
EXCEPTIONAL DEL PEZZO HYPERSURFACES

IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Abstract. We classify weakly exceptional quasismooth well-formed del Pezzo weighted hyper-
surfaces in P(a1, a2, a3, a4), and we compute their global log canonical thresholds.
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Part 1. Introduction

1.1. Background

The multiplicity of a nonzero polynomial f ∈ C[z1, · · · , zn] at a point P ∈ Cn is the non-
negative integer m such that f ∈ mm

P \ mm+1
P , where mP is the maximal ideal of polynomials

vanishing at the point P in C[z1, · · · , zn]. It can be also defined by derivatives. The multiplicity
of f at the point P is the number

multP (f) = min
{
m
∣∣∣ ∂mf

∂m1z1∂m2z2 · · · ∂mnzn
(P ) 6= 0

}
.

On the other hand, we have a similar invariant that is defined by integrations. This invariant,
which is called the complex singularity exponent of f at the point P , is given by
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cP (f) = sup
{
c
∣∣∣ |f |−c is locally L2 near the point P ∈ Cn

}
.

It is hard to calculate it in general. However for some cases there are easy ways to calculate
it.

Example 1.1.1. Let f be a polynomial in C[z1, z2]. Suppose that the polynomial defines an
irreducible curve passing through the origin O in C2. We then have

cO(f) = min
(

1,
1
m

+
1
n

)
,

where (m,n) is the first pair of Puiseux exponents of f (see [32]). In particular, we have

cO

(
zn1
1 zn2

2

(
zkm1
1 + zkm2

2

))
= min

(
1
n1
,

1
n2
,

1
m1

+ 1
m2

k + n1
m1

+ n2
m2

)
,

where n1, n2, m1, m2, k are non-negative integers.

Example 1.1.2. Let m1, . . . ,mn be positive integers. Then

min

(
1,

n∑
i=1

1
mi

)
= cO

(
n∑

i=1

zmi
i

)
> cO

(
n∏

i=1

zmi
i

)
= min

(
1
m1

,
1
m2

, . . . ,
1
mn

)
.

Let X be a variety1 with at most log canonical singularities (see [28]), let Z ⊆ X be a closed
subvariety, and let D be an effective Q-Cartier Q-divisor on the variety X. Then the number

lctZ

(
X,D

)
= sup

{
λ ∈ Q

∣∣∣ the log pair
(
X,λD

)
is log canonical along Z

}
∈ Q ∪

{
+∞

}
is called a log canonical threshold of the divisor D along Z. It follows from [28] that for a
polynomial f in n variables over C

lctO

(
Cn,

(
f = 0

))
= cO

(
f
)
,

so that the log canonical threshold lctZ(X,D) is an algebraic counterpart of the complex singu-
larity exponent cO(f). We can define the log canonical threshold of D on X by

lctX

(
X,D

)
= inf

{
lctP

(
X,D

) ∣∣∣ P ∈ X
}

= sup
{
λ ∈ Q

∣∣∣ the log pair
(
X,λD

)
is log canonical

}
,

and, for simplicity, we put lct(X,D) = lctX(X,D).

Example 1.1.3. Suppose that X = P2 and D ∈ |OP2(3)|. Then

lct
(
X,D

)
=



1 if D is a smooth curve,
1 if D is a curve with ordinary double points,
5
6

if D is a curve with one cuspidal point,

3
4

if D consists of a conic and a line that are tangent,

2
3

if D consists of three lines intersecting at one point,

1
2

if Supp
(
D
)

consists of two lines,

1
3

if Supp
(
D
)

consists of one line.

Now we suppose that X is a Fano variety with at most log terminal singularities (see [24]).

1All varieties are assumed to be complex, algebraic, projective and normal unless otherwise stated.
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Definition 1.1.4. The global log canonical threshold of the Fano variety X is the number
defined by

lct
(
X
)

= inf
{

lct
(
X,D

) ∣∣∣ D is an effective Q-divisor on X such that D ∼Q −KX

}
.

The number lct(X) is an algebraic counterpart of the α-invariant of Tian (see [15], [48]).
The group Pic(X) is torsion free because X is rationally connected (see [53]). Therefore, we

have

lct
(
X
)

= sup

{
λ ∈ Q

∣∣∣∣∣ the log pair
(
X,λD

)
is log canonical

for every effective Q-divisor D ≡ −KX

}
.

It immediately follows from Definition 1.1.4 that

lct
(
X
)

= sup

ε ∈ Q

∣∣∣∣∣∣ the log pair
(
X,

ε

n
D
)

is log canonical for

every divisor D ∈
∣∣− nKX

∣∣ and every n ∈ N

 .

Example 1.1.5. Suppose that P(a0, a1, . . . , an) is a well-formed weighted projective space (see
[23]). Then

lct
(
P
(
a0, a1, . . . , an

))
=

a0∑n
i=0 ai

.

Example 1.1.6. Let X be a smooth hypersurface in Pn of degree m 6 n. The paper [6] shows
that

lct
(
X
)

=
1

n+ 1−m
if m < n. For the case m = n > 2 it also shows that

1− 1
n

6 lct(X) 6 1

and that lct(X) = 1 − 1
n if X contains a cone of dimension n − 2. Meanwhile, the papers [14]

and [41] show that

1 > lct
(
X
)

>



1 if n > 6,
22
25

if n = 5,

16
21

if n = 4,

3
4

if n = 3,

if X is general.

Example 1.1.7. Let X be a smooth hypersurface in the weighted projective space P(1n+1, d)
of degree 2d > 4. Then

lct
(
X
)

=
1

n+ 1− d
in the case when d < n (see [8, Proposition 20]). Suppose that d = n. Then the inequalities

2n− 1
2n

6 lct
(
X
)

6 1

hold (see [14]). But lct(X) = 1 if X is general and n > 3. Furthermore for the case n = 3 the
papers [14] and [41] prove that

lct
(
X
)
∈
{

5
6
,
43
50
,
13
15
,
33
38
,
7
8
,
33
38
,
8
9
,

9
10
,
11
12
,
13
14
,
15
16
,
17
18
,
19
20
,
21
22
,
29
30
, 1
}

and all these values can be attained. For instance, if the hypersurface X is given by

w2 = x6 + y6 + z6 + t6 + x2y2zt ⊂ P
(
1, 1, 1, 1, 3

) ∼= Proj
(
C
[
x, y, z, t, w

])
,

where wt(x) = wt(y) = wt(z) = wt(t) = 1 and wt(w) = 3, then lct(X) = 1 (see [14]).
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Example 1.1.8. Let X be a rational homogeneous space such that −KX ∼ rD and

Pic
(
X
)

= Z
[
D
]
,

where D is an ample Cartier divisor and r ∈ Z>0. Then lct(X) = 1
r (see [22]).

Example 1.1.9. Let X be a quasismooth well-formed (see [23]) hypersurface in
P(1, a1, a2, a3, a4) of degree

∑4
i=1 ai with terminal singularities (see [28]), where a1 6 . . . 6

a4. Then
• there are exactly 95 possibilities for the quadruple (a1, a2, a3, a4) (see [23], [26]),
• if X ⊂ P(1, a1, a2, a3, a4) is general, then it follows from [7], [9], [10] and [14] that

1 > lct
(
X
)

>



16
21

if a1 = a2 = a3 = a4 = 1,

7
9

if (a1, a2, a3, a4) = (1, 1, 1, 2),

4
5

if (a1, a2, a3, a4) = (1, 1, 2, 2),

6
7

if (a1, a2, a3, a4) = (1, 1, 2, 3),

1 in the remaining cases,

• the global log canonical threshold of the hypersurface

w2 = t3 + z9 + y18 + x18 ⊂ P
(
1, 1, 2, 6, 9

) ∼= Proj
(
C
[
x, y, z, t, w

])
is equal to 17

18 (see [7]), where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 6, wt(w) = 9.

Example 1.1.10. Let X be a singular cubic surface in P3 such that X has at most canonical
singularities. The possible singularities of X are listed in [5]. It follows from [12] that

lct
(
X
)

=



2
3

if Sing
(
X
)

=
{
A1

}
,

1
3

if Sing
(
X
)
⊇
{
A4

}
, Sing

(
X
)

=
{
D4

}
or Sing

(
X
)
⊇
{
A2,A2

}
,

1
4

if Sing
(
X
)
⊇
{
A5

}
or Sing

(
X
)

=
{
D5

}
,

1
6

if Sing
(
X
)

=
{
E6

}
,

1
2

in the remaining cases.

So far we have not seen any single variety whose global log canonical threshold is irrational.
In general, it is unknown whether lct(X) is a rational number or not2 (cf. Question 1 in [50]).
However, we expect more than this as follows.

Conjecture 1.1.11. There is an effective Q-divisor D ∼Q −KX on the variety X such that

lct
(
X
)

= lct
(
X,D

)
∈ Q.

The following definition is due to [46] (cf. [25], [31], [34], [40]).

Definition 1.1.12. The variety X is exceptional (resp. weakly exceptional, strongly excep-
tional) if for every effective Q-divisor D on the variety X such that D ≡ −KX , the pair (X,D)
is log terminal (resp. lct(X) > 1, lct(X) > 1).

It is easy to see the implications

strongly exceptional =⇒ exceptional =⇒ weakly exceptional.

However, if Conjecture 1.1.11 holds for X, then we see that X is exceptional if and only if X is
strongly exceptional.

2Even for a del Pezzo surfaces with log terminal singularities the rationality of the global log canonical threshold
is unknown.
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Exceptional del Pezzo surfaces, which are called del Pezzo surfaces without tigers in [29], lie
in finitely many families (see [46], [40]). We expect that strongly exceptional Fano varieties with
quotient singularities enjoy very interesting geometrical properties (cf. [44, Theorem 3.3], [38,
Theorem 1]).

The global log canonical threshold plays important roles both in birational geometry and in
complex geometry.

Example 1.1.13. Let X1, . . . , Xr be threefolds satisfying hypotheses of Example 1.1.9. Then
• the threefolds X1, . . . , Xr are non-rational (see [16]),
• for every i = 1, . . . , r, there is no rational dominant map ρ : Xi 99K Y such that

– general fiber of the map ρ is rationally connected,
– the inequality dim(Y ) > 1 holds,

• there is no non-biregular birational map ρ : Xi 99K Y such that
– the variety Y has terminal Q-factorial singularities,
– the equality rk Pic(Y ) = 1 holds.

• the structures of the groups Bir(X1), . . . ,Bir(Xr) are completely described in [16] and
[13],

• if the equality lct(X1) = lct(X2) = . . . = lct(Xr) = 1 holds, then
– the variety X1 × . . .×Xr is non-rational and

Bir
(
X1 × . . .×Xr

)
=
〈 r∏

i=1

Bir(Xi), Aut
(
X1 × . . .×Xr

)〉
.

– for every dominant map ρ : X1 × . . . × Xr 99K Y whose general fiber is rationally
connected, there is a subset {i1, . . . , ik} ⊆ {1, . . . , r} and a commutative diagram

X1 × . . .×Xr

π
��

σ //______ X1 × . . .×Xr

ρ

))RRRRRRRR

Xi1 × . . .×Xik ξ
//___________________ Y,

where ξ and σ are birational maps, and π is a projection (see [7], [41]).

The following result was proved in [17], [37], [48] (see [15, Appendix A]).

Theorem 1.1.14. Suppose that X is a Fano variety with at most quotient singularities. Then
X admits an orbifold Kähler–Einstein metric if

lct
(
X
)
>

dim
(
X
)

dim
(
X
)

+ 1
.

Examples 1.1.6, 1.1.7 and 1.1.9 are good examples to which we may apply Theorem 1.1.14.
There are many known obstructions for the existence of orbifold Kähler–Einstein metrics on

Fano varieties with quotient singularities (see [18], [20], [33], [36], [43], [51]).

Example 1.1.15. Let X be a quasismooth hypersurface in P(a0, . . . , an) of degree d <
∑n

i=0 ai,
where a0 6 . . . 6 an. Suppose that X is well-formed and has a Kähler–Einstein metric. Then

d

(
n∑

i=0

ai − d

)n

6 nn
n∏

i=0

ai,

and
∑n

i=0 ai 6 d+ na0 by [21] (see [2], [47]).

The problem of existence of Kähler–Einstein metrics on smooth del Pezzo surfaces is com-
pletely solved by [49].

Theorem 1.1.16. If X is a smooth del Pezzo surface, then the following conditions are equiv-
alent:

• the automorphism group Aut(X) is reductive;
• the surface X admits a Kähler–Einstein metric;
• the surface X is not a blow up of P2 at one or two points.
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1.2. Notation

We reserve the following notation that will be used throughout the paper:
• P(a0, a1, a2, a3) denotes the weighted projective space Proj(C

[
x, y, z, t

]
) with weights

wt(x) = a0, wt(y) = a1, wt(z) = a2, wt(t) = a3, where we always assume a0 6 a1 6
a2 6 a3.

• Ox is the point in P(a0, a1, a2, a3) defined by y = z = t = 0. The points Oy, Oz and Ot

are defined in the similar way.
• X denotes a quasismooth and well-formed hypersurface in P(a0, a1, a2, a3) (see Defini-

tions 6.3 and 6.9 in [23], respectively).
• Cx is the curve on X cut by the equation x = 0. The curves Cy, Cz and Ct are defined

by the similar way.
• Lxy is the one-dimensional strata on P(a0, a1, a2, a3) defined by x = y = 0 and the other

one-dimensional stratum are labeled in the same way.
• Let D be a divisor on X and P ∈ X. Choose an orbifold chart π : Ũ → U for some

neighborhood P ∈ U ⊂ X. We put multP (D) = multP (π∗D) and refer to this quantity
as the multiplicity of D at P .

1.3. Results

Let X be a hypersurface in P = P(a0, a1, a2, a3) of degree d. Then X is given by a quasiho-
mogeneous polynomial equation f(x, y, z, t) = 0 of degree d. The quasihomogeneous equation

f
(
x, y, z, t

)
= 0 ⊂ C4 ∼= Spec

(
C
[
x, y, z, t

])
,

defines an isolated quasihomogeneous singularity (V,O) with the Milnor number
∏n

i=0(
d
ai
− 1),

where O is the origin of C4. It follows from the adjunction formula that

KX ∼Q OP(a0, a1, a2, a3)

(
d−

3∑
i=0

ai

)
,

and it follows from [19], [28, Proposition 8.14], [42] that the following conditions are equivalent:
• the inequality d 6

∑3
i=0 ai − 1 holds;

• the surface X is a del Pezzo surface;
• the singularity (V,O) is rational;
• the singularity (V,O) is canonical.

Blowing up C4 at the origin O with weights (a0, a1, a2, a3), we get a purely log terminal blow
up of the singularity (V,O) (see [30], [39]). The paper [39] shows that the following conditions
are equivalent:

• the surface X is exceptional (weakly exceptional, respectively);
• the singularity (V,O) is exceptional3 (weakly exceptional, respectively).

From now on we suppose that d 6
∑3

i=0 ai − 1. Then X is a del Pezzo surface. Put I =∑3
i=0 ai − d. The set of possible values of (a0, a1, a2, a3, d) can be obtained from [52]. The list

of possible values of (a0, a1, a2, a3, d) with 2I < 3a0 can be found in [4]. If the equality I = 1
holds, then it follows from [27] that

• either the surface X is smooth and(
a0, a1, a2, a3

)
∈
{(

1, 1, 1, 1
)
,
(
1, 1, 1, 2

)
,
(
1, 1, 2, 3

)}
,

• or the surface X is singular and
– either (a0, a1, a2, a3) = (2, 2n+ 1, 2n+ 1, 4n+ 1), where n ∈ Z>0,

3For notions of exceptional and weakly exceptional singularities see [39, Definition 4.1], [46], [25].
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– or the quadruple (a0, a1, a2, a3) lies in the set

(
1, 2, 3, 5

)
,
(
1, 3, 5, 7

)
,
(
1, 3, 5, 8

)
,
(
2, 3, 5, 9

)(
3, 3, 5, 5

)
,
(
3, 5, 7, 11

)
,
(
3, 5, 7, 14

)
,
(
3, 5, 11, 18

)(
5, 14, 17, 21

)
,
(
5, 19, 27, 31

)
,
(
5, 19, 27, 50

)
,
(
7, 11, 27, 37

)(
7, 11, 27, 44

)
,
(
9, 15, 17, 20

)
,
(
9, 15, 23, 23

)
,
(
11, 29, 39, 49

)(
11, 49, 69, 128

)
,
(
13, 23, 35, 57

)
,
(
13, 35, 81, 128

)


.

The global log canonical thresholds of such del Pezzo surfaces have been considered either
implicitly or explicitly in [1], [3], [11], [17], [27]. For example, the papers [1], [3], [17] and [27]
gives us lower bounds for global log canonical thresholds of singular del Pezzo surfaces with
I = 1.

Theorem 1.3.1. Suppose that I = 1 and X is singular. Then

lct
(
X
)

>



1 if
(
a0, a1, a2, a3

)
=
(
2, 2n+ 1, 2n+ 1, 4n+ 1

)
, where n > 2,

33
38

if
(
a0, a1, a2, a3

)
=
(
2, 3, 3, 5

)
,

7
10

if
(
a0, a1, a2, a3

)
=
(
1, 2, 3, 5

)
,

1 if
(
a0, a1, a2, a3

)
=
(
1, 3, 5, 7

)
and X is general,

11
16

if
(
a0, a1, a2, a3

)
=
(
1, 3, 5, 8

)
and X is general,

1 if
(
a0, a1, a2, a3

)
=
(
2, 3, 5, 9

)
,

1 if
(
a0, a1, a2, a3

)
=
(
3, 3, 5, 5

)
,

21
25

if
(
a0, a1, a2, a3

)
=
(
3, 5, 7, 11

)
,

3
4

if
(
a0, a1, a2, a3

)
=
(
3, 5, 7, 14

)
,

11
12

if
(
a0, a1, a2, a3

)
=
(
3, 5, 11, 18

)
,

5
4

if
(
a0, a1, a2, a3

)
=
(
5, 14, 17, 21

)
,

5
3

if
(
a0, a1, a2, a3

)
=
(
5, 19, 27, 31

)
,

27
20

if
(
a0, a1, a2, a3

)
=
(
5, 19, 27, 50

)
,

7
3

if
(
a0, a1, a2, a3

)
=
(
7, 11, 27, 37

)
,

189
88

if
(
a0, a1, a2, a3

)
=
(
7, 11, 27, 44

)
,

51
20

if
(
a0, a1, a2, a3

)
=
(
9, 15, 17, 20

)
,

3 if
(
a0, a1, a2, a3

)
=
(
9, 15, 23, 23

)
,

429
127

if
(
a0, a1, a2, a3

)
=
(
11, 29, 39, 49

)
,

759
256

if
(
a0, a1, a2, a3

)
=
(
11, 49, 69, 128

)
,

455
127

if
(
a0, a1, a2, a3

)
=
(
13, 23, 35, 57

)
,

1053
256

if
(
a0, a1, a2, a3

)
=
(
13, 35, 81, 128

)
.

Meanwhile, the paper [11] deals with the exact values log the global log canonical thresholds
of smooth del Pezzo surfaces with I = 1.

7



Theorem 1.3.2. Suppose that I = 1 and X is smooth. Then

lct
(
X
)

=



1 if
(
a0, a1, a2, a3

)
=
(
1, 1, 2, 3

)
and | −KX | contains no cuspidal curves,

5
6

if
(
a0, a1, a2, a3

)
=
(
1, 1, 2, 3

)
and | −KX | contains a cuspidal curve,

5
6

if
(
a0, a1, a2, a3

)
=
(
1, 1, 1, 2

)
and | −KX | contains no tacnodal curves,

3
4

if
(
a0, a1, a2, a3

)
=
(
1, 1, 1, 2

)
and | −KX | contains a tacnodal curve,

3
4

if X is a cubic in P3 with no Eckardt points,

2
3

if either X is a cubic in P3 with an Eckardt point.

A singular del Pezzo hypersurface X must satisfy exclusively one of the following properties:

(1) 2I > 3a0 ;
(2) 2I < 3a0 and

(
a0, a1, a2, a3, d

)
=
(
I − k, I + k, a, a+ k, 2a+ k + I

)
for some Z>0 3 a > I + k and I > k ∈ Z>0;

(3) 2I < 3a0 but

(
a0, a1, a2, a3, d

)
6=
(
I − k, I + k, a, a+ k, 2a+ k + I

)
for any Z>0 3 a > I + k and I > k ∈ Z>0.

For the first two cases it is easy to see lct(X, I
a0
Cx) ≤ 2

3 and hence lct(X) ≤ 2
3 (for instance,

see [4]). All the values of (a0, a1, a2, a3, d) whose hypersurface X satisfies the last condition are
listed in Table 4 (see [4]).

We already know the global log canonical thresholds of smooth del Pezzo surfaces. For del
Pezzo surfaces corresponding to the first two conditions, their global log canonical thresholds are
relatively too small to enjoy the condition of Theorem 1.1.14. However, the global log canonical
thresholds of del Pezzo surfaces corresponding to the last condition have not been investigated
sufficiently. In the present paper we compute all of them and then we obtain the following result.

Theorem 1.3.3. Let X be a del Pezzo surface that appears in Table 4. Then

lct(X) = min
{

lct
(
X,

I

a0
Cx

)
, lct

(
X,

I

a1
Cy

)
, lct

(
X,

I

a2
Cz

)}
.

In particular, we obtain the value of lct(X) for every quintuple (a0, a1, a2, a3, d) listed in
Table 4. As a result, we obtain the following corollaries.

Corollary 1.3.4. Suppose that I = 1. Then X is exceptional if and only if K2
X 6 1

15 .

Corollary 1.3.5. The following assertions are equivalent:

• the surface X is exceptional;
• lct(X) > 1 ;

8



• the quintuple (a0, a1, a2, a3, d) lies in the set

(2, 3, 5, 9, 18), (3, 3, 5, 5, 15), (3, 5, 7, 11, 25), (3, 5, 7, 14, 28)

(3, 5, 11, 18, 36), (5, 14, 17, 21, 56), (5, 19, 27, 31, 81), (5, 19, 27, 50, 100)

(7, 11, 27, 37, 81), (7, 11, 27, 44, 88), (9, 15, 17, 20, 20), (9, 15, 23, 23, 69)

(11, 29, 39, 49, 127), (11, 49, 69, 128, 256), (13, 23, 35, 57, 127)

(13, 35, 81, 128, 256), (3, 4, 5, 10, 20), (3, 4, 10, 15, 30), (5, 13, 19, 22, 57)

(5, 13, 19, 35, 70), (6, 9, 10, 13, 36), (7, 8, 19, 25, 57), (7, 8, 19, 32, 64)

(9, 12, 13, 16, 48), (9, 12, 19, 19, 57), (9, 19, 24, 31, 81), (10, 19, 35, 43, 105)

(11, 21, 28, 47, 105), (11, 25, 32, 41, 107), (11, 25, 34, 43, 111), (11, 43, 61, 113, 226)

(13, 18, 45, 61, 135), (13, 20, 29, 47, 107), (13, 20, 31, 49, 111), (13, 31, 71, 113, 226)

(14, 17, 29, 41, 99), (5, 7, 11, 13, 33), (5, 7, 11, 20, 40), (11, 21, 29, 37, 95)

(11, 37, 53, 98, 196), (13, 17, 27, 41, 95), (13, 27, 61, 98, 196), 15, 19, 43, 74, 148)

(9, 11, 12, 17, 45), (10, 13, 25, 31, 75), (11, 17, 20, 27, 71), (11, 17, 24, 31, 79)

(13, 14, 19, 29, 71), (13, 14, 23, 33, 79), (13, 23, 51, 83, 166), (11, 13, 19, 25, 63)

(11, 31, 45, 83, 83), (11, 25, 37, 68, 136), (13, 19, 41, 68, 136)

(11, 19, 29, 53, 106), (13, 15, 31, 53, 106), (11, 13, 21, 38, 76)



.

Corollary 1.3.6. The following assertions are equivalent:
• the surface X is weakly exceptional and not exceptional;
• lct(X) = 1;
• one of the following holds

– the quintuple (a0, a1, a2, a3, d) lies in the set

(2, 2n+ 1, 2n+ 1, 4n+ 1, 8n+ 4), (4, 2n+ 3, 2n+ 3, 4n+ 4, 8n+ 12)

(3, 3n+ 1, 6n+ 1, 9n+ 3, 18n+ 6), (3, 3n+ 1, 6n+ 1, 9n, 18n+ 3)

(3, 3n, 3n+ 1, 3n+ 1, 9n+ 3), (3, 3n+ 1, 3n+ 2, 3n+ 2, 9n+ 6)

(4, 2n+ 1, 4n+ 2, 6n+ 1, 12n+ 6), (6, 6n+ 3, 6n+ 5, 6n+ 5, 18n+ 15)

(6, 6n+ 5, 12n+ 8, 18n+ 9, 36n+ 24)

(6, 6n+ 5, 12n+ 8, 18n+ 15, 36n+ 30)

(8, 4n+ 5, 4n+ 7, 4n+ 9, 12n+ 23)

(9, 3n+ 8, 3n+ 11, 6n+ 13, 12n+ 35)

(1, 3, 5, 8, 16), (2, 3, 4, 7, 14), (3, 7, 8, 13, 29)

(3, 10, 11, 19, 41), (5, 6, 8, 9, 24), (5, 6, 8, 15, 30)



,

where n ∈ Z>0,
– (a0, a1, a2, a3, d) = (1, 2, 3, 5, 10) and Cx has an ordinary double point,
– (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the defining equation of X contains yzt,
– (a0, a1, a2, a3, d) = (2, 3, 4, 5, 12) and the defining equation of X contains yzt.

Corollary 1.3.7. The del Pezzo surface X has an orbifold Kähler-Einstein metric unless one
of the following holds

• the quintuple (a0, a1, a2, a3, d) lies in the set{
(7, 10, 15, 19, 45), (7, 18, 27, 37, 81), (7, 15, 19, 32, 64)

(7, 19, 25, 41, 82), (7, 26, 39, 55, 117)

}
,

• (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the defining equation of X does not contain yzt,
• (a0, a1, a2, a3, d) = (2, 3, 4, 5, 12) and the defining equation of X does not contain yzt.

Theorem 1.3.3 shows that Conjecture 1.1.11 holds for del Pezzo surfaces described in Table 4.
9



1.4. Preliminaries

Let Y be a variety with log terminal singularities. Let us consider an effective Q-Cartier
Q-divisor

BY =
r∑

i=1

aiBi

on Y , where Bi is a prime Weil divisor. Let π : Ȳ → Y be a birational morphism of a smooth
variety Ȳ . Put

BȲ =
r∑

i=1

aiB̄i,

where B̄i is the proper transform of the divisor Bi on the variety Ȳ . Then

KȲ +BȲ = π∗
(
KY +BY

)
+

n∑
i=1

ciEi,

where ci ∈ Q and Ei is an exceptional divisor of the morphism π. Suppose that the divisor
r∑

i=1

B̄i +
n∑

i=1

Ei

is simple normal crossing and put

BȲ = BȲ −
n∑

i=1

ciEi.

The singularities of (Y,BY ) are log canonical (resp. log terminal) if ai 6 1 (resp. ai < 1) and
cj > −1 (resp. cj > −1) for every i = 1, . . . , r and j = 1, . . . , n. The locus of log canonical
singularities of the pair (Y,BY ), denoted by LCS(Y,BY ), is defined by the set

LCS
(
Y,BY

)
=

⋃
ai>1

Bi

⋃ ⋃
ci6−1

π
(
Ei

) ( Y.

A proper irreducible subvariety Z ( Y is said to be a center of log canonical singularities of the
log pair (Y,BY ) if either Z = Bi with ai > 1 or Z = π(Ei) with ci 6 −1 for some choice of the
birational morphism π : Ȳ → Y . The set of all centers of log canonical singularities of (Y,BY )
is denoted by LCS(Y,BY ). Every member of LCS(Y,BY ) is contained in LCS(Y,BY ). We see
that the set LCS(Y,BY ) is empty, equivalently the set LCS(Y,BY ) is empty, if and only if the
log pair (Y,BY ) is log terminal.

Let H be a base point free linear system on Y and let H be a sufficiently general divisor in
the linear system H. For an irreducible proper subvariety W of Y put

W
∣∣∣
H

=
m∑

i=1

Zi,

where Zi ⊂ H is an irreducible subvariety. It follows that the subvariety W belongs to
LCS(Y, BY ) if and only if the set {Z1, . . . , Zm} is contained in LCS(H, BY

∣∣∣
H

) (cf. Theo-

rem 1.4.5).

Example 1.4.1. Let α : V → Y be the blow up at a smooth point O ∈ Y . Then

BV = α∗
(
BY

)
−multO

(
BY

)
E

where multO(BY ) ∈ Q and E is the exceptional divisor of the blow up α. Then

multO

(
BY

)
> 1

if the log pair (Y,BY ) is not log canonical at the point O. Put

BV = BV +
(
multO

(
BY

)
− dim

(
Y
)

+ 1
)
E,

and suppose that multO(BY ) > dim(Y )− 1. Then O ∈ LCS(Y,BY ) if and only if
10



• either E ∈ LCS(V,BV ) (equivalently, multO(BY ) > dim(Y ))
• or there is a subvariety Z ( E such that Z ∈ LCS(V,BV ).

The locus LCS(Y,BY ) ⊂ Y can be equipped with a scheme structure (see [37], [45]). The
ideal sheaf defined by

I
(
Y,BY

)
= π∗OȲ

( n∑
i=1

dcieEi −
r∑

i=1

baicB̄i

)
,

is called the multiplier ideal sheaf of (Y,BY ). The subscheme L(Y,BY ) corresponding to the
multiplier ideal sheaf I(Y,BY ) is called the subscheme of log canonical singularities of (Y,BY ).
It follows from the construction of the subscheme L(Y,BY ) that

Supp
(
L
(
Y,BY

))
= LCS

(
Y,BY

)
⊂ Y.

The following result is called the Nadel–Shokurov vanishing theorem (see [37], [45]).

Theorem 1.4.2. Let H be a nef and big Q-divisor on Y such that

KY +BY +H ≡ D

for some Cartier divisor D on the variety Y . Then for every i > 1

H i
(
Y, I

(
Y,BY

)
⊗OY (D)

)
= 0.

Proof. It follows from the Kawamata–Viehweg vanishing theorem (see [28]) that

Riπ∗

(
π∗OY

(
KY +BY +H

)
⊗OȲ

( n∑
i=1

dcieEi −
r∑

i=1

baicB̄i

))
= 0

for every i > 0. It follows from the equality of sheaves

π∗

(
π∗OY

(
KY +BY +H

)
⊗OȲ

( n∑
i=1

dcieEi −
r∑

i=1

baicB̄i

))
= I

(
Y,BY

)
⊗OY

(
D
)

and from the degeneration of a local-to-global spectral sequence that

H i
(
Y, I

(
Y,BY

)
⊗OY (D)

)
= H i

(
Ȳ , π∗OY

(
KYBY +H

)
⊗OȲ

( n∑
i=1

dcieEi −
r∑

i=1

baicB̄i

))
,

for every i > 0. But for i > 0, the cohomology group

H i
(
Ȳ , π∗OY

(
KYBY +H

)
⊗OȲ

( n∑
i=1

dcieEi −
r∑

i=1

baicB̄i

))
,

is trivial by the Kawamata–Viehweg vanishing theorem (see [28]). �

For every Cartier divisor D on the variety Y , let us consider the exact sequence of sheaves

0 −→ I
(
Y,BY

)
⊗OY

(
D
)
−→ OY

(
D
)
−→ OL(Y, BY )

(
D
)
−→ 0.

We have the corresponding exact sequence of cohomology groups

H0
(
Y,OY

(
D
))
−→ H0

(
L(Y, BY ),OL(Y, BY )

(
D
))
−→ H1

(
Y, I

(
Y,BY

)
⊗OY

(
D
))
.

Theorem 1.4.3. Suppose that −(KY +BY ) is nef and big. Then LCS(Y,BY ) is connected.

Proof. Put D = 0. Then it follows from Theorem 1.4.2 that the sequence

C = H0
(
Y,OY

)
−→ H0

(
L(Y, BY ),OL(Y, BY )

)
−→ H1

(
Y, I

(
Y,BY

))
= 0

is exact. Thus, the locus
LCS

(
Y, BY

)
= Supp

(
L
(
Y, BY

))
is connected. �

One can generalize Theorem 1.4.3 in the following way (see [45, Lemma 5.7]).
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Theorem 1.4.4. Let ψ : Y → Z be a morphism. Then the set

LCS
(
Ȳ , BȲ

)
is connected in a neighborhood of every fiber of the morphism ψ ◦ π : Ȳ → Z in the case when

• the morphism ψ is surjective and has connected fibers,
• the divisor −(KY +BY ) is nef and big with respect to ψ.

Let us consider one important application of Theorem 1.4.4.

Theorem 1.4.5. Suppose that B1 is a Cartier divisor, a1 = 1, and B1 has at most log terminal
singularities. Then the following assertions are equivalent:

• the log pair (Y,BY ) is log canonical in a neighborhood of the divisor B1;
• the singularities of the log pair (B1,

∑r
i=2 aiBi|B1) are log canonical.

Proof. Suppose that the singularities of the log pair (Y,BY ) are not log canonical in a neigh-
borhood of the divisor B1 ⊂ Y . Let us show that (B1,

∑r
i=2 aiBi|B1) is not log canonical.

In the case when am > 1 and Bm ∩B1 6= ∅ for some m > 2, the log pair(
B1,

r∑
i=2

aiBi

∣∣∣
B1

)
is not log canonical. Thus, we may assume that ai 6 1 for every i. Then(

Y, B1 +
r∑

i=2

λaiBi

)
is not log canonical as well for some rational number λ < 1. Then

KȲ + B̄1 +
r∑

i=2

λaiB̄i = π∗
(
KY +B1 +

r∑
i=2

λaiBi

)
+

n∑
i=1

diEi

for some rational numbers d1, . . . , dn. It follows from Theorem 1.4.4 that

B̄1 ∩ Ek 6= ∅
and the inequality dk 6 −1 holds for some k. But

KB̄1
+

r∑
i=2

λaiB̄i

∣∣∣
B1

= φ∗
(
KB1 +

r∑
i=2

λaiBi

∣∣∣
B1

)
+

n∑
i=1

diEi

∣∣∣
B1

,

where φ : B̄1 → B1 is a birational morphism that is induced by π.
Thus, the log pair (B1,

∑r
i=2 λaiBi|B1) is not log terminal. Then the log pair(

B1,

r∑
i=2

aiBi

∣∣∣
B1

)
is not log canonical. The rest of the proof is similar (see the proof of [28, Theorem 7.5]). �

The simplest application of Theorem 1.4.5 is a non-obvious result.

Lemma 1.4.6. Suppose that dim(Y ) = 2 and a1 6 1. Then( r∑
i=2

aiBi

)
·B1 > 1

whenever (Y,BY ) is not log canonical at a point O ∈ B1 such that O 6∈ Sing(Y ) ∪ Sing(B1).

Proof. Suppose that (Y,BY ) is not log canonical at a point O ∈ B1. By Theorem 1.4.5, the pair
(B1,

∑r
i=2 aiBi|B1) is not log canonical at the point O. Therefore,( r∑

i=2

aiBi

)
·B1 > multO

( r∑
i=2

aiBi

∣∣∣
B1

)
> 1

if O 6∈ Sing(Y ) ∪ Sing(B1). �
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Let P be a point in Y . Let us consider an effective divisor

∆ =
r∑

i=1

εiBi ∼Q BY ,

where εi is a non-negative rational number. Suppose that
• the divisor ∆ is a Q-Cartier divisor,
• the log pair (Y,∆) is log canonical at the point P ∈ X.

Remark 1.4.7. Suppose that (Y,BY ) is not log canonical in the point P ∈ Y . Put

α = min
{
ai

εi

∣∣∣ εi 6= 0
}
,

where α is well defined, because there is εi 6= 0. Then α < 1, the log pair(
Y,

r∑
i=1

ai − αεi
1− α

Bi

)
is not log canonical in the point P ∈ Y , the equivalence

r∑
i=1

ai − αεi
1− α

Bi ∼Q BX ∼Q ∆

holds, and at least one irreducible component of the divisor Supp(∆) is not contained in

Supp

(
r∑

i=1

ai − αεi
1− α

Bi

)
.

Suppose that X is a hypersurface in P(a0, a1, a2, a3) of degree d.

Lemma 1.4.8. Let C be a reduced and irreducible curve on X and D be an ample effective
Q-divisor on X. Suppose that for a given positive rational number λ we have λmultCD 6 1. If
λ(C ·D − (multCD)C2) 6 1, then the pair (X,λD) is log canonical at each smooth point P of
C not in Sing(X). Furthermore, if the point P of C is a singular point of X of type 1

r (a, b) and
rλ(C ·D − (multCD)C2) 6 1, then the pair (X,λD) is log canonical at P .

Proof. We may write D = mC + Ω, where Ω is an effective divisor whose support does not
contain the curve C. Suppose that the pair (X,λD) is not log canonical at a smooth point P
of C not in Sing(X). Since λm 6 1, the pair (X,C + λΩ) is not log canonical at the point P .
Then by Lemma 1.4.6 we obtain an absurd inequality

1 < λΩ · C = λC · (D −mC) 6 1.

Also, if the point P is a singular point of X, then we have
1
r
< λΩ · C = λC · (D −mC) 6

1
r
.

This proves the second statement. �

Let D be an effective Q-divisor on X such that

D ∼Q OP(a0, a1, a2, a3)

(
1
)
.

Lemma 1.4.9. Let l be a positive integer such that the linear system∣∣∣OP(a0, a1, a2, a3)

(
l
)∣∣∣

contains effective divisors that are given by the vanishing of
• at least two different monomials of the form xαyβ,
• at least two different monomials of the form xγzδ,
• at least two different monomials of the form xµtν ,

where α, β, γ, δ, µ, ν are non-negative integers. Let P be a point in X \ (Sing(X) ∪ Cx). Then

multP

(
D
)

6
ld

a0a1a2a3
.

13



Proof. The required assertion follows from [1, Lemma 3.3]. �

Let ψ : X 99K P(a0, a1, a2) be a projection.

Lemma 1.4.10. Let l be a positive integer such that the linear system∣∣∣OP(a0, a1, a2, a3)

(
l
)∣∣∣

contains effective divisors that are given by the vanishing of

• at least two different monomials of the form xαyβ,
• at least two different monomials of the form xγzδ,

where α, β, γ, δ are non-negative integers. Let P be a point in X \ (Sing(X) ∪ Cx). Then

multP

(
D
)

6
ld

a0a1a2a3

in the case when P is not contained in any curve that is contracted by ψ.

Proof. Arguing as in the proof of [1, Corollary 3.4], we obtain the required assertion. �

The following result is [4, Corollary 5.3] (cf. [27, Proposition 11]).

Lemma 1.4.11. Suppose that X is given by a quasihomogeneous equation

f
(
x, y, z, t

)
= 0 ⊂ P

(
a0, a1, a2, a3

) ∼= Proj
(
C
[
x, y, z, t

])
,

where wt(x) = a0,wt(y) = a1,wt(z) = a2,wt(t) = a3. Then

lct
(
X
)

>



a0a1

dI
,

a0a2

dI
if f(0, 0, z, t) 6= 0,

a0a3

dI
if f(0, 0, 0, t) 6= 0,

Lemma 1.4.12. Suppose that Cx is irreducible and reduced, and Cx 6⊂ Supp(D). Then

lct
(
X,D

)
>


a1a2

d
,

a1a3

d
if f(0, 0, 0, t) 6= 0.

Proof. Arguing as in the proof of [27, Proposition 11], we obtain the required assertion. �

Thus, using Remark 1.4.7, we obtain the following result.

Corollary 1.4.13. Suppose that Cx is irreducible and reduced, and d <
∑3

i=0 ai. Then

lct
(
X
)

>


min

(
a1a2

dI
, lct

(
X,

I

a0
Cx

))
,

min
(
a1a3

dI
, lct

(
X,

I

a0
Cx

))
if f(0, 0, 0, t) 6= 0,

where I =
∑3

i=0 ai − d.

Part 2. Infinite series

2.1. Infinite series with I = 1

Lemma 2.1.1. Suppose that (a0, a1, a2, a3, d) = (2, 2n+ 1, 2n+ 1, 4n+ 1, 8n+ 4) for n ∈ Z>0.
Then lct(X) = 1.
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Proof. The surface X is singular at the point Ot, which is a singular point of type 1
4n+1(1, 1) on

the surface X. But X has also 4 singular points O1, O2, O3, O4, which are cut out on X by the
equations x = t = 0. Then Oi is a singular point of type 1

2n+1(1, 2n) on the surface X.
The curve Cx is reducible. Namely, we have

Cx = L1 + L2 + L3 + L4,

where Li is an irreducible reduced smooth rational curves such that

−KX · Li =
1

(2n+ 1)(4n+ 1)
,

and L1 ∩ L2 ∩ L3 ∩ L4 = Ot. Then Li · Lj = 1/(4n + 1) for i 6= j. The subadjunction formula
implies that

Li · Li =
1

(2n+ 1)(4n+ 1)
− 1

2n+ 1
− 1

4n+ 1
= − 6n+ 1

(2n+ 1)(4n+ 1)
.

Note that lct(X,Cx) = 1/2, which implies that lct(X) 6 1. Suppose that lct(X) < 1. Then
there is a Q-effective divisor D ≡ −KX such that the log pair (X,D) is not log canonical at
some point P ∈ X.

Suppose that P 6∈ Cx. Then P is a smooth point of the surface X. Then

1 < multP

(
D
)

6
(4n+ 2)(8n+ 4)

2(2n+ 2)2(4n+ 1)
=

4
4n+ 1

< 1

by Lemma 1.4.10. We see that P ∈ Cx. It follows from Remark 1.4.7 that we may assume that
Li 6⊂ Supp(D) for some i = 1, . . . , 4.

Suppose that P = Ot. Then

1
(2n+ 1)(4n+ 1)

= −KX · Li = D · Li >
multOt

(
D
)

4n+ 1
>

1
4n+ 1

,

which is a contradiction. Thus, we see that P 6= Ot. Then either P = O1, or P ∈ X \ Sing(X).
Without loss of generality, we may assume that P ∈ L1. Put D = mL1 + Ω, where Ω is an

effective Q-divisor such that L1 6⊂ Supp(Ω). If m 6= 0, then

1
(2n+ 1)(4n+ 1)

= −KX · Li = D · Li =
(
mL1 + Ω

)
· Li > mL1 · Li =

m

4n+ 1
,

which implies that m 6 1/(2k + 1). Then it follows from Lemma 1.4.6 that

1 +m(6n+ 1)
(2n+ 1)(4n+ 1)

=
(
−KX −mL1

)
· L1 = Ω · L1 >


1 if P 6= O1,

1
2n+ 1

if P = O1,

which implies, in particular, that m > 4n/(6n+1). But we already proved that m 6 1/(2k+1).
The obtained contradiction completes the proof. �

2.2. Infinite series with I = 2

Lemma 2.2.1. Suppose that (a0, a1, a2, a3, d) = (4, 2n + 3, 2n + 3, 4n + 4, 8n + 12) for n > 1.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point Ot of index 4n + 4, two singular points
Oi

xt, i = 1, 2, of index 4 on the stratum y = z = 0, and four singular points Oi
yz, i = 1, . . . , 4, of

index 2n+ 3 on the stratum x = t = 0.
The curve Cx is reduced and splits into four irreducible components L1, . . . , L4 (Li passing

through Oi
yz) that intersect at Ot. One can easily see that lct(X,Cx) = 1/2, which implies

lct(X) 6 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X.
15



Suppose that P = Ot. By Remark 1.4.7 we may assume that one of the curves Li (say, L1)
is not contained in Supp (D). One has

1
(2n+ 2)(2n+ 3)

= L1 ·D >
multP (L1)multP (D)

4n+ 4
>

1
4n+ 4

>
1

(2n+ 2)(2n+ 3)
for all n > 1, which is a contradiction.

Suppose that P = O1
xt. By a coordinate change we may assume that P = Ox. The curve Ct

is reduced and splits into four irreducible components L′
1, . . . , L

′
4 (L′

i passing through Oi
yz) that

intersect at Ox. One can easily see that the log pair (X, 1
2 ·

4
4n+4Ct) is log canonical at least for

n > 1 since multP (Ct) = 4. By Remark 1.4.7 we may assume that one of the curves L′
i (say,

L′
1) is not contained in Supp (D). One has

1
2(2n+ 3)

= L′
1 ·D >

multP (L′
1)multP (D)
4

>
1
4
>

1
2(2n+ 3)

for all n > 1, which is a contradiction. The point O1
xt is excluded in a similar way.

Suppose that P = O1
yz. Put D = µL1 + Ω, where Ω is an effective divisor such that L1 6⊂

Supp (Ω). We claim that

µ 6
1

2n+ 3
.

Indeed, if the inequality fails, by Remark 1.4.7 we may assume that one of the curves L2, L3

and L4 (say, L2) is not contained in Supp (D). Then
µ

4n+ 4
= µL1 · L2 6 D · L2 =

1
2(n+ 1)(2n+ 3)

,

which is a contradiction. Note that

L2
1 = − 6n+ 5

4(n+ 1)(2n+ 3)
.

By Lemma 1.4.6 one has
1

2n+ 3
< Ω · L1 =

2 + (6n+ 5)µ
4(n+ 1)(2n+ 3)

<
1

2n+ 3

for all n > 1, which is a contradiction. The points Oi
zt, i = 2, 3, 4, are excluded in a similar way.

So are the smooth points on Cx, which are excluded by this argument for n = 1 as well.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10 (which is possible since the

projection of X from Ot has finite fibers outside Cx), we see that

1 < multP (D) 6
2 · 4(n+ 1)(8n+ 12)

2(2n+ 3)(2n+ 3) · 4(n+ 1)
< 1

for n > 1, because H0(P,OP(8n + 12)) contains x2n+3, y4 and z4. The obtained contradiction
completes the proof. �

Lemma 2.2.2. Suppose that (a0, a1, a2, a3, d) = (3, 4, 7, 12, 24). Then lct(X) = 1.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y3t+ xz3 + x4t+ ε1y
6 + ε2x

2yz2 + ε3x
3y2z + ε4x

4y3 + ε5x
8 = 0,

where εi ∈ C. The surface X is singular at the point Oz. It is also singular at two points P1

and P2 that are cut out on X by the equations y = z = 0. It is also singular at two points Q1

and Q2 that are cut out on X by the equations x = z = 0.
The curve Cx is reducible. We have Cx = L1 + L2, where L1 and L2 are irreducible and

reduced curves such that Q1 ∈ L1 and Q2 ∈ L2. We have

L1 · L1 = L2 · L2 =
−9
28
, L1 · L2 =

3
7
,

and L1 ∩ L2 = Oz. The curve Cy is irreducible and

1 = lct
(
X,

2
3
Cy

)
< lct

(
X,

2
4
Cy

)
= 2,
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which implies, in particular, that lct(X) 6 1.
Suppose that lct(X) < 1. Then there is a Q-effective divisor D ≡ −KX such that the pair

(X,D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curve Cy. Similarly, without loss of generality we may
assume that L2 6⊆ Supp(D).

Since H0(P,OP(21)) contains x7, x3y3 and z3, it follows from Lemma 1.4.10 that P ∈
Sing(X) ∪ Cx.

Suppose that P = P1. Then

4
21

= D · Cy >
multP (D)

4
>

1
4
,

which is a contradiction. We see that P 6= P1. Similarly, we see that P 6= P2. Then P ∈ Cx.
Suppose that P ∈ L2. Then

1
14

= D · L2 >


1 if P 6= Oz and P 6= Q2,

1
7

if P = Oz,

1
4

if P = Q2,

which is a contradiction. The obtained contradiction shows that P 6∈ L2.
We see that P 6= Oz and P ∈ L1. Put D = mL1 + Ω, where Ω is an effective Q-divisor such

that L1 6⊂ Supp(Ω). Then

1
14

= D · L2 =
(
mL1 + Ω

)
· L2 > mL1 · L2 =

3m
7
,

which implies that m 6 1/6. Then it follows from Lemma 1.4.6 that

2 + 9m
28

=
(
−KX −mL1

)
· L1 = Ω · L1 >


1 if P 6= Q1,

1
4

if P = Q1,

which implies that m > 5/9. But we already proved that m 6 1/6. The obtained contradiction
completes the proof. �

Lemma 2.2.3. Suppose that (a0, a1, a2, a3, d) = (3, 3n + 1, 6n + 1, 9n + 3, 18n + 6) for n > 2.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point Oz of index 6n+ 1, two singular points
Oi

xt, i = 1, 2, of index 3 on the stratum y = z = 0, and two singular points Oi
yt, i = 1, 2, of index

3n+ 1 on the stratum x = z = 0.
The curve Cx is reduced and splits into two components L1 and L2 that intersect at Oz. It is

easy to see that lct(X,Cx) = 2/3, which implies lct(X) 6 1.
The curve Cy is reduced and splits into two components L′

1 and L′
2 that intersect at Oz. It is

easy to see that the log pair (X, 2
3 ·

3
3n+1Cy) is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

Note that

L1 · L2 = (L1 · L2)Oz =
3

6n+ 1
and L2

i =
3− 9n

(3n+ 1)(6n+ 1)
.

Suppose that P = Oz. Put D = µL1 + Ω, where L1 6⊂ Supp (Ω). If µ > 0, then by
Remark 1.4.7 one can assume that L2 6⊂ Supp (D), and hence

2
(3n+ 1)(6n+ 1)

= D · L2 >
3µ

(3n+ 1)(6n+ 1)
,

so that

µ 6
2

3(3n+ 1)
.
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Since (X,D) is not log canonical at Oz, by Theorem 1.4.5 one has

1
6n+ 1

6 Ω · L1 =
2 + µ(9n− 3)

(3n+ 1)(6n+ 1)
<

4
(3n+ 1)(6n+ 1)

which is impossible for all n > 1. The points P = Oi
yt ∈ Li and the smooth points P ∈ Cx are

excluded in a similar way.
Suppose that P = O1

xt ∈ L′
1. Note that

L′
1 · L′

2 = (L′
1 · L′

2)Oz =
3n+ 1
6n+ 1

and (L′
i)

2 =
−2(3n+ 1)
3(6n+ 1)

.

Put D = µL′
1 + Ω, where L′

1 6⊂ Supp (Ω). If µ > 0, then by Remark 1.4.7 one can assume that
L′

2 6⊂ Supp (D), and hence

µ 6
2

3(3n+ 1)
.

Since (X,D) is not log canonical at Oz, by Theorem 1.4.5 one has

1
3n+ 1

6 Ω · L1 =
2 + 2µ(3n+ 1)

3(6n+ 1)
6

10
9(6n+ 1)

which is impossible for all n > 1. The point P = O2
xt ∈ L′

2 is excluded in a similar way.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10 (which is possible since the

projection of X from Ot has finite fibers), we see that

1 < multP (D) 6
2(18n+ 6)2

3(3n+ 1)(6n+ 1)(9n+ 3)
< 1

for all n > 2, becauseH0(P,OP(18n+6)) contains x6n+2, y6 and z3x. The obtained contradiction
completes the proof. �

Lemma 2.2.4. Suppose that (a0, a1, a2, a3, d) = (3, 3n+ 1, 6n+ 1, 9n, 18n+ 3) for n > 1. Then
lct(X) = 1.

Proof. The only singularities of X are a singular point Oy of index 3n+ 1, a singular point Ot

of index 9n, and two singular points Oi
xt, i = 1, 2, of index 3 on the stratum y = z = 0.

The curve Cx is reduced and irreducible and has the only singularity (of multiplicity 3) at Ot.
It is easy to see that lct(X,Cx) = 2/3, which implies lct(X) 6 1.

The curve Cy is quasismooth. It is easy to see that the log pair (X, 2
3 ·

3
3n+1Cy) is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X. By Remark 1.4.7 we may assume that
neither Cx nor Cy is contained in Supp (D).

Suppose that P = Ot. One has
2

3n(3n+ 1)
= Cx ·D >

multP (Cx)multP (D)
9n

>
3
9n

>
2

3n(3n+ 1)
,

for all n > 1, which is a contradiction.
Suppose that P = Oy. One has

2
(3n+ 1)

= Cx ·D >
multP (Cx)multP (D)

3n
>

1
3n

>
2

3n(3n+ 1)
for all n > 1, which is a contradiction. The smooth points on Cx are excluded in a similar way.

Suppose that P = O1
xt. One has

2
9n

= Cy ·D >
multP (D)

3n+ 1
>

1
3n+ 1

>
2
9n

for all n > 1, which is a contradiction.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10 (which is possible since the

projection of X from Ot has finite fibers outside of Cx), we see that

1 < multP (D) 6
2(18n+ 3)2

3(3n+ 1)(6n+ 1) · 9n
< 1

18



for all n > 2, because H0(P,OP(18n+ 3)) contains x6n+1, y3x3n and z3.
Thus, we see that P is a smooth point of X \Cx and n = 1. Applying Lemma 1.4.10, we see

that
1 < multP (D) 6

24
3 · 4 · 7 · 9

< 1,

because H0(P,OP(12)) contains x4, y3 and xt. The obtained contradiction completes the proof.
�

Lemma 2.2.5. Suppose that (a0, a1, a2, a3, d) = (3, 3, 4, 4, 12). Then lct(X) = 1.

Proof. The surface X can be defined by the quasihomogeneous equation
4∏

i=1

(αix+ βiy) =
3∏

i=1

(γiz + δit),

where (αi, βi) ∈ P1 3 (γi, δi).
Let Pi be a point in X that is given by z = t = αix+ βiy = 0, where i = 1, . . . , 4. Then Pi is

a singular point of X of type 1
3(1, 1).

Let Qi be a point in X that is given by x = y = γiz + δit = 0, where i = 1, . . . , 3. Then Qi is
a singular point of X of type 1

4(1, 1).
Let Lij be a curve in X that is given by αix + βiy = γjz + δjt = 0, where i = 1, . . . , 4 and

j = 1, . . . , 3. Then
Li1 + Li2 + Li3

3
∼Q

L1j + L2j + L3j + L4j

4
∼Q −

1
2
KX ,

and Li1 ∩ Li2 ∩ Li3 = Pi and L1j ∩ L2j ∩ L3j ∩ L4j = Qj . We have

lct
(
X,

2
3

(
Li1 + Li2 + Li3

))
= lct

(
X,

2
4

(
L1j + L2j + L3j + L4j

))
= 1,

which implies that lct(X) 6 3/2. We have Lij · Lik = 1/3 and Lji · Lki = 1/4 if k 6= j. But
L2

ij = −5/12.
Suppose that lct(X) < 1. Then there is a Q-effective divisor D ≡ −KX such that the pair

(X,D) is not log canonical at some point P . For every i = 1, ldots, 4, we may assume that
the support of the divisor D does not contain at least one curve among Li1, Li2, Li3. For every
j = 1, . . . , 3, we may assume that the support of the divisor D does not contain at least one
curve among L1j , L2j , L3j , L4j .

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

Suppose that P = P1. If L1k 6⊆ Supp (D), then

1
6

= D · L1k >
multP (D)

4
>

1
4
>

1
6
,

which implies that P 6= P1. Similarly, we see that P 6∈ Sing(X).
Suppose that P ∈ L11. Put D = µL11 + Ω, where Ω is an effective divisor such that L11 6⊂

Supp (Ω). If µ > 0, then µ 6 1/2, because either L12 · Ω > 0 or L13 · Ω > 0 in the case when
µ > 0. Thus, by Lemma 1.4.6 one has

1 < Ω · L11 =
2 + 5µ

12
,

which implies that m > 1/2. But we know that µ 6 1/2. Thus, we see that P 6∈ L11. Similarly,
we see that

P 6∈
4⋃

i=1

3⋃
j=1

Lij .

There is a unique curve C ⊂ X such that P ∈ C and C is cut out on X by λx + µy = 0,
where (λ, µ) ∈ P1. Then C is irreducible and quasismooth. Thus, we may assume that C is not
contained in the support of D. Then

1
2

= D · C > multP (D) > 1,
19



which is a contradiction. The obtained contradiction completes the proof. �

Lemma 2.2.6. Suppose that (a0, a1, a2, a3, d) = (3, 3n, 3n+ 1, 3n+ 1, 9n+ 3) for n > 2. Then
lct(X) = 1.

Proof. The only singularities of X are a singular point Oy of index 3n, three singular points
Oi

xy, i = 1, 2, 3, of index 3 on the stratum z = t = 0, and three singular points Oi
zt, i = 1, 2, 3,

of index 3n+ 1 on the stratum x = y = 0.
The curve Cx is reduced and splits into three irreducible components L1, L2 and L3 (Li

passing through Oi
zt) that intersect at Oy. One can easily check that lct(X,Cx) = 2/3, which

implies lct(X) 6 1.
The curve Cy is quasismooth. One can easily see that the log pair (X, 2

3 ·
3
3nCy) is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

Suppose that P = Oy. By Remark 1.4.7 we may assume that one of the curves Li (say, L1)
is not contained in Supp (D). One has

2
3n(3n+ 1)

= L1 ·D >
multP (L1)multP (D)

3n
>

1
3n

>
2

3n(3n+ 1)

for all n > 1, which is a contradiction.
Suppose that P = O1

zt. Put D = µL1 + Ω, where Ω is an effective divisor such that L1 6⊂
Supp (Ω). We claim that

µ 6
2

3n+ 1
.

Indeed, if the inequality fails, by Remark 1.4.7 we may assume that one of the curves L2 and
L3 (say, L2) is not contained in Supp (D). Then

µ

3n
= µL1 · L2 6 D · L2 =

2
3n(3n+ 1)

,

which is a contradiction. Note that

L2
1 = − 6n− 1

3n(3n+ 1)
.

By Lemma 1.4.6 one has

1
3n+ 1

< Ω · L1 =
2 + (6n− 1)µ
3n(3n+ 1)

<
1

3n+ 1

for all n > 2, which is a contradiction. The points O2
zt and O3

zt are excluded in a similar way.
So are the smooth points on Cx, which are excluded by this argument for n = 1 as well.

Suppose that P = O1
xy. By Remark 1.4.7 we may assume that Cy is not contained in Supp (D).

One has
2

3n+ 1
= Cy ·D >

multP (Cy)multP (D)
3

>
1
3
>

2
3n+ 1

for all n > 2, which is a contradiction. The points O2
xy and O3

xy are excluded in a similar way.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10 (which is possible since the

projection of X from Ot has finite fibers), we see that

1 < multP (D) 6
2(9n+ 3) · 12n

3 · 3n(3n+ 1)(3n+ 1)
< 1

for n > 2, because H0(P,OP(12n)) contains x4n, y4 and z3xn−1. The obtained contradiction
completes the proof. �

Lemma 2.2.7. Suppose that (a0, a1, a2, a3, d) = (3, 3n + 1, 3n + 2, 3n + 2, 9n + 6) for n > 1.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point Oy of index 3n + 1, and three singular
points Oi

zt, i = 1, 2, 3, of index 3n+ 2 on the stratum x = y = 0.
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The curve Cx is reduced and reducible. We have Cx = L1+L2+L3, where Li is an irreducible
curve such that Oi

zt ∈ Li. Then L1 ∩ L2 ∩ L3 = Oy. One can easily see that lct(X,Cx) = 2/3,
which implies lct(X) 6 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X. By Remark 1.4.7 we may assume that
L1 is not contained in Supp (D).

Suppose that P ∈ L1. Then

2
(3n+ 1)(3n+ 2)

= L1 ·D >


1 if P 6= O1

zt,

multP (D)
3n+ 2

if P = O1
zt,

>
1

3n+ 2
>

2
(3n+ 1)(3n+ 2)

for all n > 1, which is a contradiction. Thus, we see that P 6∈ L1. In particular, we see that
P 6= Oy.

Suppose that P ∈ L2. Put D = µL2 + Ω, where Ω is an effective divisor such that L2 6⊂
Supp (Ω). Then

µ

3n+ 1
= µL1 · L2 6 D · L1 =

2
(3n+ 1)(3n+ 2)

,

which implies that µ 6 2/(3n+ 2). Note that the inequality

L2
1 = − 6n+ 1

(3n+ 1)(3n+ 2)
holds. Therefore, by Lemma 1.4.6 one has

2 + (6n+ 1)µ
(3n+ 1)(3n+ 2)

= Ω · L2 >


1 if P 6= O2

zt,

1
3n+ 2

if P = O2
zt,

which implies that n = 1 and P = O2
zt, because µ 6 2/(3n+ 2).

Let R2 be a unique curve in the pencil |OP(3n + 2)|X | that passes through the point O2
zt.

Then R2 = L2 + Z2, where Z2 is an irreducible reduced curve that is singular at the point O2
zt.

Moreover, the log pair (X, 2
5(L2 + R2) is log canonical at the point O2

zt. By Remark 1.4.7, we
may assume that R2 6⊆ Supp (D). Then

2
5
<

multP (D)multP (R2)
5

6 D ·R2 =
2
5

which is a contradiction. Thus, we see that P 6∈ L2. Similarly, we see that P 6∈ L3.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10, we see that

1 < multP (D) 6
2(9n+ 6) · 3(3n+ 2)

3(3n+ 1)(3n+ 2)(3n+ 2)
< 1

for n > 2, because because H0(P,OP(3(3n+ 2))) contains x3n+2, y3x and z3. Therefore, we see
that n = 1.

Let RP be a unique curve in the pencil |OP(5)|X | that passes through the point P . The log
pair (X, 2

5RP ) is log terminal at the point P . By Remark 1.4.7, we may assume that Supp (D)
does not contain at least one irreducible component of RP . Note that either RP is irreducible
or Ok

zt ∈ RP for some k = 1, 2, 3.
Suppose that RP is irreducible. Then

1 < multP (D) 6 D ·RP =
1
2
< 1

which is contradiction. Thus, we see that Ok
zt ∈ RP . Then RP = Lk + Z, where Z is an

irreducible curve such that P ∈ Z. We have

Lk · Lk =
−7
20
, Lk · Z =

3
5
, Z · Z =

2
5
.

Put D = mZ + ∆, where ∆ is an effective divisor such that Z 6⊂ Supp (∆). If m > 0, then
3m
5

= mLk · Z 6 D · Lk =
1
10
,
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which implies that µ 6 1/6. Therefore, by Lemma 1.4.6 one has

2− 2m
5

= ∆ · Z > 1

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 2.2.8. Suppose that (a0, a1, a2, a3, d) = (4, 2n+ 1, 4n+ 2, 6n+ 1, 12n+ 6) for n ∈ Z>0.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point Ox of index 4, a singular point Ot of
index 6n+1, a singular point Oxz of index 2 on the stratum y = t = 0, and three singular points
Oi

yz, i = 1, 2, 3, of index 2n+ 1 on the stratum x = t = 0.
The curve Cx is reduced and splits into three irreducible components L1, L2 and L3 (Li

passing through Oi
yz) that intersect at Ot. One can easily see that lct(X,Cx) = 1/2, which

implies lct(X) 6 1.
The curve Cy is quasismooth. One can easily see that the log pair (X, 1

2 ·
4

2n+1Cy) is log
terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

Suppose that P = Ot. By Remark 1.4.7 we may assume that one of the curves Li (say, L1)
is not contained in Supp (D). One has

2
(2n+ 1)(6n+ 1)

= L1 ·D >
multP (L1)multP (D)

6n+ 1
>

1
6n+ 1

>
2

(2n+ 1)(6n+ 1)

for all n > 1, which is a contradiction.
Suppose that P = O1

yz. Put D = µL1 + Ω, where Ω is an effective divisor such that L1 6⊂
Supp (Ω). We claim that

µ 6
1

2n+ 1
.

Indeed, if the inequality fails, by Remark 1.4.7 we may assume that one of the curves L2 and
L3 (say, L2) is not contained in Supp (D). Then

2µ
6n+ 1

= µL1 · L2 6 D · L2 =
2

(2n+ 1)(6n+ 1)
,

which is a contradiction. Note that

L2
1 = − 8n

(2n+ 1)(6n+ 1)
.

By Lemma 1.4.6 one has

1
2n+ 1

< Ω · L1 =
2 + 8nµ

(2n+ 1)(6n+ 1)
<

2
(2n+ 1)2

<
1

2n+ 1

for all n > 1, which is a contradiction. The points O2
yz and O3

yz are excluded in a similar way,
and so are the smooth points on Cx.

Suppose that P = Ox. By Remark 1.4.7 we may assume that Cy is not contained in Supp (D).
One has

3
6n+ 1

= Cy ·D >
multP (Cy)multP (D)

4
>

1
4
>

3
6n+ 1

for all n > 2, which is a contradiction. The point Oxz is excluded in a similar way.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10 (which is possible since the

projection of X from Ot has finite fibers outside Cx), we see that

1 < multP (D) 6
2(12n+ 6) · 12n

2(2n+ 1)(4n+ 2)(6n+ 1)
< 1

for n > 2, because H0(P,OP(12n)) contains x3n, y4xn−1 and z2xn−1. The obtained contradiction
completes the proof. �
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2.3. Infinite series with I = 4

Lemma 2.3.1. Suppose that (a0, a1, a2, a3, d) = (6, 6n+ 3, 6n+ 5, 6n+ 5, 18n+ 15) for n > 1.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point Ox of index 6, a singular point Oy of
index 6n+3, a singular point Oxy of index 3 on the stratum z = t = 0, and three singular points
Oi

zt, i = 1, 2, 3, of index 6n+ 5 on the stratum x = y = 0.
The curve Cx is reduced and splits into three irreducible components L1, L2 and L3 (Li

passing through Oi
zt) that intersect at Oy. One can easily check that lct(X,Cx) = 2/3, which

implies lct(X) 6 1.
The curve Cy is reduced and splits into three irreducible components L′

1, L
′
2 and L′

3 (L′
i

passing through Oi
zt) that intersect at Ox. One can easily see that the log pair (X, 2

3 ·
6

6n+3Cy)
is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X. By Remark 1.4.7 we may assume that
L1 and L′

1 are not contained in Supp (D).
Suppose that P = Ox. Then

4
6(6n+ 5)

= L′
1 ·D >

multP (L′
1)multP (D)
6

>
1
6
>

4
6(6n+ 5)

for all n > 1, which is a contradiction.
Suppose that P = Oxy. Let R be a general curve in the pencil |OP(6n+ 5)|X |. Then

1
3
<

multP (D)
3

6 D ·R =
4(18n+ 15) · (6n+ 5)

6(6n+ 3)(6n+ 5)(6n+ 5)
< 1

for all n > 1, which is a contradiction. Thus, we see that P 6= Oxy.
Suppose that P ∈ L1. Then

4
(6n+ 3)(6n+ 5)

= L1 ·D >


1 if P 6= O1

zt and P 6= Oy,

multP (D)
6n+ 3

if P = Oy,

multP (D)
6n+ 5

if P = O1
zt,

>
1

6n+ 5
>

4
(6n+ 3)(6n+ 5)

for all n > 1, which is a contradiction. Thus, we see that P 6∈ L1. In particular, we see that
P 6= Oy.

Suppose that P ∈ L2. Put D = µL2 + Ω, where Ω is an effective divisor such that L2 6⊂
Supp (Ω). Then

µ

6n+ 3
= µL1 · L2 6 D · L1 =

4
(6n+ 3)(6n+ 5)

,

which implies that µ 6 4/(6n+ 5). Note that the inequality

L2
2 = − 12n+ 4

(6n+ 3)(6n+ 5)

holds. Therefore, by Lemma 1.4.6 one has

4 + (12n+ 4)µ
(6n+ 3)(6n+ 5)

= Ω · L2 >


1 if P 6= O2

zt,

1
6n+ 5

if P = O2
zt,

which implies that n = 1 and P = O2
zt, because µ 6 4/(6n+ 5).

Let R2 be a unique curve in the pencil |OP(6n + 5)|X | that passes through the point O2
zt.

Then R2 = L2 + Z2, where Z2 is an irreducible reduced curve that is singular at the point O2
zt.

Moreover, the log pair (X, 4
11(L2 + R2) is log canonical at the point O2

zt. By Remark 1.4.7, we
may assume that R2 6⊆ Supp (D). Then

2
11

<
multP (D)multP (R2)

11
6 D ·R2 =

2
11
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which is a contradiction. Thus, we see that P 6∈ L2. Similarly, we see that P 6∈ L3.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10, we see that

1 < multP (D) 6
4(18n+ 15) · 6(6n+ 5)

6(6n+ 3)(6n+ 5)(6n+ 5)
< 1

for n > 2, because H0(P,OP(6(6n + 5)) contains x6n+5, y6x2 and z6. Therefore, we see that
n = 1.

Let RP be a unique curve in the pencil |OP(11)|X | that passes through the point P . The log
pair (X, 4

11RP ) is log terminal at the point P . By Remark 1.4.7, we may assume that Supp (D)
does not contain at least one irreducible component of RP . Note that either RP is irreducible
or Ok

zt ∈ RP for some k = 1, 2, 3.
Suppose that RP is irreducible. Then

1 < multP (D) 6 D ·RP =
2
9
< 1

which is contradiction. Thus, we see that Ok
zt ∈ RP . Then RP = Lk + Z, where Z is an

irreducible curve such that P ∈ Z. We have

Lk · Lk =
−16
99

, Lk · Z =
3
11
, Z · Z =

5
22
.

Put D = mZ + ∆, where ∆ is an effective divisor such that Z 6⊂ Supp (∆). If m > 0, then
3m
11

= mLk · Z 6 D · Lk =
4
99
,

which implies that µ 6 4/27. Therefore, by Lemma 1.4.6 one has
4− 5m

22
= ∆ · Z > 1

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 2.3.2. Suppose that (a0, a1, a2, a3, d) = (6, 6n+5, 12n+8, 18n+9, 36n+24) for n ∈ Z>0.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point Oy of index 6n+ 5, a singular point Ot

of index 18n+ 9, and a singular point Oxt of index 3 on the stratum y = z = 0.
The curve Cx is reduced and irreducible and has the only singularity (of multiplicity 3) at Ot.

It is easy to see that lct(X,Cx) = 2/3, which implies lct(X) 6 1.
The curve Cy is quasismooth. It is easy to see that the log pair (X, 2

3 ·
6

6n+5Cy) is log terminal.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X. By Remark 1.4.7 we may assume that
neither Cx nor Cy is contained in Supp (D).

Suppose that P = Ot. One has
4

(6n+ 3)(6n+ 5)
= Cx ·D >

multP (Cx)multP (D)
18n+ 9

>
3

18n+ 9
>

4
(6n+ 3)(6n+ 5)

,

which is a contradiction.
Suppose that P = Oy. One has

4
(6n+ 3)(6n+ 5)

= Cx ·D >
multP (Cx)multP (D)

6n+ 5
>

1
6n+ 5

>
4

(6n+ 3)(6n+ 5)
,

which is a contradiction. The smooth points on Cx are excluded in a similar way.
Suppose that P = Oxt. One has

2
3(6n+ 3)

= Cy ·D >
multP (D)

3
>

1
3
>

2
3(6n+ 3)

,

which is a contradiction.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10 (which is possible since the

projection of X from Ot has finite fibers), we see that

1 < multP (D) 6
4(36n+ 24)(36n+ 30)

6(6n+ 5)(12n+ 8)(18n+ 9)
< 1,
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because H0(P,OP(36n+30)) contains x6n+5, y6 and z3x. The obtained contradiction completes
the proof. �

Lemma 2.3.3. Suppose that (a0, a1, a2, a3, d) = (6, 6n + 5, 12n + 8, 18n + 15, 36n + 30) for
n ∈ Z>0. Then lct(X) = 1.

Proof. The only singularities of X are a singular point Oz of index 12n+8, a singular point Oxz

of index 2 on the stratum y = t = 0, a singular point Oxt of index 3 on the stratum y = z = 0,
and two singular points Oi

yt, i = 1, 2, of index 6n+ 5 on the stratum x = z = 0.
The curve Cx is reduced and splits into two irreducible components L1 and L2 (Li passing

through Oi
yt) that are tangent to order 2 at (the preimage of) the point Oz. One can easily

check that lct(X,Cx) = 2/3, which implies lct(X) 6 1.
The curve Cy is quasismooth. It is easy to see that the log pair (X, 2

3 ·
6

6n+5Cy) is log terminal.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X.
Suppose that P = Oz. By Remark 1.4.7 we may assume that one of the curves L1 and L2

(say, L1) is not contained in Supp (D). One has

1
(3n+ 2)(6n+ 5)

= L1 ·D >
multP (L1)multP (D)

12n+ 8
>

1
12n+ 8

>
1

(3n+ 2)(6n+ 5)
,

which is a contradiction.
Suppose that P = Oxt. By Remark 1.4.7 we may assume that Cy is not contained in Supp (D).

One has
1

3(3n+ 2)
= Cy ·D >

multP (D)
3

>
1
3

1
3(3n+ 2)

,

which is a contradiction. The point Oxz is excluded in a similar way.
Suppose that P = O1

yt. Put D = µL1 + Ω, where Ω is an effective divisor such that L1 6⊂
Supp (Ω). We claim that

µ 6
4

3(6n+ 5)
.

Indeed, if the inequality fails, by Remark 1.4.7 we may assume that L2 is not contained in
Supp (D). Then

3µ
12n+ 8

= µL1 · L2 6 D · L2 =
1

(3n+ 2)(6n+ 5)
,

which is a contradiction. Note that

L2
1 = − 18n+ 9

(12n+ 8)(6n+ 5)
.

By Lemma 1.4.6 one has

1
6n+ 5

< Ω · L1 =
4 + (18n+ 9)µ

(12n+ 8)(6n+ 5)
<

1
6n+ 5

,

which is a contradiction. The points O2
yt and the smooth points on Cx are excluded in a similar

way.
Hence P is a smooth point of X \ Cx. Applying Lemma 1.4.10 (which is possible since the

projection of X from Ot has finite fibers), we see that

1 < multP (D) 6
4(36n+ 30)(3(12n+ 8) + 6)
6(6n+ 5)(12n+ 8)(18n+ 15)

< 1,

because H0(P,OP(3(12n + 8) + 6)) contains x12n+9, y6 and z3x. The obtained contradiction
completes the proof. �
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2.4. Infinite series with I = 6

Lemma 2.4.1. Suppose that (a0, a1, a2, a3, d) = (8, 4n+ 5, 4n+ 7, 4n+ 9, 12n+ 13) for n > 2.
Then lct(X) = 1.

Proof. The surface X can be given by the equation

z2t+ yt2 + xy3 + xn+2z = 0,

and the only singularities of X are Ox, Oy, Oz and Ot.
The curve Cx is reduced and splits into a union of the stratum Lxt and a residual curve Mx

intersecting at Oy. One can easily see that lct(X,Cx) = 3/4, which implies lct(X) 6 1.
The curve Cy is reduced and splits into a union of the stratum Lyz and a residual curve My

intersecting at Ot. One can easily see that lct(X,Cy) = n+3
2n+4 , and hence the log pair (X, 4n+5

6 Cy)
is log canonical for n > 1.

The curve Cz is reduced and splits into a union of the stratum Lyz and a residual curve Mz

intersecting at Ox. One can easily see that lct(X,Cz) = 2/3, and hence the log pair (X, 4n+7
6 Cz)

is log terminal for n > 1.
The curve Ct is reduced and splits into a union of the stratum Lxt and a residual curve

Mt intersecting at Oz. One can easily see that lct(X,Ct) = 2n−1
5(n−1) , and hence the log pair

(X, 4n+9
6 Ct) is log terminal for n > 1.

One has the following intersection numbers.

Lxt ·D =
6

(4n+ 5)(4n+ 7)
, Lxt ·Mx =

2
4n+ 5

, Lxt ·Mt =
3

4n+ 7
,

L2
xt = − 8n+ 6

(4n+ 5)(4n+ 7)
,

Mx ·D =
12

(4n+ 5)(4n+ 9)
,Mt ·D =

18
8(4n+ 7)

,

M2
x = − 8n+ 2

(4n+ 5)(4n+ 9)
,M2

t = − 4n− 3
8(4n+ 7)

,

Lyz ·D =
6

8(4n+ 9)
, Lyz ·My =

n+ 2
4n+ 9

, Lyz ·Mz =
1
4
,

L2
yz = − 4n+ 11

8(4n+ 9)
,

My ·D =
6(n+ 2)

(4n+ 7)(4n+ 9)
,Mz ·D =

12
8(4n+ 5)

,

M2
y = − 2n+ 4

(4n+ 7)(4n+ 9)
,M2

z = − 4n+ 1
8(4n+ 5)

.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

Suppose that P = Ox. Assume that Lyz 6⊂ Supp (D). Then
6

8(4n+ 9)
= Lyz ·D >

1
8
,

which is a contradiction for all n > 1. Hence Lyz ⊂ Supp (D). By Remark 1.4.7 we may assume
that My 6⊂ Supp (D). Put D = µLyz + Ω, where Lyz 6⊂ Supp (Ω). By Theorem 1.4.5 one has

1
8
< Ω · Lyz =

6 + (4n+ 11)µ
8(4n+ 9)

,

and hence µ > (4n+ 3)(4n+ 11). On the other hand,

6(n+ 2)
(4n+ 7)(4n+ 9)

= D · My > µLyz · My +
multOx(D)− µ

8
>

µ(n+ 2)
4n+ 9

+
1− µ

8
,

which is a contradiction for n > 1, because µ > (4n+ 3)(4n+ 11).
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Suppose that P = Oy. Assume that Lxt 6⊂ Supp (D). Then

6
(4n+ 5)(4n+ 7)

= Lxt ·D >
1

4n+ 5
,

which is a contradiction for all n > 1. Hence Lxt ⊂ Supp (D), and by Remark 1.4.7 we may
assume that Mx 6⊂ Supp (D). Put D = µLxt + Ω, where Lxt 6⊂ Supp (Ω). Then

12
(4n+ 5)(4n+ 9)

= D ·Mx <
2µ

4n+ 5
,

which gives µ 6 6/(4n+ 9). By Theorem 1.4.5 one has

1
4n+ 5

< Ω · Lxt =
6 + (8n+ 6)µ

(4n+ 5)(4n+ 7)
,

which is a contradiction for n > 2.
Suppose that P = Oz. Assume that Lxt 6⊂ Supp (D). Then

6
(4n+ 5)(4n+ 7)

= Lxt ·D >
1

4n+ 7
,

which is a contradiction for n > 1. Hence Lxt ⊂ Supp (D), and by Remark 1.4.7 we may assume
that Mx 6⊂ Supp (D) 6⊃Mt. Then µ 6 6/(4n+ 9) as above, and by Theorem 1.4.5 one has

1
4n+ 7

< Ω · Lxt =
6 + (8n+ 6)µ

(4n+ 5)(4n+ 7)
6

18
(4n+ 7)(4n+ 9)

,

which is a contradiction for n > 3. If n = 2, then

18
8 · 15

= Mt ·D >
multOz(D)multOz(Mt)

17
=

3multOz(D)
17

>
3
17
,

which is a contradiction.
Suppose that P = Ot. Assume that Mx 6⊂ Supp (D). Then

12
(4n+ 5)(4n+ 9)

= Mx ·D >
1

4n+ 9
,

which is a contradiction for n > 2. Hence Mx ⊂ Supp (D), and by Remark 1.4.7 we may assume
that Lxt 6⊂ Supp (D). Put D = µMx + Ω, where Mx 6⊂ Supp (Ω). Then

6
(4n+ 5)(4n+ 7)

= Lxt ·D <
2µ

4n+ 5
,

which implies that µ 6 3/(4n+ 7). By Theorem 1.4.5 one has

1
4n+ 9

< Ω ·Mx =
12 + (8n+ 2)µ

(4n+ 5)(4n+ 9)
6

18
(4n+ 7)(4n+ 9)

,

which is a contradiction for n > 2.
Suppose that P is a smooth point on Lxt. Assume that Lxt 6⊂ Supp (D). Then

6
(4n+ 5)(4n+ 7)

= Lxt ·D > 1,

which is a contradiction for all n > 1. Hence Lxt ⊂ Supp (D), and by Remark 1.4.7 we may
assume that Mx 6⊂ Supp (D). Put D = µLxt + Ω, where Lxt 6⊂ Supp (Ω). Then

1 < Ω · Lxt =
6 + (8n+ 6)µ

(4n+ 5)(4n+ 7)
6

18
(4n+ 7)(4n+ 9)

by Theorem 1.4.5, because µ 6 6/(4n+ 9), which is a contradiction for all n > 1.
Suppose that P is a smooth point on Mx. Assume that Mx 6⊂ Supp (D). Then

12
(4n+ 5)(4n+ 9)

= Mx ·D > 1,
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which is a contradiction for all n > 1. Hence Mx ⊂ Supp (D). By Remark 1.4.7 we may assume
that Lxt 6⊂ Supp (D). Put D = µMx + Ω, where Mx 6⊂ Supp (Ω). By Theorem 1.4.5 one has

1 < Ω ·Mx =
12 + (8n+ 2)µ

(4n+ 5)(4n+ 9)
6

18
(4n+ 7)(4n+ 9)

,

which is a contradiction for all n > 1, because µ 6 3/(4n+ 7).
Suppose that P is a smooth point on Lyz. Assume that Lyz 6⊂ Supp (D). Then

6
8(4n+ 9)

= Lyz ·D > 1,

which is a contradiction for all n > 1. Hence Lyz ⊂ Supp (D). By Remark 1.4.7 we may assume
that My 6⊂ Supp (D). Put D = µLyz + Ω, where Lyz 6⊂ Supp (Ω). By Theorem 1.4.5 one has

1 < Ω · Lyz =
6 + (4n+ 11)µ

8(4n+ 9)
6

3
2(4n+ 7)

,

which is a contradiction for all n > 1, because µ 6 6/(4n+ 7).
Suppose that P is a smooth point on My. Assume that My 6⊂ Supp (D). Then

6(n+ 2)
(4n+ 7)(4n+ 9)

= My ·D > 1,

which is a contradiction for all n > 1. Hence My ⊂ Supp (D), and by Remark 1.4.7 we may
assume that Lyz 6⊂ Supp (D). Put D = µMy + Ω, where My 6⊂ Supp (Ω). Then

6
8(4n+ 9)

= Lyz ·D <
µ(n+ 2)
4n+ 9

,

which implies that µ 6 6/(8n+ 16). By Theorem 1.4.5 one has

1 < Ω ·My =
12 + (8n+ 2)µ

(4n+ 5)(4n+ 9)
6

6(24n+ 34)
8(n+ 2)(4n+ 5)(4n+ 9)

,

which is a contradiction for all n > 1.
Hence P is a smooth point of X \ (Cx ∪Cy). Applying Lemma 1.4.10 (which is possible since

the projection of X from Ot has finite fibers outside Lyz) we see that

1 < multP (D) 6
6(12n+ 23) · 8(4n+ 7)

8(4n+ 5)(4n+ 7)(4n+ 9)
< 1,

for n > 3, because H0(P,OP(8(4n+ 7))) contains x2n+4, y8x2 and z8. Arguing as in the end of
the proof of Lemma 2.4.3, we see that n 6= 2. �

Lemma 2.4.2. Suppose that (a0, a1, a2, a3, d) = (8, 9, 11, 13, 35). Then lct(X) = 1.

Proof. We have I = 6. Let us use the notations and assumptions of the proof of Lemma 2.4.1,
where n = 2. Then it follows from the proof of Lemma 2.4.3 that either P = Oz or Ot.

Suppose that P = Oz. Then Lxt ⊂ Supp(D), since otherwise we have
6

9 · 11
= D · Lxt >

1
11

>
6

9 · 11
,

which is a contradiction. We may assume that Mt 6⊂ Supp(D) by Remark 1.4.7. Put

D = mLxt + cMy + Ω,

where m > 0 and c > 0, and Ω is an effective Q-divisor such that Lxt 6⊂ Supp(Ω) 6⊃My. Then

18
8 · 11

= D ·Mt =
(
mLxt + cMy + Ω

)
·Mt >

3m
11

+
multOz(D)−m

33
>
m+ 1

11
,

which implies that m < 1/4. Then it follows from Lemma 1.4.6 that
6 + 14m

9 · 11
=
(
−KX −mLxt

)
· Lxt = (Ω + cMy) · Lxt >

1
11
,

which implies that m > 3/14. On the other hand, if c > 0, then
6

8 · 13
= D · Lyz =

(
mLxt + cMy + Ω

)
· Lyz >

3c
13
,
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which implies that c 6 1/4.
Let π : X̄ → X be a weighted blow up of Oz with weights (3, 2), let E be the exceptional

curve of π, let Ω̄, L̄xt and M̄y be the proper transforms of Ω, Lxt and My, respectively. Then

KX̄ ≡ π∗(KX)− 6
11
E, L̄xt ≡ π∗(Lxt)−

3
11
E, M̄y ≡ π∗(My)−

2
11
E, Ω̄ ≡ π∗(Ω)− a

11
E.

where a is a positive rational number a.
The curve E contains two singular points Q2 and Q3 of X̄ such that Q2 is a singular point of

type 1
2(1, 1), and Q3 is a singular point of type 1

2(1, 2). Then

L̄xt 63 Q3 ∈ M̄y 63 Q2 ∈ L̄xt,

and L̄xt ∩ M̄y = ∅. The log pull back of the log pair (X,D) is the log pair(
X̄, Ω̄ +mL̄xt + cM̄y +

6 + a+ 3m+ 2c
11

E

)
,

which must have non-log canonical singularity at some point Q ∈ E. We have
18 + 6c
11 · 13

− m

11
− a

33
= Ω̄ · M̄y > 0 6 Ω̄ · L̄xt =

6 + 14m
9 · 11

− c

11
− a

22
,

hence a 6 (12+28m)/9 6 19/9, because m 6 1/4. Then 6+a+3m+2c < 11, because c 6 1/4.
Suppose that Q 6= Q2 and Q 6= Q3. Then Q 6∈ L̄xt ∪ M̄y. By Lemma 1.4.6, we have

a

2 · 3
= − a

11
E2 = Ω̄ · E > 1,

which implies that a > 6, which is impossible, because a < 19/9.
Therefore, we see that either Q = Q2 or Q = Q3.
Suppose that Q = Q2. Then Q 6∈ M̄y. Hence, it follows from Lemma 1.4.6 that

6 + 14m
9 · 11

− c

11
− a

22
+

6 + a+ 3m+ 2c
22

=
(

Ω̄ +
6 + a+ 3m+ 2c

11
E

)
· L̄xt >

1
2
,

which implies that m > 68/55. But m < 1/4, which is a contradiction.
Thus, we see that Q = Q3. Then Q 6∈ L̄xt, and it follows from Lemma 1.4.6 that

18 + 6c
11 · 13

− m

11
− a

33
+

6 + a+ 3m+ 2c
33

=
(

Ω̄ +
6 + a+ 3m+ 2c

11
E

)
· M̄y >

1
3
,

which implies that c > 1/4. But c 6 1/4. The obtained contradiction shows that P 6= Oz.
We see that P = Ot. Then Lyz 6⊂ Supp(D), since otherwise we have

6
8 · 13

= D · Lyz >
1
13

>
6

8 · 13
,

which is a contradiction. By Remark 1.4.7, we may assume that My 6⊂ Supp(D). Put

D = mLyz + cMx + Ω,

where m > 0 and c > 0, and Ω is an effective Q-divisor such that Lyz 6⊂ Supp(Ω) 6⊃Mx. Then

8
11 · 13

= D ·My =
(
mLyz + cMx + Ω

)
·My >

3m
13

+
multOt(D)−m

13
>

2m+ 1
13

,

which implies that m < 7/22. Then it follows from Lemma 1.4.6 that
6 + 15m

8 · 13
=
(
−KX −mLyz

)
· Lyz = (Ω + cMx) · Lyz >

1
13
,

which implies that m > 2/15. On the other hand, if c > 0, then
6

9 · 11
= D · Lxt =

(
mLyz + cMx + Ω

)
· Lyt =

(
cMx + Ω

)
· Lyt >

3c
11
,

which implies that c 6 3/11.
Let π : X̄ → X be a weighted blow up of Ot with weights (5, 2), let E be the exceptional

curve of π, let Ω̄, L̄yz and M̄x be the proper transforms of Ω, Lyz and Mx, respectively. Then

KX̄ ≡ π∗(KX) +
6
13
E, L̄yz ≡ π∗(Lyz)−

2
13
E, M̄x ≡ π∗(Mx)− 5

13
E, Ω̄ ≡ π∗(Ω)− a

13
E,
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where a is a positive rational number.
The curve E contains two singular points Q5 and Q2 of X̄ such that Q5 is a singular point of

type 1
5(1, 1), and Q2 is a singular point of type 1

2(1, 1). Then

L̄yz 63 Q2 ∈ M̄x 63 Q5 ∈ L̄yz,

and L̄yz ∩ M̄x = ∅. The log pull back of the log pair (X,D) is the log pair(
X̄, Ω̄ +mL̄yz + cM̄y +

6 + a+ 2m+ 5c
13

E

)
,

which must have non-log canonical singularity at some point Q ∈ E. Then
12 + 10c

9 · 13
− m

13
− a

26
= Ω̄ · M̄x > 0 6 Ω̄ · L̄yz =

6 + 15m
8 · 13

− c

13
− a

65
,

which implies that 30 + 75m > 40c + 8a and 24 + 20c > 18m + 9a. In particular, we see that
a 6 36/11. Then 6 + a+ 2m+ 5c < 13, because c 6 3/11 and m 6 7/22.

Suppose that Q 6= Q2 and Q 6= Q5. Then Q 6∈ L̄yz ∪ M̄x. By Lemma 1.4.6, we have
a

10
= − a

13
E2 = Ω̄ · E > 1,

which implies that a > 10, which is impossible, because a < 36/11. Therefore, we see that either
Q = Q2 or Q = Q5.

Suppose that Q = Q2. Then Q 6∈ L̄yz. Hence, it follows from Lemma 1.4.6 that

12 + 10c
9 · 13

− m

13
− a

26
+

6 + a+ 2m+ 5c
26

=
(

Ω̄ +
6 + a+ 2m+ 5c

13
E

)
· M̄x >

1
2
,

which implies that c > 3/5. But c 6 3/11, which is a contradiction.
Thus, we see that Q = Q5. Then Q 6∈ M̄x, and it follows from Lemma 1.4.6 that

6 + 15m
8 · 13

+
6 + 2m

65
=
(

Ω̄ +
6 + a+ 2m+ 5c

13
E

)
· L̄yz >

1
5
<
(
Ω̄ +mL̄yz

)
· E =

a

10
+
m

5
,

which implies that m > 2/7 and a+ 2m > 2. But we have no contradiction here.
Let ψ : X̃ → X̄ be a weighted blow up of Q5 with weights (1, 1), let G be the exceptional

curve of ψ, let Ω̃, L̃yz, M̃x and Ẽ be the proper transforms of Ω, Lyz, Mx and E, respectively.
Then

KX̃ ≡ ψ∗(KX̄)− 3
5
G, L̃yz ≡ ψ∗(L̄yz)−

1
5
G, Ẽ ≡ ψ∗(E)− 1

5
G, Ω̃ ≡ ψ∗(Ω̄)− b

5
G,

where b is a positive rational number.
The surface is smooth along G. The log pull back of (X,D) is the log pair(

X̃, Ω̃ +mL̃yz + cM̃x +
6 + a+ 2m+ 5c

13
Ẽ + θG

)
,

where θ = 3m/13 + c/13 + a/65 + b/5 + 9/13. Then the log pull back of the log pair (X,D) is
not log canonical at some point O ∈ G. We have

a

10
− b

5
= Ẽ · Ω̃ > 0 6 L̃yz · Ω̃ =

6 + 15m
8 · 13

− c

13
− a

65
− b

5
,

which implies that 30 + 75m > 4− c+ 8a+ 104b and a > 2b. The system of inequalities
30 + 75m > 40c+ 8a+ 104b,

3m+ c+ a/5 + 13b/5 + 9 > 13,

7/22 > m,

is inconsistent. Thus, we see that θ < 1.
Suppose that O 6∈ Ẽ ∪ L̃yz. Then it follows from Lemma 1.4.6 that

b = − b
5
G2 = Ω̃ ·G > 1,
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which implies that b > 1. But the system of inequalities
30 + 75m > 40c+ 8a+ 104b,
a > 2b > 1,

3/11 > c,

24 + 12c > 18m+ 9a,

is inconsistent. Therefore, we see that O 6∈ Ẽ ∪ L̃yz. Note that Ẽ ∩ L̃yz = ∅.
Suppose that O ∈ L̃yz. Then it follows from Lemma 1.4.6 that

b+m =
(
Ω̃ +mL̃yz

)
·G > 1 <

(
Ω̃ + θG

)
· L̃yz =

6 + 15m
8 · 13

− c

13
− a

65
− b

5
+ θ,

which implies that b+m > 1 and m > 2/3. But m < 7/22, which is a contradiction.
Thus, we see that O ∈ Ẽ. Hence, it follows from Lemma 1.4.6 that

b+
6 + a+ 2m+ 5c

13
=
(

Ω̃ +
6 + a+ 2m+ 5c

13
Ẽ

)
·G > 1 <

(
Ω̃ + θG

)
· Ẽ =

a

10
− b

5
+ θ,

which implies that which implies that 130a + 845m + 1820c > 1312. Applying Lemma 1.4.6
again, we see that

65
32

b

13 · 14
=

65
32

Ω̃ ·G >
37
462

− 1495m
14784

− 65c
1056

− 65a
14784

,

which implies that 13b+ a+ 2m+ 5c > 7 and 3a+ 2c+ 6m > 8.
Let φ : X̂ → X̃ be a blow up of the point O, let F be the exceptional curve of φ, let Ω̂, L̂yz,

M̂x, Ê and Ĝ be the proper transforms of Ω, Lyz, Mx, E and G, respectively. Then

KX̂ ≡ φ∗(KX̃) + F, Ĝ ≡ φ∗(G)− F, Ê ≡ φ∗(Ẽ)− F, Ω̂ ≡ φ∗(Ω̃)− dF,

where d is a positive rational number. The log pull back of (X,D) is the log pair(
X̂, Ω̂ +mL̂yz + cM̂x +

6 + a+ 2m+ 5c
13

Ê + θĜ+ νF

)
,

where ν = d+5m/13+6a/65+6c/13+b/5+2/13. Then the log pull back of the log pair (X,D)
is not log canonical at some point A ∈ F . We have

a

10
− b

5
− d = Ê · Ω̂ > 0 6 Ĝ · Ω̂ = b− d,

which implies that b > d and a > 2b+ 10d. The system of inequalities
30 + 75m > 40c+ 8a+ 104b,

13d+ 5m+ 6a/5 + 6c+ 13b/5 > 11,
b > d,

7/22 > m,

is inconsistent. Thus, we see that ν < 1.
Suppose that A 6∈ Ê ∪ Ĝ. Then t follows from Lemma 1.4.6 that

d = Ω̂ · F > 1,

which is impossible, because the system of inequalities

30 + 75m > 40c+ 8a+ 104b,
24 + 20c > 18m+ 9a,
a > 2b+ 10d,

7/22 > m,

b > d > 1,

is inconsistent. Thus, we see that A ∈ Ê ∪ Ĝ. Note that Ê ∩ Ĝ = ∅.
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Suppose that A ∈ Ê. Then it follows from Lemma 1.4.6 that
a

10
− b

5
− d+ ν =

(
Ω̂ + νF

)
· Ê > 1,

which implies that 5a+ 10m+ 12c > 22. But the system of inequalities
5a+ 10m+ 12c > 22,
24 + 12c > 18m+ 9a,

3/11 > c,

is inconsistent. Thus, we see that A 6∈ Ê. Then A ∈ Ĝ. By Lemma 1.4.6, we see that

b− d+ ν =
(
Ω̂ + νF

)
· Ĝ > 1,

which implies that 6a+ 25m+ 30c+ 78b > 55. But the system of inequalities
6a+ 25m+ 30c+ 78b > 55,
30 + 75m > 40c+ 8a+ 104b,

7/22 > m,

is inconsistent. The obtained contradiction completes the proof. �

Lemma 2.4.3. Suppose that (a0, a1, a2, a3, d) = (9, 3n+8, 3n+11, 6n+13, 12n+35) for n > 1.
Then lct(X) = 1.

Proof. The surface X can be given by the equation

z2t+ y3z + xt2 + xn+3y = 0,

and the only singularities of X are Ox, Oy, Oz and Ot.
The curve Cx is reduced and splits into a union of the stratum Lxz and a residual curve Mx

intersecting at Ot. One can easily see that lct(X,Cx) = 2/3, which implies lct(X) 6 1.
The curve Cy is reduced and splits into a union of the stratum Lyt and a residual curve My

intersecting at Ox. One can easily see that lct(X,Cy) = 3/4, and hence the log pair (X, 3n+8
6 Cy)

is log canonical for n > 1.
The curve Cz is reduced and splits into a union of the stratum Lxz and a residual curve

Mz intersecting at Oy. One can easily see that lct(X,Cz) = 2n+3
4n+4 , and hence the log pair

(X, 3n+11
6 Cz) is log terminal for n > 1.

The curve Ct is reduced and splits into a union of the stratum Lyt and a residual curve Mt

intersecting at Oz. One can easily see that lct(X,Ct) = 2n+5
4n+9 , and hence the log pair (X, 6n+13

6 Ct)
is log terminal for n > 1.

One has the following intersection numbers.

Lxz ·D =
6

(3n+ 8)(6n+ 13)
, Lxz ·Mx =

3
6n+ 13

, Lxz ·Mz =
2

3n+ 8
,

L2
xz = − 9n15

(3n+ 8)(6n+ 13)
,

Mx ·D =
18

(3n+ 11)(6n+ 13)
,Mz ·D =

12
9(3n+ 8)

,

M2
x = − 9n+ 6

(3n+ 11)(6n+ 13)
,M2

z = − 3n+ 5
9(3n+ 8)

,

Lyt ·D =
6

9(3n+ 11)
, Lyt ·My =

2
9
, Lyt ·Mt =

n+ 3
3n+ 11

, L2
yt = − 3n+ 14

9(3n+ 11)
,

My ·D =
12

9(6n+ 13)
,Mt ·D =

6(n+ 3)
(3n+ 8)(3n+ 11)

,

M2
y = − 6n+ 10

9(6n+ 13)
,M2

t = − 1
(3n+ 8)(3n+ 11)

.
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Now we suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that
the log pair (X,D) is not log canonical at some point P ∈ X.

Suppose that P = Ox. Assume that Lyt 6⊂ Supp (D). Then

6
9(3n+ 11)

= Lyt ·D >
1
9
,

which is a contradiction for all n > 1. Hence Lyt ⊂ Supp (D). By Remark 1.4.7 we may assume
that My 6⊂ Supp (D). Put D = µLyt + Ω, where Lyt 6⊂ Supp (Ω). By Theorem 1.4.5 one has

1
9
< Ω · Lyt =

6 + (3n+ 14)µ
9(3n+ 11)

,

and hence µ > (3n+ 5)/(3n+ 14). On the other hand,

12
9(6n+ 13)

= D ·My > µLyt ·My +
multOx(D)− µ

9
>

2µ
9

+
1− µ

9
>

6n+ 19
9(3n+ 14)

,

which is a contradiction for n > 1.
Suppose that P = Oy. Assume that Lxz 6⊂ Supp (D). Then

6
(3n+ 8)(6n+ 13)

= Lxz ·D >
1

3n+ 8
,

which is a contradiction for all n > 1. Hence Lxz ⊂ Supp (D), and by Remark 1.4.7 we may
assume that Mx,Mz 6⊂ Supp (D). Put D = µLxz + Ω, where Lxz 6⊂ Supp (Ω). Then

18
(3n+ 11)(6n+ 13)

= D ·Mx <
3µ

6n+ 13
,

which implies that µ 6 6/(3n+ 11). By Theorem 1.4.5 one has

1
3n+ 8

< Ω · Lxz =
6 + (9n+ 15)µ

(3n+ 8)(6n+ 13)
,

which contradicts the inequality µ 6 6/(3n+ 11) for n > 1.
Suppose that P = Oz. Assume that Lyt 6⊂ Supp (D). Then

6
9(3n+ 11)

= Lyt ·D >
1

3n+ 11
,

which is a contradiction for n > 1. Hence Lyt ⊂ Supp (D). By Remark 1.4.7 we may assume
that Mt 6⊂ Supp (D). Put D = µLyt + Ω, where Lyt 6⊂ Supp (Ω). Then

6(n+ 3)
(3n+ 8)(3n+ 11)

= Mt ·D > µLyt ·Mt +
(multOz)(D)− µ)multOz(Mt)

3n+ 11
>
µ(n+ 3)
3n+ 11

+
2(1− µ)
3n+ 11

,

which implies that µ < 2/((3n+ 8)(n+ 1)) for n > 1. By Theorem 1.4.5 one has
6

9(3n+ 11)
= D · Lyt = −µ 3n+ 14

9(3n+ 11)
+ Ω · Lyz > −µ 3n+ 14

9(3n+ 11)
+

1
3n+ 11

,

which gives µ > 3/(3n+ 14), which is impossible for n > 1.
Suppose that P = Ot. Assume that Lxz 6⊂ Supp (D). Then

6
(3n+ 8)(6n+ 13)

= Lxz ·D >
1

6n+ 13
,

which is a contradiction for all n > 1. Hence Lxz ⊂ Supp (D). By Remark 1.4.7 we may assume
that Mx 6⊂ Supp (D). Put D = µLxz + Ω, where Lxz 6⊂ Supp (Ω). Then

18
(3n+ 11)(6n+ 13)

= D ·Mx > µLxz ·Mx +
multOt(D)− µ

6n+ 13
>

1 + 2µ
6n+ 13

,

but arguing as above, we get µ > (6n+ 7)/(9n+ 15), which is a contradiction for n > 1.
Suppose that P is a smooth point on Lxz. Assume that Lxz 6⊂ Supp (D). Then

6
(3n+ 8)(6n+ 13)

= Lxz ·D > 1,
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which is a contradiction for all n > 1. Hence Lxz ⊂ Supp (D), and by Remark 1.4.7 we may
assume that Mx 6⊂ Supp (D). Put D = µLxz + Ω, where Lxz 6⊂ Supp (Ω). Then

1 < Ω · Lxz =
6 + (3n+ 3)µ

(3n+ 8)(6n+ 13)
6

6(6n+ 14)
(3n+ 8)(3n+ 11)(6n+ 13)

,

by Theorem 1.4.5, because µ 6 6/(3n+ 11). Thus, we have a contradiction here for all n > 1.
Suppose that P is a smooth point on Mx. Assume that Mx 6⊂ Supp (D). Then

18
(3n+ 11)(6n+ 13)

= Mx ·D > 1,

which is a contradiction for all n > 1. Hence Mx ⊂ Supp (D), and by Remark 1.4.7 we may
assume that Lxz 6⊂ Supp (D). Put D = µMx + Ω, where Mx 6⊂ Supp (Ω). Then

µ 6
3n+ 11

3(3n+ 8)

as above. On the other hand, by Theorem 1.4.5 one has

1 < Ω ·Mx =
18 + (9n+ 6)µ

(3n+ 11)(6n+ 13)
,

which is a contradiction for all n > 1. Hence P 6∈ Cx. Similarly, we see that P 6∈ Cy ∪ Cz ∪ Ct.
Applying Lemma 1.4.10, we see that n 6 3, because H0(P,OP(9(3n+ 11))) contains x3n+11,

y9x3 and z9. Thus, either n = 4 or n = 3.
There is a unique curve Zα ⊂ X that is cut out by

xt+ αz2 = 0

such that P ∈ Z, where 0 6= α ∈ C. The curve Zα is always reducible. Indeed, one can easily
check that Zα = Cα + Lxz where Cα is a reduced curve whose support contains no Lxz.

The open subset Zα \ (Zα ∩ Cx) of the curve Zα is a Z9-quotient of the affine curve

t+ αz2 = 0 = z2t+ y3z + t2 + y = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to a plane affine quartic curve that is given by the equation

α(α− 1)z4 + y + y3z = 0 ⊂ C2 ∼= Spec
(
C
[
y, z
])
,

which implies that the curve Cα is irreducible and multP (Cα) 6 3 if α 6= 1.
The case α = 1 is special. Namely, if α = 1, then C1 = R1 +My, where R1 is a reduced curve

whose support does not contain the curve C1. Arguing as in the case α 6= 1, we see that R1 is
irreducible and R1 is smooth at the point P .

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Zα.

Suppose that α 6= 1. Then elementary calculations imply that

Cα·Lxz =
9n+ 25

(3n+ 8)(6n+ 13)
, Cα·Cα =

144(n+ 2)2 + 237(n+ 2) + 67
9(3n+ 8)(6n+ 13)

, D·Cα =
6(24n+ 61)

9(3n+ 8)(6n+ 13)
,

and we can put D = εCα + Ξ, where Ξ is an effective Q-divisor such that Cα 6⊂ Supp(Ξ). Then
6

(3n+ 8)(6n+ 13)
= D · Lxz = εCα · Lxz + Ξ · Lxz > ε

9n+ 25
(3n+ 8)(6n+ 13)

,

if ε > 0. Thus, we see that ε 6 6/(9n+ 25). But

6(24n+ 61)
9(3n+ 8)(6n+ 13)

= D · Cα

= εC2
α + Ξ · Cα

> εC2
α + multP

(
Ξ
)

= εC2
α + multP

(
D
)
− εmultP

(
Cα

)
> εC2

α + 1− 3ε,
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which implies that 6/(9n+25) > ε > (162(n+2)2−9(n+2)−60)/(342(n+2)2+168(n+2)−13).
The latter is impossible for n > 1.

Thus, we see that α = 1. Then elementary calculations imply that

R1 · Lxz =
6n+ 17

(3n+ 8)(6n+ 13)
, R1 ·R1 =

6(n+ 2)2 + 13(n+ 2) + 3
(3n+ 8)(6n+ 13)

,

My ·R1 =
2n+ 5
6n+ 13

, D ·R1 =
6(2n+ 5)

(3n+ 8)(6n+ 13)
,

and we can put D = ε1R1 + Ξ1, where Ξ1 is an effective Q-divisor such that R1 6⊂ Supp(Ξ1).
Now we obtain the inequality ε1 6 1, because either ε1 = 0, or Lxy · Ξ1 > 0 or Mz · Ξ1 > 0. By
Lemma 1.4.6, we see that

6(2n+ 5)− ε1(6(n+ 2)2 + 13(n+ 2) + 3)
(3n+ 8)(6n+ 13)

= Ξ1 ·R1 > 1,

which is impossible for n > 1. The obtained contradiction completes the proof. �

Part 3. Sporadic cases

3.1. Sporadic cases with I = 1

Lemma 3.1.1. Suppose that (a0, a1, a2, a3, d) = (1, 2, 3, 5, 10). Then

lct
(
X
)

=
{ 1 if Cx has an ordinary double point,

7/10 if Cx has a non-ordinary double point.

Proof. The curve Cx is reduced and irreducible. Moreover, we have

lct
(
X,Cx

)
=
{ 1 if the curve Cx has an ordinary double point at the point Oz,

7/10 if the curve Cx has a non-ordinary double point at the point Oz.

Let D be an arbitrary effective Q-divisor D ∼Q −KX such that Cx 6⊂ Supp(D), and the log
pair (X,D) is not log canonical at some point P ∈ X. Then P ∈ Cx by Lemma 1.4.10. Then

1
3

= D · Cx >


multP

(
D
)
multP

(
Cx

)
if P 6= Oz,

multP

(
D
)
multP

(
Cx

)
3

if P = Oz,
>


1 if P 6= Oz,

2
3

if P = Oz,

because the curve Cx is singular at the point Oz. The obtained contradiction completes the
proof due to Remark 1.4.7. �

Lemma 3.1.2. Suppose that (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15). Then

lct
(
X
)

=

{
1 if f(x, y, z, t) contains yzt,

8/15 if f(x, y, z, t) does not contain yzt,

Proof. The curve Cx is reduced and irreducible. Moreover, we have

lct
(
X,Cx

)
=

{
1 if f(x, y, z, t) contains yzt,

8/15 if f(x, y, z, t) does not contain yzt,

Let D be an arbitrary effective Q-divisor D ∼Q −KX such that Cx 6⊂ Supp(D), and the log
pair (X,D) is not log canonical at some point P ∈ X. Then P ∈ Cx by Lemma 1.4.10. Hence,
we have

1
7

= D · Cx >


multP

(
D
)

if P 6= Ot,

multP

(
D
)

7
if P = Ot,

>


1 if P 6= Ot,

1
7

if P = Ot,

which is a contradiction. The obtained contradiction completes the proof due to Remark 1.4.7.
�

Lemma 3.1.3. Suppose that (a0, a1, a2, a3, d) = (1, 3, 5, 8, 16). Then lct(X) = 1.
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Proof. We have d = 16. The surface X is singular at the point Oy, which is a singular point of
type 1

3(1, 1) on the surface X. The surface X is singular at the point Oz, which is a singular
point of type 1

5(1, 1) on the surface X.
It follows from the quasismoothness of X that the curve Cx is reduced. Then Cx is reducible.

Namely, we have Cx = L1 +L2, where L1 and L2 are irreducible reduced smooth rational curves
such that

−KX · L1 = −KX · L2 =
1
15
,

and L1 ∩ L2 = Oy ∪Oz. Then

L1 · L1 = L2 · L2 = − 7
15

and L1 · L2 = 8/15. Moreover, we have lct(X,Cx) = 1.
Let D be an arbitrary effective Q-divisor D ∼Q −KX such that the log pair (X,D) is not log

canonical at some point P ∈ X. Suppose that Supp(D) does not contain the curve L1. Then
P ∈ Cx by Lemma 1.4.10.

Suppose that P ∈ L1. Then

1
15

= D · L1 >



multP

(
D
)

3
if P = Oy,

multP

(
D
)

5
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

>


1
3

if P = Oy,

1
5

if P = Oz,

1 if P 6= Oy and P 6= Oz,

which is a contradiction. Thus, we see that P ∈ L2 and P ∈ X \ Sing(X). Put

D = mL2 + Ω,

where Ω is an effective Q-divisor such that L2 6⊂ Supp(Ω). Then
1
15

= D · L2 =
(
mL2 + Ω

)
· L1 > mL1 · L2 =

m8
15
,

which implies that m 6 1/8. Thus, it follows from Lemma 1.4.6 that
1 + 7m

15
=
(
−KX −mL2

)
· L2 = Ω · L2 > 1,

which implies that m > 2. But m 6 1/8. The obtained contradiction completes the proof due
to Remark 1.4.7. �

Lemma 3.1.4. Suppose that (a0, a1, a2, a3) = (2, 3, 5, 9, 18). Then

lct
(
X
)

=
{ 2 if Cy has a tacknodal point,

11/6 if Cy has no tacknodal points.

Proof. We have d = 18. The surface X is singular at the point Oz, which is a singular point of
type 1

5(1, 2) on the surface X. The surface X also has 2 singular points O1 and O2, which are
cut out on X by the equations x = z = 0. The points O1 and O2 are singular points of type
1
3(1, 1) on the surface X.

The curves Cx and Cy are irreducible, lct(X,Cx) = 1, and

lct
(
X,Cy

)
=


3
4

if Cy has a tacknodal singularity at the point Oz,

11
18

if Cy has a non-tacknodal singularity at the point Oz,

If Cy has a tacknodal point, put ε = 2. Otherwise put e = 11/6. Then lct(X) 6 ε. Suppose
that lct(X) < ε. Then there is a Q-effective divisor D ≡ −KX such that the log pair (X, εD) is
not log canonical at some point P ∈ X. Then it follows from Remark 1.4.7 that we may assume
that the support of the divisor D does not contain the curves Cx and Cy.

Suppose that P 6∈ Cx∪Cy. Then P ∈ X \Sing(X) and there is a unique curve C in the pencil
| − 5KX | such that P ∈ C. The curve C is a hypersurface in P(1, 2, 3) of degree 6 such that the
natural projection

C −→ P(1, 2) ∼= P1
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is a double cover. Thus, we have multP (C) 6 2. In particular, the log pair (X, ε
5C) is log

canonical. Thus, it follows from Remark 1.4.7 that we may assume that the support of the
divisor D does not contain one of the irreducible components of the curve C. Then

1
3

= D · C > multP

(
D
)
>

1
2

in the case when C is irreducible (but possibly non-reduced). Therefore, the curve C must be
reducible and reduced. Then

C = C1 + C2,

where C1 and C2 are irreducible and reduced smooth rational curves such that

C1 · C1 = C2 · C2 = −7
6

and C1 ·C2 = 2 on the surface X. Without loss of generality we may assume that P ∈ R1. Put

D = mR1 + Ω,

where Ω is an effective Q-divisor such that R1 6⊂ Supp(Ω). If m 6= 0, then R2 6⊂ Supp(Ω) and
1
6

= D ·R2 =
(
mR1 + Ω

)
·R2 > mR1 ·R2 = 2m,

which implies that m 6 1/6. Thus, it follows from Lemma 1.4.6 that
1 + 7m

6
=
(
−KX −mR1

)
·R1 = Ω ·R1 >

1
ε

>
1
2

which implies, in particular, that m > 2/7. But m 6 1/6. The obtained contradiction implies
that P ∈ Cx ∪ Cy.

Suppose that P ∈ Cx. Then

2
15

= D · Cx >



multP

(
D
)

if P ∈ X \ Sing(X),

multP

(
D
)

3
if P = O1 or P = O2,

multP

(
D
)

5
if P = Oz,

>



1
2

if P ∈ X \ Sing(X),

1
6

if P = O1 or P = O2,

1
10

if P = Oz,

which implies that P = Oz. Then

1
5

= D · Cy >
multP

(
D
)
multP

(
Cy

)
5

=
2multP

(
D
)

5
>

2
5ε

>
1
5
,

which is a contradiction. Thus, we see that P 6∈ Cx. Then P ∈ Cy and P ∈ X \ Sing(X), which
implies that

1
5

= D · Cy > multP

(
D
)
>

1
ε

>
1
2
,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.1.5. Suppose that (a0, a1, a2, a3) = (3, 3, 5, 5, 15). Then lct(X) = 2.

Proof. We have d = 15. The surface X has 5 singular points O1, . . . , O5 of type 1
3(1, 1), which

are cut out on X by the equations z = t = 0. The surface X has 3 singular points Q1, Q2, Q3 of
type 1

5(1, 1), which are cut out on X by the equations x = y = 0. The surface X is exceptional
by [25].

Let Ci be a curve in the pencil | − 3KX | such that Oi ∈ Ci, where i = 1, . . . , 5. Then

Ci = Li
1 + Li

2 + Li
3,

where Li
j is an irreducible reduced smooth rational curve such that

−KX · Li
j =

1
15
,

and Qj ∈ Li
j . Then Li

1 ∩ Li
2 ∩ Li

3 = Oi and Li
j · Li

k = 1/3 if j 6= k. It follows from the
subadjunction formula that

Li
1 · Li

1 = Li
2 · Li

2 = Li
3 · Li

3 = − 7
15
.
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Note that lct(X,Ci) = 2/3, which implies that lct(X) 6 2. Suppose that lct(X) < 2. Then
there is a Q-effective divisor D ≡ −KX such that the log pair (X, 2D) is not log canonical at
some point P ∈ X.

Suppose that P 6∈ C1 ∪C2 ∪C3 ∪C4 ∪C5. Then P ∈ X \Sing(X) and there is a unique curve
C ∈ | − 3KX | such that P ∈ C. Then C is different from the curves C1, . . . , C5, which implies
that C is irreducible and (X,C) is log canonical. Thus, it follows from Remark 1.4.7 that we
may assume that C 6⊂ Supp(D). Then

1
5

= D · C > multP

(
D
)
>

1
2
,

because (X, 2D) is not log canonical at the point P . The obtained contradiction implies that
P ∈ C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5. Without loss of generality, we may assume that P ∈ C1.

It follows from Remark 1.4.7 that we may assume that L1
i 6⊂ Supp(D) for some i = 1, 2, 3.

Suppose that P = O1. Then

1
15

= D · L1
i >

multO1

(
D
)

3
>

1
6
,

because (X, 2D) is not log canonical at the point P . The obtained contradiction implies that
P 6= O1.

Without loss of generality, we may assume that P ∈ L1
1. Then either P = Q1, or P ∈

X \ Sing(X).
Suppose that P = Q1. Let Z be a curve in the pencil | − 5KX | such that Q1 ∈ Z. Then

Z = Z1 + Z2 + Z3 + Z4 + Z5,

where Zi is an irreducible reduced smooth rational curve such that

−KX · Zi =
1
15
,

and Oi ∈ Zi. Then Z1 ∩ Z2 ∩ Z3 ∩ Z4 ∩ Z5 = Q1 and lct(X,Z) = 2/5. Thus, it follows from
Remark 1.4.7 that we may assume that Zk 6⊂ Supp(D) for some k = 1, . . . , 5. Then

1
15

= D · Zk >
multQ1

(
D
)

5
>

1
10
,

because (X, 2D) is not log canonical at the point P . The obtained contradiction implies that
P 6= Q1.

Thus, we see that P ∈ L1
1 and P ∈ X \ Sing(X). Put

D = mL1
1 + Ω,

where Ω is an effective Q-divisor such that L1
1 6⊂ Supp(Ω). If m 6= 0, then

1
15

= D · L1
i =

(
mL1

1 + Ω
)
· L1

i > mL1
1 · L1

i =
m

3
,

which implies that m 6 1/5. Then it follows from Lemma 1.4.6 that
1 + 7m

15
=
(
−KX −mL1

1

)
· L1

1 = Ω · L1
1 >

1
2
,

which implies that m > 13/14. But m 6 1/5. The obtained contradiction completes the
proof. �

Lemma 3.1.6. Suppose that (a0, a1, a2, a3, d) = (3, 5, 7, 11, 25). Then lct(X) = 21/10.

Proof. By the quasismoothness of X, the curve Cx = X ∩ {x = 0} is irreducible and reduced.
It is easy to see that lct(X, 1

3Cx) = 21/10, which implies that lctX 6 21/10.
Suppose that lctX < 21/10. Then there is a Q-effective divisor D ≡ −KX such that the log

pair (X, 21
10D) is not log canonical at some point P ∈ X. We may assume that the support of D

does not contain the curve Cx by Remark 1.4.7.
Since H0(P,OP(21)) contains x7, x2y3, z3, we have

10
21

< multP (D) 6
21 · 25

3 · 5 · 7 · 11
<

10
21
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in the case when P ∈ X \ Cx or P 6= Ox. Thus, we see that either P ∈ Cx ∪Ox.
Since Cx is smooth outside of the singular locus of X, we have

5
77

= D · Cx >


multP (D)multP (Cx) if P ∈ X \ Sing(X),

multP (D)multP (Cx)
7

if P = Oz,

multP (D)multP (Cx)
11

if P = Ot,

>



10
21

if P ∈ X \ Sing(X),

10
147

if P = Oz,

20
231

if P = Ot,

in the case when P ∈ Cx. Therefore, we see that P = Ox.
Since the curve Cy is irreducible and the log pair (X, 1

5Cy) is log canonical at the point Ox,
we may assume that the support of D does not contain the curve Cy. Then

10
63

<
multOx(D)

3
6 D · Cy =

25
231

<
10
63
,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.1.7. Suppose that (a0, a1, a2, a3) = (3, 5, 7, 14, 28). Then lct(X) = 9/4.

Proof. We have d = 28. The surface X is singular at the point Ox, which is a singular point of
type 1

3(1, 1) on the surface X. The surface X is singular at the point Oy, which is a singular
point of type 1

5(1, 2) on the surface X. But X has also 2 singular points O1 and O2, which are
cut out on X by the equations x = y = 0. The points O1 and O2 are singular points of type
1
7(3, 5) on the surface X.

We have Cx = L1 + L2, where Li is an irreducible reduced smooth rational curve such that

−KX · Li =
1
35
,

and L1 ∩ L2 = Oy. Then L1 · L2 = 2/5 and

L1 · L1 = L2 · L2 = −11
35
.

Without loss of generality, we may assume that O1 ∈ L1 and O2 ∈ L2.
Note that lct(X,Cx) = 3/4, which implies that lct(X) 6 9/4. Suppose that lct(X) < 9/4.

Then there is a Q-effective divisor D ≡ −KX such that the log pair (X, 9
4D) is not log canonical

at some point P ∈ X.
Suppose that P 6∈ Cx and P ∈ X \ Sing(X). Then

multP

(
D
)

6
588
1470

by Lemma 1.4.10, because H0(P,OP(21)) contains x7, z3, x2y3. On the other hand, we have
multP (D) > 4/9 > 588/1470, because (X, 9

4D) is not log canonical at the point P . We see that
either P ∈ Cx or P = Ox.

It follows from Remark 1.4.7 that we may assume that Li 6⊂ Supp(D) for some i = 1, 2.
Similarly, we may assume that Cy 6⊂ Supp(D), because (X, 9

4Cy) is log canonical and the curve
Cy is irreducible.

Suppose that P = Ox. Then
2
21

= D · Cy >
multOx

3
(
D
)
>

4
27
,

which is a contradiction. Thus, we see that P 6= Ox. Then P ∈ Cx.
Suppose that P = Oy. Then

1
35

= D · Li >
multOy

(
D
)

5
>

4
45
,

which is a contradiction. Thus, we see that P 6= Oy.
Without loss of generality, we may assume that P ∈ L1. Put D = mL1 + Ω, where Ω is an

effective Q-divisor such that L1 6⊂ Supp(Ω). If m 6= 0, then
1
35

= D · Li =
(
mL1 + Ω

)
· Li > mL1 · Li =

2m
5
,
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which implies that m 6 1/14. Then it follows from Lemma 1.4.6 that

1 + 11m
35

=
(
−KX −mL1

)
· L1 = Ω · L1 >


4
9

if P 6= O1,

4
63

if P = O1,

which implies that m > 1/9. But m 6 1/14. The obtained contradiction completes the proof.
�

Lemma 3.1.8. Suppose that (a0, a1, a2, a3, d) = P(3, 5, 11, 18, 36). Then lct(X) = 21/10.

Proof. The surface X is singular at the points Oy and Oz. It is also singular at two points P1

and P2 on the curve defined by y = z = 0. By the quasismoothness of X, the curve Cx is
irreducible and reduced. It is easy to see that lct(X, 1

3Cx) = 21/10. Also, the curve Cy is always
irreducible and the pair (X, 21

5·10Cy) is log canonical.
We see that lctX 6 21/10. Suppose that lctX < 21/10. Then there is a Q-effective divi-

sor D ≡ −KX such that the pair (X, 21
10D) is not log canonical at some point P ∈ X. By

Remark 1.4.7, we may assume that the support of D contain neither the curve Cx nor Cy.
If P ∈ Cx and P ∈ X \ Sing(X), then

10
21

< multP (D) 6 D · Cx =
36

5 · 11 · 18
<

10
21
,

which is a contradiction. Since H0(P,OP(39)) contains x13, x3y6, x2z3, we have
10
21

< multP (D) 6
36 · 39

3 · 5 · 11 · 18
<

10
21

in the case when P 6∈ Cx and P ∈ X \ Sing(X). Thus, we see that P ∈ Sing(X). Then

10
105

<
multOy(D)

5
6 D · Cx =

3 · 36
3 · 5 · 11 · 18

<
10
105

in the case when P = Oy. Similarly, we have

10
231

<
multOz(D)

21
6 D · Cx =

3 · 36
3 · 5 · 11 · 18

<
10
231

in the case when P = Oz. Thus, we see that P = Pi. Then
10
63

<
multPi(D)

3
6 D · Cy =

5 · 36
3 · 5 · 11 · 18

<
10
63
,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.1.9. Suppose that (a0, a1, a2, a3) = (5, 14, 17, 21, 56). Then lct(X) = 25/8.

Proof. We have d = 56. The surface X is singular at the point Ox, which is a singular point of
type 1

5(2, 1) on the surface X, the surface X is singular at the point Oz, which is a singular point
of type 1

17(7, 2) on the surface X, the surface X is singular at the point Ot, which is a singular
point of type 1

21(5, 17) on the surface X. The surface X also one singular point O of type 1
7(5, 3)

such that the points O and Ot are cut out on the surface X by the equations x = z = 0.
The curves Cx and Cy are reducible. Namely, we have Cx = L+Zx and Cy = L+Zy, where

L, Zx and Zy are irreducible curves such that the curve L is cut out on X by the equations
x = y = 0. Easy calculations imply that

L · L = − 37
357

, L · Zx =
2
17
, Zx · Zx = − 9

119
, L · Zy =

1
7
, Zy · Zy =

9
35
,

the curve Zx is singular at the point Oz, the curve Zy is singular at the point Ot. Moreover, we
have Zx ∩ L = Oz and Zy ∩ L = Ot.

We have lct(X,Cx) = 5/8 and lct(X,Cy) = 3/7, which implies that lct(X) 6 25/8. Suppose
that lct(X) < 25/8. Then there is a Q-effective divisor D ≡ −KX such that the log pair
(X, 25

8 D) is not log canonical at some point P ∈ X. Then it follows from Remark 1.4.7 that
we may assume that the support of the divisor D does not contain either the curve L, or both
curves Zx and Zy.
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Suppose that P 6∈ Cx ∪ Cy. Then P ∈ X \ Sing(X) and

multP

(
D
)

6
340
3570

<
8
25

by Lemma 1.4.10, because the natural projection X 99K P(5, 14, 17) is a finite morphism outside
of the curve Cy, and H0(P,OP(85)) contains monomials x17, z5, x3y5. On the other hand, we
have multP (D) > 8/25, because (X, 25

8 D) is not log canonical at the point P . Thus, we see that
P ∈ Cx ∪ Cy.

Suppose that P ∈ L. Put D = mL + Ω, where Ω is an effective Q-divisor such that L 6⊂
Supp(Ω). If m 6= 0, then

1
119

= D · Zx =
(
mL+ Ω

)
· Zx > mL · Zx =

2m
17
,

which implies that m 6 1/14. Then it follows from Lemma 1.4.6 that

1 + 37m
357

=
(
−KX −mL

)
· L = Ω · L >



8
525

if P = Ot,

8
425

if P = Oz,

8
25

if P 6= Oz and P 6= Ot,

which implies, in particular, that m > 3/25. But m 6 1/14. The obtained contradiction implies
that P 6∈ L.

Suppose that P ∈ Zx. Put D = aZx + Υ, where Υ is an effective Q-divisor such that
Zx 6⊂ Supp(Υ). If a 6= 0, then

1
357

= D · L =
(
aZx + Υ

)
· L > aL · Zx =

2a
17
,

which implies that a 6 1/42. Then it follows from Lemma 1.4.6 that

1 + 9a
119

=
(
−KX − aZx

)
· Zx = Υ · Zx >


8

175
if P = O,

8
25

if P 6= O,

which is impossible, because a 6 1/42. Thus, we see that P 6∈ Cx.
Suppose that P = Ox. The curve Cz is irreducible and (X, 25

8 Cz) is log canonical. Thus, it
follows from the Remark 1.4.7 that we may assume that Cz 6⊂ Supp(D). Then

4
105

= D · Cz >
multOx

(
D
)

5
>

8
125

,

which is a contradiction. Hence, we see that P 6= Ox.
We see that P ∈ Zy and P ∈ X \Sing(X). Put D = bZy +∆, where ∆ is an effective Q-divisor

such that Zy 6⊂ Supp(∆). If b 6= 0, then
1

357
= D · L =

(
bZy + ∆

)
· L > bL · Zy =

b

7
,

which implies that b 6 1/51. Then it follows from Lemma 1.4.6 that
1 + 9b

35
=
(
−KX − bZy

)
· Zy = ∆ · Zy >

8
25

which is impossible, because b 6 1/51. The obtained contradiction completes the proof. �

Lemma 3.1.10. Suppose that (a0, a1, a2, a3, d) = (5, 19, 27, 31, 81). Then lct(X) = 25/6.

Proof. By the quasismoothness of X, the curve Cx is irreducible and reduced. Moreover, the
curve Cx is smooth outside of the singular locus of the surface X. It is easy to see that
lct(X, 1

5Cx) = 25/6. Hence, we have lct(X) 6 25/6.
Suppose that lct(X) < 25

6 . Then there is a Q-effective divisor D ≡ −KX such that the pair
(X, 25

6 D) is not log canonical at some point P ∈ X. We may assume that the support of D does
not contain the curve Cx by Remark 1.4.7.
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Suppose that P 6∈ Cx ∪Ox. Then
6
25

< multP (D) 6
190 · 81

5 · 19 · 27 · 31
<

6
25

by Lemma 1.4.10, becauseH0(P,OP(190)) contains x38, x11z, y10. Thus, we see that P ∈ Cx∪Ox.
Suppose that P ∈ X \ Sing(X). Then P ∈ Cx and

6
25

< multP (D) 6 D · Cx =
81

19 · 27 · 31
<

6
25
,

because (X, 25
6 D) is not log canonical at the point P ∈ X.

We see that P ∈ Sing(X). Suppose that P = Oy. Then

6
475

<
multOy(D)

19
6 D · Cx =

5 · 81
5 · 19 · 27 · 31

<
6

475
which is a contradiction. Hence, we see that P 6= Oy. Suppose that P = Ot. Then

6
775

<
multOt(D)

31
6 D · Cx =

5 · 81
5 · 19 · 27 · 31

<
6

775
which is a contradiction. Hence, we see that P = Ox.

Since the curve Cy is irreducible and the log pair (X, 1
19Cy) is log canonical at the point Ox,

we may assume that the support of D does not contain the curve Cy by Remark 1.4.7. Then

6
125

<
multOx(D)

5
6 D · Cy =

19 · 81
5 · 19 · 27 · 31

<
6

125
,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.1.11. Suppose that (a0, a1, a2, a3, d) = (5, 19, 27, 50, 100). Then lct(X) = 25/6.

Proof. By the quasismoothness of X, the curve Cx is irreducible and reduced. It is easy to
see that lct(X, 1

5Cx) = 25/6, which implies that lct(X) 6 25/6. Suppose that lct(X) < 25/6.
Then it follows from Remark 1.4.7 that there is a Q-effective divisor D ≡ −KX such that
Cx 6⊂ Supp(D), and the pair (X, 25

6 D) is not log canonical at some point P ∈ X.
Suppose that P ∈ X \ Sing(X) and P 6∈ Cx. Then

6
25

< multP (D) 6
270 · 100

5 · 19 · 27 · 50
<

6
25

by Lemma 1.4.10, because H0(P,OP(270)) contains x54, x16y10, z10. Thus, we see that either
P ∈ Sing(X) or P ∈ Cx.

Suppose that P ∈ X \ Sing(X) and P ∈ Cx. Then
6
25

< multP (D) 6 D · Cx =
100

19 · 27 · 50
<

6
25
,

because Cx 6⊂ Supp(D). Thus, we see that P ∈ Sing(X).
Note that X is singular at Oy and Oz. The surface X is also singular at two points P1 and

P2 on the curve defined by y = z = 0.
Suppose that P = Oy. Then it follows from Cx 6⊂ Supp(D) that

6
475

<
multOy(D)

19
6 D · Cx =

5 · 100
5 · 19 · 27 · 50

<
6

475
,

which is a contradiction. Suppose that P = Oz. Then
6

675
<

multOz(D)
27

6 D · Cx =
5 · 100

5 · 19 · 27 · 50
<

6
675

,

which is a contradiction. Thus, we see that P = Pi.
The curve Cz is irreducible, and the log pair (X, 25

6·27Cz) is log canonical. By Remark 1.4.7,
we may assume that the support of D does not contain the curve Cz. Then

6
125

<
multPi(D)

5
6 D · Cz =

27 · 100
5 · 19 · 27 · 50

<
6

125
,

which is a contradiction. �

Lemma 3.1.12. Suppose that (a0, a1, a2, a3, d) = (7, 11, 27, 37, 81). Then lct(X) = 49/12.
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Proof. The curve Cx is irreducible and reduced, because X is quasismooth. It is easy to see that
lct(X, 1

7Cx) = 49/12, which implies that lct(X) 6 49/12.
Suppose that lct(X) < 49/12. By Remark 1.4.7, there is a Q-effective divisor D ≡ −KX

such that the support of D does not contain the curve Cx, and the log pair (X, 49
12D) is not log

canonical at some point P ∈ X.
Since H0(P,OP(189)) contains x27, x16y7, z7, it follows from Lemma 1.4.10 that

12
49

< multP (D) 6
189 · 81

7 · 11 · 27 · 37
<

12
49

in the case when P ∈ X \ Sing(X) and P ∈ X \ Cx. On the other hand, we have

12
49

< multP (D) 6 D · Cx =
81

11 · 27 · 37
<

12
49

if P ∈ X \ Sing(X) and P ∈ Cx. Thus, we see that P ∈ Sing(X).
Either multOx(D) > 12/49, multOy(D) > 12/49 or multOt(D) > 12/49. In the former case

we have
12
539

<
multOy(D)

11
6 D · Cx =

7 · 81
7 · 11 · 27 · 37

<
12
539

,

which is a contradiction. If multOt(D) > 12/49, then

36
1813

<
multOt(D)multOt(Cx)

37
6 D · Cx =

7 · 81
3 · 7 · 11 · 27 · 37

<
12

1813
,

which is a contradiction. Therefore, we must have multOx(D) > 12/49. Since the curve Cy is
irreducible and the log pair (X, 49

11·12Cy) is log canonical at the point Ox, we may assume that
the support of D does not contain the curve Cy. Then, we obtain

12
343

<
multOx(D)

7
6 D · Cy =

11 · 81
7 · 11 · 27 · 37

<
12
343

,

which is a contradiction. �

Lemma 3.1.13. Suppose that (a0, a1, a2, a3) = (7, 11, 27, 44, 88). Then lct(X) = 35/8.

Proof. We have d = 88. The surface X is singular at the point Ox, which is a singular point of
type 1

7(3, 1) on the surface X. The surface X is singular at the point Oz, which is a singular
point of type 1

27(11, 17) on the surface X. The surface X has 2 singular points O1 and O2 of
type 1

11(7, 5) that are cut out on the surface X by the equations x = z = 0.
The curve Cx is irreducible. Namely, we have Cx = L1 + L2, where L1 and L2 are smooth

irreducible rational curves such that O1 ∈ L1 and O2 ∈ L2. Then

L1 · L1 = L2 · L2 = − 5
99
, L1 · L2 =

2
27
,

and L1 ∩ L2 = Oz.
We have lct(X,Cx) = 5/8, which implies that lct(X) 6 35/8. Suppose that lct(X) < 35/8.

Then there is a Q-effective divisor D ≡ −KX such that the log pair (X, 35
8 D) is not log canonical

at some point P ∈ X. Then it follows from Remark 1.4.7 that we may assume that Li 6⊂ Supp(D)
for some i = 1, 2.

Suppose that P 6∈ Cx and P 6= Ox. Then

multP

(
D
)

6
2
11

<
8
35

by Lemma 1.4.10, because H0(P,OP(189)) contains monomials x27, z7, x16y7. Thus, we see that
P ∈ Cx ∪Ox.

Suppose that P = Oz. Then

1
297

= D · Li >
multOz

(
D
)

27
>

8
945

,

which is a contradiction. Thus, we see that P 6= Oz.
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Suppose that P = Ox. The curve Cy is irreducible and (X, 35
8 Cy) is log canonical. Thus, we

may assume that Cy 6⊂ Supp(D) by Remark 1.4.7. Then

2
189

= D · Cy >
multOx

(
D
)
multOx

(
Cy

)
7

=
2multOx

(
D
)

7
>

16
245

,

which is a contradiction. Hence, we see that P 6= Ox. In particular, we see that P ∈ Cx.
Without loss of generality we may assume that P ∈ L1. Put

D = mL1 + Ω,

where Ω is an effective Q-divisor such that L1 6⊂ Supp(Ω). If m 6= 0, then
1

297
= D · Li =

(
mL1 + Ω

)
· Li > mL1 · Li =

2m
27
,

which implies that m 6 1/22. Then it follows from Lemma 1.4.6 that

1 + 15m
297

=
(
−KX −mL1

)
· L1 = Ω · L1 >


8

275
if P = O1,

8
25

if P 6= O1,

which implies, in particular, that m > 191/375. But m 6 1/22, which is a contradiction. The
obtained contradiction completes the proof. �

Lemma 3.1.14. Suppose that (a0, a1, a2, a3, d) = (9, 15, 17, 20, 60). Then lct(X) = 21/4.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

xz3 + x5y + y4 + t3 = 0.

Note that X is singular at Ox and Oz. It is also singular at a point P1 on the curve defined by
z = t = 0 and at a point P2 on the curve defined by x = z = 0. The point P1 is different from
the point Ox.

The curves Cx, Cy, and Cz are irreducible. We have

lct(X,
1
9
Cx) =

21
4
, lct(X,

1
15
Cy) =

2 · 15
3

, lct(X,
1
17
Cz) =

6 · 17
15

,

which implies, in particular, that lct(X) 6 21/4.
Suppose that lct(X) < 21/4. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 21
4 D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of D contains none of the curves Cx, Cy, Cz.
Suppose that P ∈ Cx and P 6∈ Sing(X). Then

4
21

< multP (D) 6 D · Cx =
60

15 · 17 · 20
<

4
21
,

which is a contradiction. Suppose that P ∈ Cy and P 6∈ Sing(X). Then
4
21

< multP (D) 6 D · Cy =
60

9 · 17 · 20
<

4
21
,

which is a contradiction. Suppose that P ∈ Cz and P 6∈ Sing(X). Then
4
21

< multP (D) 6 D · Cz =
60

5 · 15 · 20
<

4
21
,

which is a contradiction. Suppose that P = Ox. Then
4
21

< multOx(D) 6 9D · Cy =
9 · 15 · 60

9 · 15 · 17 · 20
<

4
21
,

which is a contradiction. Suppose that P = Oz. Then
4
21

< multOz(D) 6
17
3
D · Cx =

17 · 9 · 60
3 · 9 · 15 · 17 · 20

<
4
21
,

which is a contradiction. Suppose that P = P1. Then
4
21

< multP1(D) 6 3D · Cz =
3 · 17 · 60

9 · 15 · 17 · 20
<

4
21
,
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which is a contradiction. Suppose that P = P2. Then
4
21

< multP2(D) 6 5D · Cx =
5 · 9 · 60

9 · 15 · 17 · 20
<

4
21
.

which is a contradiction. Thus, there is a point Q ∈ X \ Sing(X) such that P 6∈ Cx ∪ Cy ∪ Cz

and multQ(D) > 4/21.
Let L be the pencil on X that is cut out by the pencil

λz3 + µx4y = 0,

where [λ : µ] ∈ P1. Then the base locus of the pencil L consists of the points P2 and Ox.
Let C be the unique curve in L that passes through the point Q. Then C is cut out on X by

an equation
x4y = αz3,

where α is a non-zero constant. The curve C is smooth outside of the points P2 and Ox by the
Bertini theorem, because C is isomorphic to a general curve in the pencil L unless α = −1. In
the case when α = −1, the curve C is smooth outside the points P2 and Ox as well.

We claim that the curve C is irreducible. If so, then we may assume that the support of D
does not contain the curve C and hence we obtain

4
21

< multQ(D) 6 D · C =
51 · 60

9 · 15 · 17 · 20
<

4
21
,

which is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in A4 defined

by the equations t3 + y4 + (1 + α)xz3 = 0 and x4y = αz3. Then the surface is isomorphic to
the surface in A4 defined by the equations t3 + y4 + βxz3 = 0 and x4y = z3, where β = 1
or 0. Then, we consider the surface in P4 defined by the equations t3w + y4 + βxz3 = 0 and
x4y = z3w2. We then take the affine piece defined by t 6= 1. Then, the affine piece is isomorphic
to the surface defined by the equation x4y + z3(y4 + βxz3)2 = 0 in A3. If β = 1, the surface
is irreducible. If β = 0, then it has an extra component defined by y = 0. However, this
component originates from the hyperplane w = 0 in P4. Therefore, the surface in A4 defined by
the equations t3 + y4 = 0 and x4y = z3 is also irreducible. �

Lemma 3.1.15. Suppose that (a0, a1, a2, a3, d) = (9, 15, 23, 23, 69). Then lct(X) = 6.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

zt(z − t) + xy4 + x6y = 0,

which implies that X is singular at three distinct points Ox, Oy, P1 on the curve defined by
z = t = 0. Also, the surface X is singular at three distinct points Oz, Ot, Q1 on the curve
defined by x = y = 0.

Note that lct(X, 1
9Cx) = 6, which implies that lct(X) 6 6. Suppose that lct(X) < 6. Then

there is a Q-effective divisor D ≡ −KX such that the pair (X, 6D) is not log canonical at some
point P ∈ X.

The curve Cx consists of three distinct curves L1 = {x = z = 0}, L2 = {x = t = 0} and
L3 = {x = z − t = 0} that intersect altogether at the point Oy. Similarly, the curve Cy consists
of three curves L′

1 = {y = z = 0}, L′
2 = {y = t = 0} and L′

3 = {y = z − t = 0} that intersect
altogether at the point Ox.

The pairs (X, 6
9Cx) and (X, 6

15Cy) are log canonical. By Remark 1.4.7, we may assume that
the support of D does not contain at least one component, say L′

1, of Cy. Also, we may assume
that the support of D does not contain at least one component, say L1, of Cx. Then

multOx(D) 6 9D · L′
1 =

9 · 23 · 15
9 · 15 · 23 · 23

<
1
6
>

15 · 23 · 9
9 · 15 · 23 · 23

= 15D · L1 > multOy(D),

which imply that P 6= Ox and P 6= Oy.
The curve Cz consists of three distinct curves L1, L′

1 and C = {z = y3 + x5 = 0}. It is easy
to see lct(X, 1

23Cz) = 8. Therefore, we may assume that the support of D does not contain at
least one component of Cz by Remark 1.4.7. Then the equalities

D · L1 =
1

15 · 23
<

1
6 · 23

, D · L′
1 =

1
9 · ·23

<
1

6 · 23
,

1D · C
3

=
1

9 · 23
<

1
6 · 23

45



show that multOt(D) < 1/6. Thus, we see that P 6= Ot. By the same way, one can show that
P 6= Oz and P 6= Q1.

Suppose that P = P1. Put D = mC + Ω, where Ω is an effective Q-divisor such that
C 6⊂ Supp(Ω). Then m 6 1/6, because (X, 6D) is log canonical at Oz. We have

C · (L1 + L′
1) =

5 + 3
23

=
8
23
, C · Cz =

1
3
,

which implies that C2 = C · (Cz − L1 − L′
1) = −1/69. Hence, it follows from Lemma 1.4.6 that

1
3 · 6

< Ω · C = D · C −mC2 =
1 +m

3 · 23
6

7
6 · 3 · 23

<
1

3 · 6
,

which is absurd. Thus, we see that P is a smooth point of the surface X.
Suppose that P is not contained in Cz ∪ Ct ∪ {z − t = 0}. Let E be the unique curve on

X such that E is given by the equation z = λt and P ∈ E, where λ is a non-zero constant
different from 1. Then E is quasismooth and hence irreducible. Therefore, we may assume that
the support of D does not contain the curve E. Then

multP (D) 6 D · E =
23 · 69

9 · 15 · 23 · 23
<

1
6
,

which is a contradiction. Thus, we see that P ∈ Cz ∪ Ct ∪ {z − t = 0}.
Suppose that P ∈ L1. Put D = aL1 + ∆, where ∆ is an effective Q-divisor, whose support

does not contain the curve L1. Then a 6 1/6. Hence, it follows from Lemma 1.4.6 that

1 < 6Ω · L1 = 6(D · L1 − aL2
1) =

6 · (1 + 37a)
345

6
6 + 37
345

< 1,

because L2
i = −37/345. Thus, we see that P 6∈ L1. Similarly, we see that P 6∈ L′

1 and P 6∈ C.
Thus, we see that P 6∈ Cz. By the same way, one can see that P is not contained in the curves
Ct and {z − t = 0}. The obtained contradiction completes the proof. �

Lemma 3.1.16. Suppose that (a0, a1, a2, a3, d) = (11, 29, 39, 49, 127). Then lct(X) = 33/4.

Proof. The hypersurface X is unique, it can be given by the equation

z2t+ yt2 + xy4 + x8z = 0,

and the singularities of X consist of a singular point of type 1/11(7, 5) at Ox, a singular point of
type 1/29(1, 2) at Oy, a singular point of type 1/39(11, 29) at Oz, and a singular point of type
1/49(11, 39) at Ot.

The curve Cx is reduced and reducible. We have Cx = Lxt + Mx, where Lxt and Mx are
irreducible curves such that Lxt is given by the equations x = t = 0, and Mx is given by the
equations x = z2 + yt = 0. Note that Oy ∈ Cx and Cx is smooth outside of the point Oy. We
have lct(X, 1/11Cx) = 33/4, which implies that lct(X) 6 33/4.

The curve Cy is reduced and reducible. We have Cy = Lyz + My, where Lyz and My are
irreducible curves such that Lyz is given by the equations y = z = 0, and My is given by the
equations y = x8 + zt = 0. The only singular point of the curve Cy is Ot. It is easy to see that
the log pair (X, 33

4·29Cy) is log terminal.
The curve Cz is reduced and reducible. We have Cz = Lyz +Mz, where Mz is an irreducible

curve that is given by the equations z = t2 + xy3 = 0. The only singular point of Cz is Ox. It
is easy to see that the log pair (X, 33

4·39Cz) is log terminal.
The curve Ct is reduced and reducible. We have Ct = Lxt +Mt, where Mt is an irreducible

curve that is given by the equations t = y4 + x7z = 0. The only singular point of Ct is Oz. It is
easy to see that the log pair (X, 33

4·49Ct) is log terminal.
Suppose that lct(X) < 33/4. Then there is an effective Q-divisor D ∼Q −KX such that the

log pair (X, 33/4D) is not log canonical at some point P ∈ X.
Suppose tat P = Oy. Let us show that this assumption leads to a contradiction. One has

Cx ·D =
127

29 · 39 · 49
, Lxt ·D =

1
29 · 39

, Mx ·D =
2

29 · 49
,
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and we may assume that either Lxt 6⊆ Supp(D) or Mx 6⊆ Supp(D) by Remark 1.4.7. If Lxt 6⊂
Supp(D), then

1
29 · 39

= Lxt ·D >
multOy(D)

29
>

4
29 · 33

>
1

29 · 39
,

which is a contradiction. Thus, we see that Mx ⊆ Supp (D). Then

2
29 · 49

= Mx ·D >
multOy(D)

29
>

4
29 · 33

>
2

29 · 49
,

which gives a contradiction. Thus, we see that P 6= Oy.
Suppose that P = Ox. Let us show that this assumption leads to a contradiction. One has

Cz ·D =
127

11 · 29 · 49
, Lyz ·D =

1
11 · 49

, Mz ·D =
2

11 · 29
,

and we may assume that either Lyz 6⊆ Supp(D) or Mz 6⊆ Supp(D) by Remark 1.4.7. If Lyz 6⊂
Supp(D), then

1
11 · 49

= Lyz ·D >
multOx(D)

11
>

4
11 · 33

>
1

11 · 49
,

which is a contradiction. Thus, we see that Mz ⊆ Supp (D). Then

2
11 · 29

= Mz ·D >
multOx(D)multOx(Mz)

11
>

2
11
· 4
33

>
2

11 · 29
,

because Mz is singular at the point Ox. The obtained contradiction shows that P 6= Ox.
Suppose that P = Oz. Let us show that this assumption leads to a contradiction. One has

Ct ·D =
127

11 · 29 · 39
, Mt ·D =

4
11 · 39

,

and we may assume that either Lxt 6⊆ Supp(D) or Mt 6⊆ Supp(D) by Remark 1.4.7. If Lxt 6⊆
Supp(D), then

1
29 · 39

= Lxt ·D >
multOz(D)

39
>

4
39 · 33

>
1

29 · 39
,

which is a contradiction. Thus, we see that Mt ⊆ Supp (D). Then

4
11 · 39

= Mt ·D >
multOz(D)multOz(Mt)

39
>

4
39
· 4
33

>
4

11 · 39
,

because Mt is singular at the point Oz. The obtained contradiction shows that P 6= Ot.
Suppose that P = Ot. Let us show that this assumption leads to a contradiction. By

Remark 1.4.7 we may assume that either Lxt 6⊆ Supp (D) or Mxt 6⊆ Supp (D). Note that

Mx · Lxt = 2/29,

which implies that M2
x = −76/1421 and L2

xt = −67/1131. Put

D = µMx + Ω,

where Ω is an effective Q-divisor such that Mx 6⊂ Supp (Ω). If µ > 0, then
2
29
µ = µMx · Lxt 6 D · Lxt =

1
29 · 39

,

which implies that µ 6 1/78. Then
1
49
· 4
33

< Ω ·Mx = D ·Mx − µM2
x =

2 + 76µ
29 · 49

<
1
49
· 4
33
,

by Lemma 1.4.6. The obtained contradiction shows that P 6= Ot.
Therefore, we see that P is a smooth point of the surface X.
Suppose that P ∈ Lxt. Put D = εLxt + ∆, where ∆ is an effective Q-divisor such that

Lxt 6⊂ Supp (∆). Then ε 6 4/33, because (X, 33
4 D) is log canonical at the point Oy ∈ Lxt. Thus,

it follows from Lemma 1.4.6 that
4
33

< ∆ · Lxt = D · Lxt − εL2
xt =

1 + 67ε
29 · 39

<
4
33
,

which is a contradiction. We see that P 6∈ Lxt.
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Suppose that P ∈ Mx. Put D = ωMx + Υ, where Υ is an effective Q-divisor such that
Mx 6⊂ Supp (Υ). Then ω 6 4/33, because (X, 33

4 D) is log canonical at the point Oy ∈ Mx.
Hence, it follows from Lemma 1.4.6 that

4
33

< Υ ·Mx = D ·Mx − ωM2
x =

2 + 76ω
29 · 49

<
4
33
,

which is a contradiction. We see that P 6∈Mx.
We see that P is a smooth point of X such that P is not contained in Cx. Then it follows

from Lemma 1.4.9 that
4
33

< multP (D) 6
539 · 127

11 · 29 · 39 · 49
<

4
33
,

because H0(P,OP(190)) contains x20y11, x49, x10z11 and t11. The obtained contradiction com-
pletes the proof. �

Lemma 3.1.17. Suppose that (a0, a1, a2, a3, d) = (11, 49, 69, 128, 256). Then lct(X) = 55/6.

Proof. By the quasismoothness of X, the curve Cx is irreducible and reduced. Moreover, it is
easy to see that lct(X, 1

11Cx) = 55/6, which implies that lct(X) 6 55/6.
Suppose that lct(X) < 55/6. By Remark 1.4.7, there is an effective Qdivisor D ≡ −KX such

that Cx 6⊂ Supp(D), and the log pair (X, 55
6 D) is not log canonical at some point P ∈ X.

Suppose that P ∈ X \ Sing(X) and P ∈ X \ Cx. Then
6
55

< multP (D) 6
759 · 256

11 · 49 · 69 · 128
<

6
55

by Lemma 1.4.10, because H0(P,OP(759)) contains x69, x20y11, z11. But
6
55

< multP (D) 6 D · Cx =
256

49 · 69 · 128
<

6
55

if P ∈ X \ Sing(X) and P ∈ Cx. Thus, we see that P ∈ Sing(X).
Suppose that P = Oy. Then

6
55

< multOy(D) 6 49D · Cx =
49 · 11 · 256

11 · 49 · 69 · 128
<

6
55
,

which is a contradiction. Suppose that P = Oz. Then
6
55

< multOz(D) 6 69D · Cx =
69 · 11 · 256

11 · 49 · 69 · 128
<

6
55
,

which is a contradiction. Therefore, we see that P = Ox.
Since the curve Cy is irreducible and the log pair (X, 1

49Cy) is log canonical at the point Ox,
we may assume that the support of D does not contain the curve Cy due to Remark 1.4.7. Then

6
55

< multOx(D) 6 11D · Cy =
11 · 49 · 256

11 · 49 · 69 · 128
<

6
55
,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.1.18. Suppose that (a0, a1, a2, a3, d) = (13, 23, 35, 57, 127). Then lct(X) = 65/8.

Proof. The only singularities of X are a singular point of type 1/13(9, 5) at Ox, a singular point
of type 1/23(13, 11) at Oy, a singular point of type 1/35(13, 23) at Oz, and a singular point of
type 1/57(23, 35) at Ot. Note that the hypersurface X is unique and can is given by an equation

z2t+ y4z + xt2 + x8y = 0.

The curve Cx is reduced and reducible. We have Cx = Lxz + Mx, where Lxz and Mx are
irreducible curves such that Lxz is given by the equations x = z = 0, and Mx is given by the
equations x = zt + y4 = 0. Note that the only singular point of the curve Cx is the point
Ot ∈ Cx. The inequality lct(X,Cx) = 5/8 holds, which implies that lct(X) 6 65/8.

The curve Cy is reduced and reducible. We have Cy = Lyt + My, where Lyt and My are
irreducible curves such that Lyt is given by the equations y = t = 0, and My is given by the
equations y = z2 + xt = 0. The only singular point of Cy is Ox. It is easy to see that the log
pair (X, 65

8·23Cy) is log terminal.
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The curve Cz is reduced and reducible. We have Cz = Lxz +Mz, where Mz is an irreducible
curve that is given by the equations z = t2 + x7y = 0. The only singular point of Cz is Oy. It
is easy to see that the log pair (X, 65

8·35Cz) is log terminal.
The curve Ct is reduced and reducible. We have Ct = Lyt +Mt, where Mt is an irreducible

curve that is given by the equations t = y3z + x8 = 0. The only singular point of Ct is Oz. It is
easy to see that the log pair (X, 65

8·57Ct) is log terminal.
Suppose that lct(X) < 65/8. Then there is an effective Q-divisor D ∼Q −KX such that the

log pair (X, 65/8D) is not log canonical at some point P ∈ X.
Suppose that P = Ot. Then Lxz ⊆ Supp (D), because

1
23 · 57

= Lxz ·D >
multOt(D)

57
>

8
57 · 65

>
1

23 · 57
,

if Lxz 6⊆ Supp (D). By Remark 1.4.7 we may assume that Mx 6⊆ Supp (D). Then

4
35 · 57

= Mx ·D >
multOt(D)

57
>

8
57 · 65

>
4

35 · 57
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P = Oz. Then Lyt ⊆ Supp (D), because

1
13 · 35

= Lyt ·D >
multOz(D)

35
>

8
35 · 65

>
1

13 · 35
,

if Lyt 6⊆ Supp (D). By Remark 1.4.7 we may assume that Mt 6⊆ Supp (D). Then

8
23 · 35

= Mt ·D >
multOz(D)multOz(Mt)

35
>

24
35 · 65

>
8

23 · 35
,

because Mt is singular at Ot. The obtained contradiction shows that P 6= Oz.
Suppose that P = Oy. Then Lxz ⊆ Supp (D), because

1
23 · 57

= Lxz ·D >
multOy(D)

23
>

8
23 · 65

>
1

23 · 57
,

if Lxz 6⊆ Supp (D). By Remark 1.4.7 we may assume that Mz 6⊆ Supp (D). Then

2
13 · 23

= Mz ·D >
multOy(D)multOy(Mz)

23
>

16
23 · 65

>
2

13 · 23
,

because Mz is singular at Oy. The obtained contradiction shows that P 6= Oy.
Suppose that P = Ox. Then Lyt ⊆ Supp (D), because

1
13 · 35

= Lxz ·D >
multOx(D)

13
>

8
13 · 65

>
1

13 · 35
,

if Lyt 6⊆ Supp (D). By Remark 1.4.7 we may assume that My 6⊆ Supp (D). Then

2
13 · 57

= My ·D >
multOx(D)

13
>

8
13 · 65

>
2

13 · 57
,

which is a contradiction. Thus, we see that P 6= Ox.
Therefore, we see that P is a smooth point of the surface X. Note that

L2
xz = − 79

23 · 57
, M2

x = − 88
35 · 57

.

Suppose that P ∈ Lxz. Put D = µLxz + Ω, where Ω is an effective Q-divisor such that
Lxz 6⊂ Supp (Ω). Then µ 6 8/65, because the log pair (X, 65

8 D) is log canonical at the point
Ot ∈ Lxz. Hence, it follows from Lemma 1.4.6 that

1 <
65
8

Ω · Lxz =
65
8

(D · Lxz − µL2
xz) =

65
8
· 1 + 79µ

23 · 57
< 1,

which is a contradiction. We see that P 6∈ Lxz.
Suppose that P ∈ Mx. Put D = εMx + ∆, where ∆ is an effective Q-divisor such that

Mx 6⊂ Supp (∆). Then ε 6 8/65, because the log pair (X, 65
8 D) is log canonical at the point

Ot ∈Mx. So, it follows from Lemma 1.4.6 that

1 <
65
8

∆ ·Mx =
65
8

(D ·Mx − εM2
x) =

65
8
· 4 + 88ε

35 · 57
< 1,
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which is a contradiction. We see that P 6∈ Cx.
Applying Lemma 1.4.9, we see that

8
65

< multP (D) 6
741 · 127

13 · 23 · 35 · 57
<

8
65
,

because H0(P,OP(741)) contains x11y26, x34y13, x57, x22z13, t13. The obtained contradiction
completes the proof. �

Lemma 3.1.19. Suppose that (a0, a1, a2, a3, d) = (13, 35, 81, 128, 256). Then lct(X) = 91/10.

Proof. The only singularities of X are a singular point of type 1/13(3, 11) at Ox, a singular
point of type 1/35(13, 23) at Oy, and a singular point of type 1/81(35, 47) at Oz. In fact, the
hypersurface X is unique and can be given by an equation

t2 + y5t+ xz3 + x17y = 0.

The curve Cx is reduced and irreducible. One can easily check that lct(X,Cx) = 7/10, which
implies lct(X) 6 91/10.

The curve Cy is reduced and irreducible. The only singular point of Cy is Ox. Moreover,
elementary calculations imply that the log pair (X, 91

10·35Cy) is log terminal.
Suppose that lct(X) < 91/10. Then there is an effective Q-divisor D ∼Q −KX such that the

log pair (X, 91
10D) is not log canonical at some point P ∈ X. By Remark 1.4.7 we may assume

neither Cx nor Cy is contained in Supp (D).
Suppose that P = Oz. Then

2
35 · 81

= Cx ·D >
multP (Cx)multP (D)

81
=

2multP (D)
81

>
2
81
· 10
91

>
2

35 · 81
,

which is a contradiction. Suppose that P = Oy. Then

2
35 · 81

= Cx ·D >
multP (D)

35
>

1
35
· 10
91

>
2

35 · 81
,

which is a contradiction. Suppose that P = Ox. Then

2
13 · 81

= Cy ·D >
multP (Cy)multP (D)

13
>

2
13
· 10
91

>
2

13 · 81
,

which is a contradiction. Hence, we see that P 6∈ Sing(X).
We see that P is a smooth point of the surface X. Suppose that P ∈ Cx. Then

2
35 · 81

= Cx ·D > multP (D) >
10
91

>
2

35 · 81
,

which is a contradiction. Thus, we see that P 6∈ Cx.
Applying Lemma 1.4.10, we see that

multP (D) 6
1053 · 256

13 · 35 · 81 · 128
<

10
91
,

because H0(P,OP(1053)) contains x81, x11y26 and z13. The obtained contradiction completes
the proof. �

3.2. Sporadic cases with I = 2

Lemma 3.2.1. Suppose that (a0, a1, a2, a3, d) = (2, 3, 4, 5, 12). Then lct(X) = 1 if X contains
the term yzt. And lct(X) = 7

12 if it contains no yzt.

Proof. We may assume that X is defined by the quasihomogenous equation

z(z − x2)(z − εx2) + y4 + xt2 + ayzt+ bxy2z + cx2yt+ dx3y2,

where ε (6= 0, 1), a, b, c, d are constants. Note that X is singular at the point Ot and three
points Q1 = [1 : 0 : 0 : 0], Q2 = [1 : 0 : 1 : 0], Q3 = [1 : 0 : ε : 0].

First, we consider the case where a = 0. The curve Cx is irreducible and reduced. Also we
have lct(X,Cx) = 7

12 . Suppose that lct(X) < 7
12 . Then there is an effective Q-divisor D ≡ −KX
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such that the log pair (X, 7
12D) is not log canonical at some point P ∈ X. Since H0(P,OP(6))

contains x3, y2, and xz, Lemma 1.4.10 implies that for a smooth point O ∈ X \ Cx

multOD <
2 · 12 · 6

2 · 3 · 4 · 5
<

12
7
.

Therefore, the point P cannot be a smooth point in X \ Cx. Since the curve Cx is irreducible
we may assume that the support of D does not contain the curve Cx. The inequality

5
3
D · Cx =

5 · 2 · 2 · 12
3 · 2 · 3 · 4 · 5

<
12
7

implies that the point P is located in the outside of Cx, i.e., the point P must be one of the
point Q1, Q2, Q3. The curve Cy is quasismooth. Therefore, we may assume that the support of
D does not contain the curve Cy. Then the inequality

multQiD > 2D · Cy =
2 · 2 · 3 · 12
2 · 3 · 4 · 5

<
12
7

gives us a contradiction.
From now we consider the case where a 6= 0. In this case,the curve Cx is also irreducible and

reduced. However, we have lct(X,Cx) = 1. Suppose that lct(X) < 1. Then there is an effective
Q-divisor D ≡ −KX such that the log pair (X,D) is not log canonical at some point P ∈ X.
Since

5
2
D · Cx =

5 · 2 · 2 · 12
2 · 2 · 3 · 4 · 5

= 1

the point P is located in the outside of Cx.
The curve Cz is irreducible and the log pair (X, 1

2Cz) is log canonical. Therefore, we may
assume that the support of D does not contain the curve Cz. The curve Cz is singular at the
point Q1. The inequality

multQ1D > D · Cz =
2 · 4 · 12

2 · 3 · 4 · 5
< 1

implies that P cannot be the point Q1. We consider the curves Cz−x2 defined by z = x2 and
Cz−εx2 defined by z = εx2. Then by coordinate changes we can see they have the same properties
as that of Cz. Moreover, we can see that the point P can be neither Q2 nor Q3. Therefore, the
point P must be located in the outside of Cx ∪ Cz ∪ Cz−x2 ∪ Cz−εx2 .

Let L be the pencil on X defined by λx2 + µz = 0, where [λ : µ] ∈ P1. Let C the curve in L
that passes through the point P . Then it is cut by z = αx2, where α 6= 0, 1, ε. The curve C is
isomorphic to the curve in P(2, 3, 5) defined by

x6 + y4 + xt2 + βx2yt = 0,

where β is a constant. We can easily see that the curve C is irreducible. Since

D · C =
2 · 4 · 12

2 · 3 · 4 · 5
< 1

it is enough to show that (X, 1
4C) is log canonical. If β 6= ζ2

√
2, where ζ is a forth root of

unity, then the curve C is quasismooth and hence the pair is log canonical at the point P . If
β = ζ2

√
2, then the curve C is singular at [1 : ζ : −ζ2

√
2]. However, elementary calculation

shows the pair (X, 1
4C) is log canonical. �

Lemma 3.2.2. Suppose that (a0, a1, a2, a3, d) = (2, 3, 4, 7, 14). Then lct(X) = 1.

Proof. We may assume that X is defined by the quasihomogenous equation

t2 − y2z2 + x(z − β1x
2)(z − β2x

2)(z − β3x
2) + εxy2(y2 − γx3)

where ε (6= 0), β1, β2, β3, γ are constants. Note that X is singular at the points Oy, Oz and
three points Q1 = [1 : 0 : β1 : 0], Q2 = [1 : 0 : β2 : 0], Q3 = [1 : 0 : β3 : 0]. The constants
β1, β2 and β3 are distinct since X is quasismooth. The curve Cx consists of two irreducible
reduced curves C− and C+. However, the curves Cy and Cz are irreducible. We can easily see
that lct(X,Cx) = 1, lct(X, 2

3Cy) = 3
2 and lct(X, 1

2Cz) > 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ≡ −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X. Since H0(P,OP(6)) contains x3, y2 and
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xz, Lemma 1.4.10 implies that the point P is either a singular point of X or a point of Cx.
Furthermore, since Cy is irreducible and hence we may assume that the support of D does not
contain the curve Cy the equality

2Cy ·D =
2 · 3 · 2 · 14
2 · 3 · 4 · 5

= 1

implies that P 6= Qi for each i = 1, 2, 3. In particular, the point must belong to Cx.
We have the following intersection numbers:

Cx · C− = Cx · C+ =
1
6
, C− · C+ =

7
12
, C2

− = C2
+ = − 5

12
.

We may assume that the support of D cannot contain both C− and C+. If D does not contain
the curve C+, then we obtain

multOyD, multOzD > 4D · C+ =
2
3
< 1.

On the other hand, if D does not contain the curve C−, then we obtain

multOyD, multOzD > 4D · C− =
2
3
< 1.

Therefore, the point P must be in Cx \ Sing(X).
We write D = mC+ +Ω, where the support of Ω does not contain the curve C+. Then m > 2

7

since D · C− ≥ mC+ · C−. Then we see C+ ·D −mC2
+ < 1. By the same way, we also obtain

C− ·D −mC2
− < 1. Then Lemma 1.4.8 completes the proof. �

Lemma 3.2.3. Suppose that (a0, a1, a2, a3, d) = (3, 4, 5, 10, 20). Then lct(X) = 3/2.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 = z4 + y5 + x5z + ε1xy
3z + ε2x

2yz2 + ε3x
4y2 = 0,

where εi ∈ C. Note that X is singular at the point Ox. Note that X is also singular at a point
O that is cut out on X by the equations x = z = 0, and X is also singular at points P1 and P2

that are cut out on X by the equations x = y = 0.
The curves Cx, Cy and Cz are irreducible. Moreover, we have

3
2

= lct(X,
2
3
Cx) < lct(X,

2
5
Cz) =

7
4
< lct(X,

2
4
Cy) = 2,

which implies, in particular, that lct(X) 6 3/2.
Suppose that lct(X) < 3/2. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 3
2D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx, Cy and Cz.
Suppose that P 6∈ Cx ∪ Cy ∪ Cz. Then there is a unique (possibly reducible or non-reduced)

curve Z ⊂ X that is cut out by
αy2 = zx

such that P ∈ Z, where 0 6= α ∈ C. There is a natural double cover ω : Z → C, where C is a
curve in P(3, 4, 5) that is given by the equations

αy2 = zx ⊂ P
(
3, 4, 5

) ∼= Proj
(
C
[
x, z, y

])
,

where wt(x) = 3, wt(y) = 4 and wt(z) = 5. The curve C is quasismooth, and ω(P ) is a
smooth point of P(3, 4, 5). Thus, we see that multP (Z) 6 2, the curve Z consists of at most 2
components, each component of Z is a smooth rational curve.

We may assume that Supp (D) does not contain at least one irreducible component of Z.
Thus, if Z is irreducible, then

8
15

= D · C > multP (D)multP (C) >
2
3
>

8
15
,

which is a contradiction. So, we see that C = C1 +C2, where C1 and C2 are smooth irreducible
rational curves. Then

C1 · C1 = C2 · C2 = −4
5
, C1 · C2 =

4
3
.
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Without loss of generality we may assume that P ∈ C1. Put D = δC1 + Ω, where Ω is an
effective Q-divisor such that C1 6⊂ Supp(Ω). If δ 6= 0, then

4
15

= D · C2 =
(
δC1 + Ω

)
· C2 > δC1 · C2 =

4δ
3
,

which implies that δ 6 1/5. Then it follows from Lemma 1.4.6 that

4 + 4δ
15

=
(
−KX − δC1

)
· C1 = Ω · C1 >

2
3
,

which implies that δ > 3/2. But δ 6 1/5. The obtained contradiction show that P ∈ Cx∪Cy∪Cz.
Suppose that P ∈ Cx and P 6∈ Sing(X). Then

1
5

= D · Cx > multP (D) >
2
3
>

1
5
,

which is a contradiction. Suppose that P ∈ Cy and P 6∈ Sing(X). Then

4
15

= D · Cy > multP (D) >
2
3
>

4
15
,

which is a contradiction. Suppose that P ∈ Cz and P 6∈ Sing(X). Then

1
3

= D · Cz > multP (D) >
2
3
>

1
3
,

which is a contradiction. Thus we see that P ∈ Sing(X).
Suppose that P = Ox. The curve Cz is singular at the point Ox. Thus, we have

1
3

= D · Cz >
multP (D)multP (Cz)

3
>

4
9
>

1
3
,

which is a contradiction. Suppose that P = O. Then

1
5

= D · Cx >
multP (D)

2
>

1
3
>

1
5
,

which is a contradiction. Hence, without loss of generality we may assume that P = P1. Note
that Cx ∩ Cy = {P1, P2}.

Let π : X̄ → X be a weighted blow up of the point P1 with weights (3, 4), let E be the
exceptional curve of π, let D̄, C̄x and C̄y be the proper transforms of D, Cx and Cy, respectively.
Then

KX̄ ≡ π∗(KX) +
2
5
E, C̄x ≡ π∗(Cx)− 3

5
E, C̄y ≡ π∗(Cy)−

4
5
E, D̄ ≡ π∗(D)− a

5
E,

where a is a positive rational. The curve E contains two singular points Q3 and Q4 of the surface
X̄ such that Q3 is a singular point of type 1

3(1, 1), and Q4 is a singular point of type 1
4(1, 1).

Then
C̄x 63 Q3 ∈ C̄y 63 Q4 ∈ C̄x,

and the intersection C̄x ∩ C̄y consists of the single point that dominates the point P2.
The log pull back of the log pair (X, 3

2D) is the log pair(
X̄,

3
2
D̄ +

3a
2 − 2

5
E

)
,

which is not log canonical at some point Q ∈ E. We have E2 = 5/12. Then

0 6 C̄x · D̄ = Cx ·D − a

5
E · C̄x = Cx ·D +

3a
25
E2 =

1
5
− a

20
,

which implies that a 6 4. Hence, we see that
3a
2 − 2

5
6

4
5
< 1,

which implies that the log pull back of the log pair (X, 3
2D) is log canonical in a punctured

neighborhood of the point Q.
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Note that the log pull back of the the log pair (X, 3
2D) is effective if and only if a > 4/3. On

the other hand, if a 6 4/3, then the log pair (X̄, 3
2D̄) is not log canonical at Q as well, which

implies that

a

12
=
a

5
E2 = D̄ · E >



2
3

if Q 6= Q3 and Q 6= Q4,

2
3

1
3

if Q = Q3,

2
3

1
4

if Q = Q4,

which implies, in particular, that a > 2, which is a contradiction. Hence, we see that a > 4/3
and the log pull back of the the log pair (X, 3

2D) is always effective. Then

multP (D) >
2
3

(
1−

3a
2 − 2

5

)
=

72
3 − a

15
.

Suppose that Q 6= Q3 and Q 6= Q4. Then it follows from Lemma 1.4.6 that
a

12
=
a

5
E2 = D̄ · E >

2
3
,

which is a contradiction. Therefore, we see that either Q = Q3 or Q = Q4.
Suppose that Q = Q4. Then

1
5
− a

20
= D̄ · C̄x >

multQ4(D)
4

>
72

3 − a

20
,

which immediately leads to a contradiction. Thus, we see that Q = Q3. Then

4
15
− a

15
= D̄ · C̄y >

multQ3(D)
3

>
72

3 − a

15
,

which immediately leads to a contradiction. �

Lemma 3.2.4. Suppose that (a0, a1, a2, a3, d) = (3, 4, 6, 7, 18). Then lct(X) = 1.

Proof. The surface X can be defined by the the quasihomogenous equation

t2y + y3z + (z − β1x
2)(z − β2x

2)(z − β3x
2)

where β1, β2, β3 are distinct nonzero constants. Note that X is singular at the points Oy, Ot

and three points P1 = [1 : 0 : β1 : 0], P2 = [1 : 0 : β2 : 0], P3 = [1 : 0 : β3 : 0] and one point
Q = [0 : −1 : 1 : 0].

The curve Cy is reducible. We have Cy = L1 +L2 +L3, where Li is an irreducible and reduced
curve such that Pi ∈ Li. We have

L1 · L1 = L2 · L2 = L3 · L3 = − 8
21
, L1 · L2 = L1 · L3 = L2 · L3 =

2
7
,

and L1 ∩ L2 ∩ L3 = Ot. The curve Cx is irreducible and

1 = lct
(
X,

2
4
Cy

)
< lct

(
X,

2
3
Cx

)
=

3
2
,

which implies, in particular, that lct(X) 6 1.
Suppose that lct(X) < 1. Then there is a Q-effective divisor D ≡ −KX such that the pair

(X,D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curve Cx. Similarly, we may assume that Lk 6⊆ Supp(D)
for some k = 1, 2, 3.

Since H0(P,OP(12)) contains x4, y3 and z2, it follows from Lemma 1.4.10 that P ∈ Cx ∪Cy.
Suppose that P = Ot. Then

2
21

= D · Lk >
multP

(
D
)

7
>

1
7
>

2
21
,

which is a contradiction. Thus, we see that P 6= Ot.
54



Suppose that P ∈ Cx. Then

3
14

= D · Cx >


1 if P 6= Oy and P 6= Q,

1
4

if P = Oy,

1
2

if P = Q,

because P 6= Ot. The obtained contradiction shows that P 6∈ Cx.
Without loss of generality we may assume that P ∈ L1. Put D = mL1 + Ω, where Ω is an

effective Q-divisor such that L1 6⊂ Supp(Ω). If m 6= 0, then
2
21

= D · Lk =
(
mL1 + Ω

)
· Lk > mL1 · Lk =

2m
7
,

which implies that m 6 1/3. Then it follows from Lemma 1.4.6 that

2 + 8m
21

=
(
−KX −mL1

)
· L1 = Ω · L1 >


1 if P 6= P1,

1
3

if P = P1,

which implies that m > 5/8. But we already proved that m 6 1/3. The obtained contradiction
completes the proof. �

Lemma 3.2.5. Suppose that (a0, a1, a2, a3, d) = (3, 4, 10, 15, 30). Then lct(X) = 3/2.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 = z3 + y5z + x10 + ε1x
2yz2 + ε2x

2y6 + ε3x
4y2z + ε4x

6y3,

where εi ∈ C. The surface X is singular at the point Oy. Note that X is also singular at a point
O2 that is cut out on X by the equations x = t = 0, the surface X is also singular at a point
O5 that is cut out on X by the equations x = y = 0, and X is also singular at points P1 and P2

that are cut out on X by the equations y = z = 0.
The curves Cx and Cy are irreducible. Moreover, we have

3
2

= lct
(
X,

2
3
Cx

)
> lct

(
X,

2
4
Cy

)
= 2,

which implies, in particular, that lct(X) 6 3/2.
Suppose that lct(X) < 3/2. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 3
2D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(20)) contains y5, y2x4, z2, it follows from Lemma 1.4.10 that P ∈ Sing(X) ∪

Cy.
Suppose that P ∈ Cy and P 6∈ Sing(X). Then

2
15

= D · Cy > multP (D) >
2
3
>

2
15
,

which is a contradiction. Suppose that P = P1. Then
2
15

= D · Cy > multP (D) >
2
9
>

2
15
,

which is a contradiction. Similarly, we see that P 6= P2.
Thus, we see that P ∈ Cx ∩ Sing(X). Then

1
10

= D · Cx >



multP

(
D
)

2
if P = O2,

multP

(
D
)

4
if P = Oy,

multP

(
D
)

5
if P = O5,

>



2
6

if P = O2,

2
12

if P = Oy,

2
15

if P = O5,

>
1
10

which is a contradiction. Thus, we see that lct(X) = 3/2. �
55



Lemma 3.2.6. Suppose that (a0, a1, a2, a3, d) = (3, 7, 8, 13, 29). Then lct(X) = 1.

Proof. The surface X can be given by the equation

z2t+ y3z + xt2 + x7z + ε1x
2yz2 + ε2x

3yt+ ε2x
5y2 = 0,

where εi ∈ C. The surface X is singular at the point Ox, Oy, Oz and Ot.
The curves Cx is reducible. Namely, we have Cx = L + Z, where L and Z are irreducible

curves such that the curve L is cut out on X by the equations x = z = 0. Easy calculations
imply that

L · L = −18
91
, L · Z =

3
13
, Z · Z = − 15

104
,

the curve Z contains the points Ozand Ot, the curve L contains the points Oy and Ot, and
L ∩ Z = Ot. We have lct(X,Cx) = 2/3, which implies that lct(X) 6 1.

Suppose that lct(X) < 1. Then there is a Q-effective divisor D ≡ −KX such that the log pair
(X,D) is not log canonical at some point P ∈ X. Then it follows from Remark 1.4.7 that we
may assume that the support of the divisor D does not contain either the curve L or the curve
Z.

The curve Cy is irreducible and (X, 2
7C) is log canonical. Thus, it follows from Remark 1.4.7

that we may assume that the support of the divisor D does not contain the curve Cy as well.
Suppose that P 6∈ Cx ∪ Cy. Then P ∈ X \ Sing(X) and

1 < multP

(
D
)

6
91
58

< 1

by Lemma 1.4.10, because the natural projection X 99K P(3, 7, 8) is a finite morphism outside of
the curve Cx, and H0(P,OP(24)) contains monomials x8, z3, xy3. Thus, we see that P ∈ Cx∪Cy.

Suppose that P ∈ Cy and P 6∈ Sing(X). Then

1 < multP (D) 6 D · Cy =
29
156

< 1,

which is a contradiction. Suppose that P = Ox. Then
1
3
<

multOx(D)
3

6 D · Cy =
29
156

<
1
3
,

which is a contradiction. Thus, we see that P ∈ Cx.
Suppose that P = Ot and L 6⊂ Supp(D). Then

1
13

<
multOt(D)

13
6 D · L =

2
91

<
1
13
,

which is a contradiction. Suppose that P = Ot and M 6⊂ Supp(D). Then

1
13

<
multOt(D)

13
6 D ·M =

3
52

<
1
13
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P ∈ L. Put D = mL + Ω, where Ω is an effective Q-divisor such that L 6⊂

Supp(Ω). If m 6= 0, then
3
52

= D · Z =
(
mL+ Ω

)
· Z > mL · Z =

3m
13
,

which implies that m 6 1/4. Then it follows from Lemma 1.4.6 that

2 + 18m
91

=
(
−KX −mL

)
· L = Ω · L >


1
7

if P = Oy,

1if P 6= Oy,

because P 6= Ot. Therefore, we see that m > 11/18. But m 6 1/4. The obtained contradiction
implies that P 6∈ L.

Suppose that P ∈ Z. Put D = aZ + Υ, where Υ is an effective Q-divisor such that Z 6⊂
Supp(Υ). If a 6= 0, then

2
91

= D · L =
(
aZ + Υ

)
· L > aL · Z =

3a
13
,
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which implies that a 6 2/21. Then it follows from Lemma 1.4.6 that

6 + 15a
104

=
(
−KX − aZ

)
· Z = Υ · Z >


1
8

if P = Oz,

1 if P 6= Oz,

which implies, in particular, that a > 7/15. But a 6 2/21. The obtained contradiction completes
the proof. �

Lemma 3.2.7. Suppose that (a0, a1, a2, a3, d) = (3, 10, 11, 19, 41). Then lct(X) = 1.

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ y3z + xt2 + x10z + ε1x
3yz2 + ε2x

4yt+ ε3x
7y2 = 0,

where εi ∈ C. The surface X is singular at the point Ox, Oy and Oz.
The curve Cx is reducible. We have Cx = Lxz + Zx, where Lxz and Zx are irreducible and

reduced curves such that Lxz is given by the equations x = z = 0, and Zx is given by the
equations x = tz + y3 = 0. Then

Lxz · Lxz =
−27

10 · 19
, Zx · Zx =

−21
11 · 19

, Lxz · Zx =
3
19
,

and Lxz ∩ Zx = Ot. The curve Cy is irreducible and

1 = lct
(
X,

2
3
Cx

)
< lct

(
X,

2
10
Cy

)
= 5,

which implies, in particular, that lct(X) 6 1.
Suppose that lct(X) < 1. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X,D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊆ Supp(D), or Zx 6⊆ Supp(D).

Since H0(P,OP(60)) contains x20, y6 and x6z2, it follows from Lemma 1.4.10 that P ∈
Sing(X) ∪ Cx.

Suppose that P = Ot. If Lxz 6⊆ Supp(D), then

1
5 · 19

= D · Lxz >
multP

(
D
)

19
>

1
19

>
1

5 · 19
,

which is a contradiction. If Zx 6⊆ Supp(D), then

8
11 · 19

= D · Zx >
multP

(
D
)

19
>

1
19

>
8

11 · 19
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P ∈ Lxz. Put D = mLxz + Ω, where Ω is an effective Q-divisor such that

Lxz 6⊂ Supp(Ω). If m 6= 0, then

8
11 · 19

= −KX · Zx = D · Zx =
(
mLxz + Ω

)
· Zx > mLxz · Zx =

3m
19
,

which implies that m 6 8/33. Then it follows from Lemma 1.4.6 that

2 + 27m
190

=
(
−KX −mLxz

)
· Lxz = Ω · Lxz >


1 if P 6= Oy,

1
10

if P = Oy,

which implies that m > 17/27. But we already proved that m 6 8/33. Thus, we see that
P 6∈ Lxz.

Suppose that P ∈ Zx. Put D = εZx + ∆, where ∆ is an effective Q-divisor such that
Zx 6⊂ Supp(∆). If ε 6= 0, then

2
190

= −KX · Lxz = D · Lxz =
(
εZx + ∆

)
· Lxz > εLxz · Zx =

3ε
19
,
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which implies that ε 6 1/15. Then it follows from Lemma 1.4.6 that

8 + 21ε
11 · 19

=
(
−KX − εZx

)
· Zx = ∆ · Zx >


1 if P 6= Oz,

1
11

if P = Oz,

which implies that ε > 11/21. But we already proved that ε 6 1/15. Thus, we see that P 6∈ Zx.
We see that P 6∈ Cx and P ∈ Sing(X). Then P = Ox. We have

82
627

= D · Cy >
multP

(
D
)

3
>

1
3
>

82
627

,

which is a contradiction. Thus, we see that lct(X) = 1. �

Lemma 3.2.8. Suppose that (a0, a1, a2, a3, d) = (5, 13, 19, 22, 57). Then lct(X) = 25/12.

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + xy4 + x7t+ εx5yz = 0,

where ε ∈ C. The surface X is singular at the points Ox, Oy and Ot.
The curves Cx and Cy are irreducible. Moreover, we have

25
12

= lct
(
X,

2
5
Cx

)
> lct

(
X,

2
13
Cy

)
=

65
21
,

which implies, in particular, that lct(X) 6 25/12.
Suppose that lct(X) < 25/12. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 25
12D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(110)) contains x9y5 x22 and t5, it follows from Lemma 1.4.10 that P ∈

Sing(X) ∪ Cx.
Suppose that P = Ox. Then

3
55

= D · Cy >
multP (D)

5
>

12
125

>
3
55
,

which is a contradiction. Thus, we see that P ∈ Cx. Then

3
143

= D · Cx >



multP

(
D
)

13
if P = Oy,

multP

(
D
)

22
if P = Ot,

multP

(
D
)

if P 6∈ Oy and P 6∈ Ot,

>
12

25 · 22
>

3
143

which is a contradiction. Thus, we see that lct(X) = 25/12. �

Lemma 3.2.9. Suppose that (a0, a1, a2, a3, d) = (5, 13, 19, 35, 70). Then lct(X) = 25/12.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x14 + εx5y2z = 0,

where ε ∈ C. The surface X is singular at the points Oy and Oz. It is also singular at two points
P1 and P2 that are cut out on X by the equations y = z = 0.

The curves Cx and Cy are irreducible. Moreover, we have

25
12

= lct
(
X,

2
5
Cx

)
> lct

(
X,

2
13
Cy

)
=

26
7
,

which implies, in particular, that lct(X) 6 25/12.
Suppose that lct(X) < 25/12. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 25
12D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(95)) contains x6y5, x19, z5, it follows from Lemma 1.4.10 that P ∈ Sing(X)∪

Cx.
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Suppose that P = P1. Then

4
95

= D · Cy >
multP1(D)

5
>

12
125

>
4
95
,

which is a contradiction. We see that P 6= P1. Similarly, we see that P 6= P2. Then P ∈ Cx and

4
247

= D · Cx >



multP

(
D
)

13
if P = Oy,

multP

(
D
)

19
if P = Oz,

multP

(
D
)

if P 6∈ Oy and P 6∈ Oz,

>
12

25 · 19
>

4
247

which is a contradiction. Thus, we see that lct(X) = 25/12. �

Lemma 3.2.10. Suppose that (a0, a1, a2, a3, d) = (6, 9, 10, 13, 36). Then lct(X) = 25/12.

Proof. The surface X can be defined by the quasihomogeneous equation

zt2 + y4 + xz3 + x6 + εx3y2 = 0,

where ε ∈ C. The surface X is singular at the points Oz and Ot. It is also singular at two points
P1 and P2 that are cut out on X by the equations z = t = 0. The surface X is also singular at
two points Q1 and Q2 that are cut out on X by the equations y = t = 0.

The curve Cz is reducible. We have Cz = C1 + C2, where C1 and C2 are irreducible and
reduced curves on X such that

C1 · C1 = C2 · C2 = − 8
39
, C1 · C2 =

6
13
,

and Q1 ∈ C1 63 Q2 ∈ C2 63 Q1. The curves Cx and Cy are irreducible. Then

25
12

= lct
(
X,

2
10
Cz

)
>

9
4

= lct
(
X,

2
6
Cx

)
>

9
2

= lct
(
X,

2
9
Cy

)
,

which implies, in particular, that lct(X) 6 25/12.
Suppose that lct(X) < 25/12. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 25
12D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy, and the support of the divisor
D does not contain either C1 or C2.

Since H0(P,OP(30)) contains x2t2, x5, z3, it follows from Lemma 1.4.10 that P ∈ Sing(X) ∪
Cx ∪ Cz.

Suppose that P ∈ C1. Put D = mC1 + Ω, where Ω is an effective Q-divisor such that
C1 6⊂ Supp(Ω). If m 6= 0, then

2
39

= −KX · C2 = D · C2 =
(
mC1 + Ω

)
· C2 > mC1 · C2 =

6m
13
,

which implies that m 6 1/9. Then it follows from Lemma 1.4.6 that

2 +m8
39

=
(
−KX −mC1

)
· C1 = Ω · C1 >


12
25

if P 6= Q1,

12
25

1
2

if P = W1,

>
6
25
,

which contradicts the inequality m 6 1/9. Thus, we see that P 6∈ C1. Similarly, we see that
P 6∈ C2.

Suppose that P = P1. Then

6
65

= D · Cy >
multP1(D)

3
>

12
75

>
6
65
,
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which is a contradiction. We see that P 6= P1. Similarly, we see that P 6= P2. Then P ∈ Cx and

4
65

= D · Cx >



multP

(
D
)

10
if P = Oz,

multP

(
D
)

13
if P = Ot,

multP

(
D
)

if P 6∈ Oz and P 6∈ Ot,

>
12

25 · 13
>

4
65

which is a contradiction. Thus, we see that lct(X) = 25/12. �

Lemma 3.2.11. Suppose that (a0, a1, a2, a3, d) = (7, 8, 19, 25, 57). Then lct(X) = 49/24.

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + y4t+ xt2 + x7y + εx2y3z = 0,

where ε ∈ C. The surface X is singular at the point Ox, Oy and Ot. The curves Cx, Cy and Cz

are irreducible. We have
49
24

= lct
(
X,

2
7
Cx

)
< lct

(
X,

2
8
Cy

)
=

10
3
< lct

(
X,

2
19
Cz

)
=

19
2
,

which implies, in particular, that lct(X) 6 49/24.
Suppose that lct(X) < 49/24. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 49
24D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx, Cy and Cz.
The point P is not contained in the curve P ∈ Cx, because otherwise we have

3
200

= D · Cx >



multP

(
D
)

8
if P = Oy,

multP

(
D
)

25
if P = Ot,

multP

(
D
)

if P 6= Oy and P 6= Ot,

which is impossible, because multP (D) > 24/49. Similarly, we see that P 6= Cy ∪ Cz. Then
there is a unique curve Z ⊂ X that is cut out by

zy2 = αx5

such that P ∈ Z, where 0 6= α ∈ C. We see that Cy 6⊂ Supp(Z). But the open subset Z\(Z∩Cy)
of the curve Z is a Z8-quotient of the affine curve

z − αx5 = z3 + t+ xt2 + x7 + εx2z = 0 ⊂ C3 ∼= Spec
(
C
[
x, z, t

])
,

which is isomorphic to a plane affine curve that is given by the equation

α3x15 + t+ xt2 + x7 + εαx7 = 0 ⊂ C2 ∼= Spec
(
C
[
x, t
])
,

which is easily seen to be irreducible. In particular, the curve Z is irreducible and multP (Z) 6 14.
Thus, we may assume that Supp(D) does not contain the curve Z by Remark 1.4.7. Then

3
40

= D · Z > multP

(
D
)
>

24
49
,

which is a contradiction. Thus, we see that lct(X) = 49/24. �

Lemma 3.2.12. Suppose that (a0, a1, a2, a3, d) = (7, 8, 19, 32, 64). Then lct(X) = 35/16.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y8 + xz3 + x8y + εx3y3z,

where ε ∈ C. Note that X is singular at the points Ox and Oz. The surface X also has two
singular points P1 and P2 of type 1

8(7, 3) that are cut out on X by the equations x = z = 0.
The curve Cx is reducible. We have Cx = C1 + C2, where C1 and C2 are irreducible reduced

curves such that
C1 · C1 = C2 · C2 = − 25

8 · 19
, C1 · C2 =

4
19
,
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and P1 ∈ C1, P2 ∈ C2. Then C1 ∩ C2 = Oz. The curve Cy is irreducible. We have

lct
(
X,

2
7
Cx

)
=

35
16

< lct
(
X,

2
8
Cy

)
=

10
3
,

which implies that lct(X) 6 35/16.
Suppose that lct(X) < 35/16. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 35
16D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of D does not contain the curve Cy. Moreover, we may assume that the support of D
does not contain either the curve C1 or the curve C2.

Suppose that P = Oz. We know that Ci 6⊂ Supp(D) for some i = 1, 2. Then

16
35

1
19

<
multOz(D)

19
6 D · Ci =

1
4 · 19

,

which is a contradiction. Therefore, we see that P 6= Oz.
Suppose that P ∈ C1. Put D = mC1 + Ω, where Ω is an effective Q-divisor such that

C1 6⊂ Supp(Ω). If m 6= 0, then

1
4 · 19

= −KX · C2 = D · C2 =
(
mC1 + Ω

)
· C2 > mC1 · C2 =

4m
19
,

which implies that m 6 1/16. Then it follows from Lemma 1.4.6 that

2 + 25m
8 · 19

=
(
−KX −mC1

)
· C1 = Ω · C1 >


16
35

if P 6= P1,

16
35

1
8

if P = P1,

which is impoassible, because m 6 1/16. Thus, we see that P 6∈ C1. Similarly, we see that
P 6∈ C2.

Suppose that P ∈ Cx. Then

4
7 · 19

= D · Cy >


multP

(
D
)

if P 6= Ox,

multOy

(
D
)

7
if P = Ox,

which leads to a contradiction, because multP (D) > 16/35. Thus, we see that P 6∈ Cx.
Thus, we see that P ∈ X \Sing(X) and P 6∈ Cx∪Cy. But H0(P,OP(64)) contains monomials

y8, x8y, y4t and t2, which is impossible by Lemma 1.4.10. The obtained contradiction completes
the proof. �

Lemma 3.2.13. Suppose that (a0, a1, a2, a3, d) = (9, 12, 13, 16, 48). Then lct(X) = 63/24.

Proof. The surface X can be defined by the quasihomogeneous equation

t3 + y4 + xz3 + x4y = 0,

the surface X is singular at the point Ox and Oz. The surface X is also singular at a point Q4

that is cut out on X by the equations z = x = 0. The surface X is also singular at a point Q3

such that Q3 6= Ox and the points Q3 and Qx are cut out on X by the equations z = t = 0.
The curves Cx, Cy, Cz and Ct are irreducible. We have

63
24

= lct
(
X,

2
9
Cx

)
< lct

(
X,

2
12
Cy

)
= 4 < lct

(
X,

2
13
Cz

)
=

13
2
< lct

(
X,

2
16
Ct

)
=

16
2
,

which implies, in particular, that lct(X) 6 63/24.
Suppose that lct(X) < 63/24. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 63
24D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx, Cy, Cz and Ct.
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The point P is not contained in the curve Cx, because otherwise we have

9
18 · 13

= D · Cx >



multP

(
D
)

13
if P = Oz,

multP

(
D
)

4
if P = Q4,

multP

(
D
)

if P 6= Oz and P 6= Q4,

which is impossible, because multP (D) > 24/63. Similarly, we see that P 6= Cy ∪Cz ∪Ct. Then
there is a unique curve Z ⊂ X that is cut out by

xt = αyz

such that P ∈ Z, where 0 6= α ∈ C. We see that Cx 6⊂ Supp(Z). But the open subset Z\(Z∩Cx)
of the curve Z is a Z9-quotient of the affine curve

t− αyz = t3 + y4 + z3 + y = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to a plane affine quartic curve that is given by the equation

α2y2z2 + y4 + z3 = 0 ⊂ C2 ∼= Spec
(
C
[
y, z
])
,

which is easily seen to be irreducible. In particular, the curve Z is irreducible and multP (Z) 6 3.
Thus, we may assume that Supp(D) does not contain the curve Z by Remark 1.4.7. Then

25
18 · 13

= D · Z > multP

(
D
)
>

24
63
,

which is a contradiction. Thus, we see that lct(X) = 63/24. �

Lemma 3.2.14. Suppose that (a0, a1, a2, a3, d) = (9, 12, 19, 19, 57). Then lct(X) = 3.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

zt(z − t) + xy4 + x5y = 0,

which implies that X is singular at three distinct points Ox, Oy, P1 on the curve defined by
z = t = 0. Also, the surface X is singular at three distinct points Oz, Ot, Q1 on the curve
defined by x = y = 0, where Oz is cut out by x = y = z = 0, the point Ot is cut out by
x = y = t = 0, and Q1 is cut out by x = y = z − t = 0.

Note that lct(X, 2
9Cx) = 3, which implies that lct(X) 6 3. Suppose that lct(X) < 3. Then

there is a Q-effective divisor D ≡ −KX such that the pair (X, 3D) is not log canonical at some
point P ∈ X.

The curve Cx consists of three distinct curves L1 = {x = z = 0}, L2 = {x = t = 0} and
L3 = {x = z − t = 0} that intersect altogether at the point Oy. We have

L2
1 = L2

2 = L2
2 =

−29
19 · 12

, L1 · L2 = L1 · L3 = L3 · L3 =
1
12
,

and D · L1 = D · L2 = D · L3 = 1/114. Similarly, the curve Cy consists of three curves
L′

1 = {y = z = 0}, L′
2 = {y = t = 0} and L′

3 = {y = z − t = 0} that intersect altogether at the
point Ox. We have

L′2
1 = L′2

2 = L′2
2 =

−26
19 · 9

, L′
1 · L′

2 = L′
1 · L′

3 = L′
3 · L′

3 =
1
9
,

and D · L′
1 = D · L′

2 = D · L′
3 = 2/171.

The pairs (X, 6
9Cx) and (X, 6

12Cy) are log canonical. By Remark 1.4.7, we may assume that
the support of D does not contain at least one component of Cy. Also, we may assume that the
support of D does not contain at least one component of Cx. Then arguing as in the proof of
Lemma 3.1.15, we see that P 6= Ox and P 6= Oy.

The curve Cz consists of three distinct curves L1, L′
1 and Mz, where Mz is an irreducible

reduced curve that is cut out by the equations z = y3 + x4 = 0. The curve Ct consists of three
distinct curves L2, L′

2 and Mt, where Mt is an irreducible reduced curve that is cut out by the
equations t = y3 + x4 = 0.
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Let C1 be the curve that is cut out on X by z − t. Then C1 consists of three distinct curves
L3, L′

3 and M1, where M1 is an irreducible reduced curve that is cut out by the equations
z − t = y3 + x4 = 0. We have

lct
(
X,

2
19
Cz

)
= lct

(
X,

2
19
Ct

)
= lct

(
X,

2
19
C1

)
=

7
2
,

and D ·Mz = D ·Mt = D ·M1 = 2/57. By Remark 1.4.7, we may assume that the support of D
does not contain at least one component of every curve Cz, Ct and C1. Arguing as in the proof
of Lemma 3.1.15, we see that P 6= Ot, P 6= Oz and P 6= Q1.

Suppose that P = P1. We have P1 = Mz ∩Mt ∩Mz, the log pair(
X,

3
18

(
Mz +Mt +Mz

))
is log canonical at P1, and Mz + Mt + Mz ∼ −18KX . By Remark 1.4.7, we may assume that
the support of D does not contain at least one curve among Mz, Mt and M1. Without loss of
generality, we may assume that the support of D does not contain the curve Mz. Then

2
57

= D ·Mz >
multP (D)

3
>

1
9
,

which is a contradiction. Thus, we see that P 6= P1. Then P 6∈ Sing(X).
Arguing Arguing as in the proof of Lemma 3.1.15, we see that P 6∈ Cz ∪Ct ∪C1. Then there

is a quasismooth irreducible curve E ⊂ X such that E is given by the equation z = λt and
P ∈ E, where λ is a non-zero constant different from 1. By Remark 1.4.7, we may assume that
the support of D does not contain the curve E. Then

1
3
< multP (D) 6 D · E =

1
18
,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.2.15. Suppose that (a0, a1, a2, a3, d) = (9, 19, 24, 31, 81). Then lct(X) = 77/30.

Proof. The surface X can be defined by the quasihomogeneous equation

yt2 + y3z + xz3 + x9 = 0,

and X is singular at the point Oy, Oz and Ot. The surface X is also singular at a point Q such
that Q 6= Oz and the points Q and Qz are cut out on X by the equations y = t = 0.

The curve Cx is reducible. We have Cx = Lxy + Zx, where Lxy and Zx are irreducible and
reduced curves such that Lxy is given by the equations x = y = 0, and Zx is given by the
equations x = t2 + y2z = 0. Then

Lxy · Lxy =
−53

24 · 31
, Zx · Zx =

−20
19 · 24

, Lxy · Zx =
2
24
,

and Lxy ∩ Zx = Oz. The curve Cy is also reducible. We have Cx = Lxy + Zy, where Zy is an
irreducible and reduced curve that is given by the equations y = z3 + x8 = 0. Then

Zy · Zy =
10

3 · 31
, Lxy · Zy =

3
31
, D · Zy =

2
3 · 31

, D · Zx =
4

19 · 24
, D · Lxy =

2
24 · 31

and Lxy ∩ Zy = Ot. The curve Cz is irreducible. We see that lct(X) 6 3, because

3 = lct
(
X,

2
9
Cx

)
< lct

(
X,

2
21
Cy

)
=

209
54

< lct
(
X,

2
24
Cz

)
=

22
3
.

Suppose that lct(X) < 3. Then there is a Q-effective divisor D ≡ −KX such that the
pair (X, 3D) is not log canonical at some point P . By Remark 1.4.7, we may assume that
Cz 6∈ Supp(D), and either Lxy 6⊆ Supp(D), or Zx 6⊆ Supp(D) 6⊃ Zy.

Since H0(P,OP(171)) contains y9, x19, x3z6, x11z3, it follows from Lemma 1.4.9 that P ∈
Sing(X) ∪ Cx ∪ Cy.

Suppose that P = Ot. If Lxy 6⊆ Supp(D), then

2
24 · 31

= D · Lxy >
multP

(
D
)

31
>

1
3 · 31

>
2

24 · 31
,
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which is a contradiction. If Zy 6⊆ Supp(D), then

2
3 · 31

= D · Zy >
multP

(
D
)
multP

(
Zy

)
31

=
3multP

(
D
)

31
>

1
31

>
2

3 · 31
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P = Oz. If Lxy 6⊆ Supp(D), then

2
24 · 31

= D · Lxy >
multP

(
D
)

24
>

1
3 · 24

>
2

24 · 31
,

which is a contradiction. If Zx 6⊆ Supp(D), then

4
19 · 24

= D · Zx >
multP

(
D
)
multP

(
Zx

)
24

=
2multP

(
D
)

24
>

2
3 · 24

>
4

19 · 24
,

which is a contradiction. Thus, we see that P 6= Oz.
Suppose that P = Oy. Then

18
19 · 31

= D · Cz >
multP

(
D
)
multP

(
Cz

)
19

=
2multP

(
D
)

19
>

2
3 · 19

>
18

19 · 31
,

which is a contradiction. Thus, we see that P 6= Oy.
Suppose that P ∈ Lxy. Put D = mLxy + Ω, where Ω is an effective Q-divisor such that

Lxy 6⊂ Supp(Ω). If m 6= 0, then

2
19 · 12

= −KX · Zx = D · Zx =
(
mLxy + Ω

)
· Zx > mLxy · Zx =

m

12
,

which implies that m 6 2/19. Then it follows from Lemma 1.4.6 that

2 + 53m
24 · 31

=
(
−KX −mLxy

)
· Lxy = Ω · Lxy >

1
3
,

which is impossible, because m 6 2/19. Thus, we see that P 6∈ Lxy.
Suppose that P ∈ Zy. Put D = εZy + ∆, where ∆ is an effective Q-divisor such that

Zy 6⊂ Supp(∆). If ε 6= 0, then

2
24 · 31

= −KX · Lxy = D · Lxy =
(
εZy + ∆

)
· Lxy > εLxy · Zy =

3ε
31
,

which implies that ε 6 1/36. Then it follows from Lemma 1.4.6 that

6− 30ε
9 · 31

=
(
−KX − εZy

)
· Zy = ∆ · Zx >


1
3

if P 6= Q,

1
9

if P = Q,

which is impossible, because ε 6 1/36. Thus, we see that P 6∈ Zy. Then P ∈ Zx.
Put D = δZx + Υ, where Υ is an effective Q-divisor such that Zx 6⊂ Supp(Υ). If ε 6= 0, then

1
12 · 31

= −KX · Lxy = D · Lxy =
(
δZx + Υ

)
· Lxy > δLxy · Zx =

1δ
12
,

which implies that δ 6 1/31. Then it follows from Lemma 1.4.6 that

4 + 20δ
19 · 24

=
(
−KX − δZx

)
· Zx = Υ · Zx >

1
3
,

which is impossible, because δ 6 1/31. The obtained contradiction shows that lct(X) = 3. �

Lemma 3.2.16. Suppose that (a0, a1, a2, a3, d) = (10, 19, 35, 43, 105). Then lct(X) = 57/14.

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + xy5 + x7z = 0,

and X is singular at the point Ox, Oy and Ot. The surface X is also singular at a point Q such
that Q 6= Ox and the points Q and Qx are cut out on X by the equations y = t = 0.
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The curve Cy is reducible. We have Cy = Lyz + Zy, where Lyz and Zy are irreducible and
reduced curves such that Lyz is given by the equations y = z = 0, and Zy is given by the
equations y = z2 + x7 = 0. Then

Lyz · Lyz =
−51

10 · 43
, Zy · Zy =

−32
10 · 43

, Lyz · Zy =
7
43
,

and Lyz ∩ Zy = Ot. The curve Cx is irreducible and

57
14

= lct
(
X,

2
19
Cy

)
< lct

(
X,

2
10
Cx

)
=

25
6
,

which implies, in particular, that lct(X) 6 57/14.
Suppose that lct(X) < 57/14. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 57
14D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curve Cx. Similarly, we may assume that either
Lyz 6⊆ Supp(D), or Zy 6⊆ Supp(D).

Since H0(P,OP(190)) contains x19, y10, x5z4 and x12z2, it follows from Lemma 1.4.10 that
P ∈ Sing(X) ∪ Cx ∪ Cy.

Suppose that P = Ot. If Lyz 6⊆ Supp(D), then

2
10 · 43

= D · Lyz >
multP

(
D
)

43
>

14
57 · 43

>
2

10 · 43
,

which is a contradiction. If Zy 6⊆ Supp(D), then

4
10 · 43

= D · Zy >
multP

(
D
)
multP

(
Zy

)
43

=
2multP

(
D
)

43
>

28
57 · 43

>
4

10 · 43
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P ∈ Lyz. Put D = mLyz + Ω, where Ω is an effective Q-divisor such that

Lyz 6⊂ Supp(Ω). If m 6= 0, then
4

10 · 43
= −KX · Zy = D · Zy =

(
mLyz + Ω

)
· Zy > mLyz · Zy =

7m
43
,

which implies that m 6 4/70. Then it follows from Lemma 1.4.6 that

2 + 51m
430

=
(
−KX −mLyz

)
· Lyz = Ω · Lyz >


14
57

if P 6= Ox,

14
57 · 10

if P = Ox,

which is impossible, because m 6 4/70. Thus, we see that P 6∈ Lyz.
Suppose that P ∈ Zy. Put D = εZy + ∆, where ∆ is an effective Q-divisor such that

Zy 6⊂ Supp(∆). If ε 6= 0, then
2

430
= −KX · Lyz = D · Lyz =

(
εZy + ∆

)
· Lyz > εLyz · Zy =

7ε
43
,

which implies that ε 6 2/70. Then it follows from Lemma 1.4.6 that

4 + 32ε
430

=
(
−KX − εZy

)
· Zy = ∆ · Zy >


14
57

if P 6= Q,

14
57 · 5

if P = Q,

which is impossible, because ε 6 2/70. Thus, we see that P 6∈ Zy.
We see that P ∈ Cx and P 6∈ Cy. Then have

6
19 · 43

= D · Cx >


14
57

if P 6= Oy,

14
57 · 19

if P = Oy,

which is a contradiction. Thus, we see that lct(X) = 57/14. �

Lemma 3.2.17. Suppose that (a0, a1, a2, a3, d) = (11, 21, 28, 47, 105). Then lct(X) = 77/30.
65



Proof. The surface X can be defined by the quasihomogeneous equation

yz3 + y5 + xt2 + x7z = 0,

and X is singular at the point Ox, Oz and Ot. The surface X is also singular at a point Q such
that Q 6= Oz and the points Q and Qz are cut out on X by the equations x = t = 0.

The curve Cx is reducible. We have Cx = Lxy + Zx, where Lxy and Zx are irreducible and
reduced curves such that Lxy is given by the equations x = y = 0, and Zx is given by the
equations x = z3 + y4 = 0. Then

Lxy · Lxy =
−73

28 · 47
, Zx · Zx =

−10
7 · 47

, Lxy · Zx =
3
47
,

and Lxy ∩ Zx = Ot. The curve Cy is also reducible. We have Cx = Lxy + Zy, where Zy is an
irreducible and reduced curve that is given by the equations y = t2 + x6z = 0. Then

Zy · Zy =
20

11 · 28
, Lxy · Zy =

2
28
, D · Zy =

4
11 · 28

, D · Zx =
2

11 · 47
, D · Lxy =

2
28 · 47

and Lxy ∩ Zy = Oz. We see that lct(X) 6 77/30, because

77
30

= lct
(
X,

2
11
Cx

)
< lct

(
X,

2
21
Cy

)
= 6.

Suppose that lct(X) < 77/30. Then there is a Q-effective divisor D ≡ −KX such that the
pair (X, 77

30D) is not log canonical at some point P . By Remark 1.4.7, we may assume that
either Lxy 6⊆ Supp(D), or Zx 6⊆ Supp(D) 6⊃ Zy.

Since H0(P,OP(517)) contains x5y22, x26y11, x47, x19z11, x47, t11, it follows from Lemma 1.4.9
that P ∈ Sing(X) ∪ Cx.

Suppose that P = Ot. If Lxy 6⊆ Supp(D), then

2
28 · 47

= D · Lxy >
multP

(
D
)

47
>

30
77 · 47

>
2

28 · 47
,

which is a contradiction. If Zx 6⊆ Supp(D), then

2
7 · 47

= D · Zx >
multP

(
D
)
multP

(
Zx

)
47

=
3multP

(
D
)

47
>

90
91 · 47

>
2

7 · 47
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P = Oz. If Lxy 6⊆ Supp(D), then

2
28 · 47

= D · Lxy >
multP

(
D
)

28
>

30
77 · 28

>
2

28 · 47
,

which is a contradiction. If Zy 6⊆ Supp(D), then

4
11 · 28

= D · Zy >
multP

(
D
)
multP

(
Zy

)
28

=
2multP

(
D
)

28
>

60
91 · 28

>
4

11 · 28
,

which is a contradiction. Thus, we see that P 6= Oz.
Suppose that P ∈ Lxy. Put D = mLxy + Ω, where Ω is an effective Q-divisor such that

Lxy 6⊂ Supp(Ω). If m 6= 0, then

2
7 · 47

= −KX · Zx = D · Zx =
(
mLxy + Ω

)
· Zx > mLxy · Zx =

3m
47
,

which implies that m 6 2/21. Then it follows from Lemma 1.4.6 that

2 + 73m
28 · 47

=
(
−KX −mLxy

)
· Lxy = Ω · Lxy >

30
77
,

which is impossible, because m 6 2/21. Thus, we see that P 6∈ Lxy.
Suppose that P ∈ Zx. Put D = εZx + ∆, where ∆ is an effective Q-divisor such that

Zx 6⊂ Supp(∆). If ε 6= 0, then

2
28 · 47

= −KX · Lxy = D · Lxy =
(
εZx + ∆

)
· Lxy > εLxy · Zx =

3ε
47
,
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which implies that ε 6 1/42. Then it follows from Lemma 1.4.6 that

2 + 10ε
7 · 47

=
(
−KX − εZx

)
· Zx = ∆ · Zx >


30
77

if P 6= Q,

30
77 · 7

if P = Q,

which is impossible, because ε 6 1/42. Thus, we see that P 6∈ Zx. Then P = Ox.
Put D = δZy + Υ, where Υ is an effective Q-divisor such that Zy 6⊂ Supp(Υ). If ε 6= 0, then

2
28 · 47

= −KX · Lxy = D · Lxy =
(
δZy + Υ

)
· Lxy > δLxy · Zy =

2δ
28
,

which implies that δ 6 1/47. Then it follows from Lemma 1.4.6 that
4− 20δ
11 · 28

=
(
−KX − δZy

)
· Zy = Υ · Zy >

30
77 · 11

,

which is impossible, because δ 6 1/47. The obtained contradiction shows that lct(X) = 77/30.
�

Lemma 3.2.18. Suppose that (a0, a1, a2, a3, d) = (11, 25, 32, 41, 107). Then lct(X) = 11/3.

Proof. The surface X can be defined by the quasihomogeneous equation

yt2 + y3z + xz3 + x6t = 0,

and X is singular at the point Ox, Oy, Oz and Ot.
The curve Cx is reducible. We have Cx = Lxy +Mx, where Lxy and Mx are irreducible and

reduced curves such that Lxy is given by the equations x = y = 0, and Mx is given by the
equations x = t2 + y2z = 0. Then

Lxy · Lxy =
−71

32 · 41
, Mx ·Mx =

−28
25 · 32

, Lxy ·Mx =
3
32
,

and Lxy ∩Mx = Oz. The curve Cy is also reducible. We have Cy = Lxy +My, where My is an
irreducible and reduced curve that is given by the equations y = z3 + x5t = 0. Then

My ·My =
42

11 · 41
, Lxy ·My =

3
41
, D ·My =

6
11 · 41

, D ·Mx =
3

11 · 32
, D · Lxy =

2
32 · 41

and Lxy ∩My = Ot. The curve Cz is also reducible. We have Cz = Lzt + Mz, where Lzt and
Mz are irreducible and reduced curves such that Lzt is given by the equations z = t = 0, and
Mz is given by the equations z = x6 + ty = 0. Then

Lzt · Lzt =
−34

11 · 25
, Lzt ·Mz =

6
25
, D · Lzt =

2
11 · 25

, D ·Mz =
12

25 · 41
and Lzt ∩ Mz = Oy. The curve Ct is also reducible. We have Ct = Lzt + Mt, where Mt

is an irreducible and reduced curve that is given by the equations t = y3 + xz2 = 0. Then
lct(X) 6 11/3, because

11
3

= lct
(
X,

2
11
Cx

)
<

50
9

= lct
(
X,

2
25
Cy

)
<

28
3

= lct
(
X,

2
32
Cz

)
<

205
18

= lct
(
X,

2
41
Ct

)
.

Suppose that lct(X) < 11/3. Then there is a Q-effective divisor D ≡ −KX such that the pair
(X, 11

3 D) is not log canonical at some point P . By Remark 1.4.7, we may assume that either
Supp(D) does not contain at least one irreducible component of Cx, Cy, Cz and Ct.

Since H0(P,OP(352)) contains x7y11, x32 and z11, it follows from Lemma 1.4.9 that P ∈
Sing(X) ∪ Cx ∪ Cy.

Suppose that P = Ot. If Lxy 6⊆ Supp(D), then

2
32 · 41

= D · Lxy >
multP

(
D
)

41
>

3
11 · 41

>
2

32 · 41
,

which is a contradiction. If My 6⊆ Supp(D), then

6
11 · 41

= D ·My >
multP

(
D
)
multP

(
My

)
41

=
3multP

(
D
)

41
>

9
11 · 41

>
6

11 · 41
,

which is a contradiction. Thus, we see that P 6= Ot.
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Suppose that P = Oz. If Lxy 6⊆ Supp(D), then

2
32 · 41

= D · Lxy >
multP

(
D
)

32
>

3
11 · 32

>
2

32 · 41
,

which is a contradiction. If Mx 6⊆ Supp(D), then

4
25 · 32

= D ·Mx >
multP

(
D
)

32
>

3
11 · 32

>
4

25 · 32
,

which is a contradiction. Thus, we see that P 6= Oz.
Suppose that P = Ox. If Lxz 6⊆ Supp(D), then

2
11 · 25

= D · Lzt >
multP

(
D
)

11
>

3
11 · 11

>
2

11 · 25
,

which is a contradiction. If Mt 6⊆ Supp(D), then

6
11 · 32

= D ·Mt >
multP

(
D
)

11
>

3
11 · 11

>
6

11 · 32
,

which is a contradiction. Thus, we see that P 6= Ox.
Suppose that P = Oy. If Lxz 6⊆ Supp(D), then

2
11 · 25

= D · Lzt >
multP

(
D
)

25
>

2
11 · 25

,

which is a contradiction. Thus, we see that Mz 6⊆ Supp(D). Put D = εLzt + ∆, where ∆ is an
effective Q-divisor such that Lzt 6⊂ Supp(Ω). If ε 6= 0, then

12
25 · 41

= D·Mz =
(
εLzt+∆

)
·Mz > εLzt·Mz+

multOy(D)− ε

25
> εLzt·Mz+

3/11− ε

25
=

6ε
25

+
3/11− ε

25
,

which implies that ε < 9/2255. Then it follows from Lemma 1.4.6 that
2 + 34ε
11 · 25

=
(
−KX − εLzt

)
· Lzt = Ω · Lzt >

3
11 · 25

,

which implies that ε > 1/34. But ε < 9/2255. Thus, we see that P 6= Oy. Then P 6∈ Sing(X).
Suppose that P ∈ Lxy. Put D = mLxy + Ω, where Ω is an effective Q-divisor such that

Lxy 6⊂ Supp(Ω). If m 6= 0, then
4

25 · 32
= −KX ·Mx = D ·Mx =

(
mLxy + Ω

)
·Mx > mLxy ·Mx =

2m
32
,

which implies that m 6 2/25. Then it follows from Lemma 1.4.6 that
2 + 71m
32 · 41

=
(
−KX −mLxy

)
· Lxy = Ω · Lxy >

3
11
,

which is impossible, because m 6 2/25. Thus, we see that P 6∈ Lxy.
Suppose that P ∈ Mx. Put D = δMx + Υ, where Υ is an effective Q-divisor such that

Mx 6⊂ Supp(Υ). If ε 6= 0, then
2

32 · 41
= −KX · Lxy = D · Lxy =

(
δMx + Υ

)
· Lxy > δLxy ·Mx =

2δ
32
,

which implies that δ 6 1/41. Then it follows from Lemma 1.4.6 that
4 + 28δ
25 · 32

=
(
−KX − δMx

)
·Mx = Υ ·Mx >

3
11
,

which contradicts to δ 6 1/41. Similarly, we see that P 6∈My, which is a contradiction. �

Lemma 3.2.19. Suppose that (a0, a1, a2, a3, d) = (11, 25, 34, 43, 111). Then lct(X) = 33/8.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy4 + x7z = 0.

The surface X is singular at the points Ox, Oy, Oz, Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt = {x = t = 0} (resp. Lyz = {y = z = 0}, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp.
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Ry = {y = zt + x7 = 0} , Rz = {z = xy3 + t2 = 0} , Rt = {t = y4 + x6z = 0} ). Also, we see
that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.
We can easily see that

lct(X,
2
11
Cx) =

33
8
< lct(X,

2
25
Cy), lct(X,

2
34
Cz), lct(X,

2
43
Ct).

Therefore, lct(X) ≤ 33
8 . Suppose lct(X) < 33

8 . Then, there is an effective Q-divisor D ≡ −KX

such that the log pair (X, 33
8 D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

D · Lxt =
1

17 · 25
, D ·Rx =

4
25 · 43

, D ·Ry =
14

34 · 43
,

D · Lyz =
2

11 · 43
, D ·Rz =

4
11 · 25

, D ·Rt =
8

11 · 34
,

Lxt ·Rx =
2
25
, Lyz ·Ry =

7
43
, Lyz ·Rz =

2
11
, Lxt ·Rt =

4
34
,

L2
xt = − 57

2 · 17 · 25
, R2

x = − 64
25 · 43

, R2
y = − 63

34 · 43
,

L2
yz = − 52

11 · 43
, R2

z =
18

11 · 25
, R2

t =
64

11 · 17
.

By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

25D · Lxt =
1
17

<
8
33
, 25D ·Rx =

4
43

<
8
33

imply P 6= Oy. The inequalities

11D · Lyz =
2
43

<
8
33
, 11D ·Rz =

4
25

<
8
33

imply P 6= Ox. The inequalities

34D · Lxt =
34

17 · 25
<

8
33
,

34
4
D ·Rt =

2
11

<
8
33

imply P 6= Oz. The curve Rt is singular at the point Oz.
We write D = a1Lxt + a2Lyz + a3Rx + a4Ry + a5Rz + a6Rt + Ω, where Ω is an effective

divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair
(X, 33

8 D) is log canonical at the points Ox, Oy, Oz, the numbers ai are at most 8
33 . Then by

Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪ Cz ∪ Ct or P = Ot:

33
8
D · Lxt − L2

xt =
261

8 · 17 · 25
< 1,

33
8
D · Lyz − L2

xt =
241

4 · 11 · 43
< 1,

33
8
D ·Rx −R2

x =
161

2 · 25 · 43
< 1,

33
8
D ·Ry −R2

y =
483

4 · 34 · 43
< 1,

33
8
D ·Rz −R2

z ≤
33
8
D ·Rz =

11
2 · 25

< 1,
33
8
D ·Rt −R2

t ≤
33
8
D ·Rt =

3
34

< 1.

Suppose that P 6= Ot. Then we consider the pencil L defined by λyt + µz2 = 0, [λ : µ] ∈ P1.
The base locus of the pencil consists of the curve Lyz and the point Oy. Let E be the unique
divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is
defined by the equation z2 = αyt, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy4 + x7z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
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z(z3 + xz7 + x7) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
Lyz and C. We have the intersection numbers

D · C = D · E −D · Lyz =
394

11 · 25 · 43
, C · Lyz = E · Lyz − L2

yz =
120

11 · 43
.

Also, we see
C2 = E · C − C · Lyz > 0.

By Lemma 1.4.8 the inequality D · C < 8
33 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lyz −D ·Rx =
14

11 · 43
,

M2 = E ·M − Lyz ·M −Rx ·M ≥ E ·M − Cy ·M − Cx ·M > 0.

By Lemma 1.4.8 the inequality D ·M < 8
33 gives us a contradiction. Therefore, P = Ot.

Put D = bRx + ∆, where ∆ is an effective divisor whose support contains neither Rx. By
Remark 1.4.7, we may assume that Rx 6⊆ Supp(∆) if b > 0. Thus, if b > 0, then

2
25 · 34

= D · Lxt > bRx · Lxt =
2b
25
,

which implies that b 6 1/34. On the other hand, it follows from Lemma 1.4.6 that

4 + 64a
25 · 43

= ∆ ·Rx >
8

33 · 43
,

which implies that b > 17/528. But 17/528 > 1/34, which is a contradiction. �

Lemma 3.2.20. Suppose that (a0, a1, a2, a3, d) = (11, 43, 61, 113, 226). Then lct(X) = 55/12.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x15z = 0,

the surface X is singular at the point Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

55
12

= lct
(
X,

2
11
Cx

)
< lct

(
X,

2
43
Cy

)
=

17 · 43
60

,

which implies, in particular, that lct(X) 6 55/12.
Suppose that lct(X) < 55/12. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 55
12D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(671)) contains x18y11, x61 and z11, it follows from Lemma 1.4.10 that P ∈

Sing(X) ∪ Cx.
Suppose that P ∈ Cx. Then

4
43 · 61

= D · Cx >



multP

(
D
)

43
if P = Oy,

multP

(
D
)

61
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 12/55. Thus, we see that P = Ox. Then

4
11 · 61

= D · Cy >
multP

(
D
)

11
>

12
55 · 11

>
4

11 · 61
,

which is a contradiction. Thus, we see that lct(X) = 55/12. �

Lemma 3.2.21. Suppose that (a0, a1, a2, a3, d) = (13, 18, 45, 61, 135). Then lct(X) = 91/30.
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Proof. The surface X can be defined by the quasihomogeneous equation

z3 + y5z + xt2 + x9y = 0,

and X is singular at the point Ox, Oy and Ot. The surface X is also singular at a point Q such
that Q 6= Oy and the points Q and Qy are cut out on X by the equations x = t = 0.

The curve Cx is reducible. We have Cx = Lxz + Zx, where Lxz and Zx are irreducible and
reduced curves such that Lxz is given by the equations x = z = 0, and Zx is given by the
equations x = z2 + y5 = 0. Then

Lxz · Lxz =
−77

18 · 61
, Zx · Zx =

−32
9 · 61

, Lxz · Zx =
5
61
,

and Lxz ∩ Zx = Ot. The curve Cy is irreducible and

91
30

= lct
(
X,

2
13
Cx

)
< lct

(
X,

2
18
Cy

)
=

15
2
,

which implies, in particular, that lct(X) 6 91/30.
Suppose that lct(X) < 91/30. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 91
30D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊆ Supp(D), or Zx 6⊆ Supp(D).

Since H0(P,OP(793)) contains x7y39, x25y26, x43y13, x61, x16z13, t13, it follows from
Lemma 1.4.9 that P ∈ Sing(X) ∪ Cx.

Suppose that P = Ot. If Lxz 6⊆ Supp(D), then

2
18 · 61

= D · Lxz >
multP

(
D
)

61
>

30
91 · 61

>
2

18 · 61
,

which is a contradiction. If Zx 6⊆ Supp(D), then

4
18 · 61

= D · Zx >
multP

(
D
)
multP

(
Zx

)
61

=
2multP

(
D
)

61
>

60
91 · 61

>
4

18 · 61
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P ∈ Lxz. Put D = mLxz + Ω, where Ω is an effective Q-divisor such that

Lxz 6⊂ Supp(Ω). If m 6= 0, then
4

18 · 61
= −KX · Zx = D · Zx =

(
mLxz + Ω

)
· Zx > mLxz · Zx =

5m
61
,

which implies that m 6 2/45. Then it follows from Lemma 1.4.6 that

2 + 77m
18 · 61

=
(
−KX −mLxz

)
· Lxz = Ω · Lxz >


30
91

if P 6= Oy,

30
91 · 18

if P = Oy,

which is impossible, because m 6 2/45. Thus, we see that P 6∈ Lxz.
Suppose that P ∈ Zx. Put D = εZx + ∆, where ∆ is an effective Q-divisor such that

Zx 6⊂ Supp(∆). If ε 6= 0, then
2

18 · 61
= −KX · Lxz = D · Lxz =

(
εZx + ∆

)
· Lxz > εLxz · Zx =

5ε
61
,

which implies that ε 6 1/45. Then it follows from Lemma 1.4.6 that

2 + 32ε
9 · 61

=
(
−KX − εZx

)
· Zx = ∆ · Zx >


30
91

if P 6= Q,

30
91 · 9

if P = Q,

which is impossible, because ε 6 1/45. Thus, we see that P 6∈ Zx. Then P = Ox. We have

6
13 · 61

= D · Cy >
multP (D)

13
>

30
91 · 13

>
6

13 · 61
,

which is a contradiction. Thus, we see that lct(X) = 91/30. �
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Lemma 3.2.22. Suppose that (a0, a1, a2, a3, d) = (13, 20, 29, 47, 107). Then lct(X) = 65/18.

Proof. The surface X can be defined by the quasihomogeneous equation

yz3 + y3t+ xt2 + x6z = 0,

and X is singular at the point Ox, Oy, Oz and Ot.
The curve Cx is reducible. We have Cx = Lxy +Mx, where Lxy and Mx are irreducible and

reduced curves such that Lxy is given by the equations x = y = 0, and Mx is given by the
equations x = z3 + y2t = 0. Then

Lxy · Lxy =
−74

29 · 47
, Mx ·Mx =

−21
20 · 47

, Lxy ·Mx =
3
47
,

and Lxy ∩ Mx = Ot. The curve Cy is also reducible. We have Cy = Lxy + My, where My

is an irreducible and reduced curve that is given by the equations y = t2 + x5z = 0. and
Lxy ∩My = Ot. The curve Cz is also reducible. We have Cz = Lzt + Mz, where Lzt and Mz

are irreducible and reduced curves such that Lzt is given by the equations z = t = 0, and Mz is
given by the equations z = y3 + xt2 = 0. Then Lzt ∩Mz = Ox. The curve Ct is also reducible.
We have Ct = Lzt + Mt, where Mt is an irreducible and reduced curve that is given by the
equations t = x6 + yz2 = 0. Then

D · Lxy =
2

29 · 47
, D · Lzt =

2
13 · 20

, D ·Mx =
6

20 · 47
,

D ·My =
4

13 · 19
, D ·Mz =

6
13 · 47

, D ·Mt =
12

20 · 29
,

and the inequality then lct(X) 6 65/18 holds, because

65
18

= lct
(
X,

2
13
Cx

)
<

70
12

= lct
(
X,

2
20
Cy

)
<

145
18

= lct
(
X,

2
29
Cz

)
<

82
9

= lct
(
X,

2
47
Ct

)
.

Suppose that lct(X) < 65/18. Then there is a Q-effective divisor D ≡ −KX such that the
pair (X, 65

18D) is not log canonical at some point P . By Remark 1.4.7, we may assume that
either Supp(D) does not contain at least one irreducible component of Cx, Cy, Cz and Ct.

Since H0(P,OP(377)) contains x9y13, x29 and z13, it follows from Lemma 1.4.9 that P ∈
Sing(X) ∪ Cx.

Suppose that P = Ot. If Lxy 6⊆ Supp(D), then

2
29 · 47

= D · Lxy >
multP

(
D
)

47
>

18
65 · 47

>
2

29 · 47
,

which is a contradiction. If Mx 6⊆ Supp(D), then

6
29 · 47

= D ·Mx >
multP

(
D
)
multP

(
Mx

)
47

=
2multP

(
D
)

47
>

36
65 · 47

>
6

29 · 47
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P = Oz. If Lxy 6⊆ Supp(D), then

6
29 · 47

= D · Lxy >
multP

(
D
)

32
>

18
65 · 29

>
6

29 · 47
,

which is a contradiction. If My 6⊆ Supp(D), then

4
13 · 29

= D ·My >
multP

(
D
)
multP

(
My

)
29

=
2multP

(
D
)

29
>

36
65 · 29

>
4

13 · 29
,

which is a contradiction. Thus, we see that P 6= Oz.
Suppose that P = Oy. If Lxz 6⊆ Supp(D), then

2
13 · 20

= D · Lzt >
multP

(
D
)

20
>

18
65 · 20

>
2

13 · 20
,

which is a contradiction. If Mt 6⊆ Supp(D), then

12
20 · 29

= D ·Mt >
multP

(
D
)
multP

(
Mt

)
20

=
2multP

(
D
)

20
>

36
65 · 20

>
12

20 · 29
,

72



which is a contradiction. Thus, we see that P 6= Oy.
Suppose that P = Oy. If Lxz 6⊆ Supp(D), then

2
13 · 20

= D · Lzt >
multP

(
D
)

20
>

18
65 · 13

>
2

13 · 20
,

which is a contradiction. If Mz 6⊆ Supp(D), then

6
13 · 47

= D ·Mz >
multP

(
D
)

13
>

18
65 · 13

>
6

13 · 47
,

which is a contradiction. Thus, we see that P 6= Ox. Then P 6∈ Sing(X).
Suppose that P ∈ Lxy. Put D = mLxy + Ω, where Ω is an effective Q-divisor such that

Lxy 6⊂ Supp(Ω). If m 6= 0, then
3

10 · 47
= −KX ·Mx = D ·Mx =

(
mLxy + Ω

)
·Mx > mLxy ·Mx =

3m
47
,

which implies that m 6 1/10. Then it follows from Lemma 1.4.6 that
2 + 74m
29 · 47

=
(
−KX −mLxy

)
· Lxy = Ω · Lxy >

18
65
,

which is impossible, because m 6 1/10. Thus, we see that P 6∈ Lxy.
Put D = δMx + Υ, where Υ is an effective Q-divisor such that Mx 6⊂ Supp(Υ). If ε 6= 0, then

2
29 · 47

= −KX · Lxy = D · Lxy =
(
δMx + Υ

)
· Lxy > δLxy ·Mx =

3δ
47
,

which implies that δ 6 2/87. Then it follows from Lemma 1.4.6 that

6 + 21δ
20 · 47

=
(
−KX − δMx

)
·Mx = Υ ·Mx >

18
65
,

which contradicts to δ 6 2/87. The obtained contradiction shows that lct(X) = 65/18. �

Lemma 3.2.23. Suppose that (a0, a1, a2, a3, d) = (13, 20, 31, 49, 111). Then lct(X) = 65/16.

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ y4z + xt2 + x7y = 0,

and X is singular at the point Ox, Oy, Oz and Ot.
The curve Cx is reducible. We have Cx = Lxz+Mx, where Lxz and Mx are irreducible reduced

curves such that Lxz is given by the equations x = z = 0, and Mx is given by the equations
x = y4 + zt = 0. Then

Lxz · Lxz =
−67

20 · 49
, Mx ·Mx =

−72
31 · 49

, Lxz ·Mx =
4
49
, D · Lxz =

2
20 · 49

, D ·Mx =
8

31 · 49
,

and Lxz∩Mx = Ot. The curves Cy, Cz and Ct are also reducible. We have Cy = Lyt+My, where
Lyt and My are irreducible reduced curves such that Lyt is given by the equations y = t = 0, and
My is given by the equations y = z2 +xt = 0. We have Cz = Lxz +Mz and Ct = Lyt +Mt, where
Mz and Mt are irreducible reduced curves such that Mz is given by the equations z =2 +x6y = 0,
and Mt is given by the equations t = x7 + zy3 = 0. Then the equalities

D · Lyt =
2

13 · 31
, D ·My =

4
13 · 49

, D ·Mz =
4

13 · 20
, D ·Mt =

14
20 · 31

,

holds. We have Lyt ∩My = Ox, Lxz ∩Mz = Oy and Lyt ∩Mt = Oz. Then lct(X) 6 65/16,
because
65
16

= lct
(
X,

2
13
Cx

)
<

30
4

= lct
(
X,

2
20
Cy

)
<

245
28

= lct
(
X,

2
49
Ct

)
<

62
7

= lct
(
X,

2
31
Cz

)
.

Suppose that lct(X) < 65/16. Then there is a Q-effective divisor D ≡ −KX such that the
pair (X, 65

16D) is not log canonical at some point P . By Remark 1.4.7, we may assume that
either Supp(D) does not contain at least one irreducible component of Cx, Cy, Cz and Ct.

Since H0(P,OP(403)) contains x11y13, x31 and z13, it follows from Lemma 1.4.9 that P ∈
Sing(X) ∪ Cx.
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Suppose that P = Ox. If Lyt 6⊆ Supp(D), then

2
13 · 31

= D · Lyt >
multP

(
D
)

13
>

16
65 · 13

>
2

13 · 31
=,

which is a contradiction. If My 6⊆ Supp(D), then

4
13 · 49

= D ·My >
multP

(
D
)

13
>

16
65 · 13

>
4

13 · 49
,

which is a contradiction. Thus, we see that P 6= Ox.
Suppose that P = Oy. If Lxz 6⊆ Supp(D), then

2
20 · 49

= D · Lxz >
multP

(
D
)

20
>

16
65 · 20

>
2

20 · 49
,

which is a contradiction. If Mz 6⊆ Supp(D), then

4
13 · 20

= D ·Mx >>
multP

(
D
)
multP

(
Mz

)
20

=
2multP

(
D
)

20
>

32
65 · 20

>
4

13 · 20
,

which is a contradiction. Thus, we see that P 6= Oy.
Suppose that P = Oz. If Lyt 6⊆ Supp(D), then

2
13 · 31

= D · Lyt >
multP

(
D
)

31
>

16
65 · 31

>
2

13 · 31
,

which is a contradiction. If Mt 6⊆ Supp(D), then

14
20 · 31

= D ·Mt >>
multP

(
D
)
multP

(
Mt

)
20

=
3multP

(
D
)

31
>

48
65 · 20

>
14

20 · 31
,

which is a contradiction. Thus, we see that P 6= Oz.
Suppose that P ∈ Mx \ Ot. Put D = δMx + Υ, where Υ is an effective Q-divisor such that

Mx 6⊂ Supp(Υ). If ε 6= 0, then

2
20 · 49

= −KX · Lxz = D · Lxz =
(
δMx + Υ

)
· Lxz > δLxz ·Mx =

4δ
49
,

which implies that δ 6 1/40. Then it follows from Lemma 1.4.6 that

8 + 72δ
31 · 49

=
(
−KX − δMx

)
·Mx = Υ ·Mx >

16
65
,

because P 6= Oz. But δ 6 1/40. Thus, we see that M 6∈Mx \Ot.
We see that P ∈ Lxz and P 6= Oy. If Lxz 6⊆ Supp(D), then

2
20 · 49

= D · Lxz >
multP

(
D
)

49
>

16
65 · 49

>
2

20 · 49
,

which is a contradiction. Thus, we see that Mx 6⊆ Supp(D). Put D = εLxz + ∆, where ∆ is an
effective Q-divisor such that Lxz 6⊂ Supp(Ω). Then

8
31 · 49

= D ·Mx =
(
εLxz + ∆

)
·Mx > εLxz ·Mx =

4ε
49
,

which implies that ε 6 2/31. Then it follows from Lemma 1.4.6 that

2 + 67ε
20 · 49

=
(
−KX − εLxz

)
· Lxz = Ω · Lxz >>


16
65

if P 6= Ot,

16
65 · 49

if P = Ot,

which implies that ε > 38/871 and P = Ot, because ε 6 2/31. Then

8
31 · 49

= D·Mx =
(
εLxz+∆

)
·Mx > εLxz·Mx+

multOt(D)− ε

49
> εLxz·Mx+

16/65− ε

49
=

4ε
49

+
16/65− ε

49
,

which implies that ε < 8/2015. But ε > 38/871 > 8/2015, which is a contradiction. �

Lemma 3.2.24. Suppose that (a0, a1, a2, a3, d) = (13, 31, 71, 113, 226). Then lct(X) = 91/20.
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Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y5z + xz3 + x15y = 0,

the surface X is singular at the point Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

91
20

= lct
(
X,

2
13
Cx

)
< lct

(
X,

2
31
Cy

)
=

17 · 71
60

,

which implies, in particular, that lct(X) 6 91/20.
Suppose that lct(X) < 91/20. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 91
20D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(923)) contains x71, y26x9, y13x40 and z13, it follows from Lemma 1.4.10 that

P ∈ Sing(X) ∪ Cx.
Suppose that P ∈ Cx. Then

4
31 · 71

= D · Cx >



multP

(
D
)

31
if P = Oy,

multP

(
D
)

71
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 20/91. Thus, we see that P = Ox. Then

4
13 · 71

= D · Cy >
multP

(
D
)

13
>

20
91 · 13

>
4

13 · 71
,

which is a contradiction. Thus, we see that lct(X) = 91/20. �

Lemma 3.2.25. Suppose that (a0, a1, a2, a3, d) = (14, 17, 29, 41, 99). Then lct(X) = 21/4.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy5 + x5z = 0.

The surface X is singular at the points Ox, Oy, Oz, Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt = {x = t = 0} (resp. Lyz = {y = z = 0}, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp.
Ry = {y = zt + x5 = 0} , Rz = {z = xy4 + t2 = 0} , Rt = {t = y5 + x4z = 0} ). Also, we see
that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.
We can easily see that

lct(X,
2
14
Cx) =

21
4
< lct(X,

2
17
Cy), lct(X,

2
29
Cz), lct(X,

2
41
Ct).

Therefore, lct(X) ≤ 21
4 . Suppose lct(X) < 21

4 . Then, there is an effective Q-divisor D ≡ −KX

such that the log pair (X, 21
4 D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

D · Lxt =
2

17 · 29
, D ·Rx =

4
17 · 41

, D ·Ry =
10

29 · 41
,

D · Lyz =
1

7 · 41
, D ·Rz =

2
7 · 17

, D ·Rt =
5

7 · 29
,

Lxt ·Rx =
2
17
, Lyz ·Ry =

5
41
, Lyz ·Rz =

1
7
, Lxt ·Rt =

5
29
,

L2
xt = − 44

17 · 29
, R2

x = − 54
17 · 41

, R2
y = − 60

29 · 41
,

L2
yz = − 53

14 · 41
, R2

z =
12

7 · 17
, R2

t =
135

14 · 29
.
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By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

17D · Lxt =
2
29

<
4
21
, 17D ·Rx =

4
41

<
4
21

imply P 6= Oy. The inequalities

14D · Lyz =
2
41

<
4
21
, 7D ·Rz =

2
17

<
4
21

imply P 6= Ox. The curve Rz is singular at the point Ox. The inequalities

29D · Lxt =
2
17

<
4
21
,

29
4
D ·Rt =

5
28

<
4
21

imply P 6= Oz. The curve Rt is singular at the point Oz.
We write D = a1Lxt + a2Lyz + a3Rx + a4Ry + a5Rz + a6Rt + Ω, where Ω is an effective

divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair
(X, 21

4 D) is log canonical at the points Ox, Oy, Oz, the numbers ai are at most 4
21 . Then by

Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪ Cz ∪ Ct or P = Ot:

21
4
D · Lxt − L2

xt =
109

2 · 17 · 29
< 1,

21
4
D · Lyz − L2

xt =
127

4 · 7 · 41
< 1,

21
4
D ·Rx −R2

x =
75

17 · 41
< 1,

21
4
D ·Ry −R2

y =
225

2 · 29 · 41
< 1,

21
4
D ·Rz −R2

z ≤
21
4
D ·Rz =

3
2 · 17

< 1,
21
4
D ·Rt −R2

t ≤
21
4
D ·Rt =

15
4 · 29

< 1.

Suppose that P 6= Ot. Then we consider the pencil L defined by λyt + µz2 = 0, [λ : µ] ∈ P1.
The base locus of the pencil consists of the curve Lyz and the point Oy. Let E be the unique
divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is
defined by the equation z2 = αyt, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy5 + x5z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
z(z+xz9 +x5) = 0. Therefore, the divisor E consists of two irreducible and reduced curves Lyz

and C. We have the intersection number

D · C = D · E −D · Lyz =
181

7 · 17 · 41
.

Also, we see
C2 = E · C − C · Lyz ≥ E · C − Cy · C > 0

since C is different from Ry. By Lemma 1.4.8 the inequality D ·C < 4
21 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lyz −D ·Rx =
153

7 · 17 · 41
,

M2 = E ·M − Lyz ·M −Rx ·M ≥ E ·M − Cy ·M − Cx ·M > 0.

By Lemma 1.4.8 the inequality D ·M < 4
21 gives us a contradiction. Therefore, P = Ot.

Put D = aLyz + bRx + ∆, where ∆ is an effective divisor whose support contains neither Lyz

nor Rx. Then a > 0, because otherwise
2

14 · 41
= D · Lyz => multP (D)41 >

4
21 · 41

>
2

14 · 41
,

which is a contradiction. Therefore, we may assume that Ry 6⊆ Supp(∆) by Remark 1.4.7.
Similarly, we may assume that Lxt 6⊆ Supp(∆) if b > 0.
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Let us find upper bounds for a and b. If b > 0, then

2
17 · 29

= D · Lxt > bRx · Lxt =
2b
17
,

which implies that b 6 1/29. Similarly, we have

10
29 · 41

= D ·Ry >
7a
41

+
b

41
+

multOt(D)− a− b

41
>

6a+ 4
21

41
,

which implies that a < 47/1827. On the other hand, it follows from Lemma 1.4.6 that

2 + 53a
14 · 41

= ∆ · Lyz >
4/21− b

41
,

which implies that a > 2/159.
Let π : X̄ → X be the weighted blow up of the point Ot with weight (9, 4), and let F be the

exceptional curve of the morphism π. Then F contains two singular points Q9 and Q4 such that
Q9 is a singular point of type 1

9(1, 1), and Q4 is a singular point of type 1
4(1, 3). Then

KX̄ = π∗(KX)−38
41
F, L̄yz = π∗(Lyz)−

4
41
F, R̄x = π∗(Rx)− 9

41
F, R̄y = π∗(Ry)−

4
41
F, ∆̄ = π∗(∆)− c

41
F,

where L̄yz, R̄x, R̄y and ∆̄ are the proper transforms of Lyz, Rx, Ry and ∆ by π, respectively,
and c is a non-negative rational number c. Note that F ∩ R̄x = Q4 and F ∩ L̄yz = Q9.

The log pull-back of the log pair (X, 21
4 D) by π is the log pair(

X̄,
21a
4
L̄yz +

21b
4
R̄x +

21
4

∆̄ + θ1F

)
,

which is not log canonical at some point Q ∈ F , where θ1 = (21(c + 4a + 9b)/4 + 28)/41. We
have

2 + 53a
14 · 41

− b

41
− c

9 · 41
= ∆̄ · L̄yz > 0 6 ∆̄ · R̄x =

4 + 54b
17 · 41

− a

41
− c

4 · 41
,

which implies that θ1 < 1, because b < 1/29. Similarly, we see that

0 6 ∆̄ · R̄y =
10

29 · 41
− 7a

41
− b

41
− c

9 · 41
.

Suppose that Q 6∈ R̄x ∪ L̄yz. Then

21c
16 · 9

=
21
4

∆̄ · F > 1

by Lemma 1.4.6. Thus, we see that c > 48/7. But the system of inequalities
2 + 53a
14 · 41

− b

41
− c

9 · 41
> 0,

4 + 54b
17 · 41

− a

41
− c

4 · 41
> 0, b 6 1/29,

c > 48/7,

is inconsistent. Thus, we see that Q ∈ R̄x ∪ L̄yz.
Suppose that Q ∈ M̄x. Then Q = Q4, and it follows from Lemma 1.4.6 that

21
4

(
4 + 54b
17 · 41

− a

41
− c

4 · 41

)
+
θ1
4

=
(

21
4

∆̄ + θ1F

)
·M̄x >

1
4
<

(
21
4

∆̄ +
21b
4
M̄x

)
·F =

21
4

(
c

4 · 9
+
b

4

)
which implies that b > 548/7749. But b < 1/29, which is a contradiction.

We see that Q = Q9. Then it follows from Lemma 1.4.6 that

21
4

(
2 + 53a
14 · 41

− b

41
− c

9 · 41

)
+
θ1
9

=
(

21
4

∆̄ + θ1F

)
·L̄yz >

1
9
<

(
21
4

∆̄ +
21a
4
L̄yz

)
·F =

21
4

( c

4 · 9
+
a

9

)
,
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which leads to a contradiction, because the system of inequalities

21
4

( c

4 · 9
+
a

9

)
>

1
9
,

21
4

(
2 + 53a
14 · 41

− b

41
− c

9 · 41

)
+
θ1
9
>

1
9
,

2 + 53a
14 · 41

− b

41
− c

9 · 41
> 0,

4 + 54b
17 · 41

− a

41
− c

4 · 41
> 0,

a < 47/1827,

b 6 1/29,

is inconsistent. The obtained contradiction completes the proof. �

3.3. Sporadic cases with I = 3

Lemma 3.3.1. Suppose that (a0, a1, a2, a3, d) = (5, 7, 11, 13, 33). Then lct(X) = 49/36.

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + xy4 + x4t+ εx3yz = 0,

where ε ∈ C. Note that X is singular at Ox, Oy and Ot.
The curves Cx and Cy are irreducible. Moreover, we have

25
18

= lct(X,
3
5
Cx) > lct(X,

3
7
Cy) =

49
36
,

which implies, in particular, that lct(X) 6 49/36.
Suppose that lct(X) < 49/36. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 49
36D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of D does not contain the curves Cx and Cy.
Suppose that P ∈ Cx and P 6∈ Sing(X). Then

36
49

< multP (D) 6 D · Cx =
9
91

<
36
49
,

which is a contradiction. Suppose that P ∈ Cy and P 6∈ Sing(X). Then
36
49

< multP (D) 6 D · Cy =
9
65

<
36
49
,

which is a contradiction. Suppose that P = Ox. Then
36
49

1
5
<

multOx(D)
5

6 D · Cy =
9
65

<
36
49

1
5
,

which is a contradiction. Suppose that P = Ot. Then

36
49

3
13

<
3multOt(D)

13
=

multOt(D)multOt(Cy)
13

6 D · Cy =
9
65

<
36
49

3
13
,

which is a contradiction. Suppose that P = Oy. Then

36
49

1
7
<

multOy(D)
7

6 D · Cx =
9
91

<
36
49

1
7
,

which is a contradiction. Thus, we see that P ∈ X \ Sing(X) and P 6∈ Cx ∪ Cy.
Let L be the pencil on X that is cut out by the pencil

λx7 + µy5 = 0,

where [λ : µ] ∈ P1. Then the base locus of the pencil L consists of the point Ot.
Let C be the unique curve in L that passes through the point P . Suppose that C is irreducible

and reduced. Then multP (C) 6 3, because C is a triple cover of the curve

λx7 + µy5 = 0 ⊂ P
(
5, 7, 13

) ∼= Proj
(
C
[
x, y, t

])
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such that λ 6= 0 and µ 6= 0. In particular, the log pair (X, 3
35C) is log canonical. Thus, we may

assume that the support of D does not contain the curve C and hence we obtain
10
13

< multP (D) 6 D · C =
9
13

<
10
13
,

which is a contradiction. Thus, to conclude the proof we must prove that C is irreducible and
reduced.

Let S ⊂ C4 be an affine subscheme that is given by the equations

y5 − αx7 = z3 + yt2 + xy4 + x4t+ εx3yz = 0 ⊂ C4 ∼= Spec
(
C
[
x, y, z, t

])
,

where ε ∈ C and α ∈ C4 such that α 6= 0. To conclude the proof, it is enough to prove that the
subscheme S is an irreducible. For simplicity, we treat S as a surface in C4.

Let S̄ ⊂ P4 be a natural compactification of the surface S ⊂ C4 that is given by the equations

ȳ5w̄2 − αx̄7 = z̄3w̄2 + ȳt̄2w̄2 + x̄ȳ4 + x̄4t̄+ εx̄3ȳz̄ = 0 ⊂ P4 ∼= Proj
(
C
[
x̄, ȳ, z̄, t̄, w̄

])
,

and let H̄ be a surface in P4 that is given by the equations x̄ = w̄ = 0. Then

Supp(S̄) = Supp(S̄′) ∪ H̄,

where S̄′ is another compactification of the affine surface S. Then S is irreducible ⇐⇒ S̄′ is
irreducible.

Let T̄ be be a hyperplane in P4 that is given by the equation ȳ = 0. Then the intersection
T̄ ∩ S̄ is one-dimensional. Consider an affine open subset U = P4 \ T̄ ⊂ P4. Put S̆′ = U ∩ S̄′,
S̆ = U ∩ S̄ and H̆ = U ∩ H̄. Then S is irreducible ⇐⇒ S̆′ is irreducible.

The surface S̆ can be given by the equations

w̆2 − αx̆7 = z̆3w̆2 + t̆2w̆2 + x̆+ x̆4t̆+ εx̆3z̆ = 0 ⊂ C4 ∼= Spec
(
C
[
x̆, z̆, t̆, w̆

])
,

where H̆ is given by x̆ = w̆ = 0. Therefore, the surface S̆ is isomorphic to an affine hypersurface

αx̆7z̆3 + αx̆7t̆2 + x̆+ x̆4t̆+ εx̆3z̆ = 0 ⊂ C3 ∼= Spec
(
C
[
x̆, z̆, t̆

])
,

where H̆ is given by x̆ = 0. Thus, we see that the surface S̆′ is a hypersurface in C3 that is
given by the zeroes of the polynomial

f(x̆, z̆, t̆) = αx̆6z̆3 + αx̆6t̆2 + 1 + x̆3t̆+ εx̆2z̆,

which implies that S is irreducible ⇐⇒ the polynomial f(x̆, z̆, t̆) is irreducible. But elementary
calculations imply that the polynomial f(x̆, z̆, t̆) is irreducible. �

Lemma 3.3.2. Suppose that (a0, a1, a2, a3, d) = (5, 7, 11, 20, 40). Then lct(X) = 25/18.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x4t+ x8 + εx3y2z,

where ε ∈ C. Note that X is singular at the points Oy and Oz. The surface X also has two
singular points P1 and P2 of type 1

5(2, 1) that are cut out on X by the equations y = z = 0.
The curve Cx is irreducible. We have

lct(X,
3
5
Cx) =

25
18
,

which implies that lct(X) 6 49/36. The curve Cy is reducible. We have Cy = C1 + C2, where
C1 and C2 are irreducible reduced curves such that

C1 · C1 = C2 · C2 = −13
55
, C1 · C2 =

4
11
,

and P1 ∈ C1, P2 ∈ C2. Then C1 ∩ C2 = Oz.
Suppose that lct(X) < 25/18. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 25
18D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the
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support of D does not contain the curve Cx. Moreover, we may assume that the support of D
does not contain either the curve C1 or the curve C2, because

lct(X,
3
7
Cx) =

35
24

>
25
18
.

Suppose that P ∈ Cx. Then

18
25

>
18
25

1
7
>

6
77

= D · Cx >


multP

(
D
)

if P ∈ X \ Sing(X),

multOy

(
D
)

7
if P = Oy,

>


18
25

if P ∈ X \ Sing(X),

18
25

1
7

if P = Oy,

which is a contradiction. Thus, we see that P 6∈ Cx.
Suppose that P = Oz. We know that Ci 6⊂ Supp(D) for some i = 1, 2. Then

18
25

1
11

<
multOz(D)

11
6 D · Ci =

3
55

<
18
25

1
11
,

which is a contradiction. Therefore, we see that P 6= Oz.
Suppose that P ∈ C1. Put D = mC1 + Ω, where Ω is an effective Q-divisor such that

C1 6⊂ Supp(Ω). If m 6= 0, then
3
55

= −KX · C2 = D · C2 =
(
mC1 + Ω

)
· C2 > mC1 · C2 =

4m
11
,

which implies that m 6 3/20. Then it follows from Lemma 1.4.6 that

3 +m13
55

=
(
−KX −mC1

)
· C1 = Ω · C1 >


18
25

if P 6= P1,

18
25

1
5

if P = P1,

because P 6= Oz. Thus, we see that m > 123/325, which is impossible, because m 6 3/20.
Thus, we see that P ∈ X \ Sing(X) and P 6∈ Cx ∪ Cy. Then

18
25

< multP

(
D
)

6
240
385

<
18
25

by Lemma 1.4.10, because the natural projection X 99K P(5, 7, 20) is a finite morphism outside
of the curve Cy, and H0(P,OP(40)) contains monomials x8, xy5, x4t. The obtained contradiction
completes the proof. �

Lemma 3.3.3. Suppose that (a0, a1, a2, a3, d) = (11, 21, 29, 37, 95). Then lct(X) = 11/4.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy4 + x6z = 0.

The surface X is singular at the points Ox, Oy, Oz, Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt = {x = t = 0} (resp. Lyz = {y = z = 0}, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp.
Ry = {y = zt + x6 = 0} , Rz = {z = xy3 + t2 = 0} , Rt = {t = y4 + x5z = 0} ). Also, we see
that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.
We can easily see that

lct(X,
3
11
Cx) =

11
4
< lct(X,

3
21
Cy), lct(X,

3
29
Cz), lct(X,

3
37
Ct).

Therefore, lct(X) ≤ 11
4 . Suppose lct(X) < 11

4 . Then, there is an effective Q-divisor D ≡ −KX

such that the log pair (X, 11
4 D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

D · Lxt =
1

7 · 29
, D ·Rx =

2
7 · 37

, D ·Ry =
18

29 · 37
,

D · Lyz =
3

11 · 37
, D ·Rz =

2
7 · 11

, D ·Rt =
12

11 · 29
,
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Lxt ·Rx =
2
21
, Lyz ·Ry =

6
37
, Lyz ·Rz =

2
11
, Lxt ·Rt =

4
29
,

L2
xt = − 47

21 · 29
, R2

x = − 52
21 · 37

, R2
y = − 48

29 · 37
,

L2
yz = − 45

11 · 37
, R2

z =
16

11 · 21
, R2

t =
104

11 · 29
.

By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

21D · Lxt =
3
29

<
4
11
, 17D ·Rx =

6
37

<
4
11

imply P 6= Oy. The inequalities

11D · Lyz =
3
37

<
4
11
,

11
2
D ·Rz =

1
7
<

4
11

imply P 6= Ox. The curve Rz is singular at the point Ox. The inequalities

29D · Lxt =
1
7
<

4
11
,

29
4
D ·Rt =

3
11

<
4
11

imply P 6= Oz. The curve Rt is singular at the point Oz.
We write D = a1Lxt + a2Lyz + a3Rx + a4Ry + a5Rz + a6Rt + Ω, where Ω is an effective

divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair
(X, 11

4 D) is log canonical at the points Ox, Oy, Oz, the numbers ai are at most 4
11 . Then by

Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪ Cz ∪ Ct or P = Ot:

11
4
D · Lxt − L2

xt =
221

3 · 4 · 7 · 29
< 1,

11
4
D · Lyz − L2

xt =
214

4 · 11 · 37
< 1,

11
4
D ·Rx −R2

x =
137

2 · 3 · 7 · 37
< 1,

11
4
D ·Ry −R2

y =
195

2 · 29 · 37
< 1,

11
4
D ·Rz −R2

z ≤
11
4
D ·Rz =

1
14

< 1,
11
4
D ·Rt −R2

t ≤
11
4
D ·Rt =

3
29

< 1.

Suppose that P 6= Ot. Then we consider the pencil L defined by λyt + µz2 = 0, [λ : µ] ∈ P1.
The base locus of the pencil consists of the curve Lyz and the point Oy. Let E be the unique
divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is
defined by the equation z2 = αyt, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy4 + x6z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
z(z+xz7 +x6) = 0. Therefore, the divisor E consists of two irreducible and reduced curves Lyz

and C. We have the intersection number

D · C = D · E −D · Lyz =
169

7 · 11 · 37
.

Also, we see
C2 = E · C − C · Lyz ≥ E · C − Cy · C > 0

since C is different from Ry. By Lemma 1.4.8 the inequality D ·C < 4
11 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lyz −D ·Rx =
147

7 · 11 · 37
,

M2 = E ·M − Lyz ·M −Rx ·M ≥ E ·M − Cy ·M − Cx ·M > 0.

By Lemma 1.4.8 the inequality D ·M < 4
11 gives us a contradiction. Therefore, P = Ot.
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Put D = aLyz + bRx + ∆, where ∆ is an effective divisor whose support contains neither Lyz

nor Rx. Then a > 0, because otherwise
3

11 · 37
= D · Lyz => multP (D)37 >

4
11 · 37

>
3

11 · 37
,

which is a contradiction. Therefore, we may assume that Ry 6⊆ Supp(∆) by Remark 1.4.7.
Similarly, we may assume that Lxt 6⊆ Supp(∆) if b > 0.

Let us find upper bounds for a and b. If b > 0, then
3

21 · 29
= D · Lxt > bRx · Lxt =

2b
21
,

which implies that b 6 3/42. Similarly, we have

18
29 · 37

= D ·Ry >
6a
37

+
b

37
+

multOt(D)− a− b

37
>

5a+ 4
11

37
,

which implies that a < 82/1595. On the other hand, it follows from Lemma 1.4.6 that

3 + 45a
11 · 37

= ∆ · Lyz >
4/11− b

37
,

which implies that a > 1/45. Similarly, we see that

6 + 52b
21 · 37

= ∆ ·Rx >
4/11− a

37
,

which implies that b > 9/286.
Let π : X̄ → X be the weighted blow up of the point Ot with weight (13, 4), and let F be the

exceptional curve of the morphism π. Then F contains two singular points Q13 and Q4 such
that Q13 is a singular point of type 1

13(1, 2), and Q4 is a singular point of type 1
4(1, 3). Then

KX̄ = π∗(KX)− 20
37
F, L̄yz = π∗(Lyz)−

4
37
F, R̄x = π∗(Rx)− 13

37
F, ∆̄ = π∗(∆)− c

37
F,

where L̄yz, R̄x and ∆̄ are the proper transforms of Lyz, Rx and ∆ by π, respectively, and c is a
non-negative rational number c.

The log pull-back of the log pair (X, 11
4 D) by π is the log pair(

X̄,
11a
4
L̄yz +

11b
4
R̄x +

11
4

∆̄ + θ1F

)
,

which is not log canonical at some point Q ∈ F , where θ1 = (11(c+ 4a+ 13b)/4 + 20)/37). We
have

3 + 45a
11 · 37

− b

37
− c

13 · 37
= ∆̄ · L̄yz > 0 6 ∆̄ · R̄x =

6 + 52b
21 · 37

− a

37
− c

4 · 37
,

which implies that θ1 < 1, because b < 3/42. Note that F ∩ R̄x = Q4 and F ∩ L̄yz = Q13.
Suppose that Q 6∈ R̄x ∪ L̄yz. Then

11c
16 · 13

=
11
4

∆̄ · F > 1

by Lemma 1.4.6. Thus, we see that c > 208/11. But the system of inequalities
3 + 45a
11 · 37

− b

37
− c

13 · 37
> 0,

6 + 52b
21 · 37

− a

37
− c

4 · 37
> 0, b 6 3/42,

c > 208/11,

is inconsistent. Thus, we see that Q ∈ R̄x ∪ L̄yz.
Suppose that Q ∈ M̄x. Then Q = Q4, and it follows from Lemma 1.4.6 that

11
4

(
6 + 52b
21 · 37

− a

37
− c

4 · 37

)
+
θ1
4

=
(

11
4

∆̄ + θ1F

)
·M̄x >

1
4
<

(
11
4

∆̄ +
11b
4
M̄x

)
·F =

11
4

(
c

4 · 13
+
b

4

)
which implies that b > 1164/5291. But b < 3/42, which is a contradiction.
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We see that Q = Q13. Then it follows from Lemma 1.4.6 that
11
4

(
3 + 45a
11 · 37

− b

37
− c

13 · 37

)
+
θ1
13

=
(

11
4

∆̄ + θ1F

)
·L̄yz >

1
13

<

(
11
4

∆̄ +
11a
4
L̄yz

)
·F =

11
4

( c

4 · 13
+

a

13

)
Let φ : X̃ → X̄ be the weighted blow up at the point Q13 with weight (1, 2). Let G be the

exceptional divisor of the morphism φ. Then G contains one singular point Q2 of the surface X̃
that is a singular point of type 1

2(1, 1). Let L̃yz, R̃x, ∆̃ and F̃ be the proper transforms of Lyz,
Rx, ∆ and F by φ, respectively. We have

KX̃ = φ∗(KX̄)− 10
13
G, L̃yz = φ∗(L̄yz)−

2
13
G, F̃ = φ∗(F )− 1

13
G, ∆̃ = φ∗(∆̄)− d

13
G,

where d is a positive rational number. The log pull-back of the log pair (X, 11
4 D) via φ ◦ π is(

X̃,
11a
4
L̃yz +

11b
4
R̃x +

11
4

∆̃ + θ1F̃ + θ2G

)
,

where θ2 = 33a/74 + 11c/1924 + 11b/148 + 11d/52 + 30/37. This log pair is not log canonical
at some point O ∈ G. We have

c

13 · 4
− d

13 · 2
= ∆̃ · F̃ > 0 6 ∆̃ · L̃yz =

3 + 45a
11 · 37

− b

37
− c

13 · 37
− d

13
,

which implies that θ2 < 1, because the system of inequalities
θ2 > 1,
3 + 45a
11 · 37

− b

37
− c

13 · 37
− d

13
> 0,

a 6 82/1595,

is inconsistent. Note that F̃ ∩G = Q2 and Q2 6∈ L̃yz.
Suppose that O 6∈ F̃ ∪ L̃yz. Applying Lemma 1.4.6, we get

1 <
11
4

∆̃ ·G =
11d
4 · 2

,

which gives d > 8/11. Hence, we obtain the system of inequalities

3 + 45a
11 · 37

− b

37
− c

13 · 37
− d

13
> 0,

6 + 52b
21 · 37

− a

37
− c

4 · 37
> 0,

c

13 · 4
− d

13 · 2
> 0,

d > 8/11,

b 6 3/42,

which is inconsistent. Thus, we see that O ∈ F̃ ∪ L̃yz.
Suppose that O ∈ L̃yz. Applying Lemma 1.4.6, we get

11
4

(
3 + 45a
11 · 37

− b

37
− c

13 · 37
− d

13

)
+θ2 =

(
11
4

∆̃ + θ2G

)
·L̃yz > 1 <

(
11
4

∆̃ +
11a
4
L̃yz

)
·G =

33
16

(
d

2
+ a

)
,

which gives a > 25/11. But a < 82/1595, which is a contradiction. Thus, we see that O 6∈ L̃yz.
We see that O ∈ F̃ . Then Q = Q2. Applying Lemma 1.4.6, we get

11
4

(
c

4 · 13
− d

2 · 13

)
+
θ2
2

=
(

11
4

∆̃ + θ2G

)
· F̃ >

1
2
<

(
11
4

∆̃ + θ1F̃

)
·G =

11d
4 · 2

+
θ1
2
.

Let ξ : X̂ → X̃ be the weighted blow up at the point Q2 with weights (1, 1), let H be the
exceptional divisor of ξ, let L̂yz, R̂x, ∆̂, Ĝ, and F̂ be the proper transforms of Lyz, Rx, ∆, G
and F by ξ, respectively. Then X̄ is smooth along H. We have

KX̂ = ξ∗(KX̃)− 1
2
H, Ĝ = ξ∗(G)− 1

2
H, F̂ = ξ∗(F )− 1̃2G, ∆̂ = ξ∗(∆̃)− e

2
G,
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where e is a positive rational number. The log pull-back of the log pair (X, 11
4 D) via φ ◦ π is(

X̂,
11a
4
L̂yz +

11b
4
R̂x +

11
4

∆̂ + θ1F̂ + θ2Ĝ+ θ3H

)
,

where θ3 = (θ1 + θ2 + 11e/4)/2 = 55a/148 + 77b/148 + 77c/1924 + 11d/104 + 11/8e + 25/37.
This log pair is not log canonical at some point A ∈ G. We have

c

13 · 4
− d

13 · 2
− e

2
= ∆̂ · F̂ > 0 6 ∆̃ · Ĝ =

d− e

2
,

which implies that θ3 < 1, because the system of inequalities

θ3 > 1,
3 + 45a
11 · 37

− b

37
− c

13 · 37
− d

13
> 0,

d > e,

a 6 82/1595,

is inconsistent. Note that F̂ ∩ Ĝ = ∅.
Suppose that O 6∈ F̂ ∪ Ĝ. Applying Lemma 1.4.6, we get

1 <
11
4

∆̂ ·H =
11e
4
,

which gives e > 4/11. Hence, we obtain the system of inequalities

3 + 45a
11 · 37

− b

37
− c

13 · 37
− d

13
> 0,

6 + 52b
21 · 37

− a

37
− c

4 · 37
> 0,

c

13 · 4
− d

13 · 2
− e

2
> 0,

d > e > 4/11,

a 6 82/1595,

which is inconsistent. Thus, we see that O ∈ F̂ ∪ Ĝ.
Suppose that O ∈ F̂ . Applying Lemma 1.4.6, we get
11
4

(
c

4 · 13
− d

2 · 13
− e

2

)
+ θ3 =

(
11
4

∆̂ + θ3H

)
· F̂ > 1 <

(
11
4

∆̂ + θ1F̂

)
·H =

11e
4

+ θ1,

which leads to a contradiction, because the system of inequalities
11
4

(
c

4 · 13
− d

2 · 13
− e

2

)
+ θ3 > 1,

6 + 52b
21 · 37

− a

37
− c

4 · 37
> 0,

b 6 3/42,

is inconsistent. Thus, we see that O ∈ F̂ ∪ Ĝ. Then
11e
4

+ θ2 =
(

11
4

∆̂ + θ2Ĝ

)
·H > 1 <

(
11
4

∆̂ + θ3H

)
· Ĝ =

11
4

(
d

2
− e

2

)
+ θ3,

by Lemma 1.4.6. Thus, we obtain the system of inequalities
11
4

(
d

2
− e

2

)
+ θ3 > 1,

3 + 45a
11 · 37

− b

37
− c

13 · 37
− d

13
> 0,

a 6 82/1595,

is inconsistent. The obtained contradiction completes the proof. �

Lemma 3.3.4. Suppose that (a0, a1, a2, a3, d) = (11, 37, 53, 98, 196). Then lct(X) = 55/18.
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Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x13z = 0,

the surface X is singular at the point Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

55
18

= lct
(
X,

3
11
Cx

)
< lct

(
X,

3
37
Cy

)
=

37 · 5
26

,

which implies, in particular, that lct(X) 6 55/18.
Suppose that lct(X) < 55/18. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 55
3 D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(583)) contains x53, y11x16 and z11, it follows from Lemma 1.4.10 that P ∈

Sing(X) ∪ Cx.
Suppose that P ∈ Cx. Then

6
37 · 53

= D · Cx >



multP

(
D
)

37
if P = Oy,

multP

(
D
)

53
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 18/55. Thus, we see that P = Ox. Then

6
11 · 53

= D · Cy >
multP

(
D
)

11
>

18
55 · 11

>
6

11 · 53
,

which is a contradiction. Thus, we see that lct(X) = 55/18. �

Lemma 3.3.5. Suppose that (a0, a1, a2, a3, d) = (13, 17, 27, 41, 95). Then lct(X) = 65/24.

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ y4z + xt2 + x6y = 0,

and X is singular at the point Ox, Oy, Oz and Ot.
The curve Cx is reducible. We have Cx = Lxz +Mx, where Lxz and Mx are irreducible and

reduced curves such that Lxz is given by the equations x = z = 0, and Mx is given by the
equations x = y4 + zt = 0. Then

Lxz · Lxz =
−55

17 · 41
, Mx ·Mx =

−56
27 · 41

, Lxz ·Mx =
4
41
, D ·Mx =

12
27 · 41

, D · Lxz =
3

17 · 41
and Lxz ∩Mx = Ot. The curve Cy is also reducible. We have Cy = Lyt + My, where Lyt and
My are irreducible and reduced curves such that Lyt is given by the equations y = t = 0, and
My is given by the equations y = z2 + xt = 0. Then

Lyt ·Myt =
−37

17 · 41
, My ·My =

−48
13 · 41

, Lyt ·My =
2
13
, D ·My =

6
13 · 41

, D · Lyt =
3

13 · 27
,

and Lyt ∩My = Ox. The curve Cz is also reducible. We have Cz = Lxz +Mz, where Mz is an
irreducible and reduced curve that is given by the equations z = t2 + x5y = 0. Then

Lxz ·Mz =
2
17
, Lxz ·Mz =

−55
17 · 41

, Lxz ·My =
1
41
, D ·Mz =

6
13 · 17

and Lxz ∩Mz = Oy. The curve Ct is also reducible. We have Ct = Lyt +Mt, where Mt is an
irreducible and reduced curve that is given by the equations t = x6 + zy3 = 0. Then

Lyt ·Mt =
6
27
, Mt ·Mt =

168
13 · 27

, D ·Mt =
18

13 · 27
and Lyt ∩Mt = Oz. We have lct(X) 6 65/24, because

65
24

= lct
(
X,

3
13
Cx

)
<

51
12

= lct
(
X,

3
17
Cy

)
<

41
8

= lct
(
X,

3
41
Ct

)
<

21
4

= lct
(
X,

3
27
Cz

)
.
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Suppose that lct(X) < 65/24. Then there is a Q-effective divisor D ≡ −KX such that the
pair (X, 65

24D) is not log canonical at some point P . By Remark 1.4.7, we may assume that
either Supp(D) does not contain at least one irreducible component of Cx, Cy, Cz and Ct.

Suppose that P 6∈ Cx ∪Cy ∪Cz ∪Ct. Then there is a unique curve Zα ⊂ X that is cut out by

xt+ αz2 = 0

such that P ∈ Z, where 0 6= α ∈ C. The curve Zα is reduced. But it is always reducible. Indeed,
taking into account the geometry of the open subset Zα \ (Zα ∩ Ct), one can easily check that

Zα = Cα + Lxz

for any α 6= 0, where Cα is a curve whose support contains no Lxy. Let us prove that Cα is
reduced and irreducible if α 6= 1.

The open subset Zα \ (Zα ∩ Cx) of the curve Zα is a Z13-quotient of the affine curve

t+ αz2 = z2t+ y4z + t2 + y = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to a plane affine quartic curve that is given by the equation

α(α− 1)z4 + y4z + y = 0 ⊂ C2 ∼= Spec
(
C
[
y, z
])
,

which implies that the curve Cα is and irreducible reduced curve and multP (Cα) 6 3 if α 6= 1.
The case α = 1 is special. Namely, if α = 1, then

C1 = R1 +My,

where R1 is a curve whose support contains no C1. Arguing as in the case α 6= 1, we see that
R1 is an irreducible reduced curve that is smooth at the point P .

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Zα.

Suppose that α 6= 1. Then elementary calculations imply that

Cα · Lxz =
109

17 · 41
, Cα · Cα =

8141
13 · 17 · 41

, D · Cα =
531

13 · 17 · 41
,

and we can put D = εCα + ∆α, where ∆α is an effective Q-divisor such that Cα 6⊂ Supp(∆α).
If ε 6= 0, then

3
17 · 41

= D · Lxz =
(
εCα + ∆α

)
· Lxz > εCα · Lxz =

109ε
17 · 41

,

which implies that ε 6 3/109. On the other hand, we see that
531

13 · 17 · 41
= D·Cα = εC2

α+∆α·Cα > εC2+multP

(
∆α

)
= εC2+multP

(
D
)
−εmultP

(
Cα

)
> εC2+

24
65
−3ε,

which is impossible, because ε 6 3/109.
Thus, we see that α = 1. We have

R1 · Lxz =
92

17 · 41
, R1 ·R1 =

3177
13 · 17 · 41

, My ·R1 =
197

13 · 41
, D ·R1 =

429
13 · 17 · 41

,

and we can put D = ε1R1 + Ξ1, where Ξ1 is an effective Q-divisor such that R1 6⊂ Supp(Ξ1).
Then ε1 6 3/91, because either ε1 = 0, or Lxz · Ξ1 > 0 or My · Ξ1 > 0. By Lemma 1.4.6, we see
that

429− 3177ε1
13 · 17 · 41

= Ξ1 ·R1 >
24
65
,

which is a contradiction. The obtained contradiction shows that P ∈ Cx ∪ Cy ∪ Cz ∪ Ct.
Suppose that P = Ot. If Lxz 6⊆ Supp(D), then

3
17 · 41

= D · Lxz >
multP

(
D
)

41
>

3
11 · 41

>
24

65 · 41
,

which is a contradiction. Thus, we see that Lxz 6⊆ Supp(D) ⊃ Mx. Put D = ωLxz + Ψ, where
Ψ is an effective Q-divisor such that Lxz 6⊂ Supp(Ψ), and ω > 0. Then

12
27 · 41

= D·Mx =
(
ωLxz+Ψ

)
·Mx > ωLxz·Mx+

multOt(D)− ω

41
> ωLxz·Mx+

3/11− ω

41
=

4ω
41

+
24/65− ω

41
,
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which implies that ω44/585. Then it follows from Lemma 1.4.6 that

3 + 55ω
17 · 41

=
(
−KX − ωLxz

)
· Lxz = Ψ · Lxz >

24
65 · 41

,

which is impossible, because ω44/585. Thus, we see that P 6= Ot. Note, that applying similar
arguments to Oz = Mt ∩ Lyt, we do not see that P 6= Oz.

Suppose that P = Oz. Put D = εMx + ∆, where ∆ is an effective Q-divisor such that
Mx 6⊂ Supp(Ω). If ε 6= 0, then

3
17 · 41

= D · Lxz =
(
εMx + ∆

)
· Lxz > εMx · Lxz,

which implies that ε < 3/68. Then it follows from Lemma 1.4.6 that

12 + 56ε
27 · 41

=
(
−KX − εLxz

)
· Lxz = Ω · Lxz >

22
65 · 27

,

which implies that ε > 51/910. But ε < 3/68 < 51/910. Thus, we see that P 6= Oz.
Suppose that P = Oy. If Lxz 6⊆ Supp(D), then

3
17 · 41

= D · Lxz >
multP

(
D
)

17
>

24
65 · 17

>
3

17 · 41
,

which is a contradiction. If Mz 6⊆ Supp(D),

6
13 · 17

= D ·Mz >
multP

(
D
)
multOy

(
Mz

)
17

2multP

(
D
)

17
>>

48
65 · 17

>
6

13 · 17
,

which is a contradiction. Thus, we see that P 6= Oy. Similarly, we see that P 6= Ox = My ∩Lyz.
Then P 6∈ Sing(X).

Suppose that P ∈ Lxz. Put D = mLxz + Ω, where Ω is an effective Q-divisor such that
Lxz 6⊂ Supp(Ω). If m 6= 0, then

12
27 · 41

= −KX ·Mx = D ·Mx =
(
mLxz + Ω

)
·Mx > mLxz ·Mx =

4m
41
,

which implies that m 6 3/27. Then it follows from Lemma 1.4.6 that

3 + 55m
17 · 41

=
(
−KX −mLxz

)
· Lxz = Ω · Lxz >

24
65
,

which is impossible, because m 6 3/27. Thus, we see that P 6∈ Lxz. Similarly, we see that
P 6∈ Lyt.

Suppose that P ∈ Mx. Put D = δMx + Υ, where Υ is an effective Q-divisor such that
Mx 6⊂ Supp(Υ). If ε 6= 0, then

3
17 · 41

= −KX · Lxz = D · Lxz =
(
δMx + Υ

)
· Lxz > δLxz ·Mx =

4δ
41
,

which implies that δ 6 3/68. Then it follows from Lemma 1.4.6 that

12 + 56δ
27 · 41

=
(
−KX − δMx

)
·Mx = Υ ·Mx >

24
65
,

which is impossible, because δ 6 3/68. Similarly, we see that P 6∈ My ∪Mz ∪Mt, which is a
contradiction. �

Lemma 3.3.6. Suppose that (a0, a1, a2, a3, d) = (13, 27, 61, 98, 196). Then lct(X) = 91/30.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y5z + xz3 + x13y = 0,

the surface X is singular at the point Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

91
30

= lct
(
X,

3
13
Cx

)
< lct

(
X,

3
27
Cy

)
=

15
2
,

which implies, in particular, that lct(X) 6 91/30.
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Suppose that lct(X) < 91/30. Then there is a Q-effective divisor D ≡ −KX such that the
pair (X, 91

30D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves Cx and Cy.

Since H0(P,OP(793)) contains x61, y26x7, y13x34 and z13, it follows from Lemma 1.4.10 that
P ∈ Sing(X) ∪ Cx.

Suppose that P ∈ Cx. Then

2
9 · 61

= D · Cx >



multP

(
D
)

27
if P = Oy,

multP

(
D
)

61
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 30/91. Thus, we see that P = Ox. Then

6
13 · 61

= D · Cy >
multP

(
D
)

13
>

30
91 · 13

>
6

13 · 61
,

which is a contradiction. Thus, we see that lct(X) = 91/30. �

Lemma 3.3.7. Suppose that (a0, a1, a2, a3, d) = (15, 19, 43, 74, 148). Then lct(X) = 57/14.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy7 + x7z = 0,

the surface X is singular at the point Ox, Oy and Oz, the curves Cx and Cy are irreducible, and

25
6

= lct
(
X,

3
15
Cx

)
> lct

(
X,

3
19
Cy

)
=

57
14
,

which implies, in particular, that lct(X) 6 57/14.
Suppose that lct(X) < 57/14. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 57
14D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(645)) contains x43, y15x24, y30x5 and z15, it follows from Lemma 1.4.10 that

P ∈ Sing(X) ∪ Cx.
Suppose that P ∈ Cx. Then

6
19 · 43

= D · Cx >



multP

(
D
)

19
if P = Oy,

multP

(
D
)

43
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which implies that P = Oz, because multP (D) > 14/57. Then

6
15 · 43

= D · Cy >
multP

(
D
)
multP

(
Cy

)
43

>
28

57 · 43
>

6
15 · 43

,

because multP (Cy) = 2. Thus, we see that P = Ox. Then

6
15 · 43

= D · Cy >
multP

(
D
)

15
>

14
57 · 15

>
6

15 · 43
,

which is a contradiction. Thus, we see that lct(X) = 57/14. �

3.4. Sporadic cases with I = 4

Lemma 3.4.1. Suppose that (a0, a1, a2, a3, d) = (5, 6, 8, 9, 24). Then lct(X) = 1.
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Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + y4 + εx2yz + x3t = 0,

where ε ∈ C. The surface X is singular at the point Ox and Ot. The surface X is also singular
at a point Q2 that is cut out on X by the equations x = t = 0. The surface X is also singular
at a point Q3 such that Q3 6= Ot and the points Q3 and Qt are cut out on X by the equations
x = z = 0.

The curves Cx, Cy, Cz and Ct are irreducible. We have

lct
(
X,

4
9
Ct

)
> 1 = lct

(
X,

4
6
Cy

)
< lct

(
X,

4
5
Cx

)
=

5
4
< lct

(
X,

4
8
Cz

)
= 2,

which implies, in particular, that lct(X) 6 1.
Suppose that lct(X) < 1. Then there is a Q-effective divisor D ≡ −KX such that the pair

(X,D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curves Cx, Cy, Cz and Ct.

Suppose that P ∈ Cy. Then

12
9

= D · Cy >



multP

(
D
)

5
if P = Ox,

multP

(
D
)
multOt

(
Cy

)
9

if P = Ot,

multP

(
D
)

if P 6= Ox and P 6= Ot,

which is impossible, because multP (D) > 1 and multOt(Cy) = 3.
We see that P 6= Ot. Suppose that P ∈ Cx. Then

2
9

= D · Cx >



multP

(
D
)

2
if P = Q2,

multP

(
D
)

3
if P = Q3,

multP

(
D
)

if P 6= Q2 and P 6= Q3,

which is impossible, because multP (D) > 1. Thus, we see that P 6∈ Sing(X).
Let us show that P 6∈ Cz. Suppose that P ∈ Cz. Then

16
45

= D · Cz > multP

(
D
)
> 1,

which is a contradiction. Similarly, we see that P 6∈ Ct.
We see that P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct. Then there is a unique curve Z ⊂ X that is cut out by

xt = αyz

such that P ∈ Z, where 0 6= α ∈ C. We see that Cx 6⊂ Supp(Z). But the open subset Z\(Z∩Cx)
of the curve Z is a Z5-quotient of the affine curve

t− αyz = z3 + yt2 + y4 + εyz + t = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to a plane affine quintic curve Rx ⊂ C2 that is given by the equation

z3 + α2y3z2 + y4 + (ε+ α)yz = 0 ⊂ C2 ∼= Spec
(
C
[
y, z
])
,

which is easily seen to be irreducible. In particular, the curve Z is irreducible.
The inequality multP (Z) 6 3 holds, because quintic Rx is singular at the origin. Thus, we

may assume that Supp(D) does not contain the curve Z by Remark 1.4.7. Then
28
45

= D · Z > multP

(
D
)
> 1,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.4.2. Suppose that (a0, a1, a2, a3, d) = (5, 6, 8, 15, 30). Then lct(X) = 1.
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Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + y5 + x2y2z + x3t+ x6 = 0,

and X is singular at the point Oz. The surface X is also singular at points P1 and P2 that are
cut out on X by the equations y = z = 0. The surface X is also singular at a point Q3 that is
cut out on X by the equations x = z = 0. The surface X is also singular at a point Q2 such
that Q2 6= Oz and the points Q2 and Qz are cut out on X by the equations x = t = 0.

The curve Cy is reducible. We have Cy = L1 + L2, where L1 and L2 are irreducible and
reduced curves such that P1 ∈ L1 and P2 ∈ L2. Then

L1 · L1 = L2 · L2 =
−9
40
, L1 · L2 =

3
8
,

and L1 ∩ L2 = Oz. The curve Cx is irreducible and

1 = lct
(
X,

4
6
Cy

)
< lct

(
X,

4
5
Cx

)
=

5
4
,

which implies, in particular, that lct(X) 6 1.
Suppose that lct(X) < 1. Then there is a Q-effective divisor D ≡ −KX such that the pair

(X,D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curve Cx. Similarly, without loss of generality we may
assume that L1 6⊆ Supp(D).

Since H0(P,OP(30)) contains y5, yz3 and t2, it follows from Lemma 1.4.10 that P ∈ Sing(X)∪
Cy.

Suppose that P ∈ L1. Then

1
10

= D · L1 >


1 if P 6= P1 and P 6= Oz,

1
5

if P = P1,

1
8

if P = Oz,

which is a contradiction. Thus, we see that P 6∈ L1. In particular, we see that P 6= Ot.
Suppose that P ∈ L2. Put D = mL2 + Ω, where Ω is an effective Q-divisor such that

L2 6⊂ Supp(Ω). Then

1
10

= −KX · L1 = D · Zx =
(
mL2 + Ω

)
· L1 > mL2 · L1 =

3m
8
,

which implies that m 6 4/15. Then it follows from Lemma 1.4.6 that

2 + 9m
40

=
(
−KX −mL2

)
· L2 = Ω · L2 >


1 if P 6= P2,

1
5

if P = P2,

which implies that m > 4/9. But m 6 4/15. Thus, we see that P 6∈ L1.
Therefore, we see that either P = Q2 or P = Q3. Then

1
6

= D · Cx >


multP

(
D
)

2
if P = Q2,

multP

(
D
)

3
if P = Q3,

which is a contradiction. Thus, we see that lct(X) = 1. �

Lemma 3.4.3. Suppose that (a0, a1, a2, a3, d) = (9, 11, 12, 17, 45). Then lct(X) = 77/60.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + y3z + xz3 + x5 = 0.

Note that it is singular at the point Oy, Oz, Ot, and the point Q = [1 : 0 : −1 : 0]. The curve Cx

consists of two irreducible and reduced curves Lxy = {x = y = 0} and Rx = {x = t2 + y2z = 0}.
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The curve Cy also consists of two irreducible and reduced curves Lxy and Ry = {y = z3+x4 = 0}.
The curve Cz and Ct are irreducible and reduced. We have

lct(X,
4
11
Cy) =

77
60

< lct(X,
4
9
Cx), lct(X,

4
12
Cz), lct(X,

4
17
Ct).

Suppose that lct(X) < 77
60 . Then there is an effective Q-divisor D ≡ −KX such that the pair

(X, 77
60D) is not canonical at some point P . By Remark 1.4.7 we may assume that the support

of D contains neither Cz nor Ct. The inequalities

D · Cz =
4 · 12 · 45

9 · 11 · 12 · 17
<

60
77
,

D · Ct =
4 · 17 · 45

9 · 11 · 12 · 17
<

60
77

imply P 6∈ Cz ∪ Ct \ Sing(X). Moreover, we have

multOyD 6
11
2
D · Cz =

10
17

<
60
77
,

multQD 6 3D · Ct =
5
11

<
60
77

and hence P can be neither the point Oy nor the point Q.
We can see that

Lxy ·D =
1

17 · 3
, Rx ·D =

2
33
, Ry ·D =

11
9 · 17

, Lxy ·Rx =
1
6
,

Lxy ·Ry =
3
17
, L2

xy = − 15
4 · 17

, R2
x = − 1

33
, R2

y =
13

4 · 9 · 17
.

By Remark 1.4.7 we may assume that the support of D does not contain both Lxy and Rx. If
the support of D does not contain Lxy, then

multOzD 6 12D · Lxy =
4
17

<
60
77
.

If the support of D does not contain Rx, then

multOzD 6 12D ·Rx =
8
11

<
60
77
.

Therefore, P cannot be Oz.
Also, we may assume that the support of D does not contain both Lxy and Ry. If the support

of D does not contain Lxy, then

multOtD 6 17D · Lxy =
1
3
<

60
77
.

If the support of D does not contain Ry, then

multOtD 6
17
3
D ·Ry =

11
27

<
60
77
.

Therefore, P cannot be Ot.
By Remark 1.4.7 we may assume that the support of D does not contain both Lxy and Rx.

If we write D = nLxy + ∆, where ∆ does not contain the curve Lxy, then we can see n 6 4
11

since D ·Rx > nRx · Lxy. By Lemma 1.4.8 the inequality

77
60

(Lxy ·D −mL2
xy) 6

7 · 14
15 · 3 · 17

< 1

implies that the point P cannot belong to the curve Lxy. By the same method, we see the point
P must be outside of Rx.

If we write D = mRy +Ω, where Ω does not contain the curve Ry, then we can see 0 6 m 6 1
9

since D · Lxy > mRy · Lxy. By Lemma 1.4.8 the inequality

77
60

(Ry ·D −mR2
y) 6

77
60
Ry ·D < 1

implies that the point P cannot belong to the curve Ry.
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Now we consider the pencil L on X cut by λt2 + µy2z = 0. The base locus of the pencil
consists of three points Oy, Oz, and Q. Let F be the member in L defined by t2 + y2z = 0. The
divisor F consists of two irreducible and reduced curves Rx and E = {t2 + y2z = x4 + z3 = 0}.
The Jacobian criterion shows us that the curve E is smooth in the outside of the base points.
Also we have

F ·D =
10
33
, Rx · E =

4
11
, E ·D =

8
3 · 11

, E2 =
4 · 14
3 · 11

.

We write D = lE+Γ, where Γ does not contain the curve E. Since (X, 77
60D) is log canonical at

the point Oy, the non-negative number l is at most 60
77 . By Lemma 1.4.8, the inequality shows

77
60

(E ·D − lE2) 6
77
60
E ·D < 1

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of Cx ∪ Cy ∪ Cz ∪ Ct ∪ E. In

particular, it is a smooth point. There is a unique member C in L which passes through the
point P . Then the curve C is cut by t2 = αy2z where α is a constant different from 0 and −1.
The curve C is isomorphic to the curve defined by y3z + xz3 + x5 = 0 and t2 = y2z. The curve
C is smooth in the outside of the base points by the Bertini theorem, since it is isomorphic to
a general curve in the pencil L. We claim that the curve C is irreducible. If so then we may
assume that the support of D does not contain the curve C hand hence we obtain

multPD 6 C ·D =
10
33

<
60
77
.

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in A4 defined by

the equations y3z+xz3+x5 = 0 and t2 = y2z. Then, we consider the surface in P4 defined by the
equations y3zw+ xz3w+ x5 = 0 and t2w = y2z. We then take the affine piece defined by t 6= 0.
Then, the affine piece is isomorphic to the surface defined by the equation y3zw+xz3w+x5 = 0
and w = y2z in A4. It is isomorphic the irreducible hypersurface y5z2 + xy2z5 + x5 = 0 in A3.
Therefore, the curve C must be irreducible.

�

Lemma 3.4.4. Suppose that and (a0, a1, a2, a3, d) = (10, 13, 25, 31, 75). Then lct(X) = 91/60.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + z3 + xy5 + x5z = 0.

It has singular points at Ox, Oy, Ot and Q = [−1 : 0 : 1 : 0]. The curve Cx and Ct are irreducible
and reduced. The curve Cy consists of two irreducible reduced curves Lyz = {y = z = 0} and
Ry = {y = z2 + x5 = 0}. The curve Cz consists of two irreducible reduced curves Lyz and
Rz = {y = t2 + xy4 = 0}. It is easy to see that

lct(X,
4
13
Cy) =

91
60

< lct(X,
4
10
Cx) < lct(X,

4
25
Cz) < lct(X,

4
31
Ct).

Also, we have the following intersection numbers:

Cx ·D =
12

13 · 31
, Ct ·D =

6
5 · 13

, Lyz ·D =
2

5 · 31
, Ry ·D =

4
5 · 31

, Rz ·D =
4

5 · 13

Lyz ·Ry =
2
31
, Lyz ·Rz =

1
5
, L2

yz = − 7
10 · 31

, R2
y = − 3

5 · 31
, R2

z =
12

5 · 13
.

Suppose that lct(X) < 91
60 . Then, there is an effective Q-divisor D ≡ −KX such that the

log pair (X, 91
60D) is not log canonical at some point P ∈ X. Since the curves Cx and Ct are

irreducible we may assume that the support of D contains none of them. The inequalities

13D · Cx <
60
91
, 5D · Ct <

60
91

show that the point P must be in the outside of Cx ∪ Ct \ {Ox, Ot}.
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By Remark 1.4.7, we may assume that the support of D cannot contain both Lyz and Ry. If
the support of D does not contain Lyz, then the inequality

31D · Lyz =
2
5
<

60
91

shows that the point P cannot be Ot. On the other hand, if the support of D does not contain
Ry, then the inequality

31
2
D ·Ry =

2
5
<

60
91

shows that the point P cannot be Ot. We use the same method for Rz +Lyz so that we can see
the point P cannot be Ox.

We write D = mRy + Ω, where Ω is an effective Q-divisor whose support does not contain
the curve Ry. Then we see m 6 1

5 since the support of D cannot contain both Lyz and Ry and
D ·Lyz > mRy ·Lyz. Since Ry ·D−mR2

y <
60
91 , Lemma 1.4.8 implies that the point P is located

in the outside of Ry. Using the same argument for Lyz , we can also see that the point P is
located in the outside of Lyz. Also, the same method shows that the point P is located in the
outside of Rz Consequently, the point P must lie in the outside of Cx ∪ Cy ∪ Cz ∪ Ct.

Now we consider the pencil L on X cut by λt2 + µxy4 = 0. The base locus of the pencil
consists of three points Ox, Oy, and Q. Let F be the member in L defined by t2 +xy4 = 0. The
divisor F consists of two irreducible and reduced curves Rz and E = {t2 + xy4 = z2 + x5 = 0}.
The Jacobian criterion shows us that the curve E is smooth in the outside of Sing(X). Also we
have

F ·D =
12

5 · 13
, Rz · E =

2
13
, E ·D =

8
5 · 13

, E2 =
2

5 · 13
.

We write D = lE+Γ, where Γ does not contain the curve E. Since (X, 91
60D) is log canonical at

the point Oy, the non-negative number l is at most 60
91 . By Lemma 1.4.8, the inequality shows

91
60

(E ·D − lE2) 6
91
60
E ·D < 1

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of Cx ∪ Cy ∪ Cz ∪ Ct ∪ E. In

particular, it is a smooth point. There is a unique member C in L which passes through the
point P . Then the curve C is cut by t2 = αxy4 where α is a constant different from 0 and −1.
The curve C is isomorphic to the curve defined by xy5 + z3 + x5z = 0 and t2 = xy4. The curve
C is smooth in the outside of the base points by the Bertini theorem, since it is isomorphic to
a general curve in the pencil L. We claim that the curve C is irreducible. If so then we may
assume that the support of D does not contain the curve C and hence we obtain

multPD 6 C ·D =
12

5 · 13
<

60
91
.

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in A4 defined by

the equations xy5+z3+x5z = 0 and t2 = xy4. Then, we consider the surface in P4 defined by the
equations xy5 +w3z3 +x5z = 0 and t2w3 = xy4. We then take the affine piece defined by y 6= 0.
Then, the affine piece is isomorphic to the surface defined by the equation x+ w3z3 + x5z = 0
and t2w3 = x in A4. It is isomorphic the hypersurface defined by t2w3 + w3z3 + t10w15z = 0 in
A3. It has two irreducible components w = 0 and t2 + z3 + t10w12z = 0. The former component
originates from the hyperplane at infinity in P4. Therefore, the curve C must be irreducible. �

Lemma 3.4.5. Suppose that (a0, a1, a2, a3, d) = (11, 17, 20, 27, 71). Then lct(X) = 11/6.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + y3z + xz3 + x4t = 0.

The surface X is singular at the points Ox, Oy, Oz, Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxy = {x = y = 0} (resp. Lxy = {x = y = 0}, Lzt = {z = t = 0}, Lzt = {z = t = 0})
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and Rx = {x = y2z + t2 = 0} (resp. Ry = {y = x3t + z3 = 0} , Rz = {z = x4 + yt = 0} ,
Rt = {t = y3 + xz2 = 0} ). Also, we see that

Lxy ∩Rx = {Oz}, Lxy ∩Ry = {Ot}, Lzt ∩Rz = {Oy}, Lzt ∩Rt = {Ox}.

We can easily see that

lct(X,
11
4
Cx) =

11
6
< lct(X,

17
4
Cy), lct(X,

20
4
Cz), lct(X,

27
4
Ct).

Therefore, lct(X) > 11
6 . Suppose lct(X) < 11

6 . Then, there is an effective Q-divisor D ≡ −KX

such that the log pair (X, 11
6 D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxy, Lzt, Rx, Ry, Rz, Rt are as follows:

D · Lxy =
1

5 · 27
, D ·Rx =

2
5 · 17

, D ·Ry =
4

9 · 11
,

D · Lzt =
4

11 · 17
, D ·Rz =

16
17 · 27

, D ·Rt =
3

5 · 11
,

Lxy ·Rx =
1
10
, Lxy ·Ry =

1
9
, Lzt ·Rz =

4
17
, Lzt ·Rt =

3
11
,

L2
xy = − 43

20 · 27
, R2

x = − 3
5 · 17

, R2
y =

2
3 · 11

,

L2
zt =

24
11 · 17

, R2
z = − 28

17 · 27
, R2

t =
21

20 · 11
.

By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

11D · Lzt =
4
17

<
6
11
,

11
2
D ·Rt =

3
10

<
6
11

imply P 6= Ox. Note that the curve Rt is singular at Ox. The inequalities

20D · Lxy =
4
27

<
6
11
, 20D ·Rx =

8
17

<
6
11

imply P 6= Oz. The inequalities

27D · Lxy =
1
5
<

6
11
,

27
3
D ·Ry =

4
11

<
6
11

imply P 6= Ot. The curve Ry is singular at the point Ot.
Since the pair (X, 11

6 D) is log canonical at the point Ox, multLztD > 6
11 . By Lemma 1.4.8

the inequality D · Lzt − (multLztD)L2
zt > D · Lzt = 4

11·17 > 6
17·11 implies P 6∈ Lzt. In particular,

P 6= Oy. We write D = a1Lxy + a2Rx + a3Ry + a4Rz + a5Rt + Ω, where Ω is an effective divisor
whose support contains none of the curves Lxy, Rx, Ry, Rz, Rt. Since the pair (X, 11

6 D) is log
canonical at the points Ox, Oy, Oz, Ot, the numbers ai are at most 6

11 . Then by Lemma 1.4.8 the
following inequalities enable us to conclude that the point P is in the outside of Cx∪Cy∪Cz∪Ct:

11
6
D · Lxy − L2

xy < 1,
11
6
D ·Rx −R2

x < 1,
11
6
D ·Rz −R2

z < 1,

11
6
D ·Ry −R2

y >
11
6
D ·Ry < 1,

11
6
D ·Rt −R2

t >
11
6
D ·Rt < 1.

We consider the pencil L defined by λty + µx4 = 0, [λ : µ] ∈ P1. The base locus of the pencil
consists of the curve Lxy and the point Oy. Let E be the unique divisor in L that passes through
the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is defined by the equation ty = αx4,
where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
ty = x4 and x4t + y3z + xz3 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
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x(x2 + x11z + z3) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
Lxy and C. We have the intersection numbers

D · C = D · E −D · Lxy =
267

5 · 17 · 27
, C · Lxy = E · Lxy − L2

xy =
87

20 · 27
.

Also, we see

C2 = E · C − C · Lxy =
10269

17 · 20 · 27
.

By Lemma 1.4.8 the inequality D · C < 6
11 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lxy,
Rz, and M . Note that the curve M is different from the curves Rx and Lzt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lxy −D ·Rz =
187

5 · 17 · 27
,

M2 = E ·M − Lxy ·M −Rz ·M ≥ E ·M − Cx ·M − Cz ·M =
13
4
D ·M > 0.

By Lemma 1.4.8 the inequality D ·M < 6
11 gives us a contradiction. �

Lemma 3.4.6. Suppose that (a0, a1, a2, a3, d) = (11, 17, 24, 31, 79). Then lct(X) = 33/16.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy4 + x5z = 0.

The surface X is singular at the points Ox, Oy, Oz, Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt = {x = t = 0} (resp. Lyz = {y = z = 0}, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp.
Ry = {y = zt + x5 = 0} , Rz = {z = xy3 + t2 = 0} , Rt = {t = y4 + x4z = 0} ). Also, we see
that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.
We can easily see that

lct(X,
4
11
Cx) =

33
16

< lct(X,
4
17
Cy), lct(X,

4
24
Cz), lct(X,

4
31
Ct).

Therefore, lct(X) > 33
16 . Suppose lct(X) < 33

16 . Then, there is an effective Q-divisor D ≡ −KX

such that the log pair (X, 33
16D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

D · Lxt =
1

6 · 17
, D ·Rx =

8
17 · 31

, D ·Ry =
5

6 · 31
,

D · Lyz =
4

11 · 31
, D ·Rz =

8
11 · 17

, D ·Rt =
2

3 · 11
,

Lxt ·Rx =
2
17
, Lyz ·Ry =

5
31
, Lyz ·Rz =

2
11
, Lxt ·Rt =

1
6
,

L2
xt = − 37

17 · 24
, R2

x = − 40
17 · 31

, R2
y = − 35

24 · 31
,

L2
yz = − 38

11 · 31
, R2

z =
14

11 · 17
, R2

t =
10

3 · 11
.

By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

17D · Lxt =
1
6
<

16
33
, 17D ·Rx =

8
31

<
16
33

imply P 6= Oy. The inequalities

11D · Lyz =
4
31

<
16
33
, 11D ·Rz =

8
17

<
16
33
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imply P 6= Ox. The inequalities

24D · Lxt =
24

6 · 17
<

16
33
,

24
4
D ·Rt =

4
11

<
16
33

imply P 6= Oz. The curve Rt is singular at the point Oz.
We write D = a1Lxt + a2Lyz + a3Rx + a4Ry + a5Rz + a6Rt + Ω, where Ω is an effective

divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair
(X, 33

16D) is log canonical at the points Ox, Oy, Oz, the numbers ai are at most 16
33 . Then by

Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪ Cz ∪ Ct or P = Ot:
33
16
D ·Lxt−L2

xt =
181

3 · 17 · 32
< 1,

33
16
D ·Rx−R2

x =
113

2 · 17 · 31
< 1,

33
16
D ·Ry−R2

y =
25

3 · 31
< 1,

33
16
D·Lyz−L2

xt =
185

4 · 11 · 31
< 1,

33
16
D·Rz−R2

z =
5

2 · 11 · 17
< 1,

33
16
D·Rt−R2

t =
−47

3 · 8 · 11
< 1.

Suppose that P 6= Ot. Then we consider the pencil L defined by λyt+ µz2 = 0, [λ : µ] ∈ P1.
The base locus of the pencil consists of the curve Lyz and the point Oy. Let E be the unique
divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is
defined by the equation z2 = αyt, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy4 + x5z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
z(z+xz7 +x5) = 0. Therefore, the divisor E consists of two irreducible and reduced curves Lyz

and C. We have the intersection numbers

D · C = D · E −D · Lyz =
564

11 · 17 · 31
, C · Lyz = E · Lyz − L2

yz =
2
11
.

Also, we see
C2 = E · C − C · Lyz > 0.

By Lemma 1.4.8 the inequality D · C < 16
33 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lyz −D ·Rx =
4 · 119

11 · 17 · 31
,

M2 = E ·M − Lyz ·M −Rx ·M ≥ E ·M − Cy ·M − Cx ·M = 5D ·M > 0.
By Lemma 1.4.8 the inequality D ·M < 16

33 gives us a contradiction. Therefore, P = Ot.
We write D = aLyz + bRx +∆, where ∆ is an effective divisor whose support contains neither

Lyz nor Rx. Note that we already assumed that the support of D does not contain both Lyz

and Ry. If the support of D contains Ry, then it does not contain Lyz. However, the inequality
31D ·Lyz = 4

11 <
16
33 shows that P 6= Ot. Therefore, the support of D does not contain the curve

Ry. The inequality D · Lxt ≥ bRx · Lxt implies b 6 1
12 . On the other hand, we have

5
6 · 31

= D ·Ry ≥
5a
31

+
b

31
+

multOtD − a− b

31
>

4a+ 16
33

31
,

and hence a < 23
4·66 .

We now consider the weighted blow up π : X̄ → X at the point Ot with weight (11, 24). Its
exceptional divisor F passes through two singular points Q11 of type 1

11(1, 1) and Q24 of type
1
24(13, 7). We have

KX̄ = π∗(KX) +
4
31
F, L̄yz = π∗(Lyz)−

24
31
F, R̄x = π∗(Rx)− 11

31
F, R̄y = π∗(Ry)−

24
31
F,

where L̄yz, R̄x and R̄y are the proper transforms of Lyz, Rx and Ry by π, respectively. Also, we
have a non-negative rational number c such that

∆̄ = π∗(∆)− c

31
F,
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where ∆̄ is the proper transform of ∆ by π. From

0 6 ∆̄ · R̄y = ∆ ·Ry −
c

11 · 31
= (D − aLyz − bRx) ·Ry −

c

11 · 31
=

5
6 · 31

− 5a
31
− b

31
− c

11 · 31
we obtain 55a+ 11b+ c 6 55

6 . Also from

0 6 ∆̄ ·L̄yz = ∆ ·Lyz−
c

11 · 31
= (D−aLyz−bRx) ·Lyz−

c

11 · 31
=

4
11 · 31

+
38a

11 · 31
− b

31
− c

11 · 31
we get 11b+ c 6 4 + 38a. Combining this with the previous inequality, we get

55(11b+ c− 4)
38

+ 11b+ c 6
55
6

⇒ (1 +
55
38

)c 6
55
6

+
4 · 55
38

⇒ c 6
55
9
.

Now we consider the log pull-back of the divisor KX + 33
16D by π

π∗(KX +
33
16
D) = KX̄ +

33a
16

L̄yz +
33b
16

R̄x +
33
16

∆̄ + θ1F,

where
θ1 =

1
16 · 31

(24 · 33a+ 11 · 33b+ 33c− 64) <
2843

12 · 16 · 31
.

There must be a point Q in F at which the pair(
X̄,

33a
16

L̄yz +
33b
16

R̄x +
33
16

∆̄ + θ1F

)
is not log canonical. Note that F ∩ R̄y = F ∩ L̄yz = {Q11} and F ∩ R̄x = {Q24}. Therefore, the
pair (

X̄,
33a
16

L̄yz +
33b
16

R̄x +
33
16

∆̄ + F

)
is not log canonical at the point Q. If the point Q is a smooth point of X̄ then we obtain an
absurd inequality

1 >
55

6 · 128
>

c

128
=

33
16

∆̄ · F > 1.

In order to apply Lemma 1.4.6, we must first check that θ1 > 0. Suppose that θ1 6 0. Then
24a+ 11b+ c 6 64/33, and the log pair(

X̄,
33a
16

L̄yz +
33b
16

R̄x +
33
16

∆̄
)

is not log canonical at the point Q as well. Then

4
11 · 24

>
33(24a+ 11b+ c)

11 · 24 · 16
=
(

33a
16

L̄yz +
33b
16

R̄x +
33
16

∆̄
)
· F >


1 if Q24 6= Q 6= Q11,

1
11

if Q = Q11,

1
24

if Q = Q24,

which is absurd. Thus, we see that θ1 > 0.
Suppose that Q = Q11. Then we also obtain a contradictory inequality
1
11

<
33a
16

L̄yz · F +
33
16

∆̄ · F =
33a

11 · 16
+

33c
11 · 16 · 24

<
33 · 23

4 · 11 · 16 · 66
+

33 · 55
6 · 11 · 16 · 24

<
1
11
,

which implies that Q 6= Q11. Therefore, we see that Q = Q24.
Let φ : X̃ → X̄ be the weighted blow up at the point Q24 with weight (13, 7). The exceptional

divisor G of the morphism φ contains two singular points Q13 and Q7 of X̃. The point Q13 is
of type 1

13(11, 6) and the point Q7 is of type 1
7(1, 3). We have

KX̃ = φ∗(KX̄)− 1
6
G, R̃x = φ∗(R̄x)− 13

24
G, F̃ = φ∗(F )− 7

24
G, ∆̃ = φ∗(∆̄)− d

24
G,

where d is a positive rational number. Then
c

11 · 24
− d

13 · 24
= ∆̃ · F̃ > 0 6 ∆̃ · R̃x =

8
17 · 31

− a

31
+

40b
17 · 31

− c

24 · 31
− d

7 · 24
which implies that 1344 + 6720b > 2856a+ 119c+ 527d and 13c > 11d.
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The log pull-back of (X, 33
16D) via φ ◦ π is(
X̃,

33a
16

L̃yz +
33b
16

R̃x +
33
16

∆̃ + θ1F̃ + θ2G

)
,

which is not log canonical at some point O in G, where θ2 = 231a/496 + 165b/124 + 77c/3968 +
11d/128 + 4/31. Then θ2 < 1, because the system of inequalities

θ2 > 1,
1344 + 6720b > 2856a+ 119c+ 527d,
13c− 11d > 0,
4 + 38a > 11b+ c >= 0,

55a+ 11b+ c 6 55/6,

a 6 23/264,

b 6 1/12,

is inconsistent. Note that R̃x ∩G = {Q7} and F̃ ∩G = {Q13}. But L̄yz does not pass through
the point Q24.

Suppose that O 6= Q7 and O 6= Q13. Applying Lemma 1.4.6, we get

1 <
33
16

∆̃ ·G =
33d

16 · 7 · 13
,

which gives d > 3536/33. Hence, we obtain the system of inequalities

d > 3536/33,
1344 + 6720b > 2856a+ 119c+ 527d,
13c− 11d > 0,
4 + 38a > 11b+ c >= 0,

55a+ 11b+ c 6 55/6,

a 6 23/264,

b 6 1/12,

which is inconsistent. Thus, we see that either O = Q7 or O = Q13.
Suppose that O = Q7. Applying Lemma 1.4.6, we get

33
16

(
8 + 40b
17 · 31

− a

31
− c

24 · 31
− d

7 · 24

)
+
θ2
7

=
(

33
16

∆̃ + θ2G

)
·R̃x >

1
7
<

33
16

(
∆̃ + bR̃x

)
·G =

33
16

(
d

7 · 13
+
b

7

)
,

which gives b > 458/1705 and 33d+ 429b > 208. But b 6 1/12, which is a contradiction. Thus,
we see that O 6= Q7.

Therefore, we see that O = Q13. Applying Lemma 1.4.6, we get
33
16

(
c

11 · 24
− d

13 · 24

)
+
θ2
13

=
(

33
16

∆̃ + θ2G

)
· F̃ >

1
13

<

(
33
16

∆̃ + θ1F̃

)
·G =

33d
16 · 7 · 13

+
θ1
13
,

which leads to a contradiction, because 4 + 38a > 11b+ c and a 6 23/264. �

Lemma 3.4.7. Suppose that (a0, a1, a2, a3, d) = (11, 31, 45, 83, 166). Then lct(X) = 55/24.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x11z = 0,

the surface X is singular at the point Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

55
24

= lct
(
X,

4
11
Cx

)
< lct

(
X,

4
31
Cy

)
=

13 · 31
88

,

which implies, in particular, that lct(X) 6 55/24.
Suppose that lct(X) < 55/24. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 55
24D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
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Since H0(P,OP(495)) contains x45, y11x14 and z11, it follows from Lemma 1.4.10 that P ∈
Sing(X) ∪ Cx.

Suppose that P ∈ Cx. Then

4
31 · 45

= D · Cx >



multP

(
D
)

31
if P = Oy,

multP

(
D
)

45
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 24/55. Thus, we see that P = Ox. Then

4
11 · 45

= D · Cy >
multP

(
D
)

13
>

24
55 · 11

>
4

11 · 45
,

which is a contradiction. Thus, we see that lct(X) = 55/24. �

Lemma 3.4.8. Suppose that (a0, a1, a2, a3, d) = (13, 14, 19, 29, 71). Then lct(X) = 65/36.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

ty3 + yz3 + xt2 + x4z = 0.

The surface X is singular at the points Ox, Oy, Oz, Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxy = {x = y = 0} (resp. Lxy = {x = y = 0}, Lzt = {z = t = 0}, Lzt = {z = t = 0})
and Rx = {x = z3 + ty2 = 0} (resp. Ry = {y = x3z + t2 = 0} , Rz = {z = y3 + xt = 0} ,
Rt = {t = x4 + yz2 = 0} ). Also, we see that

Lxy ∩Rx = {Ot}, Lxy ∩Ry = {Oz}, Lzt ∩Rz = {Ox}, Lzt ∩Rt = {Oy}.
We can easily see that

lct(X,
13
4
Cx) =

65
36

< lct(X,
14
4
Cy), lct(X,

19
4
Cz), lct(X,

29
4
Ct).

Therefore, lct(X) > 65
36 . Suppose lct(X) < 65

36 . Then, there is an effective Q-divisor D ≡ −KX

such that the log pair (X, 65
36D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxy, Lzt, Rx, Ry, Rz, Rt are as follows:

D · Lxy =
4

19 · 29
, D ·Rx =

6
7 · 29

, D ·Ry =
8

13 · 19
,

D · Lzt =
2

7 · 13
, D ·Rz =

12
13 · 29

, D ·Rt =
8

7 · 19
,

Lxy ·Rx =
3
29
, Lxy ·Ry =

2
19
, Lzt ·Rz =

3
13
, Lzt ·Rt =

2
7
,

L2
xy = − 44

19 · 29
, R2

x = − 3
14 · 29

, R2
y =

2
13 · 19

,

L2
zt = − 23

13 · 14
, R2

z = − 30
13 · 29

, R2
t =

20
7 · 19

.

By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

13D · Lzt =
2
7
<

36
65
, 13D ·Rz =

12
29

<
36
65

imply P 6= Ox. The inequalities

14D · Lzt =
4
13

<
36
65
, 7D ·Rt =

8
19

<
36
65

imply P 6= Oy. Note that the curve Rt is singular at the point Oy. The inequalities

19D · Lxy =
4
29

<
36
65
,

19
2
D ·Ry =

4
13

<
36
65
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imply P 6= Oz. The curve Ry is singular at Oz. The inequalities

29D · Lxy =
4
19

<
36
65
,

29
2
D ·Rx =

3
7
<

36
65

imply P 6= Ot. The curve Rx is singular at the point Ot.
We write D = a1Lxy +a2Lzt +a3Rx +a4Ry +a5Rz +a6Rt +Ω, where Ω is an effective divisor

whose support contains none of the curves Lxy, Lzt, Rx, Ry, Rz, Rt. Since the pair (X, 65
36D) is

log canonical at the points Ox, Oy, Oz, Ot, the numbers ai are at most 36
65 . Then by Lemma 1.4.8

the following inequalities enable us to conclude that the point P must be located in the outside
of Cx ∪ Cy ∪ Cz ∪ Ct:

65
36
D · Lxy − L2

xy =
461

9 · 19 · 29
< 1,

65
36
D ·Rx −R2

x =
74

6 · 7 · 29
< 1,

65
36
D · Lzt − L2

zt =
249

7 · 13 · 18
< 1,

65
36
D ·Rz −R2

z =
155

3 · 13 · 18
< 1,

65
36
D ·Ry −R2

y >
65
36
D ·Ry =

65
13 · 18 · 19

< 1,
65
36
D ·Rt −R2

t < 1.

We consider the pencil L defined by λtx+ µy3 = 0, [λ : µ] ∈ P1. The base locus of the pencil
consists of the curve Lxy and the point Ox. Let E be the unique divisor in L that passes through
the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is defined by the equation tx = αy3,
where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
tx = y3 and xt2 + yz3 + x4z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
y(y2 + y11z + z3) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
Lxy and C. We have the intersection numbers

D · C = D · E −D · Lxy =
800

13 · 19 · 29
, C · Lxy = E · Lxy − L2

xy =
86

19 · 29
.

Also, we see
C2 = E · C − C · Lxy ≥ E · C − Cx · C > 0.

By Lemma 1.4.8 the inequality D · C < 36
65 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lxy,
Rz, and M . Note that the curve M is different from the curves Rx and Lzt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lxy −D ·Rz =
572

13 · 19 · 29
,

M2 = E ·M − Lxy ·M −Rz ·M ≥ E ·M − Cx ·M − Cz ·M =
5
2
D ·M > 0.

By Lemma 1.4.8 the inequality D ·M < 36/65 gives us a contradiction. �

Lemma 3.4.9. Suppose that (a0, a1, a2, a3, d) = (13, 14, 23, 33, 79). Then lct(X) = 65/32.

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ y4z + xt2 + x5y = 0,

and X is singular at Ox, Oy, Oz and Ot. We have

lct
(
X,

4
13
Cx

)
=

65
32

< lct
(
X,

4
13
Cx

)
=

21
8
< lct

(
X,

5
25
Ct

)
=

33
10

< lct
(
X,

4
23
Cz

)
=

69
20
,

which implies, in particular, that lct(X) 6 65/32.
The curve Cx is reducible. We have Cx = Lxz + Mx, where Lxz and Mx are irreducible

reduced curves such that Lxz is given by x = z = 0, and Mx is given by x = tz + y4 = 0. Then

Lxz · Lxz =
−43

14 · 33
, Mx ·Mx =

−40
23 · 33

, Lxz ·Mx =
4
33
, D · Lxz =

4
14 · 33

, D ·Mx =
16

23 · 33
,

and Lxz ∩Mx = Ot. The curves Lxz and Mx are smooth.
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The curve Cy is reducible. We have Cy = Lyt +My, where Lyt and My are irreducible curves
such that Lyt is given by y = t = 0, and My is given by y = xt+ z2 = 0. Then

Lyt · Lyt =
−32

13 · 23
, My ·My =

−38
13 · 33

, Lyt ·My =
2
13
, D · Lyt =

4
13 · 23

, D ·My =
8

13 · 33
,

and Lyz ∩My = Ox. We have My ·Mx = Lxz ·My = 1/33, Mx · Lyt = 1/23 and Lxz · Lyt = 0.
The curve Cz is reducible. We have Cz = Lxz +Mz, where Mz is an irreducible curve that is

given by the equations z = t2 + x4x = 0. We have

Mz ·Mz =
20

13 · 14
, Lxz ·Mz =

2
14
, D ·Mz =

46
13 · 14

,

and Mz ∩ Lxz = Oy. The only singular point of the curve Mz is Oy.
The curve Ct is reducible. We have Ct = Lyt +Mt, where Mt is an irreducible curve that is

given by the equations t = y3z + x5 = 0. We have

Mt ·Mt =
95

14 · 13
, Lyt ·Mt =

5
23
, D ·Mt =

20
14 · 23

,

and Mt ∩ Lyt = Oz. The only singular point of the curve Mt is Oz

We suppose that lct(X) < 65/8. Then there is an effective Q-divisor D ∼Q −KX such that
the log pair (X, 65

32D) is not log canonical at some point P ∈ X. Let us derive a contradiction.
Suppose that P 6∈ Cx ∪Cy ∪Cz ∪Ct. Then there is a unique curve Zα ⊂ X that is cut out by

xt+ αz2 = 0

such that P ∈ Z, where 0 6= α ∈ C. The curve Zα is reduced. But it is always reducible. Indeed,
one can easily check that

Zα = Cα + Lxz

where Cα is a reduced curve whose support contains no Lxy. Let us prove that Cα is irreducible
if α 6= 1.

The open subset Zα \ (Zα ∩ Cx) of the curve Zα is a Z13-quotient of the affine curve

t+ αz2 = 0 = z2t+ y4z + t2 + y = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to a plane affine curve that is given by the equation

α(α− 1)z4 + y4z + y = 0 ⊂ C2 ∼= Spec
(
C
[
y, z
])
,

which implies that the curve Cα is irreducible and multP (Cα) 6 3 if α 6= 1.
The case α = 1 is special. Namely, if α = 1, then

C1 = R1 +My,

where R1 is a reduced curve whose support contains no C1. Arguing as in the case α 6= 1, we
see that R1 is irreducible and R1 is smooth at the point P .

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Zα.

Suppose that α 6= 1. Then elementary calculations imply that

Cα · Lxz =
2
14
, Cα · Cα =

20
13 · 14

, D · Cα =
8

13 · 14
,

and we can put D = εCα + ∆α, where ∆α is an effective Q-divisor such that Cα 6⊂ Supp(∆α).
If ε 6= 0, then

4
13 · 33

= D · Lxz =
(
εCα + ∆α

)
· Lxz > εCα · Lxz =

2ε
14
,

which implies that ε 6 2/33. On the other hand, we see that
8

13 · 14
= D·Cα = εC2

α+∆α·Cα > εC2+multP

(
∆α

)
= εC2+multP

(
D
)
−εmultP

(
Cα

)
> εC2+

32
65
−3ε,

which is impossible, because ε 6 2/33.
Thus, we see that α = 1. We have

R1 · Lxz =
52

14 · 33
, R1 ·R1 =

−398
3003

, My ·R1 =
71

13 · 33
, D ·R1 =

152
13 · 14 · 33

,
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and we can put D = ε1R1 + Ξ1, where Ξ1 is an effective Q-divisor such that R1 6⊂ Supp(Ξ1).
Then ε1 6 8/71, because either ε1 = 0, or Lxz · Ξ1 > 0 or My · Ξ1 > 0. By Lemma 1.4.6, we see
that

152 + 796ε1
13 · 14 · 33

= Ξ1 ·R1 >
32
65
,

which implies that ε1 > 3506/995. But ε1 6 8/71. The obtained contradiction shows that
P ∈ Cx ∪ Cy ∪ Cz ∪ Ct.

It follows from Remark 1.4.7 that we may assume that Supp(D) does not contains are least
one irreducible component of the curves Cx, Cy, Cz, Ct.

Suppose that P ∈Mx \ (Ot ∪Oy). Put D = eMx + Υ, where Υ is an effective Q-divisor such
that Mx 6⊂ Supp(Υ). If e 6= 0, then

4
13 · 33

= D · Lxz =
(
eMx + Υ

)
· Lxz > eLxz ·Mx =

4e
33
,

which implies that e 6 1/14. Then it follows from Lemma 1.4.6 that
16 + 40e
23 · 33

=
(
−KX − eMx

)
·Mx = Υ ·Mx >

32
65
,

because P 6∈ Sing(X). Thus, we see that e > 2906/325, which is impossible, because e 6 1/14.
Thus, we see that P 6∈Mx \ (Oy ∪Ot). Similarly, we see that

P 6∈My ∪Mz ∪Mz ∪Mt \
(
Ox ∪Oy ∪Oz ∪Ot

)
.

Suppose that P ∈ Lyt. Put D = δLyt + Θ, where Θ is an effective Q-divisor whose support
does not contain the curve Lyt. If δ 6= 0, then

8
13 · 33

= D ·My =
(
δLyt + Θ

)
·My > δLyt ·My =

2δ
13
,

which implies that δ 6 4/33. Then it follows from Lemma 1.4.6 that

4 + 32δ
13 · 23

=
(
−KX − δLyz

)
· Lyz = Θ · Lyz >



32
65

if P 6= Ox and P 6= Oz,

32
65 · 13

if P = Ox,

32
65 · 23

if P = Oz,

which implies that P = Oz and δ > 3/40. Then Mt 6⊂ Supp(D). Hence, we have

20
14 · 23

= D ·Mt >
multOz(D)multOz(Mt)

23
=

3multOz(D)
23

>
3 · 32
65 · 23

,

which is a contradiction. The obtained contradiction shows that P 6∈ Lyt.
We see that P ∈ Lxt. Arguing as above we see that P = Ot. Then

4
14 · 33

= D · Lxz >
32

65 · 33
>

4
14 · 33

whenever Lxz 6⊂ Supp(D). Thus, we see that Lxz ⊂ Supp(D). Then Mx 6⊂ Supp(D). Put

D = mLxz + cMy + Ω,

where m > 0 and c > 0, and Ω is an effective Q-divisor such that Lxz 6⊂ Supp(Ω) 6⊃My. Then

16
23 · 33

= D ·Mx =
(
mLxz + cMy + Ω

)
·Mx >

4m
33

+
c

33
+

multOt(D)−m− c

33
>

3m+ 32
65

33
,

which implies that m < 304/4485. Then it follows from Lemma 1.4.6 that
4 + 43m
14 · 33

=
(
−KX −mLxz

)
· Lxz = (Ω + cMy) · Lxz >

32
65 · 33

,

which implies that m > 88/2795. On the other hand, if c > 0, then
4

13 · 23
= D · Lyt =

(
mLxz + cMy + Ω

)
· Lyt >

2c
13
,

which implies that c 6 2/23. We will see later that c > 0.
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Let π : X̄ → X be a weighted blow up of Ot with weights (14, 23), let E be the exceptional
curve of π, let Ω̄, L̄xz, M̄y, M̄x be the proper transforms of Ω, Lxz, My, Mx, respectively. Then

KX̄ ≡ π∗(KX) +
4
33
E, L̄xz ≡ π∗(Lxz)−

23
33
E, M̄y ≡ π∗(My)−

14
33
E, M̄x ≡ π∗(Mx)− 23

33
E,

and there is a positive rational number a such that

Ω̄ ≡ π∗(Ω)− a

33
E.

The curve E contains two singular points Q14 and Q23 of X̄ such that Q14 is a singular point
of type 1

14(13, 1), and Q19 is a singular point of type 1
23(13, 14). Then

L̄xz ∪ M̄x 63 Q23 ∈ M̄y 63 Q14 = L̄xz ∩ M̄x,

and L̄xz ∩ M̄y = ∅. The log pull back of the log pair (X, 65
32D) is the log pair(

X̄,
65
32

Ω̄ +
65m
32

L̄xz +
65c
32

M̄y +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
E

)
,

which must have non-log canonical singularity at some point Q ∈ E. We have

0 6 L̄xz · Ω̄ =
4 + 43m− 14c− a

14 · 33
,

which gives a+ 14c 6 4 + 43m. Then a < 31012/4485, because m < 304/4485. We have(
1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
< 1,

because a+ 14c 6 4 + 43m, c 6 2/23 and 304/4485 > m > 88/2795.
The log pull back of (X, 13

8 D) has effective boundary if and only if the inequality

23m+ 14c+ a 6
128
65

holds. On the other hand, if 23m+ 14c+ a 6 128/65, then the log pair(
X̄,

65
32

Ω̄ +
65m
32

L̄xz +
65c
32

M̄y

)
is not log canonical at the point Q as well. Thus, if 23m+ 14c+ a 6 128/65, then

128
65 · 14 · 23

>
a+ 23m+ 14c

14 · 23
=
(
Ω̄ +mL̄yz + cM̄x

)
· E >



32
65

if Q14 6= Q 6= Q23,

32
65 · 14

if Q = Q14,

32
65 · 23

if Q = Q23,

which is absurd. Thus, the boundary of the log pull back of the log pair (X, 65
32D) is effective.

Suppose that Q 6= Q14 and Q 6= Q23. Then Q 6∈ L̄xz ∪ M̄y. By Lemma 1.4.6, we have

a

14 · 23
= − a

33
E2 = Ω̄ · E >

65
32
,

which implies that a > 10304/65, which is impossible, because a < 31012/4485.
Therefore, we see that either Q = Q14 or Q = Q23.
Suppose that Q = Q11. Then Q 6∈ M̄y. Hence, it follows from Lemma 1.4.6 that(

65
32

Ω̄ +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
E

)
· L̄xz >

1
14
,

but L̄xz · E = 1/14 and L̄xz · M̄y = 0. Moreover, we have

Ω̄ · L̄xz =
(
Ω̄ + cM̄y

)
· L̄xz =

(
D −mLxz

)
· Lxz −

a+ 14c
14 · 33

=
4 + 43m− 14c− a

14 · 25
,

which immediately implies that m > 66/325. But m < 304/4485, which is a contradiction.
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Thus, we see that Q = Q23. Then Q 6∈ L̄xz, and it follows from Lemma 1.4.6 that(
65
32

Ω̄ +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
E

)
· M̄y >

1
23
,

but we have M̄y · E = 1/23. Applying Lemma 1.4.6 one more time, we see that(
65
32

Ω̄ +
65c
32

M̄y

)
· E >

1
23
,

which gives a+ 14c > 448/65. On the other hand, we know that

0 6 Ω̄·M̄y = Ω·My−
a

33 · 23
= D ·My−mLxz ·My−cMy ·My−

a

33 · 23
=

8 + 38c− 13m
13 · 33

− a

33 · 23
,

which implies that 184 + 874c > 299m+ 13a and c > 1/20. But we have no contradiction here.
Let ψ : X̃ → X̄ be a weighted blow up of Q23 with weights (13, 14), let G be the exceptional

curve of ψ, let Ω̃, L̃xz, M̃y, Ẽ be the proper transforms of Ω, Lxz, My, E, respectively. Then

KX̃ ≡ ψ∗(KX̄) +
4
23
G, M̃y ≡ ψ∗(M̄y)−

14
23
G, Ẽ ≡ ψ∗(E)− 13

23
G, Ω̃ ≡ ψ∗(Ω̄)− b

23
G,

where b is a positive rational number.
The curve G contains two singular points O13 and O14 of X̃ such that O13 is a singular point

of type 1
13(1, 3), and O14 is a singular point of type 1

14(1, 9). Then

Ẽ 63 O13 ∈ M̃y 63 O14 ∈ Ẽ,

where Ẽ ∩ M̃y = ∅. The log pull back of the log pair (X, 65
32D) is the log pair(

X̃,
65
32

Ω̃ +
65m
32

L̃xz +
65c
32

M̃y +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
Ẽ + θG

)
,

which must have non-log canonical singularity at some point O ∈ G, where

θ =
845m
1056

+
455c
264

+
845a
24288

+
65b
736

− 8
33
.

Let us show that 0 < θ < 1. Obviously, we have

0 6 M̃y · Ω̃ = Ω̄ · M̄y −
b

13 · 23
=

8 + 38c
13 · 33

− a+ 23m
23 · 33

− b

13 · 23
,

which gives 184 + 874c > 299m+ 13a+ 33b. Similarly, we have

0 6 M̃y · Ẽ = Ω̄ · E − b

14 · 23
=

a

13 · 23
− b

14 · 23
,

which implies that a > b. So far, we obtained the system of inequalities

4 + 43m > a+ 14c,
184 + 874c > 299m+ 13a+ 33b,
184 + 874c > 299m+ 13a,

304/4485 > m > 88/2795,

2/23 > c > 1/20,

a+ 14c > 448/65,

31012/4485 > a > b,

which is still consistent, but it implies that θ < 1. If θ 6 0, then the log pair(
X̃,

65
32

Ω̃ +
65m
32

L̃xz +
65c
32

M̃y +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
Ẽ

)
,

is not log canonical at the point O as well. Thus, if θ 6 0, then

4
13 · 14

>
4

13 · 14
+θ

23
13 · 14

=
(

65
32

Ω̃ +
65m
32

L̃xz +
65c
32

M̃y +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
Ẽ

)
·G >

1
14
,

which is absurd. Hence, we see that 1 > θ > 0.
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Suppose that O 6= O13 and O 6= O14. Then O 6∈ Ẽ ∪ M̃x, and it follows from Lemma 1.4.6
that

b

13 · 14
= − b

23
G2 = Ω̃ ·G >

32
65
,

which implies that b > 448/5. But 31012/4485 > a > b, which is a contradiction.
Therefore, we see that either O = O13 or O = O14.
Suppose that O = O13. Then O 6∈ Ẽ, and it follows from Lemma 1.4.6 that

8 + 38c− 13m
13 · 33

− a

33 · 23
− b

13 · 23
= Ω̄ · M̄y −

b

13 · 23
= Ω̃ · M̃y >

32
(
1− θ

)
13 · 65

,

which implies that c > 12/65. But c < 2/23, which is a contradiction.
Thus, we see that O = O14. Then O 6∈ M̃y. Hence, it follows from Lemma 1.4.6 that

a− b

14 · 23
= Ω̃ · Ẽ >

32
(
1− θ

)
14 · 65

,

which implies that 130a+ 845m+ 1820c > 1312. Applying Lemma 1.4.6 again, we see that

65
32

b

13 · 14
=

65
32

Ω̃ ·G >
37
462

− 1495m
14784

− 65c
1056

− 65a
14784

,

which implies that 1495m+910c+65a+165b > 1184. Thus, we obtain the system of inequalities

130a+ 845m+ 1820c > 1312,
1495m+ 910c+ 65a+ 165b > 1184,
4 + 43m > a+ 14c,
184 + 874c > 299m+ 13a+ 33b,
184 + 874c > 299m+ 13a,

304/4485 > m > 88/2795,

2/23 > c > 1/20,

a+ 14c > 448/65,

31012/4485 > a > b,

which is, unfortunately, consistent. So, we must blow up the point O14.
Let φ : X̂ → X̃ be a weighted blow up of O14 with weights (1, 9), let F be the exceptional curve

of φ, let Ω̂, L̂xz, M̂y, Ê and Ĝ be the proper transforms of Ω, Lxz, My and E, Grespectively.
Then

KX̂ ≡ φ∗(KX̃)− 8
14
F, Ĝ ≡ φ∗(G)− 9

14
F, Ê ≡ φ∗(Ẽ)− 1

14
F, Ω̂ ≡ φ∗(Ω̃)− d

14
F,

where d is a positive rational number.
The curve F contains one singular point A9 of the surface X̂ such that A9 is a singular point

of type 1
9(1, 4). Then Ĝ 63 A9 ∈ Ê and Ê ∩ Ĝ = ∅. The log pull back of (X, 65

32D) is the log pair(
X̂,

65
32

Ω̂ +
65m
32

L̂xz +
65c
32

M̂y +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
Ê + θĜ+ νF

)
,

which must have a non-log canonical singularity at some point A ∈ F , where

ν =
65m
168

+
65c
96

+
65a
3864

+
325b
10304

+
d

14
+

4
21
.

Obviously, the inequality ν > 0 holds. Let us show that ν < 1. Indeed, we have

a− b

14 · 23
− d

9 · 14
= Ê · Ω̂ > 0 6 Ĝ · Ω̂ =

b

13 · 14
− d

14
,
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which implies that b > 13d and 9(a− b) > 23d. Thus, we obtain the system of inequalities

130a+ 845m+ 1820c > 1312,
1495m+ 910c+ 65a+ 165b > 1184,
4 + 43m > a+ 14c,
184 + 874c > 299m+ 13a+ 33b,
184 + 874c > 299m+ 13a,

304/4485 > m > 88/2795,

2/23 > c > 1/20,

a+ 14c > 448/65,

31012/4485 > a > b > 13d,

9(a− b) > 23d,

which is consistent, but it implies that ν < 1.
Suppose that A 6= A9 and A 6∈ Ĝ. Then A 6∈ Ê ∪ Ĝ, and it follows from Lemma 1.4.6 that

d

9
= Ω̂ · F >

32
65
,

which is impossible, because 31012/4485 > a > b > 13d. We see that either A = A9 or A ∈ Ĝ.
Suppose that A ∈ Ĝ. Then it follows from Lemma 1.4.6 that

65d
32 · 9

+ θ =
(

65
32

Ω̂ + θĜ

)
· F > 1,

because A 6∈ Ê. Applying Lemma 1.4.6 again, we see that the inequality

65
32

(
b

13 · 14
− d

14

)
+ ν =

(
65
32

Ω̂ + νF

)
· Ĝ > 1,

holds. Therefore, we obtain the system of inequalities

1320b+ 11960m+ 20930c+ 520a > 16192 + 2277d,
16445d+ 58305m+ 125580c+ 2535a+ 6435b > 90528,
130a+ 845m+ 1820c > 1312,
1495m+ 910c+ 65a+ 165b > 1184,
4 + 43m > a+ 14c,
184 + 874c > 299m+ 13a+ 33b,
184 + 874c > 299m+ 13a,

304/4485 > m > 88/2795,

2/23 > c > 1/20,

a+ 14c > 448/65,

31012/4485 > a > b > 13d,

9(a− b) > 23d,

which is inconsistent. Hence, we see that A = A9. By Lemma 1.4.6, we have

65
32

(
a− b

14 · 23
− d

9 · 14

)
+
ν

9
=
(

65
32

Ω̂ + νF

)
· Ê >

1
9
,

because A is not contained in Ĝ. Applying Lemma 1.4.6 once again, we see that the inequality

65d
32 · 9

+
1
9

(
1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
=
(

65
32

Ω̂ +
(

1495m
1056

+
455c
528

+
65a
1056

− 4
33

)
Ê

)
·F >

1
9
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holds. Therefore, we obtain the system of inequalities

2145d+ 1495m+ 910c+ 65a > 1184,
2275a+ 11960m+ 20930c > 25024 + 2277d+ 780b
130a+ 845m+ 1820c > 1312,
1495m+ 910c+ 65a+ 165b > 1184,
4 + 43m > a+ 14c,
184 + 874c > 299m+ 13a+ 33b,
184 + 874c > 299m+ 13a,

304/4485 > m > 88/2795,

2/23 > c > 1/20,

a+ 14c > 448/65,

31012/4485 > a > b > 13d,

9(a− b) > 23d,

which is inconsistent. The obtained contradiction completes the proof. �

Lemma 3.4.10. Suppose that (a0, a1, a2, a3, d) = (13, 23, 51, 83, 166). Then lct(X) = 91/40.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y5z + xz3 + x11y = 0,

the surface X is singular at the point Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

91
40

= lct
(
X,

4
13
Cx

)
< lct

(
X,

4
23
Cy

)
=

115
24

,

which implies, in particular, that lct(X) 6 91/40.
Suppose that lct(X) < 91/40. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 91
40D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(663)) contains x51, y13x28, y26x5 and z13, it follows from Lemma 1.4.10 that

P ∈ Sing(X) ∪ Cx.
Suppose that P ∈ Cx. Then

8
27 · 51

= D · Cx >



multP

(
D
)

23
if P = Oy,

multP

(
D
)

51
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 40/91. Thus, we see that P = Ox. Then

8
13 · 51

= D · Cy >
multP

(
D
)

13
>

40
91 · 13

>
8

13 · 51
,

which is a contradiction. Thus, we see that lct(X) = 91/40. �

3.5. Sporadic cases with I = 5

Lemma 3.5.1. Suppose that (a0, a1, a2, a3, d) = (11, 13, 19, 25, 63). Then lct(X) = 13/8.

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ yt2 + xy4 + x4z = 0,

and X is singular at Ox, Oy, Oz and Ot. We have

lct
(
X,

5
13
Cy

)
=

13
18

< lct
(
X,

5
11
Cx

)
=

33
20

< lct
(
X,

5
19
Cz

)
=

57
25

< lct
(
X,

5
25
Ct

)
=

25
11
,

which implies, in particular, that lct(X) 6 13/8.
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The curve Cx is reducible. We have Cx = Lxt +Mx, where Lxt and Mx are irreducible curves
such that Lxt is given by x = t = 0, and Mx is given by x = z2 + yt = 0. Then

Lxt · Lxt =
−27

13 · 19
, Mx ·Mx =

−28
13 · 25

, Lxt ·Mx =
2
13
, D · Lxt =

5
13 · 19

, D ·Mx =
10

13 · 25
,

and Oy ∈ Cx. Note that Cx is smooth outside of the point Oy.
The curve Cy is reducible. We have Cy = Lyz +My, where Lyz and My are irreducible curves

such that Lyz is given by y = z = 0, and My is given by y = x4 + zt = 0.

Lyz · Lyz =
−31

11 · 25
, My ·My =

−24
19 · 25

, Lyz ·My =
4
25
, D · Lyz =

5
11 · 25

, D ·My =
20

19 · 25
,

and the only singular point of the curve Cy is Ot. We have My ·Mx = 31/475 and Lxt ·Lyz = 0.
The curve Cz is reducible. We have Cz = Lyz +Mz, where Mz is an irreducible curve that is

given by the equations z = t2 + xy4 = 0. The only singular point of Cz is Ox. We have

Lyz · Lxt = 0, Mz ·Mz =
12

11 · 13
, Lyz ·Mz =

2
11
, D ·Mz =

10
11 · 13

.

The curve Ct is reducible. We have Ct = Lxt +Mt, where Mt is an irreducible curve that is
given by the equations t = y4 + x3z = 0. The only singular point of Ct is Oz. We have

Mt ·Mt =
56

11 · 19
, Lxt ·Mt =

4
19
, D ·Mt =

20
11 · 19

.

We suppose that lct(X) < 13/8. Then there is an effective Q-divisor D ∼Q −KX such that
the log pair (X, 13

8 D) is not log canonical at some point P ∈ X. Let us derive a contradiction.
Suppose that P 6∈ Cx ∪Cy ∪Cz ∪Ct. Then there is a unique curve Z ⊂ X that is cut out by

αyt2 = x4z

such that P ∈ Z, where 0 6= α ∈ C. The curve Z is reducible. Indeed, we have

Lxt ⊂ Supp(Z) ⊃ Lyz,

and we can write Z = C+pLxt +qLyz, where p ∈ Z>0 3 q, and C is a curve on X whose support
does not contains the curves Lxt and Lyz. Let us prove that C is irreducible and find p and q.

The open subset Z \ (Z ∩ Cx) of the curve Z is a Z11-quotient of the affine curve

αyt2 − z = z2t+ yt2 + y4 + z = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to an affine septic curve Rx ⊂ C2 that is given by the equation

α2y
(
t5 + y3 +

(
1 + α

)
t2
)

= 0 ⊂ C2 ∼= Spec
(
C
[
y, z
])
,

which implies that the curve C is irreducible, the inequality multP (C) 6 6 and the equality

q =
{ 1 if α 6= −1,

2 if α = −1,

hold. But p = 2, because the subset Z \ (Z ∩ Cy) is a Z13-quotient of the curve

t2 − zx4

α
= z2t+ x+

α+ 1
α

x4z = 0 ⊂ C3 ∼= Spec
(
C
[
x, z, t

])
.

Therefore, we see that P ∈ C and we have the following possibilities:
• the inequality α 6= −1 holds, p = 2 6= q = 1 and

C · Lxt =
117
247

, C · Lyz =
94
275

, C · C =
8636
5225

, D · C =
244
1045

;

• the equality α = −1 holds, p = q = 2 and

C · Lxt =
117
247

, C · Lyz =
5
11
, C · C =

179
209

, D · C =
45
209

.
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We see that C is irreducible and multP (C) 6 6. Then the log pair(
X,

13
8 · 63

(
C + pLxt + qLyz

))
must be log canonical at the point P . By Remark 1.4.7, we may assume that Supp(D) does not
contain at least one curve among the curves C, Lxt and Lyz. Put

D = εC + Ξ,

where Ξ is an effective Q-divisor such that C 6⊂ Supp(Ξ). Now we obtain the inequality ε 6 5/94,
because either ε = 0, or Lxt · Ξ > 0, or Lzy · Ξ > 0. On the other hand, we see that

D · C = εC2 + Ξ · C > εC2 + multP

(
Ξ
)

= εC2 + multP

(
D
)
− εmultP

(
C
)
> εC2 +

8
13
− 6ε,

which implies that ε > 2594/40755. But ε 6 5/94. Thus, we see that P ∈ Cx ∪ Cy ∪ Cz ∪ Ct.
It follows from Remark 1.4.7 that we may assume that Supp(D) does not contains are least

one irreducible component of the curves Cx, Cy, Cz, Ct.
Suppose that P ∈ Lxt. Put D = δLxt + Θ, where Θ is an effective Q-divisor whose support

does not contain the curve Lxt. If δ 6= 0, then
10

13 · 25
= D ·Mx =

(
δLxt + Θ

)
·Mx > δLxt ·Mx =

2δ
13
,

which implies that δ 6 1/5. Then it follows from Lemma 1.4.6 that

5 + 27δ
13 · 19

=
(
−KX − δLxt

)
· Lxt = Θ · Lxt >



8
13

if P 6∈ Sing(X),

8
13 · 19

if P = Oz,

8
13 · 13

if P = Oy,

which implies that δ > 3/27. But δ 6 1/5. Thus, we see that P 6∈ Lxt.
Suppose tat P ∈ Lyz and P 6= Ot. Arguing as in the previous case, we obtain a contradiction.
Suppose that P ∈Mx and P 6= Ot. Then P is a smooth point of X, because P 6∈ Lxt. Put

D = eMx + Υ,

where Υ is an effective Q-divisor such that Mx 6⊂ Supp(Υ). If e 6= 0, then
5

13 · 19
= D · Lxt =

(
eMx + Υ

)
· Lxt > eLxt ·Mx =

2e
13
,

which implies that e 6 5/38. Then it follows from Lemma 1.4.6 that
10 + 28e
13 · 25

=
(
−KX − eMx

)
·Mx = Υ ·Mx >

8
13
,

which implies that e > 95/14. But e 6 5/38. Thus, we see that P 6∈Mx or P = Ot.
Arguing as above, we see that either P 6∈My or P = Ot. Then P ∈Mz ∪Mt or P = Ot.
Suppose that P ∈ Mz. Put D = sMz + ∆, where ∆ is an effective Q-divisor whose support

does not contain the curve Mx. If s 6= 0, then
5

11 · 25
= D ·Mz =

(
sMz + ∆

)
· Lyz > sMx · Lxt =

2s
11
,

which implies that s 6 1/10. Then it follows from Lemma 1.4.6 that
10

11 · 13
= D ·Mx = sM2

x + ∆ ·MX > sM2
x +

8
13

>
8
13

>
10

11 · 13
,

which is a contradiction. Thus, we see that P 6∈Mz. Similarly, we see that P 6∈Mt.
The obtained contradiction shows that P = Ot. Then

5
11 · 25

= D · Lyz >
8

13 · 25
>

5
11 · 25

whenever Lyz 6⊂ Supp(D). Thus, we see that Lyz ⊂ Supp(D). Then My 6⊂ Supp(D). Put

D = mLyz + cMx + Ω,
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where m > 0 and c > 0, and Ω is an effective Q-divisor such that Lyz 6⊂ Supp(Ω) 6⊃Mx. Then

20
19 · 25

= D ·My =
(
mLyz + cMx + Ω

)
·My >

4m
25

+
multOt(D)−m

25
>

3m+ 8
13

25
,

which implies that m < 36/247. Then it follows from Lemma 1.4.6 that

5 + 31m
11 · 25

=
(
−KX −mLyz

)
· Lyz = (Ω + cMx) · Lyz >

8
13 · 25

,

which implies that m > 23/403. We will see later that c > 0 as well.
Arguing as above, we see obtain an inconsistent system of inequalities

20
19 · 25

>
3m+ 1216

905

25
,

5 + 31m
11 · 25

>
1216

905 · 25
,

in the case when (X, 1216
905 D) is not log canonical at Ot. We see that lct(X) > 1216/905.

Let π : X̄ → X be a weighted blow up of Ot with weights (11, 19), let E be the exceptional
curve of π, let Ω̄, L̄yz, M̄x, M̄y be the proper transforms of Ω, Lyz, Mx, My, respectively. Then

KX̄ ≡ π∗(KX) +
5
25
E, L̄yz ≡ π∗(Lyz)−

19
25
E, M̄y ≡ π∗(My)−

19
25
E, M̄x ≡ π∗(Mx)− 11

25
E,

and there is a positive rational number a such that

Ω̄ ≡ π∗(Ω)− a

25
E.

The curve E contains two singular points Q11 and Q19 of X̄ such that Q11 is a singular point
of type 1

11(2, 3), and Q19 is a singular point of type 1
19(11, 13). Then

L̄yz ∪ M̄y 63 Q19 ∈ M̄x 63 Q11 = L̄yz ∩ M̄y,

which implies that L̄yz ∩ M̄x = ∅. The log pull back of the log pair (X, 13
8 D) is the log pair(

X̄,
13
8

Ω̄ +
13m

8
L̄yz +

13c
8
M̄x +

(
247m
200

+
143c
200

+
13a
200

− 1
5

)
E

)
,

which must have non-log canonical singularity at some point Q ∈ E. We have

0 6 L̄yz · Ω̄ =
5

11 · 25
+

31m− a− 11c
11 · 25

,

which implies that a+ 11c 6 5 + 31m. But m < 36/247. Hence, we see that a < 2351/247 and(
247m
200

+
143c
200

+
13a
200

− 1
5

)
< 1.

The log pull back of the the log pair (X, 13
8 D) is effective if and only if the inequality

19m+ 11c+ a > 40/13

holds. On the other hand, if 19m+ 11c+ a 6 40/13, then the log pair(
X̄,

13
8

Ω̄ +
13m

8
L̄yz +

13c
8
M̄x

)
is not log canonical at the point Q as well. Thus, if 19m+ 11c+ a 6 40/13, then

40
13 · 11 · 19

>
a+ 19m+ 11c

11 · 19
=
(
Ω̄ +mL̄yz + cM̄x

)
· E >



8
13

if Q19 6= Q 6= Q11,

8
13

1
11

if Q = Q11,

8
13

1
19

if Q = Q19,

which is absurd. Thus, the log pull back of (X, 13
8 D) is effective.
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Suppose that Q 6= Q11 and Q 6= Q19. Then Q 6∈ L̄yz ∪ M̄x. By Lemma 1.4.6, we have
a

19 · 11
=

a

25
E2 = Ω̄ · E >

8
13
,

because E2 = −25/209. Then a > 1672/13, which is impossible, because a < 2351/247.
Therefore, we see that either Q = Q11 or Q = Q19.
Suppose that Q = Q11. Then Q 6∈ M̄x. Hence, it follows from Lemma 1.4.6 that(

13
8

Ω̄ +
(

247m
200

+
143c
200

+
13a
200

− 1
5

)
E

)
· L̄yz >

1
11
,

but L̄yz · E = 1/11 and L̄yz · M̄x = 0. Moreover, we have

Ω̄ · L̄yz =
(
Ω̄ + cM̄x

)
· L̄yz =

(
D −mLyz

)
· Lyz −

a+ 11c
25 · 11

=
5 + 31m− a− 11c

11 · 25
,

which immediately implies that m > 19/130. But m < 36/247, which is a contradiction.
Thus, we see that Q = Q19. Then Q 6∈ L̄yz, and it follows from Lemma 1.4.6 that(

13
8

Ω̄ +
(

247m
200

+
143c
200

+
13a
200

− 1
5

)
E

)
· M̄x >

1
19
,

but we have M̄x · E = 1/19. Therefore, it follows from the equality

Ω̄ ·M̄x = Ω ·Mx−
a

25 · 19
= D ·Mx−mLyz ·Mx−cMx ·Mx−

a

25 · 19
=

10− 13m+ 28c
13 · 25

− a

25 · 19
,

which implies that c > 2/27. But c < 5/28. However, we have no contradiction here.
Let ψ : X̃ → X̄ be a weighted blow up of Q19 with weights (11, 13), let G be the exceptional

curve of ψ, let Ω̃, L̃yz, M̃x, Ẽ be the proper transforms of Ω, Lyz, Mx, E, respectively. Then

KX̃ ≡ ψ∗(KX̄) +
5
19
G, M̃x ≡ ψ∗(M̄x)− 11

19
G, Ẽ ≡ ψ∗(E)− 13

19
G, Ω̃ ≡ ψ∗(Ω̄)− b

19
G,

where b is a positive rational number.
The curve G contains two singular points O11 and O13 of X̃ such that O11 is a singular point

of type 1
11(2, 3), and O13 is a singular point of type 1

13(1, 2). Then

Ẽ 63 O13 ∈ M̃x 63 O11 ∈ Ẽ,
where Ẽ ∩ M̃x = ∅. The log pull back of the log pair (X, 13

8 D) is the log pair(
X̃,

13
8

Ω̃ +
13m

8
L̃yz +

13c
8
M̃x +

(
247m
200

+
143c
200

+
13a
200

− 1
5

)
Ẽ + θG

)
,

which must have non-log canonical singularity at some point O ∈ G, where

θ =
143c
100

+
13b
152

+
169a
3800

+
169m
200

− 2
5
.

Let us show that θ < 1. Indeed, we have

0 6 M̃x · Ω̃ =
10

13 · 25
+

28
13 · 25

− a+ 19m
19 · 25

− b

19 · 13
,

which implies that 25b 6 190+532c−13(a+19m). Then θ < 1, because c > 2/27 and c < 5/38.
Let us show that θ > 0. If θ 6 0, then the log pair(

X̃,
13
8

Ω̃ +
13m

8
L̃yz +

13c
8
M̃x +

(
247m
200

+
143c
200

+
13a
200

− 1
5

)
Ẽ

)
,

is not log canonical at the point O as well. Thus, if θ 6 0, then
5

11 · 13
+ θ

19
11 · 13

=
(

13
8

Ω̃ +
13m

8
L̃yz +

13c
8
M̃x +

(
247m
200

+
143c
200

+
13a
200

− 1
5

)
Ẽ

)
·G >

1
13
,

which implies that θ > 6/19, which is absurd. Hence, we see that 1 > θ > 0.
Suppose that O 6= O11 and O 6= O13. Then O 6∈ Ẽ ∪ M̃x, and it follows from Lemma 1.4.6

that
b

11 · 13
= − b

19
G2 = Ω̃ ·G >

8
13
,
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because G2 = −19/143. Thus, we see that b > 88. On the other hand, the inequalities

0 6
(
Ω̃ +mL̃yz

)
· Ẽ =

a+ 19m− b

11 · 19
hold. Then a+ 19m > b > 88. Thus, we obtain the system of inequalities

a+ 19m > b > 88,

25b 6 190 + 532c− 13(a+ 19m),

5/38 > c > 2/27,

which is inconsistent. Therefore, we see that either O = O11 or O = O13.
Suppose that O = O13. Then O 6∈ Ẽ, and it follows from Lemma 1.4.6 that

190 + 532c− 25b− 13(a+ 19m)
19 · 13 · 25

= Ω̃ · M̃x >
56
845

− 22c
325

− b

247
− a

475
− m

25
,

which implies that c > 3/13. But c < 5/28, which is a contradiction.
Thus, we see that O = O11. Then O 6∈ M̃x. Hence, it follows from Lemma 1.4.6 that

a+ 19m− b

19 · 11
=
(
Ω̃ +mL̃yz

)
· Ẽ >

56
715

− 2c
25
− b

209
− 13a

5225
− 13m

275
,

which implies that 22c > 280/13− 2(a+ 19m). Applying Lemma 1.4.6 again, we see that
b

11 · 13
= Ω̃ ·G >

48
65
− 19m

25
− 11c

25
− a

25
,

which implies that 13(a+ 19m) + 143c+ 25b > 240. Note that M̄y 6⊂ Supp (Ω̄). Thus we have

0 6 Ω̄ · M̄y = Ω ·My −
a+ 19m

25
E · M̄x =

20− 31c
19 · 25

− a+ 19m
25 · 11

,

which implies that 19(a+ 19m) 6 220− 341c. Similarly, we see that

20
19 · 25

− 31c
19 · 25

− 4m
25

= (D − cMx−mLyz) ·My = Ω ·My >
multOt(Ω)

25
>

8/13−m− c

25
,

which implies that 108/13 > 12c+ 57m. Thus, we obtain the system of inequalities

19(a+ 19m) 6 220− 341c,

25b 6 190 + 532c− 13(a+ 19m),

13(a+ 19m) + 143c+ 25b > 240,

22c > 280/13− 2(a+ 19m),

108/13 > 12c+ 57m,
a+ 11c 6 5 + 31m,

5/38 > c > 2/27,

which is, unfortunately, consistent. So, we must blow up the point O11.
Let φ : X̂ → X̃ be a weighted blow up of O11 with weights (2, 3), let F be the exceptional

curve of φ, let Ω̂, L̂yz, M̂x, Ê be the proper transforms of Ω, Lyz, Mx, E, respectively. Then

KX̂ ≡ φ∗(KX̃)− 6
11
F, Ĝ ≡ φ∗(G)− 3

11
F, Ê ≡ φ∗(Ẽ)− 2

11
F, Ω̂ ≡ φ∗(Ω̃)− d

11
F,

where d is a positive rational number. Then F 2 = −11/6 and

Ω̂ · F =
d

6
,
(
Ω̂ +mL̂yz

)
· Ê =

a+ 19m− b

11 · 19
− d

33
, Ω̂ · Ĝ =

b

11 · 13
− d

22
, F · Ĝ =

1
2
, F · Ê =

1
3
.

The curve F contains two singular points A2 and A3 of the surface X̂ such that A2 is a singular
point of type 1

2(1, 1), and A3 is a singular point of type 1
3(1, 2). Then

Ê 63 A2 ∈ Ĝ 63 A3 ∈ Ê,
where Ê ∩ Ĝ = ∅. The log pull back of the log pair (X, 13

8 D) is the log pair(
X̂,

13
8

Ω̂ +
13m

8
L̂yz +

13c
8
M̂x +

(
247m
200

+
143c
200

+
13a
200

− 1
5

)
Ê + θĜ+ νF

)
,
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which must have non-log canonical singularity at some point A ∈ F , where

ν =
91m
200

+
13c
25

+
91a
3800

+
39b
1672

+
13d
88

+
2
5
.

Obviously, the inequality ν > 0 holds. Let us show that ν < 1. Indeed, we have

a+ 19m− b

11 · 19
− d

33
= Ê ·

(
Ω̂ +mL̂yz

)
> 0 6 Ĝ · Ω̂ =

b

11 · 13
− d

22
,

which implies that 2b > 13d and 3(a+ 19m− b) > 19d. But the system of inequalities

2b > 13d,

3(a+ 19m− b) > 19d,

1001(a+ 19m) + 21736c+ 975b+ 6175d > 25080,

19(a+ 19m) 6 220− 341c,

25b 6 190 + 532c− 13(a+ 19m),

13(a+ 19m) + 143c+ 25b > 240,

22c > 280/13− 2(a+ 19m),

108/13 > 12c+ 57m,
a+ 11c 6 5 + 31m,

5/38 > c > 2/27,

is inconsistent. Hence, we see that 1 > ν > 0.
Suppose that A 6= A2 and A 6= A3. Then A 6∈ Ê ∪ Ĝ, and it follows from Lemma 1.4.6 that

d

6
= Ω̂ · F >

8
13
,

which implies that d > 48/13. But the system of inequalities

d > 48/13,
2b > 13d,

3(a+ 19m− b) > 19d,

19(a+ 19m) 6 220− 341c,

25b 6 190 + 532c− 13(a+ 19m),

13(a+ 19m) + 143c+ 25b > 240,

22c > 280/13− 2(a+ 19m),

108/13 > 12c+ 57m,
a+ 11c 6 5 + 31m,

5/38 > c > 2/27,

is inconsistent. Therefore, we see that either A = A2 or A = A3.
Suppose that A = A2. Then it follows from Lemma 1.4.6 that

13d
48

+
1
2

(
143c
100

+
13b
152

+
169a
3800

+
169m
200

− 2
5

)
=
(

13
8

Ω̂ + θĜ

)
· F >

1
2
,

because A 6∈ Ê. Applying Lemma 1.4.6 again, we see that the inequality

13
48

(
b

11 · 13
− d

22

)
+

1
2

(
91m
200

+
13c
25

+
91a
3800

+
39b
1672

+
13d
88

+
2
5

)
=
(

13
8

Ω̂ + νF

)
· Ĝ >

1
2
,
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holds. Therefore, we obtain the system of inequalities

2b > 13d,

3(a+ 19m− b) > 19d,

16302c+ 975b+ 507(a+ 19m) + 6175d > 15960,

1976c+ 91(a+ 19m) + 175b > 2280,

19(a+ 19m) 6 220− 341c,

25b 6 190 + 532c− 13(a+ 19m),

13(a+ 19m) + 143c+ 25b > 240,

22c > 280/13− 2(a+ 19m),

108/13 > 12c+ 57m,
a+ 11c 6 5 + 31m,

5/38 > c > 2/27,

which is inconsistent. Hence, we see that A = A3. By Lemma 1.4.6, we have
13d
48

+
1
3

(
247m
200

+
143c
200

+
13a
200

− 1
5

)
=
(

13
8

Ω̂ +
(

247m
200

+
143c
200

+
13a
200

− 1
5

)
Ê

)
· F >

1
3
,

because A is not contained in Ĝ. Applying Lemma 1.4.6 again, we see that the inequality
13
4

(
a+ 19m− b

11 · 19
− d

33

)
+

1
3

(
91m
200

+
13c
25

+
91a
3800

+
39b
1672

+
13d
88

+
2
5

)
=
(

13
8

Ω̂ + νF

)
·Ê >

1
3
,

holds. Therefore, we obtain the system of inequalities

2b > 13d,

3(a+ 19m− b) > 19d,

286c+ 26(a+ 19m) + 325d > 480,

143c+ 13(a+ 19m) > 165,

19(a+ 19m) 6 220− 341c,

25b 6 190 + 532c− 13(a+ 19m),

13(a+ 19m) + 143c+ 25b > 240,

22c > 280/13− 2(a+ 19m),

108/13 > 12c+ 57m,
a+ 11c 6 5 + 31m,

5/38 > c > 2/27,

which is inconsistent. The obtained contradiction completes the proof. �

Lemma 3.5.2. Suppose that and (a0, a1, a2, a3, d) = (11, 25, 37, 68, 136). Then lct(X) = 11/6.

Proof. The surface X can be defined by the quasihomogeneous equation

xy5 + x9z + yz3 + t2 = 0,

and X is singular at the points Ox, Oy and Oz.
The curves Cx and Cy are reduced and irreducible. We have

11
6

= lct
(
X,

5
11
Cx

)
< lct

(
X,

5
25
Cy

)
=

55
18
,

which implies thatlct(X) 6 11/6.
Suppose that lct(X) < 11/6. Then there is an effective Q-divisor D ≡ −KX such that the

pair (X, 11
6 D) is not log canonical at some point P . by Remark 1.4.7 we may assume that the

support of D does not contain Cx and Cy.
Since H0(P,OP(407)) contains x37, z11 and x12y11, we see that P ∈ Sing(X) ∪ Cx by

Lemma 1.4.10.
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Suppose that P ∈ Cx. Then

10
25 · 37

= D · Cx >



multP

(
D
)

25
if P = Oy,

multP

(
D
)

37
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 6/11. Thus, we see that P = Ox. Then

10
11 · 37

= D · Cy >
multP

(
D
)

11
>

6
121

>
10

11 · 37
,

which is a contradiction. Thus, we see that lct(X) = 11/6. �

Lemma 3.5.3. Suppose that (a0, a1, a2, a3, d) = (13, 19, 41, 68, 136). Then lct(X) = 91/50.

Proof. The surface X is defined by the quasihomogeneous equation

x9y + xz3 + y5z + t2 = 0,

and X is singular at the points Ox, Oy and Oz.
The curves Cx and Cy are reduced and irreducible. Then

91
50

= lct
(
X,

5
13
Cx

)
< lct(X,

5
19
Cy) =

19
6
,

which implies that lct(X) 6 50
91 .

Suppose that lct(X) < 91/50. Then there is an effective Q-divisor D ≡ −KX such that the
pair (X, 91

50D) is not log canonical at some point P . By Remark 1.4.7 we may assume that the
support of D does not contain Cx and Cy.

Since H0(P,OP(533)) contains x41, z13 and x3y26, we see that P ∈ Sing(X) ∪ Cx by
Lemma 1.4.10.

Suppose that P ∈ Cx. Then

10
19 · 41

= D · Cx >



multP

(
D
)

19
if P = Oy,

multP

(
D
)

41
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which is impossible, because multP (D) > 50/91. We see that P = Ox. Then

10
13 · 41

= D · Cy >
multP

(
D
)

13
>

50
91 · 13

>
10

13 · 41
,

which is a contradiction. Thus, we see that lct(X) = 91/50. �

3.6. Sporadic cases with I = 6

Lemma 3.6.1. Suppose that (a0, a1, a2, a3, d) = (5, 7, 8, 9, 23). Then lct(X) = 5/8.

Proof. The surface X can be defined by the quasihomogeneous equation

yz2 + y2t+ xt2 + x3z = 0,

and X is singular at Ox, Oy, Oz and Ot. We have

lct
(
X,

6
5
Cx

)
=

5
8
< lct

(
X,

6
7
Cy

)
=

7
9
< lct

(
X,

6
8
Cz

)
=

6
7
< lct

(
X,

6
9
Ct

)
= 1,

which implies, in particular, that lct(X) 6 5/8.
The curve Cx is reducible. We have Cx = Lxy +Mx, where Lxy and Mx are irreducible curves

such that Lxy is given by x = y = 0, and Mx is given by x = z2 + yt = 0. Then

Lxy · Lxy =
−11
8 · 9

, Mx ·Mx =
−4
7 · 9

, Lxy ·Mx =
2
9
, D · Lxy =

6
8 · 9

, D ·Mx =
12

7 · 9
,
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and Lxy ∩Mx = Ot. Note that Cx is smooth outside of the point Ot.
The curve Cy is reducible. We have Cy = Lxy +My, where My is an irreducible curve such

that My is given by y = t2 + x2z = 0. Then

My ·My =
1
5
, Lxy ·My =

1
4
, D ·My =

3
10
,

and Lxy ∩My = Oz. The only singular point of the curve Cy is Oz.
The curve Cz is reducible. We have Cz = Lzt +Mz, where Lzt and Mz are irreducible curves

such that Lzt is given by x = y = 0, and Mz is given by z = tx+ y2 = 0. Then

Lzt · Lzt =
−6
35
, Mz ·Mz =

−2
45
, Lzt ·Mz =

2
5
, D · Lzt =

6
35
, D ·Mz =

4
15
,

and Lzt∩Mz = Ox. The only singular point of Cz is Ox. We have Lxy ·Lzt = 0 and Lxy ·Mz = 1/9.
The curve Ct is reducible. We have Ct = Lzt +Mt, where Mt is an irreducible curve that is

given by the equations t = x3 + z2y = 0. Then

Mt ·Mt =
3

7 · 8
, Lzt ·Mt =

3
7
, D ·Mt =

9
28
,

and Lzt ∩Mt = Oy. The only singular point of Ct is Oy.
We suppose that lct(X) < 5/8. Then there is an effective Q-divisor D ∼Q −KX such that

the log pair (X, 5
8D) is not log canonical at some point P ∈ X. Let us derive a contradiction.

Suppose that P 6∈ Cx ∪Cy ∪Cz ∪Ct. Then there is a unique curve Zα ⊂ X that is cut out by

xt+ αy2 = 0

such that P ∈ Z, where 0 6= α ∈ C. The curve Zα is reduced. But it is always reducible. Indeed,
one can easily check that

Zα = Cα + Lxy

where Cα is a reduced curve whose support contains no Lxy. Let us prove that Cα is irreducible
if α 6= 1.

The open subset Zα \ (Zα ∩ Cx) of the curve Zα is a Z5-quotient of the affine curve

t+ αy2 = 0 = yz2 + y2t+ t2 + z = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to a plane affine curve that is given by the equation

y
(
α(α− 1)y4 + z + z2y

)
= 0 ⊂ C2 ∼= Spec

(
C
[
y, z
])
,

which implies that the curve Cα is irreducible and multP (Cα) 6 3 if α 6= 1.
The case α = 1 is special. Namely, if α = 1, then

C1 = R1 +Mz,

where R1 is a reduced curve whose support contains no C1. Arguing as in the case α 6= 1, we
see that R1 is irreducible and R1 is smooth at the point P .

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Zα.

Suppose that α 6= 1. Then elementary calculations imply that

Cα · Lxy =
25

8 · 9
, Cα · Cα =

449
360

, D · Cα =
41 · 6
360

,

and we can put D = εCα + Ξ, where Ξ is an effective Q-divisor such that Cα 6⊂ Supp(Ξ). Now
we obtain the inequality ε 6 6/25, because either ε = 0, or Lxy · Ξ > 0. On the other hand, we
see that
41 · 6
360

= D·Cα = εC2
α+Ξ·Cα > εC2

α+multP

(
Ξ
)

= εC2
α+multP

(
D
)
−εmultP

(
Cα

)
> εC2

α+
5
8
−3ε,

which is impossible, because ε 6 6/25.
Thus, we see that α = 1. Then elementary calculations imply that

R1 · Lxy =
17

8 · 9
, R1 ·R1 =

13
8 · 9

, Mz ·R1 =
28
45
, D ·R1 =

30
8 · 9

,
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and we can put D = ε1R1 + Ξ1, where Ξ1 is an effective Q-divisor such that R1 6⊂ Supp(Ξ1).
Now we obtain the inequality ε1 6 12/25, because either ε1 = 0, or Lxy · Ξ1 > 0 or Mz · Ξ1 > 0.
By Lemma 1.4.6, we see that

30− 13ε1
72

= Ξ1 ·R1 >
5
8
,

which is impossible, because ε1 6 12/25. Thus, we see that P ∈ Cx ∪ Cy ∪ Cz ∪ Ct.
It follows from Remark 1.4.7 that we may assume that Supp(D) does not contains are least

one irreducible component of the curves Cx, Cy, Cz, Ct.
Suppose that P = Oz. If Lyz 6⊂ Supp(D), then

1
12

= D · Lyz >
multP (D)

8
>

1
5
,

which is a contradiction. If My 6⊂ Supp(D), then

3
10

= D ·My >
multP (D)multP (My)

8
=

2multP (D)
8

>
2
5
,

which is a contradiction. Thus, we see that P 6= Oz. Similarly, we see that P 6= Ox and P 6= Oy.
Suppose that P ∈ Lxy. Put D = δLxy + Θ, where Θ is an effective Q-divisor whose support

does not contain the curve Lxy. If δ 6= 0, then
4
21

= D ·Mx =
(
δLxy + Θ

)
·Mx > δLxy ·Mx =

2δ
9
,

which implies that δ 6 6/7. Then it follows from Lemma 1.4.6 that

6 + 11δ
72

=
(
−KX − δLxy

)
· Lxy = Θ · Lxy >


8
5

if P 6= Ot,

8
45

if P = Ot,

which implies that δ > 34/55 and P = Ot, because δ 6 6/7. Then
4
21

= D ·Mx =
(
δLxy + Θ

)
·Mx > δLxy ·Mx +

multP (D)− δ

9
>

2δ
9

+
8/5− δ

9
,

which implies that δ < 4/35. But δ > 34/35. Thus, we see that P 6= Lxy. Then P 6∈ Sing(X).
Suppose that P ∈ Mx. Put D = eMx + Υ, where Υ is an effective Q-divisor such that

Mx 6⊂ Supp(Υ). If e 6= 0, then
6
72

= D · Lxy =
(
eMx + Υ

)
· Lxy > eLxy ·Mx =

2e
9
,

which implies that e 6 3/8. Then it follows from Lemma 1.4.6 that
4 + 4e

21
=
(
−KX − eMx

)
·Mx = Υ ·Mx >

8
5
,

which is impossible, because e 6 3/8. Thus, we see that P 6∈ Mx. Similarly, we see that
P 6∈ Lzt ∪My ∪Mz ∪Mt, which is a contradiction. �

Lemma 3.6.2. Suppose that (a0, a1, a2, a3, d) = (7, 10, 15, 19, 45). Then lct(X) = 35/54.

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + y3z + xt2 + x5y = 0,

the surface X is singular at the point Ox, Oy, Ot. The surface X is also singular at a point Q
such that Q 6= Oy and Oy and Q are cut out on X by the equations x = t = 0.

The curve Cx is reducible. We have Cx = Lxz + Zx, where Lxz and Zx are irreducible and
reduced curves such that Lxz is given by the equations x = z = 0, and Zx is given by the
equations x = z2 + y3 = 0. Then

Lxz · Lxz =
−23

10 · 19
, Zx · Zx =

−16
10 · 19

, Lxz · Zx =
3
19
,

and Lxz ∩ Zx = Ot. The curve Cy is irreducible and

35
54

= lct
(
X,

6
7
Cx

)
< lct

(
X,

6
10
Cy

)
=

25
18
,
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which implies, in particular, that lct(X) 6 35/54.
Suppose that lct(X) < 35/54. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 35
54D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊆ Supp(D), or Zx 6⊆ Supp(D).

Since H0(P,OP(105)) contains x15, y7x5 and z7, it follows from Lemma 1.4.10 that P ∈
Sing(X) ∪ Cx.

Suppose that P = Ot. If Lxz 6⊆ Supp(D), then

6
10 · 19

= D · Lxz >
multP

(
D
)

19
>

54
35 · 19

>
6

10 · 19
,

which is a contradiction. If Zx 6⊆ Supp(D), then

12
10 · 19

= D · Zx >
multP

(
D
)
multP (Zx)

15
>

54 · 2
35 · 19

>
12

10 · 19
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P ∈ Lxz. Put D = mLxz + Ω, where Ω is an effective Q-divisor such that

Lxz 6⊂ Supp(Ω). If m 6= 0, then
12

10 · 19
= −KX · Zx = D · Zx =

(
mLxz + Ω

)
· Zx > mLxz · Zx =

3m
19
,

which implies that m 6 2/5. Then it follows from Lemma 1.4.6 that

6 + 23m
10 · 19

=
(
−KX −mLxz

)
· Lxz = Ω · Lxz >


54
35

if P 6= Oy,

54
35

1
10

if P = Oy,

which is impossible, because m 6 2/5. Thus, we see that P 6∈ Lxz.
Suppose that P ∈ Zx. Put D = εZx + ∆, where ∆ is an effective Q-divisor such that

Zx 6⊂ Supp(∆). If ε 6= 0, then
6

10 · 19
= −KX · Lxz = D · Lxz =

(
εZx + ∆

)
· Lxz > εLxz · Zx =

3ε
19
,

which implies that m 6 1/5. Then it follows from Lemma 1.4.6 that

6 + 16ε
10 · 19

=
(
−KX − εZx

)
· Zx = ∆ · Zx >


54
35

if P 6= Q,

54
35

1
5

if P = Q,

which is impossible, because ε 6 1/5. Thus, we see that P 6∈ Zx.
We see that P 6∈ Cx and P ∈ Sing(X). Then P = Ox. We have

18
7 · 19

= D · Cy >
multP

(
D
)

7
>

54
35 · 7

>
18

7 · 19
,

which is a contradiction. Thus, we see that lct(X) = 35/54. �

Lemma 3.6.3. Suppose that (a0, a1, a2, a3, d) = (11, 19, 29, 53, 106). Then lct(X) = 55/36.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

x7z + xy5 + yz3 + t2 = 0.

Note that X is singular at Ox, Oy and Oz. The curves Cx and Cy are irreducible. It is easy to
see

lct(X,
6
11
Cx) =

55
36

< lct(X,
6
19
Cy) =

57
28
.

Suppose that lct(X) < 55
36 . Then there is an effective Q-divisor D ≡ −KX such that the pair

(X, 55
36D) is not log canonical.

For a smooth point P ∈ X \ Cx and an effective Q-divisor D ≡ −KX , we have

multPD 6
6 · 319 · 106

11 · 19 · 29 · 53
<

36
55
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since H0(P,OP(319)) contains x29, z11, x10y11. Therefore, either there is a point P ∈ Cx such
that multPD > 36

55 or we have multOxD > 36
55 . Since the pairs (X, 6·55

11·36Cx) and (X, 6·55
19·36Cy) are

log canonical and the curves Cx and Cy are irreducible, we may assume that the support of D
does not contain the curves Cx and Cy. Then we can obtain

multOxD 6 11Cy ·D 6
11 · 19 · 106 · 6
11 · 19 · 29 · 53

<
36
55

and for any point P ∈ Cx

multPD 6 29Cx ·D 6
29 · 11 · 106 · 6
11 · 19 · 29 · 53

<
36
55
.

Therefore, lct(X) = 55
36 . �

Lemma 3.6.4. Suppose that (a0, a1, a2, a3, d) = (13, 15, 31, 53, 106). Then lct(X) = 45/28.

Proof. The surface X can be defined by the quasihomogeneous equation

x7z + xy5 + yz3 + t2 = 0,

and X is singular at the points Ox, Oy and Oz.
The curves Cx and Cy are reduced and irreducible. We have

45
28

= lct
(
X,

6
15
Cy

)
< lct

(
X,

6
13
Cx

)
=

65
36
,

which implies thatlct(X) 6 45/28.
Suppose that lct(X) < 45/28. Then there is an effective Q-divisor D ≡ −KX such that the

pair (X, 45
28D) is not log canonical at some point P . by Remark 1.4.7 we may assume that the

support of D does not contain Cx and Cy.
Since H0(P,OP(403)) contains x31, z13, xy26, we see that P ∈ Sing(X)∪Cx by Lemma 1.4.10.
Suppose that P ∈ Cx. Then

12
14 · 31

= D · Cx >



multP

(
D
)

15
if P = Oy,

multP

(
D
)

31
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

which implies that P = Oz, because multP (D) > 28/45. Then

12
13 · 31

= D · Cy >
multP

(
D
)
multP

(
Cy

)
31

>
56

45 · 30
>

12
13 · 31

,

because multP (Cy) = 2. Thus, we see that P = Ox. Then

12
13 · 31

= D · Cy >
multP

(
D
)

13
>

28
45 · 13

>
12

13 · 31
,

which is a contradiction. Thus, we see that lct(X) = 45/28. �

3.7. Sporadic cases with I = 7

Lemma 3.7.1. Suppose that (a0, a1, a2, a3, d) = (11, 13, 21, 38, 76). Then lct(X) = 13/10.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x5z = 0.

Note that X is singular at Ox, Oy and Oz.
The curves Cx and Cy are irreducible. We have

55
42

= lct(X,
7
11
Cx) > lct(X,

7
13
Cy) =

13
10
,

which implies, in particular, that lct(X) 6 13/10.
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Suppose that lct(X) < 13/10. Then there is a Q-effective divisor D ≡ −KX such that the
pair (X, 13

10D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the
support of D does not contain the curves Cx and Cy.

Suppose that P ∈ Cx and P 6∈ Sing(X). Then

10
13

< multP (D) 6 D · Cx =
2
39

<
10
13
,

which is a contradiction. Suppose that P ∈ Cy and P 6∈ Sing(X). Then

10
13

< multP (D) 6 D · Cy =
2
33

<
10
13
,

which is a contradiction. Suppose that P = Ox. Then

10
13

1
11

<
multOx(D)

11
6 D · Cy =

2
33

<
10
13

1
11
,

which is a contradiction. Suppose that P = Oz. Then

10
13

2
21

<
2multOz(D)

21
=

multOz(D)multOz(Cy)
21

6 D · Cy =
2
33

<
10
13

2
21
,

which is a contradiction. Suppose that P = Oy. Then

10
13

1
13

<
multOy(D)

13
6 D · Cx =

2
39

<
10
13

1
13
,

which is a contradiction. Thus, we see that P ∈ X \ Sing(X) and P 6∈ Cx ∪ Cy.
Let L be the pencil on X that is cut out by the pencil

λx13 + µy11 = 0,

where [λ : µ] ∈ P1. Then the base locus of the pencil L consists of the point Oz.
Let C be the unique curve in L that passes through the point P . Arguing as in the proof of

Lemma 3.3.1, we see that the curve C is irreducible. On the other hand, the curve C is a double
cover of the curve

λx13 + µy11 = 0 ⊂ P
(
11, 13, 21

) ∼= Proj
(
C
[
x, y, z

])
such that λ 6= 0 and µ 6= 0. Thus, the inequality multP (C) 6 2 holds. In particular, the log
pair (X, 7

110C) is log canonical. Thus, we may assume that the support of D does not contain
the curve C and hence we obtain

10
13

< multP (D) 6 D · C =
2
3
<

10
13
,

which is a contradiction. �

3.8. Sporadic cases with I = 8

Lemma 3.8.1. Suppose that (a0, a1, a2, a3, d) = (7, 11, 13, 23, 46). Then lct(X) = 35/48.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y3z + xz3 + x5y = 0,

the surface X is singular at the point Ox, Oy and Oz.
The curves Cx, Cy and Cz are irreducible. We have

35
48

= lct
(
X,

8
7
Cx

)
< lct

(
X,

8
13
Cz

)
=

91
80

< lct
(
X,

8
11
Cy

)
=

55
48
,

which implies, in particular, that lct(X) 6 35/48.
Suppose that lct(X) < 35/48. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 35
48D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx, Cy and Cz.
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Suppose that P ∈ Cx. Then

16
11 · 13

= D · Cx >



multP

(
D
)

11
if P = Oy,

multP

(
D
)
multOz

(
Cx

)
13

if P = Oz,

multP

(
D
)

if P 6= Ox and P 6= Oz,

which is impossible, because multP (D) > 48/35 and multOz(Cx) = 2.
We see that P 6= Oz. Suppose that P ∈ Cy. Then

16
7 · 13

= D · Cy >


multP

(
D
)

7
if P = Ox,

multP

(
D
)

if P 6= Ox,

which is impossible, because multP (D) > 48/35. Thus, we see that P ∈ Cy. Then P 6∈ Sing(X).
Let us show that P 6∈ Cz. Suppose that P ∈ Cz. Then

16
7 · 11

= D · Cz > multP

(
D
)
>

48
35
,

which is a contradiction. Thus, we see that P 6∈ Cz.
We see that P 6∈ Cx ∪ Cy ∪ Cz. Then there is a unique curve Z ⊂ X that is cut out by

x4y = αz3

such that P ∈ Z, where 0 6= α ∈ C. We see that Cx 6⊂ Supp(Z). But the open subset Z\(Z∩Cx)
of the curve Z is a Z7-quotient of the affine curve

y − αz3 = t2 + y3z + z3 + y = 0 ⊂ C3 ∼= Spec
(
C
[
y, z, t

])
,

which is isomorphic to a plane affine curve Rx ⊂ C2 that is given by the equation

t2 + α3z10 + (1 + α)z3 = 0 ⊂ C2 ∼= Spec
(
C
[
y, z
])
,

which is irreducible if α 6= −1. We see that Z is irreducible if α 6= −1.
It follows from the equation of the curve Rx that the log pair (X, 35

48Z) is log canonical at
the point P . By Remark 1.4.7, we may assume that Supp(D) does not contain at least one
irreducible component of the curve Z.

Suppose that α 6= −1. Then Z 6⊆ Supp(D) and

48
77

= D · Z > multP

(
D
)
>

48
35
,

which is a contradiction. Thus, we see that α = −1.
We have Z = Z1 + Z2, where Z1 and Z2 are irreducible reduced curves such that

Z1 · Z1 = Z1 · Z1 =
742
77

, Z1 · Z2 =
10
7

+
12
11

=
194
77

,

and Z1 ∩ Z2 = Ox ∪Oy. We may assume that P ∈ Z1.
Put D = mZ1 + Ω, where Ω is an effective Q-divisor such that Z1 6⊂ Supp(Ω). If m 6= 0, then

24
77

= −KX · Z2 = D · Z2 =
(
mZ1 + Ω

)
· Z2 > mZ1 · Z2 =

194m
77

,

which implies that m 6 12/97. Then it follows from Lemma 1.4.6 that

24− 742m
77

=
(
−KX −mZ1

)
· Z1 = Ω · Z1 >

48
35
,

which is a contradiction. The obtained contradiction completes the proof. �

Lemma 3.8.2. Suppose that (a0, a1, a2, a3, d) = (7, 18, 27, 37, 81). Then lct(X) = 35/72.
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Proof. The surface X can be defined by the quasihomogeneous equation

z3 + y3z + xt2 + x9y = 0,

the surface X is singular at the point Ox, Oy, Ot. The surface X is also singular at a point Q
such that Q 6= Oy and Oy and Q are cut out on X by the equations x = t = 0.

The curve Cx is reducible. We have Cx = Lxz + Zx, where Lxz and Zx are irreducible and
reduced curves such that Lxz is given by the equations x = z = 0, and Zx is given by the
equations x = z2 + y3 = 0. Then

Lxz · Lxz =
−47

18 · 37
, Zx · Zx =

−40
18 · 37

, Lxz · Zx =
3
37
,

and Lxz ∩ Zx = Ot. The curve Cy is irreducible and

35
72

= lct
(
X,

8
7
Cx

)
< lct

(
X,

8
18
Cy

)
=

15
8
,

which implies, in particular, that lct(X) 6 35/72.
Suppose that lct(X) < 35/78. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 35
72D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊆ Supp(D), or Zx 6⊆ Supp(D).

Since H0(P,OP(189)) contains x27, y7x9 and z7, it follows from Lemma 1.4.10 that P ∈
Sing(X) ∪ Cx.

Suppose that P = Ot. If Lxz 6⊆ Supp(D), then

8
18 · 37

= D · Lxz >
multP

(
D
)

37
>

72
35 · 37

>
8

18 · 37
,

which is a contradiction. If Zx 6⊆ Supp(D), then

16
18 · 37

= D · Zx >
multP

(
D
)

37
>

72
35 · 37

>
16

18 · 37
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P ∈ Lxz. Put D = mLxz + Ω, where Ω is an effective Q-divisor such that

Lxz 6⊂ Supp(Ω). If m 6= 0, then
16

18 · 37
= −KX · Zx = D · Zx =

(
mLxz + Ω

)
· Zx > mLxz · Zx =

3m
37
,

which implies that m 6 8/27. Then it follows from Lemma 1.4.6 that

8 + 47m
18 · 37

=
(
−KX −mLxz

)
· Lxz = Ω · Lxz >


72
35

if P 6= Oy,

72
35

1
18

if P = Oy,

which is impossible, because m 6 8/27. Thus, we see that P 6∈ Lxz.
Suppose that P ∈ Zx. Put D = εZx + ∆, where ∆ is an effective Q-divisor such that

Zx 6⊂ Supp(∆). If ε 6= 0, then
8

18 · 37
= −KX · Lxz = D · Lxz =

(
εZx + ∆

)
· Lxz > εLxz · Zx =

3ε
37
,

which implies that m 6 4/27. Then it follows from Lemma 1.4.6 that

16 + 40ε
18 · 37

=
(
−KX − εZx

)
· Zx = ∆ · Zx >


72
35

if P 6= Q,

72
35

1
9

if P = Q,

which is impossible, because ε 6 5/27. Thus, we see that P 6∈ Zx.
We see that P 6∈ Cx and P ∈ Sing(X). Then P = Ox. We have

24
7 · 37

= D · Cy >
multP

(
D
)

7
>

72
35 · 7

>
24

7 · 37
,

which is a contradiction. Thus, we see that lct(X) = 35/72. �
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3.9. Sporadic cases with I = 9

Lemma 3.9.1. Suppose that (a0, a1, a2, a3, d) = (7, 15, 19, 32, 64). Then lct(X) = 35/54.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y3z + xz3 + x7y = 0,

the surface X is singular at the point Ox, Oy and Oz, the curves Cx and Cy are irreducible, and

35
54

= lct
(
X,

9
7
Cx

)
< lct

(
X,

9
15
Cy

)
=

25
18
,

which implies, in particular, that lct(X) 6 35/54.
Suppose that lct(X) < 35/2. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 35
18D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(133)) contains x10, y7x4 and z7, it follows from Lemma 1.4.10 that P ∈

Sing(X) ∪ Cx.
Suppose that P ∈ Cx. Then

6
95

= D · Cx >



multP

(
D
)

15
if P = Oy,

multP

(
D
)

19
if P = Oz,

multP

(
D
)

if P 6= Oy and P 6= Oz,

>



54
35 · 15

if P = Oy,

54
35 · 19

if P = Oz,

54
35

if P 6= Oy and P 6= Oz,

>
6
95

which is a contradiction. Thus, we see that P = Ox. Then

18
133

= D · Cy >
multP

(
D
)

7
>

54
35 · 7

>
18
133

,

which is a contradiction. Thus, we see that lct(X) = 35/54. �

3.10. Sporadic cases with I = 10

Lemma 3.10.1. Suppose that (a0, a1, a2, a3, d) = (7, 19, 25, 41, 82). Then lct(X) = 7/12.

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y3z + xz3 + x9y = 0,

and X is singular at the points Ox, Oy and Oz.
The curves Cx and Cy are reducible. We have

7
12

= lct
(
X,

10
7
Cx

)
< lct

(
X,

10
19
Cy

)
=

19
12
,

which implies, in particular, that lct(X) 6 7/12.
Suppose that lct(X) < 7/12. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 7
12D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curves Cx and Cy.
Since H0(P,OP(175)) contains x25, x6y7 and z7, it follows from Lemma 1.4.10 that P ∈

Sing(X) ∪ Cx.
Suppose that P ∈ Cx. Then

4
95

= D · Cx >



12
7

if P 6= Oy and P 6= Oz,

12
7

1
19

if P = Oy,

12
7

1
25

if P = Oz,

which is a contradiction. Thus, we see that P 6∈ Cx. Then P = Ox. We have

4
35

= D · Cx >
multP

(
D
)

7
>

12
49
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which is a contradiction. Thus, we see that lct(X) = 7/12. �

Lemma 3.10.2. Suppose that (a0, a1, a2, a3, d) = (7, 26, 39, 55, 117). Then lct(X) = 7/18.

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + y3z + xt2 + x13y = 0,

the surface X is singular at the point Ox, Oy, Ot. The surface X is also singular at a point Q
such that Q 6= Oy and Oy and Q are cut out on X by the equations x = t = 0.

The curve Cx is reducible. We have Cx = Lxz + Zx, where Lxz and Zx are irreducible and
reduced curves such that Lxz is given by the equations x = z = 0, and Zx is given by the
equations x = z2 + y3 = 0. Then

Lxz · Lxz =
−71

26 · 55
, Zx · Zx =

−32
13 · 55

, Lxz · Zx =
3
55
,

and Lxz ∩ Zx = Ot. The curve Cy is irreducible and

7
18

= lct
(
X,

10
7
Cx

)
< lct

(
X,

10
26
Cy

)
=

13
6
,

which implies, in particular, that lct(X) 6 7/18.
Suppose that lct(X) < 7/18. Then there is a Q-effective divisor D ≡ −KX such that the

pair (X, 7
18D) is not log canonical at some point P . By Remark 1.4.7, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊆ Supp(D), or Zx 6⊆ Supp(D).

Since H0(P,OP(273)) contains x39, y7x13 and z7, it follows from Lemma 1.4.10 that P ∈
Sing(X) ∪ Cx.

Suppose that P = Ot. If Lxz 6⊆ Supp(D), then

2
11 · 26

= D · Lxz >
multP

(
D
)

55
>

18
7 · 55

>
2

11 · 26
,

which is a contradiction. If Zx 6⊆ Supp(D), then

20
26 · 55

= D · Zx >
multP

(
D
)

55
>

18
7 · 55

>
20

26 · 55
,

which is a contradiction. Thus, we see that P 6= Ot.
Suppose that P ∈ Lxz. Put D = mLxz + Ω, where Ω is an effective Q-divisor such that

Lxz 6⊂ Supp(Ω). If m 6= 0, then
20

26 · 55
= −KX · Zx = D · Zx =

(
mLxz + Ω

)
· Zx > mLxz · Zx =

3m
55
,

which implies that m 6 10/39. Then it follows from Lemma 1.4.6 that

10 + 71m
26 · 55

=
(
−KX −mLxz

)
· Lxz = Ω · Lxz >


18
7

if P 6= Oy,

18
7

1
26

if P = Oy,

which implies that m > 920/497. But we already proved that m 6 10/39. Thus, we see that
P 6∈ Lxz.

Suppose that P ∈ Zx. Put D = εZx + ∆, where ∆ is an effective Q-divisor such that
Zx 6⊂ Supp(∆). If ε 6= 0, then

10
26 · 55

= −KX · Lxz = D · Lxz =
(
εZx + ∆

)
· Lxz > εLxz · Zx =

3ε
55
,

which implies that m 6 5/39. Then it follows from Lemma 1.4.6 that

20 + 32ε
13 · 55

=
(
−KX − εZx

)
· Zx = ∆ · Zx >


18
7

if P 6= Q,

18
7

1
13

if P = Q,

which is impossible, because ε 6 5/39. Thus, we see that P 6∈ Zx.
124



We see that P 6∈ Cx and P ∈ Sing(X). Then P = Ox. We have

6
77

= D · Cy >
multP

(
D
)

7
>

18
49

>
6
77
,

which is a contradiction. Thus, we see that lct(X) = 7/18. �
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Annales Scientifiques de l’École Normale Supérieure 34 (2001), 525–556

[18] S.Donaldson, Scalar curvature and stability of toric varieties
Journal of Differential Geometry 62 (2002), 289–349
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Journes de Gèometrie Algèbrique d’Angers (1980), 273–310

[43] J. Ross, R.Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics
Journal of Differential Geometry 72 (2006), 429–466

[44] Y.Rubinstein, Some discretizations of geometric evolution equations
and the Ricci iteration on the space of Kähler metrics
Advances in Mathematics 218 (2008), 1526–1565

[45] V. Shokurov, Three-fold log flips
Russian Academy of Sciences, Izvestiya Mathematics 40 (1993), 95–202

[46] V. Shokurov, Complements on surfaces
Journal of Mathematical Sciences 102 (2000), 3876–3932

[47] J. Sparks, New results in Sasaki-Einstein geometry
arXiv:math/0701518 (2007)

[48] G.Tian, On Kähler–Einstein metrics on certain Kähler manifolds with c1(M) > 0
Inventiones Mathematicae 89 (1987), 225–246

[49] G.Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class
Inventiones Mathematicae 101 (1990), 101–172

[50] G.Tian, On a set of polarized Kähler metrics on algebraic manifolds
Journal of Differential Geometry 32 (1990), 99–130

[51] G.Tian, Kähler–Einstein metrics with positive scalar curvature
Inventiones Mathematicae 130 (1997), 1–37

[52] S. S.-T.Yau, Y.Yu, Classification of 3-dimensional isolated rational hypersurface singularities with C∗-action
arXiv:math/0303302 (2003)

[53] Q. Zhang, Rational connectedness of log Q-Fano varietiess
Journal fur die Reine und Angewandte Mathematik 590 (2006), 131–142

Ivan Cheltsov
School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK; cheltsov@yahoo.com

Jihun Park
Department of Mathematics, POSTECH, Pohang, Kyungbuk 790-784, Korea; wlog@postech.ac.kr

Constantin Shramov
School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK; shramov@mccme.ru

140


