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FINITENESS THEOREMS FOR DIMENSIONS OF

IRREDUCmLE ..\-ADIC REPRESENTATIONS

Yuri G. Zarhin

In this paper absolutely irreducible integral ..\-adic

representations of the Galois groups of number fields are studied . We

aBsume that the representations satisfy the "Weil- Riemann conjecture"

with weight n and prove that their dimension is bounded above by a

constant, depending only on n and the rank of the corresponding ..\-adic

Lie algebras . As an application we obtain that the dimension of an Abelian

variety is bounded above by the rank of its endomorphism ring times

a certain constant, depending only on the semisimple rank of the

corresponding I-adic Lie algebra.

I am deeply grateful to Yu. I. Manin ,J. - P. Serre and P. Deligne for

useful discussions. This paper was written during my stay in Bonn and I am

very happy to be able to thank the Max-Planck-Institut für Mathematik far

the hospitality.

o. Prelimjnaries .

Let K be a number field of finite degree aver the field Q

of rational numbers, K(a) the algebraic closure of K and

G(K):= Gal(K(a)/K) the Galois group of K. If K' ( K(a) is a

finite algebraic extension of K, then its Galois group G(K') =

= Ga1(K(a)/K') is an open subgroup of finite index in G(K).

Let E be a number field of finite degree over Q and let

Ü = Ü E be the ring of integers of E . Let ..\ be a non-zero prime
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ideal in D and I = ~A) be the characteristic of the finite

residue field D/A . We let EA be the completion of E in A and

regard EA aB a finite algebraic extension of the field QZ of

I-adic numbers.

0.1. A-adic representations. Recall (Serre [6 ] ) that a

A-adic representation of G(K) is a continuous homomorphism

p: G(K) ~ Aut(V)

where V is a finite-dimensional vector space over EA . The

dimension of p is the dimension dim(V) of the corresponding

representation space V . The kernel Ker(p) is a closed invariant

subgroup of G(K) . We write K(p) for the subfield of all

Ker(p)-invatiants in K(a) . Clearly, K(p) is (possibly infinite)

Galois extension of K.

To each K' corresponds the A-adic representation

pe: G(K') ... Aut(V)

,.which is the restriction of p to G( /(l) . Clearly) Ker(pl) =

= Ker(p) nG(K') and K'(p') is the compositum J(t K(p) of K'

and K(p).

Since the group Aut(V) of a1l EA-linear automorphisms of V

lies in the group AutQlV) of all Qrlinear automorphisms of V ,

it is clear that p also may be regarded as l-adic representation

p: G(K) ~ AutQlV)

of dimension dimQZV = [EA : Q~ dim(V) .

Recall that p ia called absolutely irreducible if it is

irreducible and the centralizer



EndG(K)V = E.x .

Definition. p is caUed infinitisemaUy absolutely irreducible

i/ it is absolutely irreducible and fOT all finite algebraic

extensions K' 0/ K the .x-adic representations p' 0/ G(K')

are also absolutely irreducible.

In order to justify this definition we need the notion of

I-adic Lie algebra attached to .x-adic representation .

0.2. J-adic Lie gronps and Lie algebras. Since G(K) is a

compact group, its image Im(p) ia a closed compact subgroup of

Aut(V) .(Clearly, the compact group Im(p) is isomorphie to the

profinite Galois group Gal(K(p)/K) .) This implies that Im(p) is

a compact QrLie subgroup of Aut(V) but not necessarily E.x-Lie

subgroup . We may define its Lie algebra Lie(Im(p)) which is a

QrLie subalgebra of End(V) but not necessarily E.x-Lie

subalgebra . Clearly, Im(p') is an open subgroup of finite index in

lm(p) and, therefore ,Lie(Im(p)) = Lie(Im(p')) for a1l finite

algebraic extensions ~ of K.

Now, one may easily check that p infinitisemallyabsolutely

irreducible if and only if the natural representation of Lie(Im(p))

in V is "absolutely irreducible", i. e., there is no non-trivial

Lie(Im(p))--invariant E"-vector suhspaces in V and the centralizer

of Lie(Im(p)) in End(V) coincides with EA .

Further, p always assumed to be infinitisemally absolutely

irreducible. In this tase one may check that Lie(Im(p)) is a reductive QrLie

algebra and its center is a Qrvector subspace of EA id . Here id: V -t V is the

identity map. Indeed J let B be a non-zero Lie(Im(p))-invariant Qrvector
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subspace of V such that the na.tural representation of Lie(Im(p)) in B is

irreducible . Clearly,

v = E eB (e E EA ) •

and the simple Lie(Im(p))-module eB is isomorphie to B for all e E EA \ {O} .

This implies that the representation of Lie(Im(p)) in the Qrveetor space V is

isomorphie to the quotient of the direet sum of [EA: QZ] eopies of the simple

Lie(Im(p))-module B. This implies , in turn J that the Qrveetor spaee V is also

isotype representation of Lie(Im(p)) . In partieular, it is semisimple and J therefore J

Lie(Im(p)) is reduetive .

Sinee it is more eonvenient to work with EA-Lie algebras, let us

define EALie(Im(p)) as the EA-Lie 8ubalgebra of End(V) spanned

by Lie(Im(p)). Clearly, the natural representation of

EA Lie(Im(p)) in V is faithful and absolutely irreducible . In

partieular, EALie(Im(p)) is a reduetive EA-Lie algebra. Let UB

split EA Lie(Im(p)) into the direet sum

EA Lie(Im(p)) = c tD gp

ofdts center c and a semisimple EA-Lie algebra Bp ' The absolute

irreducibility implies that either c = {O} or c = EAid . In both

cases the natural representation of Bp in V is absolutely

irreducible . In addition, EA Lie(Im(p)) is an algebraic EA-Lie subalgebra of

End(V) .

0.3. Ranks of semisimple Lie algebras . Let r be the rank of

the semisimple EA-Lie algebra Bp . Clearly, r does not exceed

the rank r' of the semisimple part of the reduetive QrLie algebra

Lie(Im(p)) . Notiee, that if r = 0 ,then Bp = {O} and the

absolute irreducibility of the Bp-module V implies that
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dim(V) = 1 . Further, we will assume that ßp 1- {O} , i. e' l r> 0 .

The aim of thiB paper is to give upper bounds for dim(V) in terms

of r for certain dass of A-adic representations described in the

next subsection.

0.4. Integral A-adiC representations 01 weight n. Let us

fix a positive integer n.

Definition. A-adic representation p is caIled E-integral of

weight n if for all but finitely many places v of K the

following conditions hold:

a) p is unramified at v j

b) let Frv E Im(p) be a Frobenius element attached to v

(defined up to conjugacy [6,5]) and let

P (t) = det (1 - t Fr "-1, V) be its characteristic poynomial.v v

Then all the coefficients of P lie in E and even in D.v

c) (the Weil- Riemann conjecture). All (complex) reciprocal roots of

Pv and their conjugate over Q have absolute value q(v)n/2

where q{v) is the number of elements of the residue field k(v)

at v.

Ciearly, if p is E-integral of weight n, then p' are also E-integral

of weight n for aIl finite algebraic extensions K' of K.

Remark. The Weil - Riemann conjecture easily implies that

Lie(Im(p)) ia not semisimpIe, i. e. EA Lie(Im( p)) = EAid EI gP .Indeed I the

determinant det (Fr -1, V) of Fr -1 ia an algebraic integer E E \* ,
V V 1\

which is not a root of 1 , since its (any) archimedean absolute value is equal

to q(v)n dim(V)/2 1- 1 . Notice that det (Fr -1, V) ia a A-adic unit I
v

*because the image of the determinant map Im(p) -i EA oughts to be a
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compact subgroup. On the other hand, the logarithm map

log: Im(p) -f Lie(Im(p))

for the compact kdic Lie group Im(p) is also defined [1] . One may easily

check that

tr (log u ) = log (det(u I V) ) E E..\ for al1 U E Im(p) c Aut(V) .

Here tr: End(V) -f E E..\ i s the trace map . Now I if we put

fr =log (Fr -1) = -log(Fr ) , thenv v v

tr(frv) = log (det(Frv-\ V) f 0,

i. e. Lie(Im(p)) contaillB an operator with non-zero trace .(Henniart [4]

even proved that Lie(Im(p)) containB scalar operators Ql id .)

Our main result is the following assertion.

0.5. Main theorem. There exists an absolute constant D = D(r,n),

depending only on n and r, enjoying the /oUowing properties:

Let p: G(K) -f Aut(V) be infinitisemally absolutely

irreducible E-integral ..\-adic representation 0/ weight n. !I

the rank 01 the semisimple E..\-Lie algebra gp is equal to r

then dim(V) < D(r,n).

Remark . For r = 0 one may put D(O,n) = 1 (see Sect. 0.3).

Corollary of Theorem 0.5. Let p: G(K) -+ Aut(V) be infinitisemaUy

absolutely irreducible E-integral ).-adic representation 0 f weight n. Let

r' be the rank ofthe semisimple part ofthe reduetive QrLie algebra

Lie(Im(p)) . Then dim(V) < max {D(j, n) , 0 ~ j ~ r' } .

Indeed, one has only to recall that r ~ r' (Sect. 0.3) and apply

Theorem 0.5.

0.6. Remark. Let C be the algebraic closure of E..\ ( = algebraic

closure of. QZ )). Let us put



7

W:=V8
EA

C,g:=gp8
EA

CCEndCW

and consider the simple module W over the semisimle G-Lie algebra 9 of

rank r. In order to prove Theorem 0.5 it suffices to prove that there exists

a positive constant lJ', depending only on r and n ,and such that the

highest weight of the simple g-module W is a surn of no more than D'

fundamental weights. Let us split 9 into the direct surn

9 = $ gi (1 $ i $ s )

of simple G-Lie algebras gi' Clearly, s $ rand the rank of each gi does

not exceed r . Then one may decompose W into the tensor product

W = 8 Wi of simple grmodules Wi (1 $ i $ s) .

So, in order to prove Theorem 0.5 it suffices to prove that there exists

a positive constant lJ", depending only on n and r, and such that for all

the highest weight of the simple B,module Wi is a surn of no more than

IJ" fundamental weights .

0.7. Key lemma. Let

/e EALie(Im(p)) = EAid $ gp C End(V)

be a regular element o/the reduetive EA-Lie algebra EALie(Im(p)) . Since

End(V) C EndC(W) , one may view f as a G-linear operator in W. Let

spec(J) C C be the set 0/ all eigen values of f W -t W. Let Q(J) be the

Q-vector suhspace 0/ C, spanned by spec(J) . Let 'US assume that there

exists a finite set A of rational numbers and a finite set M 0/ Q-linear

maps 0: Q(J) -t Q ,enjoYing the /oUowing properties:

1) O(spec(J) C A for aU 0 C M;

2) the map Q(J) -t QM , a -+ {O(a)}O e M is an embedding.

Then lor all i (with 1 $ i $ s ) the highest weight 01 the simple

gi-module Wi is a sum olno more than [card(A)-l] fundamental weights .



8

Here card(A) is the number 0/ elements 0/ A .

We will prove Key Lemma in Section 2 .

So, in order to prove Theorem 0.5 it suffices to prove the existence of

such f, A and M with A l depending only on r and n.

1. Proof of Main theorem.

Dur proof consists of the following steps..

Step L Replacing ,if necesary , K by its suitable finite algebraic

extension J(t and p by p', we may and will asaume that K enjoys

the following properties:

1) K ia a Galois extension of Q;

2) K contains a subfield, isomorphie to E.

Let us fix a prime number p and a place y of K,

enjoying the following properties:

3) p is unramified in K ,Y lies above p and the

residue fieId k(v) at v eoincides with the finite prime

field Z/pZ.j

4) p is unramified at v and the eharacteristic polynomial P (t) ofv

the corresponding Frobenius element Fry lies in 1 + t D(t] and satisfies

the Weil-Riemann conjecture with weight n;

5) all the eigen values of Frv-1 are congruent to 1 modulo r
and the I-adic logarithm fr := log (Fr -1) = -log(Fr ) is a regularv v v

element of the reductive QrLie algebra Lie(Im(p)) (üse Chebotarev

density theorem).

The regularity condition implies that !Iv ia a semisimple

endomorphism of the Qrvector space V and, therefore, is. a aemisimple

endomorphism of the EA-vector space V. Clearly, frv is also regular in the
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reductive reductive EA-Lie algebra Lie(Im(p)) GD Q1E A' Since

E ALie(Im(p)) ia isomorphic to the quotient of Lie(Im(p)) e Q1E'A ' fr v is

also regular in E A Lie(Im(p)) .

Step 2 . Let us fix an ernbedding of E in K. Now we may and will

assume that E is a subfield of K. Since K is a Galois extension of

Q, the condition 3 of Step 1 implies that p spUts completely in K. Since

E is a subfield of K, P also spUts completely in E.

Recall that C is the algebraic closure of EA . Let L be the subfield

of C obtained by adjunction to E of the set R of all eigenvalues of

Fr ,-1 . Clearly, it is a finite Galois extension of E and all elements of Rv

are algebraic integera . For each embedding of L into the field C of

complex numbers all elements of R have absolute value pn/2 . Let us

*denote by r the multiplicative subgroup of L generated by R. Since all

elements of R are congruent to 1 modulo r, r does not contain roots of 1

different from 1. So, r is a finitely generated free abelian group . I claim

that the rank rk(r) of r does not exeeed r + 1 . Indeed, the kdie

logarithm maps R into the set spec(fr ) of all eigen Yalues of thev

G-linear operator fry : W ~ W, and , therefore, defines an isomorphism

between r and the additive subgroup Z(fry ) of C , generated by spec(fr
v

} .

Let me reeall that frv ia a semisimple element of EAid lB gP ( eid w lB g

where id W: W .... W is the identity map and g is the semisimple C - Lie

subalgebra of End( W), having the rank r. Now, E. Cartan theory of

modules with highest weight [2] easily implies that the additive subgroup,

generated by all eigen values of eaeh operator from g J has the rank ~ r.

Since fr is the sum of a scalar operator and an operator from g, the rankv

of Z(fry ) does not exeeed r + 1 .
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Notiee,that the Galois group Gal(L/E) aets naturallyon r. This

action defines an embedding

Gal(L/E) -i Aut(r) ~ GL(rk(r),Z) C GL(r+l, Z) .

Sinee Gal(L/E) is finite, it is isomorphie to a finite subgroup of

GL(r+l,Z). Appl~ng a theorem of Jordan we obtain that there exists a

positive eonstant D1 = D1(r), depending only on r, such that the order of

Gal(L/E) divides D1 , i. e. the extension degree [L:E] divides D1 .

Step 3 . Let DL be the ring of integers in L. Conditions 3 and 4 of

Step 1 imply that all elements a of R are algebraic integers in Land for

each embedding of L into C we have

na'a = p .

Here a' is the complex---ronjugate of a and, of course, also, an algebraic

integer. This implies that if p' is a prime ideal in DL , not lyjng above p,

then a is a p'-adic unH for all a ER. Notice, that a' = pn/ a lies in L

and even in DL .

Let S be the set of prime ideals in DL , lyjng above p. For each p

from S let

*ordp : L -i Q

be the diserete valuation of L attached to p and normalized by the

condition

ordp(p) = 1 .

Recall that p completely splits in E. This implies that

* *ordp(E ) = ordp(Q ) = Z ,

n = ordp(pn) = ordp(a) + ordp(a') for all a ER.

Since a, a' are algebraic integers, the rational numbers

are non-negative, and, therefore,

ord (a) , ord (a')p p
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o~ ordp( a) ~ n for all a ER.

Since [L:Q] divides D1 ,

* *ordp(L ) C (1/D1) ordp(E ) = (1/ D1) Z .

Let us·put A:= {c E Q , 0 ~ c ~ n, D1 ce Z} . Clearly, A is a finite set of

rational numbers, consisting of (D1n + 1) elements and depending only on n

and r. We have

ord (a) E A for all a ER, pES .
P

Let ord: r -f QS be the homomorphism defined by the formula

ord(,,) = {ordp(1) }pES·

Clearly, ord( R) C ASe QS .

I claim that ord is an embedding . Indeed, if ord(1) = 0 for some

; E r then ; is an unit in L. The Weil- Riemann conjecture implies the

equality of an archimedean valuations on the elements of r . Therefore, the

product formula implies that I"YI = 1 for all archimedean valuations on L.

This implies that ; is a root of 1 . Since r does not contain non-trivial

raots of 1 , "Y = 1 .

One may extend ord by Q-linearity to an embedding

r. Q-f QS,

which we will also denote by ord.

Step,( . Let Q(frv) be the Q-vector subspace of C, spanned by

spec(frv) . We have

spec(fry ) C Z(fry ) C Q(fry ) .

The I-adic logarithm defines the iSOID<;>rphism

log: r ..... Z(fr
y

) ,

which can be extended by Q-linearity to an isomorphism

r • Q -f Q(fr ) ,y



Hom(Q(frv),Q) is generated by maps

ord log-1 : Q(Ir ) -+ r GD Q -+ Q (p ES) .
P v

Notice, that

ord 10g-1(spec(fr )) = ord (R) (A for all pES.
P v P

Now, I claim that the highest weight of each simple

12

which we will also denote by log. Clearly, the Q-vector space

B..-module W·
t z

is the sum of no more than n D1 fundamental weights. Indeed, one has ooly

to apply Lemma 0.7 to the regular element f = fr ) the setv

M = {ord log-l(spec(fr )) : Q(fr ) -f Q' pES}
P v v

of homomorphisms Q(frv) -+ Q and A .

2. Proof of Key Lemma .

We start the proof with the following remarks. First, we have natural

embeddings

E>. id 11 gp C (E>. id 11 gp) lIE >. C= Cid W lB gc EndCW.

Since ! is regular in the reductive EA-Lie algebra EA id GD Bp , it remains

regular in the reductive G-Lie algebra Cid W $ B. We have

! = eid + E~ (1 ~ i ~ s )

with c E C, !i E Bi . Since ! ia regular, all !i are non-zero semisimple

elements of {Ji' Let spec(!i) ( C be the set of all eigen values of the

G-linear operator fi: Wi -+ Wi (recall that Wi is the faithful simple

g~module) . If a E spec(!i) then we write mult,{a) for the multiplicity of

the eigen value Ct of the operator f... Clearly ,
t

E a E spec(J..) mUlt,{ a) = dim( W i ) .,
Since {Ji ia the (semi)simple subalgebra of End( Wi) , the trace
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We have

spec(J) = c + Ei spec(!i) =
= {c + Ei ai : a i E spec(!i) , 1 ~ i ~ s } .

Claim . Far aU i there exists ci E Q(/) such that

spec(!i) C ci + spec(/) .

In particular, spec(!i) C Q(/) .

We will prove Claim at the end of this Section .

Proof of Key Lemma (modulo Claim) . We will identify gi with its

image in End( Wi) . Let Q(!i) be the Q-vector snbspace of C spanned by

spec(~) . Clearly I Q(!i) C Q(/) . To each homomorphism I{J: Q(!i) -t C

corresponds a G-linear operator !} I{J): W. -t W. called a replica of f and
I . I I

defined as follows [10].

Each eigen vector xe Wi of f is also an eigen vector of !ll{J) and

J..( l{J)x = cp( a)x if fx = ax (a E spec(J:.) C Q(J:.) ).
I I I

Clearly , the set spec(!i( I{J)) of the all eigen values of fi( I{J) coincides

with cp(sPec(!i))'

Since 9i is simple, it is an algebraic Lie subalgebra of End( Wi)

and,therefore , contains all the replicas of their elements [10] . This implies

that

1..( I{J) E g. C End( W.)
I I I

for all I{J. Clearly , r( I{J) is a semisimple element of g ..
I I

Since Q(!i) C Q(J) I one may attach to each homomorphism

't/J :Q(/) -t C its restriction .,p': Q(!i) -t C and consider the corresponding
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replica

(,p')f.. E g . c End( W.) .
I I I

Clearly, fi 1/J') f 0 if and only if the restrietion of 1/1 to Q(fi ) does not

vanish identically . We have

spec(fi1/1)) = 1f;'(spec(!i)) = Vi..spec(!i)) ( "p( ci + spec(f) ) =
= 'Ij;( ci) + 1JJ(spec(j)) ={,p(ci) + Vi.. a) , a E spec(f) }

Now, let UB choose a homomorphism 0: Q(f) -+ Q c C such that

OE M and the restrietion of 0 to Q(j:.) does not vanish identically . Then
I

(8') ()f: E g . c End W.
I I I

is a non-zero semisimple operator and

spec(f/8')) c O(Ci) + O(spec(j)) c B(ci) + A .

In particular, !i 8') has, at most, card(A) different eigen vaIues .

Let me recall that if a linear irreducible simple Lie algebra contains a

non-zero semisimple operator with exactly m different eigen values , then

the highest weight of the corresponding irreducible representation is the SUffi

of no more than (m-1) fundamental weights ([11] , Th. 2.2 ) .

Applying this assertion to a non-zero semisimple element 1..( 0') of
I

linear irreducible simple Lie algebra gi c End( Wi) we obtain that the

highest weight of the simple g ...-module W. is the surn of no more than
I I

[card(A)-l] fundamental weights .QED.

Proof of Claim . First let us assume that s = 1 , i. e. , g = gl is

simple and W= W1 . Then /1 = f- cidWE gl and

c = tr(t VV) / dim( lV)

where tr(f,"1 is the trace of t W -+ W. This implies that c E Q(j) and

spec(!l) = (-c) + spec(f) .

One has only to put cl = - c .
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Now, let us assume that s > 1 . For each j let us choose an eigen

value ßj E apec(!} (1 ~ j ~ s ) . Then for each a E spec(!i)

C + a + E.;J .ß.E spec(J) .
)Tl J

So , if we put c· = - (c + E.;J.' ß·) ,then a E c· + spec(j) , Le.
I )Tl J I

speC(!i) ( Ci + spec(j) .

One has only to check that ci E Q(/) . But we may write the following

explicit formula (recall that the trace of !i vanishes and the sum of

multiplicities of all eigen values of !i is equal to dim( Wi) ).

ci = - (Ea E spec(.f..) multl{a) (c + a + Eifi ß) )/ dim( Wi ) .
I

Trus formula implies that ci is a linear combination of eigen values

c + a + Ejfi ßj of ! with rational coefficients ,i. e. ci E Q(j). QED.

3. Applications to Abelian varieties.

Let X be an Abelian variety defined over K. Let T tx) be the

Tate ZrIDodule of X and

vtX) = Ttx) ~ Zl Ql'

It ia well-known that V!X) ia the Qrvector space of dimension 2 dim X .

There is a natural kdic representation [6 ,5]

Pt G(K) .... Aut Vtx) .
A theorem of Faltings [3] asserts that Plis semisimple and the centralizer

of G(K) in End Vtx) coincides with EndKX ~ Ql.Here EndKX is the

ring of all K--endomorphisIDs of X. Trus implies that the QrLie algebra

Lie(Im(Pl) is reductive , its natural representation in V!X) is se~simple

and the centralizer of Lie(Im(Pl)) in End V~X) coincides with End X 4D Qt

Here End X ia the ring of an endomorphisms of X (over K(a) ) . Recall
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that the ring End X is a free abelian group of finite rank . We write

rk(End X) for the rank of End X .

Let us split the reductive Q, Lie algebra Lie(Im(PI) into the direct

sum.

Lie(Im(PI) = Cl $ 9Z

of its center Cl and a semisimple Q, Lie algebra gl' Let r(X) be the rank

of gZ' The results of [7] combined with the theorem of Faltings imply that

r( X) does not depend on 1.

3.1. Theorem. . Let 1.'8 put

H = H(r(X)) = max {D(j,l) J 0 ~ j ~ r(X) }

where D are as in Theorem 0.5. Then

dim(X) 5 Hrk(End X)/2 .

In particular , the dimension of X ia bounded above by rk(End X)

times certain constant l depending only on r(X).

Example.If r(X) = 0 then X is of CM-type and

dim X ~ rk(End X)/2 .

Remark.If r(.x) = 1 then reaults of [9] imply that

dim X 5 rk(End X) .

Remark . One may deduce !rom several conjectures [8](e. g.) the

conjecture of Mumford - Tate or a conjecture of Serre [12] ) that dim X

does not exceed 2r(X)-1 rk(End X) .

3.2. Proof of Theorem 3.1. In the course of the proof we may and will

assume that all endomorphisms of X are defined over K and X is

absolutely simple. Then EndoX = End X 4D Q is a division algebra of finite
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dimension over Q. Let us fix a maximal commutative Q-subalgebra E in

EndoX . Then E is a number field, coinciding with its centralizer in

EndoX j the degree [E:Q] divides rk(End X) . In particular,

[E:Q] ~ rk(End X) .

In addition, [E:Q] divides 2 dim X and the natural embedding

E 8 Q Qr-' EndoX 8 Q Ql = End X 8 QZ ( End V ~X)

provides Vtx) with the structure of a free E SQ Qrmodule of rank

2 dim X /[E:Q] [5].

Let D be the ring of integers in E. There is a natural splitting

ESQQZ=$E).

where ). runs through the set of dividing 1 prime ideals in D. Clearly,

[E:Q] = E HE).:QP .

Since V~X) is the free E sQ QrIDodule of rank 2 dirn X /[E:Q] , there ia

a natural splitting

V~X)=6JV).

where V). = E). VtX) ia the E).-vector space of dimension

2 dim X/[E:Q] . Clearly, each V). is G(K)-invariant and Pz ia the direct

sum of the corresponding ).-adic representations

P). : G(K) -+ AutE V). .
).

One may easily check, using the theorem of Faltings, that each P). ia

absolutely irreducible and even infinitisemally absolutely irreducible ).-adic

representation (see [9 ], Sect. 0.11.1 ) .

Let us split the reductive Qr Lie algebra Lie(Im(p).) into the direct

sum.

Lie(Im(p).) = C). 6J g).

of ita center c). and a semisimple Qr Lie algebra g). . Let T).' be the
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rank 01 g-x .

Claim . r.>t' ~ r(X) .

In order to prove this inequality it suffices to construct a surjective

homomorphism gl~ g). 01 semisimple Qr Lie algebras . In turn, in order

to construct such a homomorphism it suffices to construct a surjective

homomorphism

Cl $ gz = Lie(Im(pZ) .... c.>t $ g.>t = Lie(Im(p).)

01 reductive Qr Lie algebras and take its restrietion to QZ" But it is very

easy to constuct the latter homomorphism. One has only to consider the

surjective homomorphism Im(Pl) .... Im(p).) 01 Qr Lie groups, induced

by the projection map .VtX) -t V). , and take the corresponding

homomorphism 01 the Qr Lie algebras "

It is well known [6,5] that for all but finitely many places v of K

the following conditions hold:

1) P is unramified at v j

2) the characteristic polynomial

det(t id - Frv ) V). )

lies in D[t] j all its (complex) roots and their conjugate over Q have

absolute value q(v)1/2 (a theorem 01 A. Weil) "

In order to obtain E-integral ).-adic representation of weight 1 let

us consider the dual E).-vector spate

*
V). = HornE (V.>t' E). )

.>t
and the isomorphism

*
T: AutE (V).) -t AutE (V.>t )

). ).

defined by the fonnula r( u) = (u*)-1 where 11,* ia the adjoint of 11,"

*Clearly, dim E V). = dimE V.>t
). ).



Let us consider the dual A-adic representation

* *PA = TP)..: G(K) -+ AutE (VA) -+ AutE (V).. ) .
).. A

*Clearly ,P).. is ~ntegral )..-adic representation of weight 1 . One may

*easily check that PA is also infinitisemally absolutely irreducible . Notice

*that T inducea an isomorphism Im(p)..) I::l Im(PA ) of Qr Lie groups ,

which , in turn, induces an isomorphism

*Lie(Im(p)..)) I::l Lie(Im(pA ))

of the corresponding Qr Lie algebras . This implies that the rank of the

*semisimple part of the Qr Lie algebra Lie(Im(PA )) is also equal to rA'

and, therefore,does not exceed r(X).

Applying Corollary of Theorem 0.5 to infinitisemally absolutely

*irreducible E-integral A-adic representation P).. of weight 1 we obtain

that

*dimE V).. ~ max {D(j, 1) , 0 ~ j ~ rA'} .
)..

*Since rA' ~ r(X) and dimE V).. = dimE VA '
).. A

dimQ VA = [EA : Qp dimE V).. ~ [EA : Qp max{D(j,l) , 0 ~ j ~ r(X)} =
I )..

= [EA : Qp H.

Summing up over A we obtain that

2 dim X = dimQVtX) = E dimQ V)..(X) ~ H E [E).. : Qp =
I 1 '

= H[E: Q] ~ Hrk(End X) .

19
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