,e; f) =

Formula (84) expresses C'(A; ) when A\ = 0 as a simple sum of multinomial coefficients as op-
posed to the quadruple sum expression which would have been obtained by using the generating
function (69). On the other hand, it is not symmetric in the indices “2” and “3”. In looking for
a symmetric expression, we discover the remarkable symmetry property

(—1)**S(a;b, cid,e; f) = S(c;d,e; f,d+ e — by f —a+c) (85)

(where the right-hand side is zero if f —a < d+ e —b—¢). The proof is amusing and the reader
may enjoy looking for it. Applying (85) to (84) gives the new expression

(12 + p3 + 5)!
C(0, Ao, Ag;) =
( 2 3“) /Ll!AQ!)\s!(VQ +S)!(V3 +S>'
min A2, A 86
" (u5+ A2 p12+2s) (=D)"n! (1 +v2+v35+s—n)! (86)

(TL — Ag)' (n — /\2)' (,ug + Ao — TL)' (,U,Q + A3 — n)‘ ’

n=max(A2,\3)

which is again a simple sum of multinomial coefficients but is now symmetric in indices 2 and 3.

We now look for an explanation of the symmetry property (85). Combining (85) with the
trivial symmetries under b <> cand d < e, (a;b,c;d, e; f) — (a+k;b+k,c+k;d+k,e+k; f+k)
(k € Z, and up to sign (—1)*) and (a;b,c;d,e; f) = (k— f;k—e,k—d;k —c,k—b;k —a) (again
up to sign), we find that there are 9 essentially different sums £S5 which are equal by (85). The
nine inequalities on the variables a through f can be made uniform by writing (a; b, ¢;d, e; f) as
(a1 + ag — bs; a1, az; b1, ba; by + by — a3) where b; > a; for all i and j. The formula which makes
all symmetries evident is then

S(a1 + ag — bz;ar, az; by, ba; by + ba — as)

min(by,b2,b3) (_1)” (87)

- 2 (n —a)!(n — az)!(n — az)! (b1 — n)!(ba — n)!(bs — n)!’

n=max(a1,az2,a3)

whose proof we omit. Inserting this into (84) gives the following formula, which is again sym-
metric in the indices “2” and “3” but in general has fewer terms than (84) or (86) (for instance,
it reduces to a single term if any of the seven integers \a, A3, ua, us, v1, Vo or vz is 0):
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Proposition 7. Let A = (0, \2, \3) and p = (u1, 2, 13) subject to the three inequalities v; > 0,
where v1 = 1 + Ao + A3, Vo = o — Ao + A3, V3 = u3 + A2 — A3. Then

(,LL2+/L3+S) (1 4+ p2 + A3+ ) (1 + pg + Aa + 5)!
pr! (ve + s)! (vs + s)!

(="
2 (A2 = n)l(As = )1 —n+ s)Inl(p2 — A2 + n)l(pz — As +n)!

n=max(0, 2 —p2,A3—u3)

C(0, A2, A3 p) = (1)

min()\g,)\g)

Finally, we come to the general coefficient C'(A; p). Equation (79) and induction on A; give

(—1)/\1 (o + ps + A+ 9)! Z (1o +a+2b)! (us + a + 2¢)!

CA\p) =
(Asn) pa! pa! (pe + ps + 21 + s)! alb! !

a,b,c>0
a+b+c=X\1

x C(0, 2 — e, A3 — by iy — a, e +a+ 2b, us + a + 2¢) .

Substituting into this any of the three formulas obtained above for C'(0, A2, A3; ) gives a formula
for the general coefficient C'(A; p) as a triple sum rather than an octuple one, which is what we
would get from the generating function (69). For instance, the expression obtained using the
formula in Proposition 7 is

Cx;p) =

(2 + p3 4+ M1+ 5)! 3 (=1)M+a

palps!(ve + s)!(vg + s)! W= alblel (M —b—c)l(Aa—a—c)! (A3 —a—10)!
A1 —p1 <bte<Ay
)\27V3§a+(:§/\2
As—rvo<a+b<As

(,u1+,u2+>\3+b+s) (1 +ps+Aa+c+ ) (e + A\ +b—0c)l(us+ M\ —b+c)!
(n—a+s)!(pr—M+b+c)!(ra—As+a+b)!(v3s—Aa+a+c)!

This formula is symmetric in the indices “2” and “3”, but not in all three indices. Despite a fair
amount of effort we were not able to simplify it or to find an expression for C'(A; ) as a triple
sum which is symmetric in all three indices. The formula for C(0, A2, A3; p) in Proposition 7 can
be written as

(p2 4 p3 4 8)! (1 + p2 + Az +8)! (1 + pz + Ao + 5)!
pal pa! ps! (v1 + s)!H(ve + s)! (v + 9)!
x Coeffyr, prg (L= Y)"2 (1= Z)"3(1 =Y Z)"*°),

C(0, A2, Ag; ) =

which has a obvious generalization to

» vr i+ figt + prigs + ) 5
1 1 ; vi+s
C\p) = Jll 1+ o :g x Coeff XM x2x08 <J|1(1 — X1 — X1 Xitv2) + ) .

but unfortunately this formula, which is symmetric and relatively simple, is not correct when all
three \; are strictly positive; for instance, for C'(1,1,1;0,0,0) it gives 0 rather than the correct
value of 4(s + 2).

We remark that the numbers S(a;b,c;d,e; f) are, up to simple normalizing factors, equal
to the well-known Wigner 3j-symbols or Clebsch-Gordan coefficients occurring in the theory
of angular momentum in quantum mechanics, and that an equality equivalent to (87) can be

found in the physics literature. It is quite likely that the general coefficients C'(A; u) can also be
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expressed in terms of the more complicated 6j-symbols (or Racah coefficients) and 9j-symbols
of quantum mechanics, but we were not able to check whether this is the case.

E. Inhomogeneous coordinates and angular coordinates. As we already discussed at
the end of §1, the homogeneity of the higher spherical polynomials makes it natural to consider
them also as polynomials on the space S} of n x n symmetric matrices with 1’s on the diagonal,
or on the open subset S}'F of this space consisting of positive definite matrices. For n = 3,
this latter set can be identified by mapping t to the matrix 7' = T'(t) defined in (7) with the
semi-algebraic set

T = {t=(t1,ta,t3) € R®| [t;| <1, A(t) >0} (88)
shown in Figure 1 below, where A : R® — R is the polynomial
A(t) = detT(t) = 1 —13 —t3 — 12 4 2tytots . (89)

(To see that t — T'(t) is surjective, recall that a symmetric matrix is positive definite if and only
if its principal minors are positive. In fact only the top left minors are needed, so to define T
it suffices to require A(t) > 0 and |t3] < 1.) By Remark 4 after Theorem 2 in §3, we know
that the higher spherical polynomials P, (T") = B, 4(T) for a fixed value of d = 2s + 4 > 2 then
form an orthogonal Hilbert space basis of L?(T, A®dt;dtadts). (Compare eq. 20). In this final
subsection of §8 we wish to discuss a few further properties of the set T (alternative coordinates,
symmetry, ... ). These properties will also play a role in [12], where we will study the differential
equation (8) and its non-polynomial solutions.

We begin by mentioning two simple algebraic properties. The first is that the adjoint of the
matrix 7' = T'(t) (i.e., the matrix 7™ such that TT* = A - 13) is given by

2
* 112 Ay ) Ay L 9A
T = Ag 1-— t2 Al 5 where A,L = 5 87 = t]tk - tl . (90)
Ao A 1-12 ti

(Here and in the rest of this subsection, whenever we write indices i, j and k in the same
formula we mean that {i,j,k} = {1,2,3}.) The other is that the determinant A has three
algebraic factorizations

A = ATAT = ATA; = AT AT, (91)

where the quantities A;t are defined, using the convention and quantities just introduced, by

AF =\ J0-)1-8) A (92)

We will give an explanation and refinement of these factorizations below.

We now consider the symmetries of the set 7, which involve a small surprise for which we
have no real explanation. The polynomial A defined in (89) and the set 7 defined by (88) have
a symmetry group G of order 24, given by the six permutations of the ¢; together with the four
changes of sign of the t; preserving their product, i.e. G = &3 X E where

FE = {6 = (81,82,63) S {:]:1}3 | E1E92€3 = 1}

(Klein group). This group can be identified with &4 by identifying the set of indices {1,2,3}

with the three possibile partitions of {1,2, 3,4} into two disjoint 2-tuples via i «> {{j, k}, {i,4}}

for {i,7,k} = {1,2,3}. The surprise is that the set 7 itself can be rewritten in a visibly
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T (1,1,1)

t; = cosb;
-

L

T TS (0,0,0)

Figure 1: The semi-algebraic set 7 and the tetrahedron Ty

(-1,-1,-1)

G 4-symmetric manner. We describe this here algebraically, and below in terms of angular
coordinates. Let 3} denote the set of 4 x 4 real symmetric matrices that have 1’s on the
diagonal and whose (i,7)- and (k,l)-entries sum to 0 whenever {i,7,k,l1} = {1,2,3,4}. The
group G4 acts on «SA} by simultaneous permutations of the rows and columns, and if we identify
G with &, as explained above, then we have an &4-equivariant isomorphism Si = g’i given by

I W R

T=\|t;s 1 # o T = 3 ! 2. (93)
A to 11—ty
21 —t —ty —t3 1

The principal 2 x 2 minors of T are just the numbers 1 — 7 and the principal 3 x 3 minors of
T are all equal to A, so the inequalities defining the set T say precisely that the principal 2 x 2
and 3 x 3 minors of T are positive. This is an G4-invariant condition and hence explains the
&4-symmetry of T (except that we cannot really explain the origin of the isomorphism (93)).
Note that for the positive definiteness of the matrix 7' (rather than just of its submatrix T')
we need the positivity of all its principal minors, so that T is positive definite if and only if T’
is and the determinant of 7 is positive. This determinant, unlike that of 7', has a rational
factorization, as [],. E(l +€- t), the factors being the eigenvalues of the constant eigenvectors
{(e1,22,e3,—1)Yeer of T. Finally, we mention that the adjoint of 7' is a matrix of the same
form as T but with the diagonal entries 1 replaced by A and the off-diagonal entries t; replaced
by the expressions

to=t(L+8 41— 1) — 25t = t; A — 20, (94)

These quantities will occur again in [12] in the construction of non-polynomal solutions of (8).

Our next topic, which again involves a surprise for which we have no real explanation, concerns
angular coordinates. In the case of 2 x 2 symmetric matrices, corresponding to classical spherical
polynomials, one frequently makes the change of variables ¢ = cos 6 to identify the space S; =
{(1 1) | =1 <t < 1} with the interval (0,7). Here we make the corresponding substitution
t; = cos@; with 0; € (0,7). The surprise is that the semi-algebraic set 7, which is shaped like a
rounded tetrahedron, is then mapped isomorphically onto the linear tetrahedron

To = {(61,02,03) €R® | 0, <0+ 0, <2m—06; for {i,jk}=1{1,2,3}}, (95
which is the interior of the convex hull of the four vertices (0,0,0), (0,7, x), (7,0, 7) and (, 7, 0)

of the cube [0, 7]3. (See Figure 1.) This gives another explanation of the isomorphism between
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the symmetry group of 7 and &4, identified with the group of permutations of these four vertices.
But we can do even better: if we introduce new coordinates 9, (v =1,2,3,4) by

5i_9j+92k—0i (1<i<3), 54:W*W’ (96)
then the angles 6; can be expressed in terms of the §, by
0; = 6; + Ok, ™ —0; = 0; + 04 (1<i<3), (97)

the tetrahedron 7y is identified with the simplex {(d1,d2,d3,04) € R‘éo | 01 + 02 + 03 + 04 = 7},
and G acts simply by permuting the ¢’s. The six numbers {+¢;}1<;<3 are the six numbers
{cos(d,, + 0,) }1<pu<v<a, these being precisely the non-diagonal entries of the matrix T defined
in (93) and with the same numbering. Finally, the three factorizations of A given in (91) can
be replaced by the single fourfold factorization

4
A = 4Hsin(51,, (98)
v=1

which explains and refines (91) because the functions A; and Aj are equal to 2sind; sin dy
and 2sind; sin dj, respectively. This equation also makes it clear that the condition A > 0 is
equivalent to the inequalities §, > 0 and hence explains why the sets 7 and Ty correspond.

§9. A universal generating function for the descending basis

In Remark 1 in §8.A we observed that the generating function of Theorem 9 could be expressed
in terms of only three quantities, namely the coefficients of the characteristic polynomial of the
product of T" with a 3 x 3 matrix of “dummy” variables X; . That remark will now be generalized
to construct a generating function for all n whose coefficients give a basis of the space P(™)(d)

for all n and d, and in fact a basis that coincides, up to scalar factors, with the “descending”
basis of P(™(d) defined in Chapter 1.

We fix n (at least initially), but take d to be generic. Equivalently, we work over the field
K = Q(d) rather than thinking of d as a specific complex number. (Compare the discussion
following Theorem 6 in §5.) We would like to construct a generating function over K[S,,] whose
coefficients P, (T') are multiples of the descending basis, i.e., which satisfy

Dij Po(T) = Pye, (T) (99)

forallv € Ny and all 4, j = 1,...,n. Here = denotes equality up to a non-zero constant and we
are also using the convention that P,=0 if some entry of v is negative, so (99) includes the fact
that each P, belongs to P (d). Generalizing the observation about Theorem 9 quoted above,
we make the following Ansatz for the form of this generating function:

Y R(T)XY = G"(01(XT), 02(XT),...,0n(XT)), (100)
veNy

where G(") is some power series in n variables, o, of a square matrix denotes the ath elementary

symmetric function of its eigenvalues, X is a symmetric n X n matrix of “dummy” variables
x;j = xj; with z;; = 0 for all ¢, and X = Hi# xi”;'j/? _ Hi<j :cl”]” Our object is to show that
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a function G (o1, ...,0,) can be found such that the coefficients P, defined by (100) satisfy
the property (99). By the Remark cited above, we already know the answer for n = 3, namely

d—4

/A2 _ )

G(B)(O'l,O'Q,O'g) = L <AO + AO 803) y Ao = (1 - 2)2 — 02 . (101)
\/Ag —80’3 2

It will turn out that the functions G are actually independent of n in the sense that there is

a single power series G(o1,09,...) in infinitely many variables such that each G (oy,...,0,)
is simply G(o1,...,0,,0,0,...). (Notice that such a power series makes sense because we
can introduce a grading by |o,| = a and then the space of monomials of any fixed degree is

finite-dimensional.) The power series G turns out not to be quite unique, but to be uniquely
determined by G (01) = G(01,0,0,...), which is arbitrary. The choice corresponding to (101)
in the case n = 3 and to the classical generating function of Gegenbauer polynomials in the
case n = 2 is GM(01) = (1 — 01/2)?~%, and this will be our standard choice, but there exist at
least two other special choices which have some nice properties, as will be discussed briefly in
Subsection C.

Since this section is again quite long, we have divided it into subsections. In Subsection A
we show how to characterize the power series G(™) such that the Taylor coefficients P, in (100)
satisfy (99), and prove that for each k the space of the degree k parts of such power series is
one-dimensional, which implies the desired existence and uniqueness results. The proofs of two
of the propositions needed for this are quite long and are given separately in Subsection B,
which can be omitted without loss of continuity. One consequence of the proof is that if G
(which is arbitrary) is chosen to be holomorphic in d, then the coefficients of the power series
G have poles only at integral values of d. This implies the result, left open in §5, that the
scalar product on P(™)(d) is non-degenerate for all d € C \ Z.,, . Subsection A also contains an
explicit inductive construction of the power series G™ from an arbitrary initial value of G(*)
by applying suitable differential operators. Finally, in Subsection C we give a discussion of the
various good choices of G(!) and a number of examples and partial results about the coefficients
of the power series G(™ for the standard choice. We have not been able to find a complete
formula for the coefficients in general.

A. Existence of the power series G("). We fix the notation
V = Kllo1,09,03, ...]], Vii = Vdeg=k »

where L = Q(d) as before and the degrees are determined by |o,| = a. Thus Vj is finite-
dimensional, of dimension p(k) (number of partitions of k), and V' = [, Vi. We have a

homomorphism V — K[S,][[X]] defined by F — F, where

F(T,X) = F(o1(XT), 02(XT),...,0n0(XT),0,0,...) .

Our goal is to find a G(™ such that the coefficients P, in (100) satisfy (99), so the first thing
we need is to compute the action of all D;; on F for arbitrary F'. (Note that the operators D;;
do not involve the X-variables, so D;;(G™) = 3(D;;P,)X".) The image of the map F Fis
not stable under D;;, but the following proposition, whose proof will be given in Subsection B,
calculates Dij(ﬁ ) for all ' € V' in terms of only the quantities 0;;(0,) and certain differential
operators L, that do preserve V. For convenience we set 0, = 0/00,, while 0;; retains its usual
meaning (1 + d;5) 9/0t;; .
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Proposition 1. For p > 1, define a second order differential operator L, : V. — V of degree
—p (i-e.; Lp(Vi) C Vi—p) by

L, = (d+1-p a-+2<§: > )mﬁhpmam (102)
a,b>p 0<a, b<p

where o4 is taken to be 1 if ¢ =0 and 0 if ¢ < 0. Then for all i and j we have

oo

Dij = Zaij(gp) Ly. (103)
p=1

The more precise meaning of (103) for a given value of n is that

n
Dij(F) = Y 0i(0p(XT) Ly(F)  (1<irj<n),
p=1
where the sum over p can be extended to infinity if one likes since ¢,(XT) = 0 for p > n.
Note that here one could replace the sums in (102) by the subsums with 1 < a,b < n and
a+b—p <mn,since if a +b —p > n then 044y, vanishes, and if a +b — p < n then a and
b are < n automatically in the first sum and also in the second sum whenever p < n. Similar
remarks apply to all later formulas, which we will write in a way not explicitly mentioning n,
but remembering that, when we apply them to o; = 0;(XT) for matrices X and T of a fixed
size n, then o, = 0 for all a > n.

Corollary. Let W = (s, Ker(L,) C V. Then for any F' € W we have D;;(F F) = 0 and

Dij(F) = 2245 L1(F) for i # J.

Proof. This follows immediately from (103), since 0;;(01(XT)) = 0 and 0;;(01(XT)) = 2z;;. O
The following proposition, whose proof will also be postponed to Subsection B, is crucial.

Proposition 2. The operators L, satisfy the commutation formula

[ﬁpn £p2] = -2 Z Opy+p2—p Lp (0 <p1 <p2). (104)

P1<p<p2

Corollary. The subspace W of V is mapped into itself by L1. More generally, the space
Wi{m) := (s, Ker(L,) CV is mapped into itself by Ly, for all m > 1.

Proof. This follows immediately from (104). In fact, we need only that the product £,,L,, is
in the left ideal generated by £,’s with p > p;. O

We now use this to deduce the main result of this subsection:

Theorem 10. The space Wi, = W NV} is one-dimensional for each k > 0. If Gy, is a non-zero
element of Wy for every k > 0, then L1(Gy) is a non-zero multiple of Gyx—1 for all k > 1
and if we set G =), G, € W then the polynomials P,, € K[S,] defined by G = Y P,(T)X"
satisfy (99).

Proof. For each m > 1 we denote by V(™) the ring K[o1,...,0.,] and by p,, : V — V™) the
restriction map G — G(o1,...,0,,0,0,...). We will show by downwards induction on m that
for each m > 0 the composite map

W(m) — v £ ym (105)
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is an isomorphism. The case m = 1 gives the first assertion of the theorem, since V1) = K[o]
is 1-dimensional over K in each degree. Here “downward induction” makes sense because both
maps (105) preserves degree and are obviously isomorphisms in degree k& when m > k, so that
the “initial step” of the induction is automatically satisfied.

We will show below that the map (105) is injective. For the surjectivity we use a dimension
argument. Denote by Wy (m) and Vk(m) the degree k parts of W (m) and V(™) respectively. The
dimension of Vk(m) is the number p,, (k) of partitions of k into parts < m. These numbers are
given by the generating function

3 1
kZ::Opm(k)tk N 1-t)a—¢)---(1—tm)’

and from this or directly from the definition one sees that they satisfy the recursion
pm(k) = pm(k —m) + pm-1(k) (106)

(with the initial condition po(k) = dro and the convention p,, (k) = 0 for £ < 0). On the other
hand, £,, acts on W({m) by the corollary to Proposition 2, clearly with kernel W{m — 1), so
since L,, has degree —m we have an exact sequence

0 — Wilm — 1) — Wi (m) =2 Wi_n (m) (107)

for every m and k (with the convention that the last space is {0} if m > k). If we assume that the
map (105) is an isomorphism for m, then it follows from (107) and (106) that dim Wy (m —1) >

Pm—1(k) = dim Vk(m_l), and hence, assuming that the injectivity is known in general, that the
map (105) with m replaced by m — 1 is an isomorphism, completing the induction.

It remains to prove the injectivity in (105). To do this we will show that
Ker(£,) N Ker(pp—1) € Ker(pp) (108)

for all p. Then for F' € W(m) = Ker(Ly,+1)N Ker(L,,42)N--- we can apply (108) successively
withp=m+1, m+2, ... toget pp(F)=0= ppt1(F) =0 = ppt2(F) =0= --- and hence
F=0, proving the injectivity of p,,.

To prove (108), write the expansion of an arbitrary element F' € V' as
o1t 042

—= ... 109
7"1! 7“2! ’ ( )

F(o1,09,...) = ZA(r)i—; = > Alrra,.n)

r>0 r1,72,-2>0

where r runs over oo-tuples (r1,79,...) with r; > 0 for all ¢ and r; = 0 for all but finitely many 3.
(The coefficient A(r) is an element of K C Q(d) and will be denoted A(r;d) when we want to
make the dependence on d explicit.) We also make the convention

ro = 1, r_y =7r_9=---=0, <110)
and will also write simply A(ry,...,rp) for A(ry,...,7rp,0,0,...) if r; = 0 for all i > p. Studying
pp(F) means looking only at the coeficients A(rq, ..., r,) in the expansion (109). If F' € Ker(L,),

Tp—1 rp—1

then by computing the coefficient of ii e %% in £,(F) we find
Ar) 2 3 A( T— ) ()
r) = Tatb—p A(r — €qqp— e e — e
d—p—i—?rp—l a+b—p a+b—p a b D
0<a, b<p
a+b>p

53



forallr = (r1,...,7p) with , > 0, where e; as usual denotes the vector with a 1 in the ith place
and 0’s elsewhere (so ey = 0) and ro = 1 by the convention (110). From this formula it follows
inductively that all coefficients A(r1,...,7,) are determined by the coefficients A(ry,...,rp—1)
and hence that p,_1(F) =0 = p,(F) =0, as was to be proved.

This completes the proof of the isomorphy of the map (105) and hence of the first statement of
Theorem 10. The other two statements are now easy. Choose a basis {G} of the 1-dimensional
space Wy, for each k > 0. From the corollary to Proposition 2 we see that £1(Gy) is a multiple

of Gi—; for all k > 1, and this multiple is non-zero because of (107), since W} (0) = V(O) {0}
for k£ > 0. Write El(Gk) = ¢,Gg—1 and write G =) 7o, Gk as »_, P,(T)X". By the corollary
to Proposition 1 we have D; (Gk) =0 and D;; (Gk) = 2c,wij Gk 1, and comparing the coefficients
of X¥ on both sides of this equality we find that D;(F,) = 0 and D;;(F,) = 2¢|,| Py—e,, for all
v #0, where |[v|=>._.v;. O

1<J

Before finishing this subsection, we mention two consequences of the explicit recursion (111).
First, in this formula, the only denominators that occur are of the form d — dy with dy € Z. It
follows that, if we choose our normalization of the functions Gy € Wy (or equivalently, of the
function G()) to have coefficients in the subring

1 1 1
R = Q[d, dd+1 d+2’ -] (112)
of IC consisting of rational functions of d having poles only at integers, then the whole function
G has coefficients in this ring. The coefficients ¢, € K relating £1(Gj) and Gj_; also have
no zeros or poles in d outside of Z, and it follows that the descending basis elements PP (T)
that we constructed in §5 also have coefficients in the ring R. In particular, these polynomials
exist for any d € C \. Z. It then follows from the duality between the bases {PP} and {PM}
(Theorem 6 and the remarks immediately preceding and following it) that the scalar product in
P (d) is non-degenerate for these values of d. But we already know that the scalar product is
non-degenerate for real d > n — 1, because it is defined by a convergent integral with strictly

positive integrand (cf. Theorem 2), so we deduce the following result, already mentioned in §5:
Theorem 11. The scalar product in P™ (d) is non-degenerate for all d € C\ Z<,, .

We remark that the non-degeneracy for d € Zx,, can also be obtained purely algebraically,
without using the positivity of the scalar product, since the denominator d — dy in (111) always
satisfies dy < p (because r, > 1) and since p < n for the coefficients A(r) occurring in G(™).

The second observation is that the recursion (111) leads relatively easily to a “closed formula”
for the generating series G(01,02,...). Indeed, for each n, let us expand the generating function
G™ = p,(G) (n > 1) as a power series

n n O”Zﬂl n n—
Gnn) = X oo T = 6)
in its last variable o,,. Applied to any function involving only o4, ..., o,, the operator L,, equals
(d+1—-n)o, + 2(7”83 —2M,,, where M,, is the second order differential operator
M, = Z Tatb—n Oa O, (113)
0<a,b<n
a+b>n

with o9 = 1 as usual. Equating the coefficient of o7, in £, (G™) to 0 therefore gives

d—n+2r+1 (, "
AZnA L0 = Mu(®) (2 0) (114)
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(n)

and hence, by induction on r and using the initial condition g5~ = G~ the general formula

1
(n) _ r((n—1)
g™ = M (G (r>0).
(A(d—n+1)), ( )

Since the operators M,, and (multiplication by) o, commute, this implies that

G(n) (017 te 70”) = Jid_;_l (UnMn) (G(n_l)(ala s 70'n71)) ) (115)
where J, (x) is the power series
> " x z?
Sz =S T . 11
T(z) ;r!(u—i—l)r +1/+1+2(1/+1)(1/+2)+ (116)

related to the J-Bessel function J,(z) by J,(z) = éfl{i)ly)q]]y(—ﬁ/él). Now induction on n gives

G (oy,...,00) = Jazn-1 (00 M) Ja—n (0n-1Mn—1) ---J§(02M2)(G<1>(01)), (117)

the desired “closed formula” for G(™) (or even, if we extend the product of operators infinitely
to the left, for the whole generating function G). The form of (117) makes it clear that the
power series G (o) can be chosen arbitrarily but then determines all of the higher power
series G (o1, ...,0,). Summarizing, we have:

Theorem 12. The universal generating function G can be obtained for all n > 1 from an
arbitrary choice of GV by (117), where J,(x) and M,, are the power series and second order
differential operator defined by (116) and (113), respectively.

The above argument described the generating function G(™ for generic values of d in terms
of the initial choice G(!), the key point being that G(™) is determined in terms of G(*~1 by
equation (115) as long as (d—n—1)/2 is not a negative integer. We end this subsection by saying

something about the exceptional cases where G(o71, .. ., 0,) is not determined by its specialization
to o, = 0. For clarity we write W (™ (d) for the space of functions in V" = K[[o1,...,0,]]
annihilated by Lo, ..., L,, including the dependence on d in the notation. Then we have:

Proposition 3. Suppose that G(o1,...,0,) € W™ (d)~{0} with G(o1,...,0,-1,0) = 0. Then
d=mn+1—2m for some integer m > 1 and G has the form

O,m+t/

Gloy,...,0n) = ZM;(g)(al,...,an_l)m (118)

for some function g € W=D(d 4+ 4m) = W=D (n 4 2m + 1). Conversely, for any m € Z>,
and any g € W=D (n42m + 1), the function G defined by (118) belongs to W™ (n — 2m + 1).

Proof. Write G as ), ~,9r(01,...,0n-1)0),/7!, and let m > 1 be the smallest integer for which

gm Z 0. From E%n’d)(G) = 0 we get 1(d—n+2r+1)g,11 = M, (g,) for all 7 > 0 (equation (114)).
Applying this with r = m—1 gives d = n—2m+1, and then applying it inductively for r = m+v
gives gm+yr = MY (gm)/v! for all v > 0, so G has an expansion as in (118) with g = g,,. To
prove that the function g belongs to W (=1 (d 4 4m), we must show that E,(jnfl’d+4m)g =0 for

(n7

all 2 < p < n, where for clarity we write £ ) for the operator £, in V() with a given value

of d. From the definition (102) we get

0
£I()n,d) _ E(n 1,d+4m) + 4<0'n7 _ m) — + 2Un E 80- (2 §p< TL),
i

Ooy, oy, 80n+p i
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and the claim then follows by computing the coefficient of o] in the equation El(yn’d)(G) = 0.
Conversely, if g € W (=1 (n 4 2m + 1), then by reversing the above calculations we find that the

function G defined by (118) satisfies G = O(o]"), G € Ker(ﬁgln’d)), and E,()n’d)(G) = O(o™™1)
for 2 < p < n. But by the corollary to Proposition 2, Eé”’d)(G) for 2 < p < n also belongs to

Ker (E%n’d)), and then it must vanish since the first part of the proof shows that any element of
this kernel for d = n +1 — 2m is determined by its o, term. [

B. Proofs of the closed formula and commutation relation for £,. In this subsection
we prove Propositions 1 and 2. Both proofs are rather lengthy and, as already mentioned,
can be omitted without loss of continuity. To simplify them somewhat, we define coefficients
e(m), aib(m) € {0,+1,+2} for a, b, m € Z as follows:

. 1 +1 ifm >0,

e(m) = sign(m+ 3) = -1 ifm<0
+2 ifa, b>m,
5;b(m) =ela—m)+elb—m)=<¢ -2 ifa, b<m,

0 otherwise,
+2 ifb<m<a,
E.p(m) = ela—m)—elb—m)=4¢ =2 ifa<m<b,

0 otherwise.

Then the definition (102) of the operators £, on V' can be written more compactly as

L= (@+1-p)0 + Y D) ousvpPudy (0 >1) (119)

a,b>1

(with 9, = 0/00,, and with the convention that o9 = 1 and o, = 0 if a < 0), and the
commutation relation (104) can be written as

Lo, Lg) = D a0l (p,g=1). (120)
a,b>1
a+b=p+q

Proof of Proposition 1. Since both the left- and right-hand sides of (103) are second order
differential operators, it suffices to prove their equality on monomials in K[oq,02,...] of degree
<2, ie., for 1, 0, and o404 (a, b > 1). The first case is trivial (both sides are zero), the second
case can be rewritten (since £,(0,) = (d+ 1 —p)dap) in the form

Dij(ap) = (d+1_p)8ij(ap) (1<i,j<n, 1<p<n), (121)

and the third case is equivalent, by virtue of (119) and (121), to the identity

[e.o]

Dij(0a0p) = Zaij(ap) [(d+ 1= p)(bapop + dppoa) + 25a+,b(p)0a+b—p]
p=1
= Dij(04) 0b + 04 Dij(b) + 2 el (p) 05(0p) Tatvp (122)
p>1

It therefore suffices to prove the formulas (121) and (122).
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For this purpose, it will be convenient to use generating functions. Let A be an independent
variable and set

P =P =X1'92T, A=A, =det(P) = det(X ZJ,,AP

The subscript “A” will be omitted when no confusion can result. Since the factor det(X)~! is
independent of A and the T-variables, (121) can be rewritten in the form

d

0 — (1 -2
Di(A) = (1 )\d)\

) 0i;(A) (123)
where D?j := D;; — d0;; denotes the purely second degree part of the differential operator D;;.
(Cf. the definition of D;; in eq. (31).) Since the (i, j)-entry P;; of P equals At;; + (X 1);;, we
see from the expansion of det(P) as a sum of products that

Di;(A) = 2XNAW (124)

where A% is defined as (—1)**/ times the determinant of the (n — 1) x (n — 1) matrix P%J
obtained from P by omitting its ith row and jth column. (The factor 2 in (124) arises for i # j
because P is symmetric and contains tw twice, and for ¢ = j because 9;; = 20/0t;;.) Since each
entry of the matrix P%/ = \T%J 4 (X ~1)%/ contains A multiplied by the corresponding entry of
T%J, which is some ty, with k # i, £ # j, we have

8 (A7) Z trg ABFIE (125)
k,¢=1

where A% is the determinant of the (n — 2) x (n — 2) matrix obtained from P by omitting
its ith and kth rows and jth and fth columns, multiplied by (—1)"*¥+7+¢ and by an additional
factor sgn(i — k)sgn(j — £) to take into account the antisymmetry of the determinant (and
ABFRIE = 0 if 4 = k or j = £). Combining (124) and (125) gives

d
dA

0

(1-Xx— )

) 0i(A) = —2X2 Z(AW) = —2X7 Y "ty AVFIL, (126)

k, ¢l

On the other hand, using (124) with (7, j) replaced by (j, ) and computing 0, of it by the same
argument, we find

Oik0je(A) = 209, (A7) = 2X% [ABTRL 1 ARJHL] (127)

(Here there are two terms on the right-hand side rather than a factor of 2 as in (124), because
P73 is no longer symmetric.) Multiplying this by ¢, and summing over all 1 < k,¢, < n gives

= Ztkg a,kaje(A) = 2/\2Ztu Ak’j;i’z . (128)
k.l

(The whole contribution from the first term on the right-hand side of (127) drops out because it
is antisymmetric in k£ and ¢ while ¢, is symmetric.) Interchanging ¢ and j in this formula and
using the antisymmetry once again, we see that the right-hand sides of (126) and (128) agree,
completing the proof of (123) and hence of (121).
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We now turn to equation (122). Again we use the generating function Ay = det(Py), but this
time for two independent variables A and p (which we now cannot omit from the notations).
From the definition of D;; together with equation (124), which by the standard formula for the
inverse of a matrix can be written in the form 9;;(Ay) = 2AA(P5 1);;, we find

Dij(AxAL) — Dij(Ax) Ay — AL Dij(A) Ztke ik (A1)050(A ) + Oir(Ap)je(AN))

el Y ZAS WA Z Yk tee (PN + (P ik tie (Py eg)
k, 0
= AApANAL (P T B + BT P
Py Pt pP,—-P
= —8AunA\NA, (“) (because T = u)
A—p ij A—p
4
= 5 (18 0:5(80) = A8y 8;5(A,))
)\q-HMp — Mq-l-l)\p
:det > oa0i(oy) X — 1 ’

p>0,9g>0

and now expanding the fraction in the last line as a geometric series and comparing the coeffi-
cients of A%u® on both sides we obtain the desired equation (122). O

Proof of Proposition 2. Any element of the Weyl algebra Q[o,, 02, ...,01,0s,...]| can be written
uniquely using the commutation relation [0,, 0] = dap as a sum of monomials oo --- 9705 - - -,
so it suffices to put the left- and right-hand sides of equation (120) into this form and compare
coefficients. We claim that both sides of (120) are equal to

2 > (d+1-i)e, (1)0:;0; + > e pta—k)el;(0+q—k)Oipjir—p—q0i0;0k .
i,52>1 i, 7, k>1
i+j=p+q

For the left side we use the commutation relation to find in succession

[8]77 Eq] = Z 6:;1;(‘]) aaab,
a+b=p+q
(01040, 01040B) = 0 (05,104 + 04,10,)040 — 01 (68,104 + 04,:08)040,
Ly Lo = Y [[d+1=p)efi(a) — (d+1—q);(p)] 20
i+j=p+q
+ Z < Ek Ji+j— q(p) - ‘Ej:j(p) E;l:i-g-j_p(Q)) Oitj+k—p—q 8183& .
i, 7, k>0

The final expression gives [£,, £,] as a sum of canonically ordered monomials in the Weyl algebra
and can be compared with the formula given at the beginning of the proof. The coefficients of
0;0; and 04 jr—p—q0;0;0 in the two formulas do not agree as they stand, but if we symmetrize
with respect to i and j (resp. to 4, j and k), they do. (The somewhat tedious verification of
this can be done either directly, by checking the various cases according to the inequalities
satisfied by the variables, or else by forming generating functions out of the coefficients in
question and comparing their values.) Similarly, if we use the commutation relations to calculate
the right-hand side of (120), then after symmetrization we find the expression stated at the
beginning of the proof except that the coefficient of 0;0; in the first sum has an extra term
> 1<h<piqCp, q(h)ez’rj(h), but this sum vanishes since ¢, ,(h) is invariant and 5;2 (h) anti-invariant
under h—p+q+1—h(=1i+j+1—h). Again we omit the details of the computation. [
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C. Special cases and explicit formulas. In Subsection A, we gave the proof of Theorem 10
in an algebraic form that led to an explicit recursion for the coefficients, and also recast it as
an explicit inductive construction of the power series G(") := pn(G) via differential operators
(egs. (111) and (117)). Either of these can be used to make numerical calculations in any
desired special case. In this final subsection we describe some of the results obtained, and a few
supplementary results.

1. We start by looking at some small values of n. For the case n=1 it might seem that
nothing needs to be said, since, as we have seen, the function GV (01) can be chosen arbitrarily.
However, in fact not all choices are equally good, as we will see in a moment when we consider
the next two values n = 2 and n = 3. Furthermore, there is a direct connection between
the choice of G and the constants of proportionality relating various normalizations of our
canonical bases of higher spherical polynomials, and we discuss this point briefly here because
it casts some light on the calculations done in §8 for n = 3. Write the generic choice of power
series G (o) as

o
GD(g) = S 2Lk (129)

kL
k=0

with 79 = 1, where 7 in general may depend on d. Our standard choice, dictated by the
generating function (72) for n = 2 or (101) for n = 3, will be

e = 27Fd=2), GY(o)=(1-0,/2)*1 (130)

(or by an appropriate limiting value if d = 2). The polynomials corresponding to this normal-
ization will be denoted simply by B,(T") (or B, 4(T)). However, we will also consider various
other possible choices. The simplest and most natural one, which will occur again in points 2.
and 6. below, is

v, =1,  GY(o)=em. (131)

We will denote the corresponding generating function by G(o1,09,...) and its coefficients by
A(r1,72,...), and notice that any other choice is related to this one by G, = vy, G, and A(r) =
i A(r), where k = ) ir;. Similarly, the higher spherical polynomials P, (T") by

Z P (T) XY = Q(n)(UI(XT)7 02(XT)7 s 7Un(XT>) ’ (132)

v

veNy

i.e., by (100) with G replaced by G (") "are related to the standard polynomials by the formula

P(T) = 27%(d -2 P,(T) (k=] :=) vy=31"-v-1). (133)

1<J

Let us look how the higher spherical polynomials defined by these various choices are related
to the descending basis defined in §5. Begin with an arbitrary choice of G(!) as in (129). In
Theorem 10 we showed that L4 (G,gn)) = ¢ G,(;Z)l for certain constants c¢; independent of n.
Applying this to n = 1, with G,(cl)(ol) = v,0¥ /k!, and observing that the operator £; equals
simply d8; + 2039, for n = 1, so that £,(c¥) = k(d 4+ 2 — 2)o* !, we find that the constants
¢k are related to the coefficients v in (129) by ¢ = (d + 2k — 2) % /7x—1. In particular, for the
simplest generating functions G, we have simply El(Qén)) = (d+ 2k —2) Qén_)l for all m, k > 1,
so from (132) and the corollary to Proposition 1 we get D;;(P, (1)) = 2(d + 2k — 2)P,,_,, (1),
where k = ||v||. Comparing this with the defining property (55) of the descending basis, we

obtain:
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Proposition 4. The higher spherical polynomials P, (T) defined by the generating series (132)
are related to the descending basis by

P,(T) = 22" (d/2)u BP(T) (v eNo, k=|v]). (134)

Combining this with equation (133), we find that we have also proved the formula
PAT) = 2% (d/2)x (-2, PP(T) (v e No, k= wl)). (135)

relating our standard basis to the descending basis. This generalizes the result already proved in
Proposition 3 of §8 for the case n = 3, and clarifies the origins of the two Pochhammer symbols
occurring in equation (77).

2. To see which choices of 7, have good properties, we look first at the case n=2, where,
as we already mentioned in §8.A, the polynomials P,(T") are called Gegenbauer polynomials
in general and Legendre (resp. Chebyshev) polynomials in the special case d = 3 (resp. d = 2
or 4). With the normalization fixed in (71) they are given by the generating function (72),
which corresponds in our notation (since the elementary symmetric functions of the eigenvalues

of (fﬁf)(f}; :n/:) are oy = rX and o9 = (12/4 — m1ms)X?) to

-1

GP(o1,02) = (1—01/2)%* —02) " (d=2s+4) (136)
and hence to the normalization given in (130). As already stated, this will be our default
choice of normalization from now on, but it seems worth mentioning that there are at least
two other special choices that have special properties for n = 2 and therefore should also be
considered. If we look in a standard reference work like [1], F22.9, we find, as well as the
generating function (72), two other generating functions for Gegenbauer polynomials, namely,
in our notations,

27 mi r/2 a r
2 25+2), Paa(,)h 742 ) X = €N Jgi12((r® — dmima) X?) (137)
=0 a
<1 —rX/2+V1—1X+ m1m2X2>_5_1/2
- 3/2), - 5
ZMP@ ( 12 /2)Xa _ ’ (138)
a=0 (25 +2)a /2 ma V1—rX +mimyX?

where J, (z) is the modified Bessel function (116). We can write these in op-coordinates as

GH(o1,09) = en Jst1/2(402),
1

G (01,00) =
o) \/(10'1/2)202<

corresponding to the two n = 1 initializations (131) and

1—01/2—|-\/(1—01/2)2—02)_5_1/2 (139)
5 )

e = (s+1/2)i, GD(o)) = (1—0y/2)"° %2, (140)

Notice that the generating function (138), like the standard generating function (72), is
algebraic when d is rational. One can ask whether there are any other generating functions
that are algebraic, at least for special values of s. In this connection we can observe that the
n = 1 specializations of all three generating series in (136) and (139), namely the functions
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GW, GW and GM given in equations (130), (131) and (140), belong to a single one-parameter
family (1—o1)~* (up to trivial rescalings oy — Aoy, with the function G corresponding to the
degenerate case K = A~ — 00). The corresponding n = 2 generating series are hypergeometric,
and using Schwarz’s theorem we can check that none of them is algebraic except when s is rational
and K equals either 2s + 2 or s + 3/2 (corresponding to G or @) or when s is an integer, in
which case they are algebraic for every value of K.

3. We next look at the case n=3, where we already know that the answer for G(") (in
the standard normalization (130)) is the function given in (101). The coefficients of B, (T)
as polynomials in the coefficients of T" were studied in §8.D and were extremely complicated
expressions that we could not evaluate completely in closed form in all cases. The coefficients of
G®), on the other hand, turn out to be very simple. For n = 3 the space W& c K[[o1, 02, 03]]
is given by the vanishing of only two operators

Lo = (d—1)0y + 20202 + 4030,03 — 207, L3 = (d—2)05 + 20303 — 40,0 — 20105 .

(The other terms in (102) can be omitted by virtue of the remarks following the statement of
@ O’B G.’Y .

Proposition 1.) If we write G as >0 fry>0 An gy D F > so that Aq .y = A(a, 8,7) in the

notation of (109), then the conditions Lo(G®)) = L£3(G®)) = 0 translate into the recursions

(@+26+4y=1)Aa g1y = 2Aat2py,  (A+27=2)Aapq41 = 4Aatipriy 20401612,

The right-hand side of the second of these equations can be replaced using the first equation by
the simpler expression 2(a+ 25 +4v+d+1)Aq—1,8+2,, and using this one finds easily that the
solution of these recursions, with the initial conditions A, 00 = 27%(2s + 2)q, is given by

Aapry=2"""(20+47+25+2)a 2y +s+1)s(y+s+1)y, (141)

where d = 25+ 4 and (2),, = x(z + 1) --- (x +m — 1) is the ascending Pochhammer symbol as
usual. We thus obtain the following very simple description of G®) as a power series.

Proposition 5. The generating function G is given by

28 + 4y +2s + 1 2 2
GO0, 00,05) = 3 2o (a+ B+ 4y +2s+ )(,6’+ v+s)< v+s>gga§ag,
v

@By >0 @ B

(Note that we could also have obtained this expansion directly, using equation (70) and the
binomial theorem, as the Taylor expansion of the algebraic function (101).)

We also mention that the n = 3 case allows us to reduce the freedom of choice that we still
had for n = 2, since neither the function G corresponding to the functions (137) or (140), nor
the functions n = 3 corresponding to G (o) = (1—07) ¥ for s integral and other choices than
K =s+43/2 or K =2s+ 2, turn out to be algebraic, leaving out standard normalization (130)
as the only one (up to rescaling) that gives algebraic generating functions up to n = 3. From
now on we always assume that we have made this choice.

4. For n>3 the coefficients of the generating function G no longer factor nicely into
linear factors, and the generating function itself no longer seems to be algebraic in general
for any choice of the initial function G™). We will consider in detail the case n=4. Write

@ B Y )
GW = > fr 550 Aaspins ‘;—2, 2—?; 21, Then the equation £4(G™®) = 0 gives the recursion

d+20—3

D) Ao pro+1 = 2Aa11.87+1,6 + Aaproqys + 20Aa-1114+1,6 + BAas—14+2,6,
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and this allows us to reduce the calculation of all A, g, to that of A, g~0 = A ~, Which
is given by (141). Already for § = 1 the explicit formulas for the coefficients A, 5,6 become
complicated, but they can nevertheless be used to calculate as many terms of the power series
G™ as we want, or alternatively, we can use eq. (115) to compute G4 directly from G,
Carrying out these calculations for various small values of d (d = 4, 5,...,10) and up to fairly
large degrees led to a number of conjectural statements, most of which we were then able to
prove. These experiments, results, and proofs will be described in detail in §10. Here we mention
only the highlights:

(a) For d = 4 the function G is algebraic.

(b) For d = 6, 8 and 10 the function G is not algebraic, but certain derivatives of it are.
Specifically, the images of G®*) under E + 3 for d = 6, under (F + 4)(E + 5)(E + 6) for d = 8,
and under (E+5)(E+6)(E+T7)(E+8)(E+9) for d = 10, where E as usual denotes the Euler
operator, all turned out experimentally to be algebraic functions, leading to the conjectural
statement that (gff)G(‘l) (01,02,03,04;2s + 4) is algebraic for all positive integral values of s.
This will be proved in §10.

(¢) For d=15,7 and 9 we find numerically that the power series G™ is not algebraic, but
does have integral coefficients after rescaling by some simple factor (involving only the prime 2
for d =5 and d = 7 and only the primes 2 and 3 for d = 9). We conjecture that this is true for
all odd values of d > 5.

5. In points 1.-4. above, we looked at the full generating series G(™) for small values of n.
In a different direction, we can consider instead small values of the weight k. Here we can give
a closed formula for any fixed value of k, the first examples being

Cy = %(d—Q)al,

Gy = i(d;1>03 + %02,

Gs = é(g) 0% d(d4_2)0102 + dos,

Gy = % (djl_ 1) Uf + (d+1)1cf3(d— 2) afag + d(d;—2)0103 + d(d8_2)a§ c1l2((5dd+36)) o4 .

Expressed differently, for each value of k there are only finitely many coefficients A(ry,rs,...)
of weight k, corresponding to the partitions k = ry + 2r5 4 - - -, and each of these coeflicients is
a rational function of s independent of n, e.g., the coefficient A(3,2,0,1) of 030304/12 (of total
weight k& = 11) is given by

(s+3)(s+4)(s+5)(s+6)(10s® + 169s% + 9355 + 1634)

A(3,2,0,1;d) = 25 1 1

)

where we have written d = 2s + 4 as usual. In general these rational functions are complicated,
as this example shows, and it is unlikely that one give a general formula for them in closed
form. However, we can give a complete formula for their asymptotic behavior as s (or d) tends
to infinity, e.g. A(3,2,0,1;d) ~ 5s% as s — oo in the above example.

Proposition 6. For each fived value of v = (r1,79,...), the coefficient A(r;d = 2s + 4) of
Hp oy’ /rp! in G(o1,02,...) is a rational function of s with asymptotic behavior

Alr;2s+4) ~ (1717227857 ... ) ghtratrete (142)
as s — oo, where the coefficient is [[;, Ci*, with C,, = n%rl(zg), the nth Catalan number.
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Proof. We already know that A(r;d) is a rational function of s (in fact, an element of the ring R
defined in (112)) and that it is determined completely by the recursion (111) with the initial
conditions A(k,0,0,...;d) = v, with v, as in (130). In this recursion each coefficient A(r) is
expressed as a linear combination of coefficients A(r') with r, =r; — &, + 0i.a + 0ip — Oiatb—p
for some integers a, b > 0 with a+b > p. Since each r’ is less than r in lexicographical ordering,
we may assume by induction that (142) holds for A(r';d). (The initial value of the induction
is correct, since v, = 27%(d — 2) ~ sF as s = 00.) Ifa+b > p, then > .o vl = > .o, 7,
so A(r';d) grows like the same power of s as in the as-yet-unproved formula for A(r;d), and
the factor 2/(d — p+ 21, — 1) ~ 1/s in front of the sum in (111) implies that these terms give
a negligible asymptotic contribution. If @ +b = p, then ) .., ri is larger by 1 than > .. r;,
so the contributions of these terms in (130) have the same power of s as in (111). Also, the
product [],~; C'Z-ri_'1 is equal to Cy—1Cy—1/Cp_1 times the product [[,~; C;*,, so the correctness
of formula (142) follows from the identity Y., ,_, Ca-1Cy—1 = C,_1, which is the standard
recursion relation for the Catalan numbers. [

6. In fact we can extend the idea of 5. further by giving closed formulas for A(r;d) when
only 7o, r3,... are fixed and 1 (or equivalently k = ry 4+ 2ro 4+ 3rg +---) as well as d is allowed
to vary. For instance, we find that for every value of k£ and n the coefficient A(k —2,1,0,...)
of o 20y /(k —2)! in Gfgn) is equal to 2'7%(d — 2);/(d — 1). The factor of 27%(d — 2), in this
expression suggests that it would be better to work with the other normalization A(r) (cf. (133)),
in which case the formula in question simplifies to just A(k —2,1,0,...) = 2/(d — 1). In this
example the value is independent of k and is an element of the ring R defined in (112), but in
general it turns out to be a polynomial in k with coefficients in R. In other words, we have an
expansion of the weight k part of G as

k k—1
: 91
Gi(o1,09,...,0,) = lZ%H[(O’Q,O’g, Lo k) = (143)
where each H; is a polynomial of (weighted) degree [ in o9, ...,0; with coefficients in RI[k], the
first values being
2 d+k—2
Hy =1, H; = Hy, = H, =
5d? + (12k — 27)d + 8k* — 36k + 34 4 o3
Hy =8 04 + 7% 5y
(d+3)(d+1)(d—1)(d—2)(d—3) (d+1)(d-1) 2!
Py
Hs = 32
5 (d+5)(d+3)(d+1)dd—1)(d—2)(d—3)d—4) "
d+k—2
16
TR D@ @2 77

Ps

He = O G a5y @+ 3)(d+ 1)dld—1)(d—2)(d—3)(d— D)(d—5) °°
16 5d3 + (12k — 25)d? + (8k? — 28k + 22)d + 8(k — 1)(k — 2)
+ A+ 5)(d13)(d+ Dd{d—1)(d—2)(d—3) 7204
o (d+k—1)(d+k—2) 3 g o

d+5)d+3)d+1dd—1)d—2) 20 " (@d+3)d+1)d—1) 3l
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with

Ps = 7d* + (28k — 72)d> 4 (40k? — 206k + 231)d* + (20k> — 152k* + 338k — 210)d
+ 4(k —1)(k —2)(k —5),

Ps = 21d° + (120k — 350)d* + (270k? — 1574k + 2047)d> + (280k® — 2412k* + 6188k — 4582)d>
+ (112k* — 1200k + 4166k* — 5278k + 1760)d + 40(k — 1)(k — 2)(k — 6)(2k — 7).

Here we should warn the reader that, although all the coefficients shown in this list have only
simple poles in d, tkhis property fails in general and in fact already in degree 7, where the
coefficient of o907 (2%77), has a factor (d+1)? in its denominator. (That this example involves o
is no accident, since it follows immediately from (115) that A(r1,r2,73,74) has a denominator
at most (s + 1/2),, and hence has at most simple poles.) It is also perhaps worth mentioning
that formula (143) for the weight k part G}, of the generating function can also be written in an
equivalent form for the full function G =), G;, as

— 2 d+1+01
G o) =1 _— 8
e ' G(o1,02,03,...) + J_172 + A+ 0)(d—1)(d—2) o3
24921 1 12 2 4 2
+85d+ d—+18 + (d+3)01+80104+ 2_{_”‘
(d+3)(d+1)(d—1)(d—2)(d— 3) (d+1)(d—-1) 2!
€  Rloil[lo2,05,...]] . (144)

7. Our next point is that the new expansion (143) has an asymptotic property generalizing
Proposition 6 to the case when k and s both go to infinity. Notice first that equation (142),
when written in terms of the renormalized coefficients A(r; d), takes the form

A(I‘; 2s + 4) ~ (17"2 T3 BT ) 87T272T373T47"' ’

in which r; does not occur at all. This is for k constant, but suggests now also looking at the
asymptotics for s — oo of the coefficients of A(r;2s+4) as polynomials in k. If we do this for the
values listed in the table of H; above, then we see a nice multiplicative property: the coefficient
of o9 in Hy is asymptotically equal to % as s — 0o, the coefficient of o4 in H, is asymptotically

5s2+6ks+2k>
5

equal to as s — oo, and the coefficient of o904 in Hg is asymptotically equal to

552 +6ks+2k>
6

. , which is the product of these two expressions. Similarly, the coefficient of 3 /2!

2
in Hg is asymptotically equal to M as § — 00, and this is the square of the asymptotic

formula for the coefficient of o3 in H3. In other words, we seem to have an asymptotic formula

awzsry ~ J[(2) (115)

-1
sp
p=1

as s and k go simultaneously to infinity, where the ¢, () are certain universal polynomials of
A = k/s whose first few values are

col\) =1, (N =1, ) =A+2, c3(A) = 207 +6)+ 5,
ca(N) = BA3 4+ 2002+ 280+ 14,  c5(\) = 14X* + 7003 + 135)0% 4 120\ + 42.

(In particular, the formula (145) remains unchanged if one replaces the product by one starting
at p = 2 instead of p = 1.) To guess what these polynomials are, we first notice that compatibility
with Proposition 6 requires that the constant term ¢, (0) equals C,,, the nth Catalan number,
and that by inspection the highest term of ¢, (\) for n > 1 is C,,_1A\" 1. Since the generating
function of ) -, Cpa™ is the reciprocal of a slightly simpler function, we look at the first few
terms of the reciprocal of the series 3, ., ¢,(A\)z™ and immediately find that the coefficient of
z™ in this reciprocal has the very simple form —C,,_1(\ + 1)"~! for all n > 1. This leads to
the definition of the polynomials ¢, (\) given in the following proposition, whose proof will be
shorter than the discussion leading up to it.
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Proposition 7. For fized values of ra, r3, --+ > 0, the coefficient A(r1,72,73,...;d = 25+ 4)
of Tl,>1 oy’ [rp! in Gr(oy,09,...) (k=71 4+ 2ra + -++) is a polynomial in r1 or in k of de-
gree Zp23(p — 2)r, with coefficients in the ring R, and the asymptotic behavior of this coeffi-
cient as s and k tend to infinity is given by (145), where the polynomials ¢, (\) are defined by
the closed formula

1 if n=20,
_ ' n—1 . j

en(A) (2n)! <n ' 1> ' A ' > 1 (146)

nl(n —1)! =\ T (n+j)n+ji+1)

or by the generating function

> L+2\ — /1 -4\ + 1)z
n(A) 2" = . 147
;)c Az 2\t 2) (147)

Proof. Both the general form (143) of the generating function and the formula (145) for the
asymptotic behavior of its coefficients follow from the recursion relation (111) for these coeffi-
cients (which is equally valid for the coefficients A(r) as for the standard coefficients A(r), only
the initial conditions being different), and the proof of Proposition 7 is almost identical to the
proof of Proposition 6: the only difference is that the terms in (111) with a +b = p 4+ 1 now
also contribute to the leading term of the expansion (because the coefficient r; of A(r’) for these
terms is of the same order as s) and that the identity Cp_; = Za+b:p Cy—1Cy_1 used in the
proof of Proposition 6 must therefore be replaced by the more complicated identity

1N = D camiN (V) + A D> cmiNea(h) (p=2),

a,b>1 a,b>2
a+b=p a+b=p+1

which is in turn easily seen to be equivalent to the generating function (147). O

8. Finally, we can use our generating functions to prove two statements about the determinant
of the Gram matrices discussed in §5. We showed there (Theorem 6) that the monomial and
descending bases are dual to one another with respect to the scalar product of §3, and hence
that the two Ny(a) x Np(a) Gram matrices

(Plﬁ‘/*’ , pM

” )u,ueNo(a) and (Pf, PP

v )MVGNo(a)
are inverses of one another for generic values of d. From Theorem 11 we know that both matrices
are regular and invertible away from integer values of d < n — 1. It follows that the “Gram
determinant” function GDY (d) € Q(d) defined by

M M pM

GDA(d) = det( (B, B), yepm)

is a rational function with zeros and poles only at integer values of its argument, i.e., that
GDX(d) has the form C [, (d+m)¢(™ for some constant C' = C, and exponents e(m) = e,(m)
depending on a, with e(m) = 0 for all but finitely many values of m, and e(m) = 0 for all m < —n.
In the next proposition we will (1) give C' and ), e(m) (or equivalently, the asymptotics of
GDX(d) as |d| — o) in all cases, and (2) give a complete formula for GD2(d) whenever n > 3
and No(a) = 1 (so that GDY(d) is the determinant of a 1 x 1 matrix), in which case the

exponents e(m) turn out to depend only on the half-degree k = (a1 + - -+ + ay).
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Proposition 8. (1) As d — oo with a fized, we have

GDY(d) ~ [ (»d¥)
VeNo(a)

where V! =[], vi;! .
(2) Suppose that No(a) =1 for some a with n >4 and a; > 1 for all i. Then

GDM(d) = (ﬁ ai!> (d+2k —2)(d— 1)1 .

Proof. (1) As in 5. above, we denote by Gj the weight k part of the standard generating
function. Then by (117), we have

(d—2)k _
This is because the operator o;,M; with 2 < ¢ < n on polynomials of weight k in o1,... ,0,_1

does not change the weight and the action of ((d —i+1)/2),(0;M;)" decreases the order by d",
so the dominant asymptotic term as d — co comes from the coefficient of 0. For any index v
of weight k, the coefficient of ¥ in of is given by (2¥k!/v!) T, so by (135) we have

1 1
PD - - v 0 d—k—l — 7PM 0] d—k—l
V= e Lol = g ol

and hence 5
D pD B —k—1
(P, P ) ~ L +0(d™" ).
Since GD}!(d) = det((P), B))~", we have the assertion.
(2) By symmetry, we may assume that a; < ag < --- < a,. Since Ny(a) = 1, we have

an = a1 + -+ anp—1 (cf. Remark 2. in §2) and the corresponding index v = (v;;) € Ny(a)
satisfies v, = a; for i < n and v;; = 0 for other (4, 7). In order to calculate GDM(d), we only
need the coefficient of PP at T%. We see this coefficient by the generating function. To see this,
since v;; = 0 if i < n and j < n, we may put z;; = 0 for pairs (4, j) with ¢ <n and j < n in the
generating function. Under this substitution, we have oy =0 for [ > 3, 07 = 2 Z?:_f tinxiy, and
09 :( Z?;ll tinTin)? = 02 /4. So the standard generating function reduces to

(1—01/2)* - 02)_(d_2)/2 = (1—op) @22 = i ((d_lj)/z)k ok
k=0 :

Expanding oF, the coefficient of 2 = xf}, ---2," 7', is given by 2% - ((d — 2)/2)x/a1!- - ap_1!.
By (135), we have

1
(Cl— 1)k,1(d+2k — 2) ar! - ap—1! '

(RP, BP) =

This proves the assertion. [
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§10. Algebraic generating functions for the case n =4

As mentioned in point C.4. of §9, the formalism developed in that section permitted extensive
numerical calculations of the generating function G*) (01, o9, 073, 04) that led to the formulation
of a number of interesting properties, some of which we later proved and some of which remain
conjectural. In this section give these results and their proofs, also including a brief description
of the experiments that led up to them, without which the statements would be completely un-
motivated. The first three subsections treat the case of even values of d, proving the algebraicity
of (Eﬁf)G(‘Q (where d = 2s 4 4 as usual) that was already mentioned in §9.C.4. In §10.D we
strengthen this result by proving that the generating series having these functions as coefficients
is also algebraic. The last two subsections are devoted to a brief discussion of the case of odd d,
for which the results are still conjectural, and to a final remark concerning the case when n is

larger than 4.

A. Even values of d: experimental results. We look first at the case d = 4 (s = 0),
since the generating function for n = 3 was particularly simple for this value of d (§8.A). The
expansion of G (o1, ..., 04) for d = 4 begins

30% + 409 n J:f + 40109 + 803 + 5(7% + 400%02 + 1920103 + 16(7% + 83204 n

1
+o1 + 1 5 16

To simplify the coefficients of this and thus improve our chances of recognizing the function, we
specialize the variables o,,. Since we already know the n = 3 function, we must not specialize o4
to 0, so the simplest choice is to take o1 = 09 = 03 = 0. Doing this, we find that the function
y=G™(0,0,0,2/4) (where the factor 1/4 is included just to reduce the size of the coefficients)
has a power series expansion in x beginning

y = 14 132 + 32122 + 898923 + 265729 z* + 809745325 + --- .

Calculating this series to many terms and looking for linear relations among monomials of small
degree in x and y, we find that within the accuracy of the calculation the function y satisfies
the quadratic equation

(1—34ax+22)%y* — 1+2)(1—34az+ 2%y + 92 = 0,

the solution of which is the explicit algebraic function

1 v1-—34 2 1 1
y—\/ +x+ 3dx +xc (148)

= +
2(1— 34z + 2?) 201 —6yi+a 2/1+6yz+x

Repeating the calculation for various other specializations of G* and interpolating the results
obtained, we are led to conjecture the following result, whose proof will be given in §10.B.

Proposition 1. The function yo = yo(01,02,03,04) = G (01, 09,03, 04;d = 4) is algebraic of
degree 4 over Q(oy,...,04) and is given explicitly by

. A+ VA,
et (149)

A0:(1—0'1/2)2—0'2, A12A3—803+40’4, AQ = A% - 160’4(4—20’1—A0)2.
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We remark that for o4 = 0 we have A; = A2 —803 and Ay = A2, so the right-hand side of (149)
reduces in that case to 1/4/A3 — 803, in accordance with formula (101) when d = 4.

After this initial success we look at the case d = 5, but here there seems to be no algebraic
formula. (We will return to this question in §10.E.) On the other hand, when we look at the
following case d = 6, the situation is better. Here the expansion of y = G (0,0, 0, 2/4) begins

16213 4 24075859253492406153684681487509 5,

1 153 22
+ 9x + 153 x° + 59

Unlike the corresponding series for d = 4 and d = 5, which to the accuracy of the computation
were in Z[[z]] and Z[[z/64]], respectively, this series appears to have infinitely many primes in
its denominator, in which case it is definitely not algebraic since the Taylor coefficients of an
algebraic function always belong to Z[1/N] for some integer N. On the other hand, looking
more carefully, we find that the denominator of the coefficient of 2" is always a divisor of 4n + 3,
which means that the power series 1y, := 42y’ + 3y has integral coefficients, and now applying
the same numerical procedure as before to y; leads to the experimental formula

\/1+x—\/1—34x+x2 1 1 (150)
. 22 (1 - 34z + 2?) 2r(l—6yr+z) 2/z(1+6yz+z)

very similar to the corresponding formula (148) for the d = 4 case. More generally, when we
look at the Taylor expansion of y = G®) (o1, 02,03,04;6) for general values of the op, we find
that the denominators in the coefficients are always divisors of k + 3, where k is the degree of
the monomial in question, so that we must replace y by y; = (E 4 3)y to get integrality, where
E = Zp pop is the Euler operator that multiplies a monomial of weight k in the o, by k. Just
as before, by identifying the power series obtained for several other specializations as algebraic
functions and interpolating, we are led to guess the following proposition, whose proof will also
be given in Subsection B below.

Proposition 2. The generating function G is not algebraic for d = 6, but its image under
E + 3, where E is the Euler operator defined above, is algebraic and is given by the formula

A — /Ay
_ 151
v 80’4 AQ ’ ( )

where A1 and As have the same meaning as in Proposition 1.

We observe that the product of y; and the function yp in (149) equals (4 — 201 — Ag)/ Ao,
which is a rational function in the initial variables o, so that the function fields generated by
the two algebraic functions 39 and y; coincide.

Continuing to higher values, we find that for d = 8 (s = 2) we have to apply the differential
operator %(E+4)(E +5)(E+6) = (E;G) to y to achieve integrality and that it is then algebraic
(this case will also be discussed further in §10.B), while for d = 10 (s = 3) we need to apply
(E;rg) to get integrality of the Taylor coefficients, with no smaller polynomial in E sufficing.
These special cases suggest the following theorem, whose proof will occupy most of this section.

Theorem 13. For s € Z>( define ys = ys(01,02,03,04) by

GW(01,09,03,04;4) if s =0,

Ys =
{ (’fff)G“‘)(al,agéag,mﬂs+4) ifs>1.

(152)



Then each ys is algebraic of degree 4 over K = Q(o1,02,03,04). More precisely, each ys belongs
to the 2-dimensional subspace Kyo+Ky, = K(v/Az) yo of the degree 4 extension K(yo) = K(y1)
of K, where yo and y; are given by (149) and (151), respectively.

Remark. Applying a polynomial P(E) in the Euler operator to the generating function G()
is the same as multiplying the degree k terms by P(k) for each k > 0, and hence is equivalent
to working with a different initialization G (01) = 3,5, P(k)(d — 2)(01/2)* /k! of the n = 1
generating function. So our discussion can be summarized by saying that for s € Zx( there is a
normalization of the initial generating function G(*) which makes G(™ algebraic for all n < 4.

Finally, we mention an identity which is of interest in itself and will have an interpretation
in terms of the generating series with respect to s studied in §10.D. For s € N, define

VE(0) = yE (o1, 00, 05,0) = (E+3S> <Ai> (153)

2s =1/ \ /A% — 803
where Ay = (A + /A% —803)/2, and

o4

Aeens

oo
yE = yF(o1,00,05,04) = > Mj(yF(01,02,03,0))
r=0

so that (by (115)) ys = yI. The following identity will be proved in §10.C.

Theorem 14. The functions y& and y; coincide for s € N.

B. Algebraicity and non-algebraicity proofs for G*) when s is integral. In this
section we give the proofs of Propositions 1 and 2 and begin the discussion of higher even values
of d. These proofs involve the introduction of new coordinates for the ring Q[oy, 02, 03, 04 and
thus suggest the problem, which may be an interesting direction for further research, of finding
new coordinates for the whole ring Q[oy, 02, ...] that could help to clarify the structure of the
generating function G(™ for higher values of n. (We return to this point briefly in §10.F.)

Motivated by the experimental formula (149) and a certain amount of trial and error, we
make the (invertible) change of variables

o1 = 2u; + 2, oy = uy + ut + 4duy, o3 = us + uiug + 2u?. (155)
In terms of these variables the operator M, defined in (113) becomes simply

0? 0?

M4 - 871% + 8U18U3’

(156)

and, if we write g3 and g4 for the functions G®) and GW expressed in the variables u; and oy,
then equations (101) and (115) take the form

1 —4uy — Vui —8ug\ °
g3(ur,uz,uz;d =2s +4) = ( LRV ’LL3> ; (157)
Vu3 — 8ug 2
o)
0? 0? " oy
) — g _ pd)) —— . 158
ga(ut, uz, ug, o4;d) ;((%% + 8u18U3> (93(u1,u2, us; d)) s+ 1) (158)
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0*gs o}

If s =0, then g3 is independent of u; and (158) simplifies to g4 = 2 DuZ W This
formula makes it very natural to make the further (non-invertible) change of variables
oy = X?/4, (159)

in which case it can be written using Taylor’s formula and the duplication formula for the gamma
function as

o 0%7gs(ur, uz,uz) X" g3(ui, us + X, uz) + g3(ur,uz — X, u3)
9a(u1, ug, ug, X?/4) = Z ouz" ) 2
r=0 2 '
_ 1< = + : ) (160)
2\ /(ug + X)2 —8uz  /(ug — X)2 —8uz/

Squaring this gives

5 U3+ X?—8uz + /(U3 + X2 —8uz)? —4udX?2 A+ /A,

g = 2((ud + X2 — 8us)? — 4u3X?) 20,

with A; and A, as in Proposition 1, completing the proof of equation (149).

The case s = 1 (d = 6) is only slightly more complicated. Write y° for the expression (101)
with s = 1 and 49 for its image under E + 3, where E denotes the Euler operator > po, 9/00,.
Because F is a derivation and F(o3) = 303, we find

- o )] - oo(ae)
4o3 A2 — 803 Aoy AZ — 305
—2E(Ag) + 30 Uy d -1
T (A7 —805)%%7  (u—8ug)®? 6u2(\/u§ —8u3) ’

which (a) is again independent of uq, and (b) can be expressed as a us-derivative. Now the
relationship between y; = (E + 3)G® and 3? is the same as the relationship (115) between
y = G® and 4°, because the operator o4 My (or o, M,, for any n) is homogeneous of degree 0
and therefore commutes with E. We therefore get

B > 821‘ ( 0) O_Z B 1 e 627“-1-1 ( -1 > X2r+1
N7 e WY E/), T X 2ol T\ g sus ) @+ D)
1 1 1
_ < _ > , (161)
2X \/(UQ—X)2—8U3 \/(U2+X)2—8U3

which is equivalent to formula (151) by a calculation similar to the one for s = 0.

This completes the proof of the part of Proposition 2 saying that y; as an algebraic function.
For the assertion that y itself is not algebraic in general, it suffices to prove the non-algebraicity
of the specialization to o1 = 09 = 03 = 0, i.e., to prove that the integral of the function (150)
divided by z'/* is not algebraic. We already know “morally” that it is not, because its first
Taylor coefficients contain many different primes in the denominator, as was mentioned in the
previous subsection, and this is also confirmed by asking a computer system like “Mathematica”
to carry out the integral, obtaining as output the statement that there is no algebraic formula.
A formal proof is as follows. We want to show that the integral w = [ wdt, where

1

1
20 /P_ 2P,

with Py = Py(t) = 1 +£6t> +t*,
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is not algebraic. By a theorem of Liouville, if w is algebraic it must belong to the function

field Q(t,u) = Q(¢) )/ Py + Q(t)\/P- + Q(t)/P+P_. So we can assume that w =
a+by/Py+cy/P_+ d\/PJ’_P_ where a, b, ¢, d are rational functions of . From w’ = u, we get
20'P_ +bP’ = 1,2 P, + cP, = —1, and a = d = 0. By comparing the Laurent expansions

around each t = o € P1(C) (distinguishing the cases P_(a) = 0, P_(a) # 0 and a = o0), we see
that b has no poles on the complex projective line and hence is a constant, which is obviously a
contradiction. This completes the proof of Proposition 2. [

Remark. We can recast the calculations just given for s = 0 and s = 1 into a slightly different
and more suggestive form by using the differential equation £4(G¥) = 0 directly rather than
the expansion of G*) as an infinite linear combination of terms M7 (G®))o7. For instance, if
s = 0 then we have
0? 0?

0
80'4+0—4&.'Z_M4_8X2_M4_<

0 8)(6 6)_ 0?

1
gL = ox Ta)\ox " awy) T duous

N | —

so the unique function of w1, ug, uz and X that is annihilated by L4, even in X, and equal
to a given function h(usg,us) when X = 0 is simply %(h(uz + X, u3) + h(ug — X, U3)), and we
recover (160) without any need for using the infinite sum of differential operators occurring in

eq. (115) and with almost no computation at all. Similarly, if s = 1 then we have

2 2
%£4 - X_lai(QX - M= X_1<<6(2(+08ug) (ég(_ﬁaug) B 8u?8u3)X’

so the unique function of uy, us, uz and X that is annihilated by L4, even in X, and equal to
Oh(ugz,u3)/Ouy when X = 0 is simply 5% (h(uz + X, us) — h(uz — X, ug)), and we recover (161)
easily.

This completes our discussion of the cases s = 0 and s = 1. To understand how the general
case should go, we look at the next case s =2 (d = 8). Here by direct calculation we find

1
o E(E +4)(E +5)(E 4 6)G®) (01, 02, 03;8)

3ug(u3 — 8usz) + uyug(ui + 12u3) + 4ug(ud + 2uz)
(u3 — 8ug)7/?

1<3 0? 43 a3>( 1 >+163< Us )
2 " A B
6 \" Ouzdus You )\ 2 —8uz) | 12063\ \/uZ — Suz
and hence
T o 62T a2r 82 6( + 1)X2'r
= ZM it~ L oF * mmnn + O)) 09 G

oo

a2r+2 82r+3 1 X27"
= + 1) (28 +3) g + 2
2.0 )<( ") o, ulaué’“”) <m) (2 +3)!

L1 Z T N 1 827“4—3 < Us ) X?r
w2\ a2 — 8uz ) (2r +3)!

2 821"—‘,—1 1 X2r+1
X = augTH ((u% — 8u3)3/2> (2r +1)!
1 0 1 &K 9%t3 ( uy + 4duy > X2rts
(

TIX 0X X 2= 02\ i —suz ) (2 +3)
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1

1 1 }
X [((u2 —X)2 = 8us)™? (g + X)2 — 8ug)*?
1 0 1 ug — X + 4u,q ug + X + 4duq :|

S 8X OX X [\/(u2 —X)2—8uz  \/(uz+ X)? — 8ug

This is an explicit algebraic function of o1,...,04 and we can check directly that it belongs to
the function field generated over K by the function yg or y; or, more precisely, to the subspace
of this field anti-invariant under its Galois automorphism over its subfield K(v/Ag). After a
good deal of computation we find that y» is given with respect to the basis yq, y1 of this space
by

ungAl — 40’4A1 — 2U2£0 _ A()A% - 8'&20’4(3U2A0 - 404) + &()Al
160’4A2 Yo 160’4A2

Ya = Y1,

with Ay = 4o4(Ag — ug + 8), confirming Theorem 13 in this case.
Looking at the three cases treated so far, we see that all we needed in these cases was that

the initial values y,(0) = ys(o1,02,03,0) of the functions defined in (152) had the form

3
Y0(0) = hoo, y1(0) = O2hy 1, y2(0) = (533 +u105)Oahay + O3hao

for some functions hs; depending on ug and ug but not on wu;, where 9, = 9/0u,. The same
thing happens for the next case s = 3, the required decomposition this time having the form

15 5
yg(O) = (Z(‘?g +5U182283 +u%8§)82h3,1 + (563 +U18§)8§h3,2 + 8gh373

for appropriately chosen functions hs3; of us and us. Continuing to higher s, we find each time
that y5(0) has a decomposition

ys(o) = ZS:MS,Z' hs,i (3 > 1) (162)

where M, ,; (1 <1i < s) are the differential operators

M,,; = Z s=3) T pe e (163)
S, T — . _Z)! 3 2

and hs; (1 <i<s) the functions given by

(=12 (s — 1) 1 uy — /AZ =80 i—1
e = (25 — 1)! (i — 1)! m( 20 3) - (164)

We verified (162) by computer up to s = 16, and will prove it for all s € N in the next two
subsections. Here we show that it implies the algebraicity assertion in Theorem 13. This is a
special case of the following more general statement.

Proposition 4. Let M, ; (1 <i<s) be the operator defined in (163). Then the function

T

- 0y r
—— M Mmh
; r(s+ 1), i )
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is algebraic for any algebraic function h of us and us.

Proof. Since h is independent of u;, we have (using (156)) the identity

s _ 1 k—i
MZ(MS,JL) = <Z <;> 8227’213{85> <Z <:99 - ]i) (:1 o 8§fk 0§k1> L
k=1

>0
s 5—j 1 J—i

_ Z Z 7">< S—3 >> uy 95— g2r+2i-1y,

- . . . 3 2
= <l:0 (l s—j—1)) (G—i)!
: T+ s — 5) u{_i s—j a2r+25—1

= . ——— 05 70y " h. 165
Z_:( s—j ) @G- 7 (165)

It follows that

= A S 1 Jj—1 o
o4 1 S R 2425 —1
— T MG(M,h) = g) < B St h>,
Yoo = 3 (035 (gt

and this is algebraic because for each j > 1 we have the identity

00 5 a2r42j—1 1 oo r4j—1 92r+2j—1
0'4 82 h 8] 40’4 8 h
472 0 — (3
I RO =SV ==
hUQ-‘rX U3 — h(UQ_X7u3)>
= (3 2 166
(3/2); 804 < 2X (160

with X = /404 as in (159). O

Remark. There is an interesting relation between the formalism here and certain differential
operators from smooth functions of one variable to functions of two variables introduced in [14].
These operators® are defined by

- 2n —i)! (=1)'F®(z) — FO(y)

D F(z,y) = D e R P (n=0,1,2,...), (167)
the first three cases being
DoF(z,y) = F(Q;) — f;(y) ,
DiF(z.y) = F/Ei)j;;;(y) ok E?_j)gy),
Dab(ay = I (PP F =),

Though D, F(z,y) has an apparent pole of order 2n + 1 along the diagonal x = y, it is in
fact smooth there. Other attractive properties of D,, proved in [14] are that it annihilates
polynomials of degree < 2n (as one can verify by hand in the above formulas for 0 < n < 2),
that it is given on monomials ™ of degree > 2n + 1 by

Do(z = ™) (z,y) = W;H (2) (Z) 2y

Swith the slightly different notation and normalization (Dy, F)(z,y) = n! (z — y)"T1(Dn F)(x,y) in [14]
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and that it satisfies the SL(2)-equivariance property D, (F|_2n,9) = Dp(F)|-n-1,—n—1¢ for all
g € SL(2,C), where |, (and similarly | /) denotes the usual “slash operator” (f|k(z Z))(x) =
(cx +d)~F f(2=EL) . All of these follow from the integral representation ([14], Prop. 4(v))

cr+d
1 v 2 1
D,F(x,y) = W / (z—y)"(z — z)”F( n+ )(Z) dz
: Y
1 1
= e/ (1 —)" FC" ) (g + (1 — t)y) dt .

We can also rewrite D,, F'(z,y) in terms of the derivatives of F only at (z + y)/2, though at the
expense of changing the finite sum (167) to an infinite one. To do this, we combine the integral
representation just given with the usual Taylor expansion to find

1 1
(DnF)(u+ Xou=X) = o5y /1<1—t2>”F(2"+”(u+tX)dt

1 ([ 2 (@r+2nt1),y X
= = (1 —t=)dt | FremTen —_— .
92n+1,12 r§=o: </_1 ( ) > (u) (2r)!

Computing the coefficient in parentheses by the beta integral and the duplication formula as

1 1 ! T(r+ 1 22n+1p12 2r)!
/ £2r(1— £2)"dt = / (1 e = LU T) 2R @t
-1 0 I‘(n—i—?‘—i— 5) (27’L—|— 1) 22Tyl (n+ §)r

we find the following formula for the Taylor expansion of (D, F)(u+ X,u — X):

(DnF)(u+ X, u—X) = (2n1+1)| 3 Frtantn () % . (168)
r=0 ’ 2/7

Together with (167) this gives another algebraic expression for the sum in eq. (166).

C. Properties of the generating function for fixed integral values of s. In the last
subsection we reduced the proof of Theorem 13 to the proof of the experimentally discovered
identity (162). In this subsection we will recast this identity in a nicer form and investigate
some of its consequences, and will prove Theorem 14. The proof of the identity itself will follow
from the generating function identities proved in §10.D.

Throughout this subsection we take as independent variables the variables u; introduced

in (155), and set 9; = 9/0u; . We also set
Ay = (1—01/2)* =09 = —up —4uy, A1:A87803:u378u;3,

corresponding to the definitions in Propositions 1 and 2 at o4 = 0. With these notations the
quantity A1 occurring in (153) is given by Ay = %.

The first observation is that for a function h that does not depend on u; the operator (163)
can be written in the more attractive form

. usfi
M, i(h) = M 1/2<(81—i)! h) : (169)
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Here the fractional power MZ_I/ ? of the differential operator (156) is not defined as an operator,
but makes sense on functions of uy, us, ug that are polynomials of degree < s — 1 with respect
to u; if we use the binomial theorem to define

s—1

Ms 1/2 Z (5 _l1/2> 8225_2l_1(8183)l (170)

=0

for such functions. The observation (169), whose proof is immediate from (170) and the definition
of M, ;, also clarifies the identity (166) appearing in the proof of Proposition 4 above, since the

left-hand side of this identity can be written as M}~ 1/2( $7'h/(s —4)!) and the fractional

power MTJFS /2 then expanded by the binomial theorem in the same way as was done in (170).

Substituting (169) and (164) into (162) and using the binomial theorem, we find that the
expression appearing on the right-hand side of (162) is simply Y, (0), where we define

1 . As—l
Ysi(o) = }/Si(0’110-270-370) = _m/\/t 1/2 <\/:|:Ai> . (171)
- 1

We will see in a moment that Y;"(0) = Y, (0), corresponding to (but much easier than) the

corresponding assertion for yF(0) in Theorem 14. If, in analogy with (154), we also define

s r
+ _ v+ r :t 04
Y = Y (01,02,03,04) TEO ./\/l4 Y 7! o %)r , (172)
then the identities to be proved are
yd (04) = 5 (04) = Y (04) = Y (04), (173)

where we have suppressed the dependence on o1, 0y and o3. It clearly suffices to prove this
for 04 = 0, since each of the four functions in (173) is obtained from its value at o4 = 0 by

applying the operator Y, < (0% /r!(s + 3),) Mj .
Before proceeding we write the formula for Y. *(o4) in a more explicit form. From the defini-
tion (170) (with s replaced by r + s) and the formula d;(A%) = —2 we get

—1 (AT ! Sy 45— AL
MH-S ( ) _ ( > 621”4-25 20— 18 8 ( + )
4 Ny ; 103 7T1
Z (—1/2)l(23 —DI(s+ %) ol 82T+2n+1< Al >
H2n+1)!(n+32), VAL

l+n=s—1
and hence
+ _ (—1/2)! 1 oy ortont1 [ AL
Vo) = = ¥ S [gy et ()]

l+n=s—1

We can now use (168) to write the inner sum as Dy, (A%/v/A1)(uz + X, up — X), giving an

explicit expression for Y* as an algebraic function of its arguments and showing that it belongs

to the space described in Theorem 13. We also see immediately that Y;© = Y.~, because

(A% — A™)/\/Ay is a polynomial of degree at most n — 1 in uy and hence is annihilated by
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95721 (or even by 93). Finally, we can use simple binomial coefficient identities to rewrite

the formula in a slightly different form, which will be used in §10D:

-1/2)" ) [~ ("77) (dou)” Az
Viowonone) = - 3 SLa[s LB gpenn (2] an
L= £ (2r + 20 + 1) VA,

We end the subsection by giving the proof of Theorem 14. As already noted, it suffices to show
that y7(0) = y; (0). We observe first that the form of the functions y*(0) can be simplified:

o= (G5) = G e & - mat) w0

where we have used A A_ = 205 and E(o3) = 303. The proof of the desired identity yF(0) =
Y5 (0) now depends on the following proposition.

Proposition 5. Define polynomials B,(:) = B,(f)(al, 09,03) (k> 0) by the generating function

1 (KO—F\/Kg + 8o323(1 — )

BO@) = 3 BYat = . ) o)
k=0

\/ﬁ% + 8o3x3(1 — x)
where 50 = Ao(x) =1+ 2uix + Aox?. Then we have the identities
(E—k)BY® = (2s — k—1)B{", (177)

for all k > 0 (with B .= 0) and
1

, As — A%
B , = +T (178)

Since the definition (176), discovered only after considerable experimentation, is not very
enlightening, we give a few examples of the functions B,(:) and properties (177) and (178). From
B®)(x) = R*~! (mod z?) we see that the first three values of B,(f) are given by

B =1, BY=2s—Du, B =2s—1)(s—2)ud + (s —1)A .

From this, using E(u1) = u; + 1 and E(Ag) = 2A¢ + 2uq, we find

(BY) = 2(s — 1)(E —1)(w1) = (25 —2)B{",
(B) = 2(s — 1)(s — 2)(2u1) + (s — 1)(2uy) = (25— 3)B' |

verifying (177) for these three values, while for (178) we have

A, — A A% — A?
BO =1 = +77 BéQ) — AO — o+ =
VA VAL
The proof that Proposition 5 implies Theorem 14 is almost immediate. Equation (177) and
induction on n give (E_QSJH”)B&;)?Q = B, forall n > 0. In particular, (2;31)352)4
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vanishes, and in view of (178) and (175) this proves the theorem. It remains to prove the
proposition.
Proof of (177): We have to show that

BBO) = 2[(1 ) 8?;5) + (25— 28]

~ 1
Define E = —F — (1 — z)Z =, which is still a derivation. Also set Z = o32®(1 — x), so that
x

) _ 1 (£0+\/£3+8Z>s
VA2 487 2 ’

Then

E(Z) = %—(1—@03(3,@ — 2%y =47

E(Ag) = 2(uy +1) +2(ug + Ag)z — (1 — 2)(2uy + 2A0z) = 24,

In other words, ﬁo and Z are of degree 2 and 4 with respect to the modified Euler operator E,
so E(B®)) = 2(s — 1)B®) as desired.

Proof of (178): Since Ao — \/ 3(2) +8Z = O(z%), we can replace B®) by

) 1 Ao+ /A2 +8Z\s ,ANg—/AZ+8Z\s
b :\/m[( 2 )*( 2 >]

without changing the value of the coefficient of 22~2. But B®) is a polynomial, given explicitly
by

25—15(8) — >AS 25—1 A2+8Z)

0<2j<s—1 <2j +1

0<2]<s 1

g2 B0+ VALY = (B0 = VAT
2VAT ’

--” denotes lower order terms as x — oo. The result follows.

where “-

Remark. If we replace the expressions Ag = (1 — 01/2)? — 09 and A; = A2 — 803 by the
corresponding homogeneous forms

Ag(u,v) = (u—01v/2)? — o902, A (u,v) = Ag(u,v)? — 8ozuv®

of degrees 2 and 4, respectively, in v and v, then Ao = Ao(1—z,x), 53 +87Z =A1(1—=z,z), and
the strange-looking “modified Euler operator” E used in the proof above is simply the ordinary

Euler operator u d,, + v d, with respect to the homogeneous variables u and v.
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D. Generating function with respect to s. Since we have shown that both yF and Y*
are independent of the choice of sign, we can write them simply as ys and Y5, respectively, and
to obtain (173) it will suffice to prove that Y5(0) = y,(0). We will not do this directly, but rather
by proving (for o4 = 0) the equality of the two generating functions

Y(T) = Y(o1,02,03,04;T Z Yi(01,09,03,04) T*7 1, (179)
s=1
o0

y(T) = y(o1,02,03,05,T Z ys(o1,02,03,04) T° (180)
s=1

with respect to the index s. This approach gives the additional dividend that the generating
function y(T') turns out itself to be an algebraic function. This of course implies the algebraicity
of each of its Taylor coefficients y,, but it does not make superfluous the algebraic calculations
of the last two subsections because, rather surprisingly, the degree drops under differentiation
in 7" and specialization to 7" = 0: the function y(7") will turn out to be algebraic of degree 6
over Q(oy,...,04,T), whereas Theorem 13 says that each individual ys(7") satisfies an algebraic
equation of degree only 4.

Equation (174) simplifies considerably when we substitute it into the generating series (179),
and we obtain:

: z [SZ o egar)

0 2m—+1 m
_ Z 05 1 doy +TAOi\/A1 44T
(2m+1) 2

: (181)

where in the last line we have used the Taylor expansion and the fact that changing us to
us — T'/2 leaves Ay unchanged but changes A; to Ay + 47

This expression can be further simplified by using Lagrange’s theorem. Recall that this
theorem is an identity generalizing Taylor’s theorem which, in one of its forms, states that

=1 an z
S @) = 1

(182)

z=xz+b(z)

whenever the series makes sense (e.g., when everything is complex and absolutely convergent, or
when the variables are power series in z with b(z) = O(2?), or when b is a power series in some
other variable with posmve Valuatlon The correspondlng ‘odd Lagrange theorem,” obtained
by replacing b(x) and f(x) by £4/B(z) and F(x)/+/B(z) and taking the difference of the two
equations obtained, says that

0 1 d2m+1

F(z
(2m +1)! dx2m+1 (F(z) B(2)") = ; 2(z — x)(—) B'(2)|,_,. 50 : (183)

m=0

Applying this (with x and z —z replaced by us and w) to (181), we find after a short calculation
that the two formulas (181) can be written in the form

T T T T
Y = P (w1) " P'ws)  Plws) Plws)’ (184)
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where w; and wsy (resp. ws and wy) are the solutions of

wy, = \/404 +TA (ug,us +wy,uzg —T/2), wy= —\/404 +TA, (uy,ug + we,uz —T/2)
(resp. of the corresponding equations with A, replaced by A_) and where

P(w) = (w? =404 — TAg(ur,us +w,us —T/2)/2)* — T?Aq(u1,us +w,us —T/2)/4
= w' + Tw® — (804 + AT)w?
— (404T — 2us T?)w + (1603 + 40¢04T + 203T% — T3) (185)

is the monic quartic polynomial having ws, ..., w4 as its roots. The equality of the two expres-
sions in (184), which appeared there because we had shown computationally that Y, =Y.~ for
each s, now has a much more natural proof via the residue theorem, since

LI |
ZPf(wn N

i=1

3 Reswa(]%) = 0. (186)

We now turn to the second generating function (180), which we will evaluate by using the odd
Lagrange theorem again in combination with the formula (175). To achieve this, we introduce
a “dummy” variable of homogeneity x by setting o, = ApxP (1 <p<4),so that

AO = (1 - Al.l‘/2)2 - AQZL’Q, Al = A% - 8A3.CC3, Ai = (AO + vV Al)/2

become functions of x and the Euler operator E' becomes simply = d/dx . Then (175) gives

0,7) = ii E AL Z (T/2A52)™ d2m+! (A7£+1>
yY, - po (20‘3)5 2s —1 \/E o 21431'2 = 2m+1 dp2m+1 \/E )

and applying (183) we find

A (z2)/ /D) A () /B (z)
0,7) = = — 187
y(0.1) ; 2(z — ) — A (z) 2 2(z —x) — A (2) (187)
where z; and 2o (resp. z3 and z4) are the solutions of the equations
_ TA4 (1) _ TA;(22)
21 = T+ W, Z9 = X — 2A31U (188)

(resp. of the same equations with A, replaced by A_). Now substituting back A, = o,,/2? into
the equations (188), we find that they are homogeneous (of degree 1) in z and x, so that only
the ratio z/x matters, and making the change of variables w = T'z/(z — X)) we find that the four
numbers z; correspond exactly to the four numbers w; defined above and that the right-hand
side of (187) coincides exactly with that of (184) with o4 specialized to 0. This finally completes
the proof of (173) and hence of Theorem 13,

We end by formulating a theorem describing the algebraic nature of the generating function(s)

we have just computed.
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Theorem 15. The square of the function y(o1,...,04;T) defined in (180) is algebraic of de-
gree 3 over Q(oq,...,04,T).

Proof. This follows almost immediately from (184). Let N = K (wy,...,w,) denote the splitting
field of the polynomial P(w) defined in (185) over the field K = Q(o1,...,04,T). The fact that
the trace of h; := T/ P'(w;) vanishes implies that the set {(h1 + h2)?, (h1 + h3)?, (h1 + hq)?} is
invariant under the Galois group of N over K, so the polynomial Q(t) = H?zg(t — (h1 + h;)?)
has coefficients in K, and equation (184) says that Y?2 is a root of this polynomial.  [J

We can get an explicit expression for Q(t) using Ferrari’s formula. If w is a root of the
polynomial P(w) defined in (185), then h = T'/P’(w) belongs to the field generated by w and
hence also satisfies a fourth degree equation. This equation has a vanishing cubic term because
of eq. (186), and by direct computation we find that it is given explicitly by

ash* + 0h3 + ash? + aqh + 1 = 0,
where

ap = T(T — 4uy),
az = 6(uy — 1)T° + (T2u] 4+ 4A0(Tuy — 4) + A5 — 241 — 1204) T7
— 4(AoAy + 48+ 4duy + 3A0)o4) T — 3204(A1 + 4oy),
disc(P)

ay = i — 9776 4+ .+ 2560’3 ((Al + 40‘4)2 — 16u§04) .

Ferrari’s formula tells us that the cubic polynomial having as its roots the three numbers
(h1 +h2)? = (hg + ha)?,  (h1+h3)* = (ha + ha)?,  (h1+ ha)? = (he + h3)?

is given by
Q(t) = ait® + 2azast* + (a5 — daq)t — af .

Then Q(y?) = 0 is the sextic equation satisfied by our generating function y = y(o1,...,04,T).

E. Odd values of d. As already mentioned in A. above, for odd values of d we were not able
to find any closed formula for the function G¥), either as an algebraic function or an integral
of an algebraic function or as the solution of a linear differential equation with polynomial
coefficients. On the other hand, in another respect these functions were actually better behaved
than they were for even d. Namely, unlike the case of even d, where the coefficients of the power
series for d > 4 had infinitely many prime numbers occurring in their denominators and where
each successive value of d required more differentiation of G* in order to achieve integrality,
here the power series are apparently always integral after rescaling x by a fixed factor. For
instance, for d = 5 the same specialization G(*(0,0,0,2/4) as we used in §10.A has a Taylor
series beginning

155 194985 o 74509435 5 = 499522579465

- 1422 1
y T 1022 U Taessa Y T T atoaso2 YT (189)

and within the limits of our calculation belongs to Z[[z/64]]. Moreover, this integrality holds
not only for this particular specialization, but (experimentally) for the full generating series
GW(0y,09,03,04;d = 5), which begins

1 301 N 302 + 30 N 503 + 150109 + 2003 N 150 + 900309 + 2800103 + 3002 + 6200, N
2 2 4 0 16



and in which the coefficient of degree k (up to k = 194, the limit of our computation) is always
2% times a polynomial in the o, with integral coefficients. (The specialized series (189) has
an even stronger integrality property: up to a power of 2, the coefficient of ", corresponding
to degree 4m, seems always to be divisible by 4m + 1. The corresponding property for the full
series, which would say that the terms of total degree k are divisible by k4 1, is not always true.
However, we do find that all the terms of total degree p — 1 or p — 2 are divisible by p if p is an
odd prime number, as one can see in the case p = 5 in the expansion given above.) Similarly,
for d = 7,9, 11 and 13 we find that the terms of degree k in G (01, 09, 03, 04;d) are integral
after multiplication by 2¥ D, in the range tested, where D; = 1, Dg = 3, D1, = 5 and D13 = 35.
Based on these experimental results, we formulate:

Conjecture. After rescaling o, — 2P0, (1 < p < 4), the generating series G (01, 09, 03,04; d)
has a bounded denominator for every odd value of d > 5.

In view of this conjecture, we can wonder whether the generating series for odd d are perhaps
algebraic after all, even though we were not able to recognize even the special case (189) as
an algebraic function. The following argument strongly suggests that they are not algebraic,
and furthermore that—unlike what we saw in the case of even d—this remains true even after
taking their images under any polynomial in the Euler operator. (This is a little surprising since
the polynomial in E that we needed for d even, namely (gﬁ’f ), makes sense also for d > 5
odd, since 2s — 1 is then still a non-negative integer.) Denote by a,, the coefficient of 2™ in the
power series (189). Since both of the special functions (149) and (150), corresponding to G*
and its derivative under F + 3 for d = 4 and d = 6, respectively, had singularities at the root
r = (14++v2)7* of 1 — 342 + 22 = 0, we expect these coefficients to grow asymptotically like C™,
where C' = (1 ++/2)* = 17 + 12¢/2. In fact, applying the numerical extrapolation method that
is described in [17] and in §5.1 of [6], we find the conjectural asymptotic expansion

AC™ b b
4 & (1-2+2%-) (190)
n n n
with coefficients A, b1, ba, ... given numerically to high precision by
A = 0.3900174223865606939417147 ,
b1 ~ 0.35826456543968 , by ~ 0.1163559071350,
We can recognize these numbers as
1 2)2
4 = ﬂ (191)

29/4 7 7
and

6— 2 2 183 —62v2

?
by = 5 26 ba 5Ta
> 5802 — 27732 2 389055 — 211804+/2
by = b—— =¥ by = 5 ,
218 225
> 13542450 — 75627112 > 469116531 — 283263874+/2
bs =5 931 ’ be =5 937 ’

where we can assert with a very high degree of confidence that these numerically guessed values

are in fact correct. (In the case of A, for example, which is the most important value, the

extrapolation method was first applied using only half of the known coefficients a,, to give a
81



15-digit prediction; this was then recognized as the number given in (191); and then a new
calculation using all of the known coefficients gave a 25-digit value for A whose first 24 digits
agreed with the prediction.) Formula (190) says that the function y has a logarithmic singularity
at x = C' 1, which is incompatible with its being an algebraic function but would not preclude
its being the integral of an algebraic function, but (190) and (191) together, if they are true,
imply that P(F)y cannot be algebraic for any polyomial P(FE) in the Euler operator E with
integral coefficients, since the leading coefficient in the Laurent expansion of this function around
x = 1/C would equal 7 times an algebraic number, and a function that is algebraic over C(x)
and belongs to Q[[z]] has to be algebraic over Q(x) and hence must have algebraic Laurent
coefficients in its expansion at any algebraic point.

F. Final remarks. We do not know how to generalize to higher values of n the results that
we found in this section for n = 4. In particular, it is hard to see how to generalize the change of
variables (155) from n = 3 to larger n, and even harder to see how the change of variables (155)
and (159) can be generalized from n = 4 to larger n. However, we did find a change of variables
that makes the differential operators M, simpler for all n, and that seems worth mentioning.
Define new variables 7, (p =1, 2, ...) by the generating function equality

V1tow+oa?+o303+- = 1+ o+ mr?+ma+ -

so that the first 7, are given by

1
T = 50—17
1 1,
T — 20’2 80'1,
1 1 1 4
T3 = 503—101024—%01,
1 1 1 2, 3 5 5 4
T4 = —04— —0103 — —0O — 0709 — ——07 .
SR I N T AR DT
Then an easy calculation shows that
62
M, =4 , 192
1+j=n

which is simpler than the original definition (113) in two respects:

e there are only O(n) rather than O(n?) terms, and
e the terms belong to the commutative algebra Q(0/07,),>1 rather than to the non-
commutative algebra Q(o,, 0/00,)p>1.

Unfortunately, we have not been able to see how to use these new variables to make any of the
generating function calculations simpler.
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TABLES OF HIGHER SPHERICAL POLYNOMIALS

Table 1. Spherical polynomials for n = 3

We give a table of the polynomials P, 4(T) for all v = (v1,19,v3) with |v| < 5, extending
the one given in the special case d = 4 after Proposition 1 of §8. As there, we give only one
representative for each G3-orbit of indices v. As usual, we write s for (d —4)/2 and (z), for the
ascending Pochhammer symbol z(x 4+ 1) -+ (x +r — 1).

lv| =0 :
Pooo = 1
v| =1 :

PlOO = (S+ 1) T1

v| =2 :

s+1
Py = (2)27’? — (s +1)mams

P110 = (S + 1)2 17Ty — (S + 1) msrs

| =
s+1
P3oo = 7( 6 )s r3 — (s 4+ 1)y mamar;
s+1
Py = (2)37”%7“2 — (s+1)2mg(rirs + mars)
Pi1 = (s4+2)3rirors — (s +2)? (mlr% + mors +m3r§) + 4(s + 2) mymams
| =
(s+1)4 (s+1)3 (s+ 1)
Py = 22 7“41l - 5 mgmgrf + — m%mg
s+1 s+1
P39 = (6)47“357“2 - (2)3m3r1(r1r3+2m2r2) + (s+1) m2m§r3
s+1 s+1
Py = (4)4 7"% % — ng(?l“l?“g?“g + mlrf + mgrg)
s+1
+ 7( 5 )2 m%(r% + 2myms)
s+ 2)2(s + 3)? s+ 2)(s + 3)2
PN CES TR PR TCES T
— (s+2)2(s+3) rl(mzrg —|—m3r§) — (s+ 1)(3—1—2)2 MoM3raTs
+ (8 + 2)(58 + 13) mimomsnry
v| =5
(s+1)s (s+1)4 (s+1)3
Psoo = 120 ry — 5 mamar} + Tm%m%n
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Piig = (5;41)5 r‘llrg — (S—{_61)4 mgrf (rirs 4+ 3mars) + (521)3 m2m§(2r1r3 + marsa)
P3oy = @_;21)5 r3ri — (s+61)4 mary (3rirars + mir? + 3mar3)
(8—;1)3 m% (r1r§ + 2marers + 2mymary)
P31 = (s —22)3 <(3 +2)(s 4+ 4) r3rors — (s +4)myr] — 3(s 4 2) r2(mars + m3r§)>
— (s+2) ((s +2)2mamarirers — (3s + 10)mymomar?
— (54 2)mams(mars +msrs) + 4m1m§m§>
Py = Chs 2)é5 3 <(S ha 3)2(8 4 rirsrs — (s44) rira(mar? + mor3)

2 2 2 2.3
— 2(s 4 3) marirars — smars(mary + mars) + msrs

+ 12 m1m2m37‘17‘2) + (s+2)(s+3)(s—3) m1m2m§7"3

lv| =6
(s + 16 (s+1)s (s+1)4 (s+1)s
Psoo = WT? - Tmzmsr% + Tm%mgﬁ - ng’mg
s+1 s+1 s+ 1
510 = Gl Pry — s+ Ds mary (rirs + dmoars) + (G momir1 (r1rs + mars)
120 24 2
(s+1)3 2 3
5 2M3T3
s+1 s+1
P420 = ( )6 le’l“g — Q mg’l“% (4T1T27‘3 + mlr% + 6m2r§)
48 24
s+1
( 1 )a m3 (rir3 4+ 4marirars + 2mimari + mars)
s+1
— (2)3m2m§(m1m2 + r%)
s+2
Py = (24)4 <(s +2)(s 4 5) rirors — (s +5)mard — 4(s 4 2) r3 (mars + m:ﬂ“%))
2
_ (s _Zi )3 (3(3 +2), m2m37“%7‘27“3 — (Ts+ 29)m1m2m3r“;’
— 6(s + 2)mamgry (mgrg + mgrg))
1 2 3 2)2(3 11
+ —(S i );(8 2 §m§r2r3 - (s + )22( i )mlmgmgrl
s+1 s+ 1
P339 = (36)6@7“% — (12)517137“17"2(37“17“27“3 + 2m1r% + 2m27“§)
s+1
7( 5 Mm%(mrﬂ% + mlr%rg + mgrgrg + 2mimarire)
1
— (S+6)3 m§r3(6m1mg + 7’32,)
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2 3
bt 2l 32,0,

2
(s 41r2 )3 riry (6(3 +3)gmari + 3(s + 3)(s + 5)mars + 2(s + 4)2m17«%>

(S —|— 2)3

P3o1 =

marirs ((s —1)(s+ 4)m1r% +3(s+1)(s+ B)mgrg —3(s+ 3)m3r§>

(S + 2)2
2
+ (54 2)2(s* — 13)mymomirirs — (s + 2)o(5s + 17)mymamary

3)3 3)3(s +4)?
(s +3)3 rirsrs — (s + )2(5+ ) r1rar3(myrs + mors + mar3)

maomsra((s +4)(7s + 25)m1r% +(s+ 3)2m2r§ + (s+3)(2s + 5)m37’§)

Py =

(s —2)(s+3)3(s+4)
B 4

2 2 2 2 2 2
(mymeariry + maomsrars + mimsrirs)

3 2 4 2
(s +3) 4(8 ) (m3rf +mary + mars) + (s + 3)3(7s 4 22)mymamsrirors
s+ 3)(s? —5s — 30
+ ( It 5 ) m1Mmoms ((s + 3)(myr? 4+ mars + m3r§) 2m1m2m3>

Table 2. Spherical polynomials and Gram matrices for n =4 and n =5

n=4.
First we repeat the example at the end of section 5. For multidegree a = (1111), we have

k (: %Z?:l ai)) = 2 and dim P,(d) = 3. For
010 0 0010 000 1
1000 000 1 001 0
A=l 001" B=1 00 0] 9|01 0 oM@
0010 010 0 100 0

the monomial basis is given by Pﬁ/l = t1ot34, Pg[ = t13to4, Py = t14t23. The Gram matrix
(PP, P#D ))v ueNs(a) also tells us the coefficients of the expansion of B in terms of the monomial
basis P,ﬁ\/f , e.g. we have

d(d—1)(d+2)PY = (d+1)PY — PY — PA.

If we encode the multi-indices v of the descending basis by the corresponding monomials

¥ =11, < a:l'j]” , then this formula can be expressed in a visually clearer form by presenting
the coefficients of the polynomial d(d — 1)(d + 2) P in the form of a table

t12t34  t13tos  t1ataos

T12%34 | d+1 -1 -1

T13%24 -1 d+1 -1

14723 | —1 -1 d+1
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and this is the form in which we will present the data for higher multi-indices.

For any polynomial P(T) = P((ti;)) € C[S,] and a permutation o on n letters, we write
Po(T) = P((to(i),0(j)))- If P(T) € Pa(d), then we have P? € Pya(d) where ca = (aqy). It
is obvious that (P?,Q%)4 = (P,Q)q4. So if ca = a, then o permutes the monomial basis, and
also the descending basis. In the above example, we have P) = Pf?’) and Po = PIE‘M), so the
symmetry of the table is quite obvious.

a=(1113), k=3,dimPa(d) =1.
Here, since the dimension is 1 we have to give only one monomial basis element P2 . Tt is

t1atoatszs — s (ti2tsa + tistos + t1atas),
d+2
where we do not need to specify the index v because the leading term (the only one that survives
if we set all t;; equal to 0) tells us us what it is. In this case the corresponding descending basis
element PP is simply 1/(d —1)d(d +4) times the monomial basis element, which we can express
(rather unnecessarily, in this case) in our new tabular form by saying that the polynomial

(d —1)d(d + 4)PP is given by the table

t1ato4t3s

T14724034 1

From now on we list only the monomial basis polynomials (writing simply P;, 1 < ¢ < dim,
rather than P} since v can be read off from the leading term, and including symmetries
as explained above), the common factor F' by which the descending basis elements must be
multiplied in order to make all coefficients in their representation with respect to the monomial

basis polynomials with integral coefficients, and then a table of these coefficients.
a=(1122), k=3, dimPa.(d) =3.

P = t12t§4 3 t12¢33t44

1 1
Py = ti3toatss — 7 (t1atoatss + tistostas) + 2 t12t33t44

1 1
Py = (P2)®Y = ty4togtsq — p (t1atoatss + tistostas) + -2 t12t33tas
F =2(d-2)(d—-1)d(d+2)(d+4)

t12t3, t13t24t34 t1ato3t34
T1273, | d*+2d—4 —2d —2d
21322434 —2d 2(d2 +d— 4) —2d + 8
T14T23734 —2d —2d+8 2(d? +d — 4)
a=(1124): k=4, dimPa(d) = 1.
_ 2 taq 2
Py = tiatoatsy — m(t14t24t33 + 2t1atostss + 2tistoatss + tiats,)
- L, (2t13t23 + t1ats3)
[d+2)(d+4) 13t23 + t12t33

F = 2(d—1)d(d+1)(d+6) and PP = F~'PM = p~1p
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a=(1133), k=4, dim Pa(d) = 3.

P, = tiots, — —— t1otgatsst
1 1234 = 775 tiataalaztag
Py = tistostsy, — —— (tistostsatas + tiatoatsstss)
d+2
1
— ————(dty13toatastas — 2t10t33t34taa — 2t14to3t33t
(d+2)2< 13t24%33t44 12t33t34t44 1at23t33taa)

Py = (PQ)(34) = t14t23t§4 — t1atoatsstss + t13tostsatss)

d+2 (

_ (d t14to3t33tas — 2t12t33834844 — 2 7513752415331544)
(d+2)

F = 6(d—2)(d—1)d(d+1)(d+4)(d+6)

tiat3, ti3taat3y t1atast3y

T1273, | d*+5d — 2 —3(d+2) -3(d+2)

T1372473, | —3(d+2) 3(d* +3d — 6) —3(d — 6)
T14737%, | —3(d+2) -3(d—6)  3(d*+3d—6)

a=(1223), k=4, dimPa(d) = 3.

P = 7512752475§4 3 t14t22t§4

tgs (
—————  t14to0t 2t1atootas — dtio(togt 2tost )
+ dd+2) 14t22t33 + 2113%22134 12(t2atss + 2tastss)

23 1
P = Pl( ) = tiatastas — gt14t§4t33

tgs <
M (4 tootas + 2 tiatoutss — dtys(tast 2tt>
+d(d+2) 14t02l33 + 2112l24%33 13(t2atss + 2tastay)

1
P3 = tiatostostss — 7 (751475347533 + t14t22t§4)

- d(;iﬁ% (d ta3(tiatas + tistas + t1atss) — 2 (fratastss + tiataatss + t13t227f34)>
F = 2(d—2)(d—1)d(d+1)(d+ 4)(d + 6)
tiotogt3, t1sts,tay t1alostoatss
T1oTo4x3, | d®+4d—4  —2(d+2) —2(d —2)
T13T3,734 —2(d+2) d*+4d—4 —2(d — 2)
T14T93T24w34 | —2(d —2)  —2(d—2) 2(d*+3d—2)
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=(2222), k = 4, dim Pa(d) = 6

1 1
d2 22 — (diTy — t11t22)(dt3, — tastas)

1 1
g(t%3t22t44 + t34t11ts3) + ¥t11t22t33t44

1
Py = (P)®Y = 3,13, — g(t%ﬂzzt:’,:’» + t35t11t44) +

1
Py = 3,13, — g(t%2t33t44 + tiitootsy) + —stiitaotastay =

Py = (P)® = 3,13, —

7z —5l11l22t33t44
1

Py = tistiatagtos — P (t13t147f22t34 + t1atiatoatss + t11tastoatss + tiotistastas)

1
d2 (t1475227533 + ti1taatss + tritasts, + tigtastas + ti1tastas + 751275337544) —zl11t22t33l44

3
1
Ps = (P4)(23) = t12t14t23t34 — 7 <t13t14t22t34 + t1ot14t24t33 + t11t23t24t34 + t12t13t23t44)
3
Ttz (751475227533 + tiityytas + tiitastsy + tistastas + ti1tistas + 751275337544) B —zli1l22l33la4

1
Py = (P4)(24) = t12t13t24134 — a <t13t14t22t34 + t1ot14t24t33 + t11t23t24834 + t12t13t23t44)

t (751475227533 + tiityytas + tiitastsy + tistastas + ti1tystas + t12t33t44) - ;3 ti1taotsstaa
F = 4(d—3)(d—2)(d — 1)d(d + 1)(d + 2)(d + 4)(d + 6)
1at34 15134 14t35

12,22, d* +5d® — 10d? — 36d + 24 2(d* +12) 2(d* +12)

12322, 2(d* +12) d* + 5d3 — 10d? — 36d + 24 2(d* +12)

22,22, 2(d* +12) 2(d* +12) d* + 5d3 — 10d* — 36d + 24
T13T14T23%24 4(d —10)d —4(d —2)d(d+4) —4(d —2)d(d+4)
T19T14T23T 34 —4(d —2)d(d +4) 4(d —10)d —4(d —2)d(d+4)
T19T13T24T34 —4(d —2)d(d + 4) —4(d —2)d(d+4) 4(d —10)d

t1aliatastos li2t1at23tsa li2t13t24t34
22,22, A(d — 10)d —4(d — 2)d(d + 4) —4(d — 2)d(d + 4)
13373, —4(d — 2)d(d + 4) 4(d —10)d —4(d — 2)d(d + 4)
22,02, —4(d — 2)d(d + 4) —4(d — 2)d(d + 4) 4(d —10)d

T13714T23%24 | 4(d —2)2(d+3)(d+4) —4(d® —7d* —10d +24) —4(d® — 7d* —10d + 24)
T12714T23734 | —4(d® — Td? —10d +24)  4(d —2)*(d +3)(d+4) —4(d® — 7d* — 10d + 24)
12713724734 | —4(d® — Td? —10d + 24) —4(d3® — 7d?> —10d +24)  4(d —2)*(d + 3)(d + 4)
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n=>,.

a=(11112). dimPa(d) = 6.
In this case the symmetry group acts transitively on the monomial basis.

1
Py = tiotastss — P t12t34855

1
Py = (Pl)(23) = t13tastss — p t13toatss

1
Py = (P)® = tygtostss — gt14t23t55

1
Py = (Pl)(13) = ty5to3tss — P t14ta3tss

1
P = (Pl)(14) = t15ta4l3s — P t13t24tss

1
Py = (Pl)(13)(24) = t15to5t34 — P t12t34t55

F = (d—2)(d—1)d(d+2)(d+4)

li2t3stas l13tastas l1ataslss listastas listaatss tistastsa
T19T35%a5 | d? + 2d — 4 —d —d —d —d 4
T13T25T45 —d d?> +2d—4 —d —d 4 —d
T14%25T35 —d —d d?> +2d — 4 4 —d —d
T15%23%45 —d —d 4 d?>+2d—4 —d —d
T15L94TL35 —d 4 —d —d d?> +2d —4 —d
T15T95L34 4 —d —d —d —d d’> +2d -4

a=(11114), dimPa(d) = 1.

tss
Py = tistostastas — d+d (t12t35t45 + tistostas + tiatastss + tis(tastsa + toatss + t237545))
+ 15 (tiatss + tiatas + t1atas)
d12)(d+4) 12834 + t13t24 + t14t23

F = (d—1)d(d+1)(d+6) and PP = F'PM = p~'p
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=(11123), dimP,(d) =6
Here the monomial basis is given by P, P1(23), P1(123), P, P2(12) and P2(13), where

Py = tiatsst?. — t1atss (tast 2 taut
1 1283585 — 5 e 55(tastas + 2t3atas)
Py = tiatostsstas — gt15t25t35t44
1
L (t tistas + tratos + tiatas) — dtia(tastas + toatas + tost )
+ dd+2) 55 ( taa(t1stas + t1stes + tiatss) 14(tostas + toatss + tastss)
In this case we have
= 2(d—2)(d—1)d(d+1)(d+4)(d+6)

and the product of F' with the Gram matrix of the descending basis (ordered as above) is

tiatsstis t13tost]s t15tast]s
T1973503; |2 +5d -2 —(d+2) —(d+2)
T13T25775 —(d+2) d*+5d-2 —(d+2)
T15T23T 5 —(d+2) —(d+2) d*+5d-2
T14To5T35045 | —2(d+2) —2(d+2) 8
1502435045 | —2(d + 2) 8 —2(d+2)
X15%25L34L45 8 —2(d+2) —2(d+2)
t1alostsstas tistaatsstas tislastzatas
T12T357 35 —2(d+2) —2(d+2) 8
T13T25T %5 —2(d+2) 8 —2(d + 2)
T15T23T 55 8 —2(d + 2) —2(d + 2)
T14To5T35T45 | 2(d? +4d —4)  —2(d —2) —2(d —2)
T15T24T35% 45 —2(d—2)  2(d?*+4d —4) —2(d—2)
X15T25T34% 45 —2(d—2) —2(d—2) 2(d? + 4d — 4)
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a=(11222), dimPa(d) = 10.
The monomial basis is Py, Ps, P2(34), P2(35), P, P§45), P3(34), P3(345), P§354), P§35), with

Py = tiat3atsstss — %(t§5t44 + tastis + t3uts5) + %t12t33t44t55,
Py = ti3tostss — g(t13t2375447555 + tiotastis) + ?t12t33t447555
= %(dtwtzz’, — tiotss)(dtis — tastss),
P3 = t13taatsstss — P (t13tostsstas + tistoatsatss + tistoatsstas)
+ % (t13tostaatss + tiatoatsstss + tistostsstas) — pr t12t33t44t55
F = 2(d—3)(d—2)(d—1)d(d + 1)(d + 2)(d + 4)(d + 6)

In this case, the Gram matrix of the descending basis, multiplied by F', is a 10 x 10 matrix with
rather complicated entries (for instance, its first two diagonal entries are 2(d—2)(d®+6d?+3d—6)
and d* + 5d® — 10d? — 36d + 24), so we do not write it out. However, the Gram matrix of the
monomial basis in this case is somewhat simpler, and has polynomial coefficients after being
multiplied by F* = d?/(d — 1)(d + 2). We give a part of this matrix, namely, the set of values
F*(P;, P)") for 1 <4 < 3 and all ten p (ordered as above), in the following table. The remaining
70 values, of course, follow from the symmetry.

l12l34l35145 t13tast]s t1ataat3s tistastsy
Pr | (d—2)d2(d+4) 0 0 0
Py 0 2(d — 1)d*(d + 2) 4d? 4d?
Py | (d—2)d(d+4) 2(d-1)dd+2) 2(d—1)dd+2) 2(d—2)d
t1alaatsstas tiglastzatas l1ata3tsstas
P | (d—2)d(d+4) (d—2)d(d+4) (d—2)d(d+4)

Py [2(d—1)d(d+2)  2d-1dd+2)  2(d—1)d(d+2)
Py | (d=1)*d+2)? (d—2)(d—1)(d+2) d>+3d>—4d+4
tiatastsatss tistastsatas tistoatsatss

P l(d=-2)dd+4) (d-2)dd+4)  (d—2)d(d+4)
Py 2(d —2)d 2(d—1)d(d+2) 2(d —2)d
P3 (d—2)? (d—2)? (d—2)(d—1)(d+2)
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Table 3. Determinants of Gram matrices

In §9.C.8. we explained that the determinant GD} (d) of the Gram matrix for the monomial
basis has the form C [, -, ,(d+ m)*™ for some C € Q* and e(m) € Z. We give a table
of the exponents e(m) and of the constant C for n = 4 and all tuples a with k < 8 (written
as (a1 azaszaq) with 1 < a1 < as < ag < ayq, and also a4 < a3 + as + a3 since otherwise the
dimension Ny(a) is 0), and then a shorter table for n = 5 and all tuples a with & < 6. The
tabulated values of m are consecutive to the left of the vertical line and even to its right.

n=4.
k=2,3,4,5.
dimP,(d)| a C |-3 -2 -1 0 1|2 4 6 8
3 (1111) 1 2 |3 0 1
3 1 (1113) 1 1 1{0 0 1
3 (1122) 2 1 3 1|0 3 1
4 1 (1124) 2 1 1 1[0 o0 1
3 (1133) | 233 1 3 3 2(-1 3 1
(1223) | 22 2 3 1 2|0 3 1
6 (2222) | 26 1 6 1 3|6 3 1
5 1 (1135) | 2-3 1 1.1 1[0 01
(1225) | 22 1 1.1 1[0 01
3 (1144) |25 .33 1 3 3 3 2 |-1 31
(1234) | 2*-3 2 3 23 1|0 31
(1333) | 23 3 3 33 —-4]3 31
(2224) | 23 3 3 03 2 ]0 31
6 (2233) | 283 |1 4 6 4 5 0 |6 3 1
k=6
dim a C -3 -2 -1 0 1 2 3|4 6 8 10
1 |(1146) | 23-3 1 1 1 1 1[0 0 0 1
(1236) | 22-3 1 1 1 1 1/0 0 0 1
(2226) 23 1 1 1 1 1/0 0 0 1
3 |(1155) [22-33.5 1 3 3 3 3 2|0 -1 3 1
(1245) | 2633 2 3 2 3 3 2|/-1 0 3 1
(1335) | 26.32 2 3 3 3 1 20 0 3 1
(1344) | 2°-3 3 3 4 3 -1 2(-3 3 3 1
(2235) | 2°-3 3 3 1 3 2 210 0 3 1
6 |(2244) | 213.33 4 6 5 6 4 3|-3 6 3 1
(2334) | 210.32 5 6 6 6 -1 3|0 6 3 1
10 [(3333) | 28.36 |3 7 10 11 9 —4 4[10 6 3 1
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Here x denotes the list {(1168), (1258), (1348), (2248), (2338)} of a with dim P,(d)
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n=>,.

k=3,4,5,6.
dim Py (d) a c |-4 -3 -2 -1 0 1 2 3|4 6 8 10
6 (11112) 1 2 6 3 [0 6 0 1
1 (11114) 1 1 1]/0 0 0 1
6 (11123) | 23 3 6 5 3|0 0 6 1
10 (11222) | 23 1 7 10 1 4]10 0 6 1
5 1 (11125) 2 1 1 10 0 0 1
6 (11134) | 26.33 3 6 6 6 2|0 0 6 1
(11224) | 26 4 6 4 6 3|0 0 6 1
10 (11233) | 28-3 1 8 10 7 9 —-2]0 10 6 1
15 (12223) | 212 3 12 15 6 12 5 |0 15 6 1
22 (22222) | 200 11 6 22 22 -7 16 22 |0 21 6 1
6 1 (11136) | 2-3 1 1 1 1 1[0 0 0 1
1 (11226) 22 1 1 1 1 1{0 0 0 1
6 (11145) | 212 .36 3 6 6 6 6 3|-1 0 6 1
(11235) | 29.33 4 6 5 6 5 3[0 0 6 1
(12225) 29 5 6 3 6 6 3|0 0 6 1
10 (11244) |24 .36 1 8 10 8 10 8 4|-6 10 6 1
(11334) |213.32 1 9 10 12 10 -3 4|0 10 6 1
15 (12234) |219.33 3 13 15 11 15 6 5|0 15 6 1
21 (22224) | 230 6 17 21 12 21 15 6|0 21 6 1
(12333) |227.33 6 18 21 21 20 -9 6 (21 15 6 1
29 (22233) | 231.3 11 10 28 29 15 28 —1 7 (29 21 6 1

Final remark. In these tables, non-zero exponents e(m) occur only if 1 —n < m <k —3 or
if k—2 < m < 2k—2 and m is even, the latter statement being highlighted by the vertical
lines that we have inserted. This suggests that the dimension of the space Pa(d) has its generic
value Njp(a), and that both the generic monomial and descending basis elements give bases of
this space, in any of the following four cases:
d ¢ 7,
o d Z n,

o d < 2k,

o d < 2—Fk and d odd.
This is in fact true, and follows by combining results given at various points of our paper,
namely Theorem 3 of §3 (which tells us that the inner product of monomials is polynomial
in d), Theorem 5 of §5 (which tells us how to get the monomial basis by iterating the “raising
operator”), Theorem 6 of §5 (giving the duality between the monomial and descending bases),
equation (117) in §9.A (which tells us how to get the generating function by repeated applications
of appropriate differential operators), and equation (134) of §9.C (which relates the generating
function basis to the descending basis). But there are still many mysteries, e.g., why the value
of e(2k — 2) should always be 1, as the tables suggest.
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Li1sT OF NOTATIONS

We list the principal notations, omitting those that are used only locally, and including section
or equation numbers when this seems helpful.

(:E)n (CE S (C, n e Zzg)
() Hé(ld)

St ’

S, Sut

Egra, Esdfl, E(Rd)n, E(Sd—l)n

(7)611’(7)111

EZ

Dij, Eij, Fyy (1<1i,j<n)

g

Rij, Cij (1<, 5 <n)
PP = P,fd

K

‘Cp

M,

Gn)

G

P,(T), P, 4(T)

space of real symmetric n X n matrices, with coordinate T' = (¢;;)
space of polynomials on S,, or on any vector space V'

map (RY)" — S, defined by (z1,...,7,) — ((z5,2;)) or X — X X!
induced map P+ P = P o 3, from C[S,] to C[(R%)"]

set of symmetric n x n matrices ¥ = (v;;) with v;; € Z>¢, v;; even
monomial Ht;’;j/ % in C[S,]

partial derivative w.r.t. ¢;;, multiplied by 2 if i = j

vectors consisting of n 0’s, resp. 1’s, resp. 2’s

set of v € N with v;; = 0 for all ¢

set of v in V, resp. Ny, with v-1 =a

cardinality of N (a), resp. NVy(a)

subspace of C[S,] spanned by monomials 7% with v € N'(a)

ith Laplace, resp. Euler differential operators on C[S,| [§1]
subspace of C[S,], resp. C[S,]a, annihilated by all D;

space of matrices T' € S,, with all ¢;; equal to 0

the generically bijective map P (d) ¢ C[S,] — C[S?] =2 CMo
exceptional set 2Z N UM ,[4 — 2a;,2 — a;] in Theorem 1 [§2]
diagonal monomial []"_; t% € C[S,]om

monomial basis of P (d) [§2]

space Ker(A) of harmonic polynomials in C[R9]

increasing Pochhammer symbol z(z +1)---(z +n — 1)

projection map C[RY] — H(R?), resp. C[S,]a — Pa(d) [§2]
space of matrices T' € S,, with all ¢;; equal to 1

space of positive definite matrices in S,,, resp. S}

expectation value w.r.t. probability measures on these spaces [§3]
scalar products on C[S,], resp. C[S!] [§3]

the corresponding functionals ( ,1)g, ( ,1)}
normalizing constants in the definitions of the scalar products
normalizing factors relating the two scalar products [egs. (14), (18)]
space of lower triangular n X n matrices with positive diagonal entries
functional on C[£,]®" defined in (25)

mixed Laplace and Euler operators and multiplication by ¢;; [§4]
the Lie algebra spanned by all D;;, E;;, Fi; [84]

raising, resp. “mixed Casimir” operators on C[S,] [§5]

descending basis of P (d) (§5)

the field Q(d), with d considered as a variable [§5,89]

the subring Q[d, d™1, (d+1)71, (d£2)7!,...] of K [8§9, eq. (112)]
the differential operator w.r.t. o1,...,0, [89, eq. (102)]

the “main” part of £, [8§9, eq. (113)]

the standard generating function [§9, egs. (117) and (130) ]

the weight k part of the generating function [§9]

the standard spherical polynomial [§8.A, §9.C.1]
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