FINITENESS THEOREMS FOR DIMENSIONS OF IRREDUCIBLE λ-ADIC REPRESENTATIONS

by

Yuri G. Zarhin

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Federal Republic of Germany

The USSR Academy of Sciences Research Computing Center Pushchino, Moscow Region 142292, USSR

USSR

MPI/89- 17

FINITENESS THEOREMS FOR DIMENSIONS OF
 IRREDUCIBLE λ-ADIC REPRESENTATIONS
 Yuri G. Zarhin

In this paper absolutely irreducible integral λ-adic representations of the Galois groups of number fields are studied. We assume that the representations satisfy the "Weil - Riemann conjecture" with weight n and prove that their dimension is bounded above by a constant, depending only on n and the rank of the corresponding λ-adic Lie algebras. As an application we obtain that the dimension of an Abelian variety is bounded above by the rank of its endomorphism ring times a certain constant, depending only on the semisimple rank of the corresponding badic Lie algebra.

I am deeply grateful to Yu. I. Manin, J. - P. Serre and P. Deligne for useful discussions. This paper was written during my stay in Bonn and I am very happy to be able to thank the Max-Planck-Institut für Mathematik for the hospitality.

0 Preliminaries .

Let K be a number field of finite degree over the field \mathbf{Q} of rational numbers, $K(\mathrm{a})$ the algebraic closure of K and $\mathrm{G}(K):=\operatorname{Gal}(K(\mathrm{a}) / K)$ the Galois group of K. If $K^{\prime} \subset K(\mathrm{a})$ is a finite algebraic extension of K, then its Galois group $\mathrm{G}\left(K^{\imath}\right)=$ $=\operatorname{Gal}\left(K(\mathrm{a}) / K^{r}\right)$ is an open subgroup of finite index in $\mathrm{G}(K)$.

Let E be a number field of finite degree over Q and let $\mathfrak{O}=\mathfrak{O}_{\mathrm{E}}$ be the ring of integers of E . Let λ be a non-zero prime
ideal in \mathfrak{O} and $l=l(\lambda)$ be the characteristic of the finite residue field \mathcal{O} / λ. We let E_{λ} be the completion of E in λ and regard E_{λ} as a finite algebraic extension of the field Q_{l} of -adic numbers.
0.1. λ-adic representations. Recall (Serre [6]) that a λ-adic representation of $\mathrm{G}(K)$ is a continuous homomorphism $\rho: \mathrm{G}(K) \rightarrow \operatorname{Aut}(\mathrm{V})$
where V is a finite-dimensional vector space over E_{λ}. The dimension of ρ is the dimension $\operatorname{dim}(\mathrm{V})$ of the corresponding representation space V . The kernel $\operatorname{Ker}(\rho)$ is a closed invariant subgroup of $\mathrm{G}(K)$. We write $K(\rho)$ for the subfield of all $\operatorname{Ker}(\rho)$-invariants in $K(\mathrm{a})$. Clearly, $K(\rho)$ is (possibly infinite) Galois extension of K.

To each $K^{\text {c }}$ corresponds the λ-adic representation

$$
\rho^{\prime}: \mathrm{G}\left(K^{\prime}\right)+\mathrm{Aut}(\mathrm{~V})
$$

which is the restriction of ρ to $\mathrm{G}\left(K^{\prime}\right)$. Clearly, $\operatorname{Ker}\left(\rho^{c}\right)=$ $=\operatorname{Ker}(\rho) \cap \mathrm{G}\left(K^{\prime}\right)$ and $K^{\prime}\left(\rho^{\prime}\right)$ is the compositum $K^{\prime} K(\rho)$ of K^{\prime} and $K(\rho)$.

Since the group Aut(V) of all E_{λ}-linear automorphisms of V lies in the group ${ }^{A u t} \mathbf{Q}_{l}(V)$ of all Q_{l}-linear automorphisms of V, it is clear that ρ also may be regarded as l-adic representation

$$
\rho: \mathrm{G}(K)+\mathrm{Aut}_{\mathrm{Q}_{l}}(\mathrm{~V})
$$

of dimension $\operatorname{dim}_{Q_{l}} V=\left[E_{\lambda}: Q_{p}\right] \operatorname{dim}(V)$.
Recall that ρ is called absolutely irreducible if it is irreducible and the centralizer
$\operatorname{End}_{G(K)} \mathrm{V}=\mathrm{E}_{\lambda}$.
Definition. ρ is called infinitisemally absolutely irreducible if it is absolutely irreducible and for all finite algebraic extensions K^{\prime} of K the λ-adic representations $\rho^{\text {c }}$ of $\mathrm{G}\left(K^{v}\right)$ are also absolutely irreducible.

In order to justify this definition we need the notion of \vdash-adic Lie algebra attached to λ-adic representation .
0.2. l-adic Lie gronps and Lie algebras. Since $G(K)$ is a compact group, its image $\operatorname{Im}(\rho)$ is a closed compact subgroup of Aut(V).(Clearly, the compact group $\operatorname{Im}(\rho)$ is isomorphic to the profinite Galois group $\operatorname{Gal}(K(\rho) / K)$.) This implies that $\operatorname{Im}(\rho)$ is a compact Q_{Γ} Lie subgroup of $\operatorname{Aut}(\mathrm{V})$ but not necessarily E_{λ}-Lie subgroup. We may define its Lie algebra $\operatorname{Lie}(\operatorname{Im}(\rho))$ which is a Q_{l}-Lie subalgebra of $\operatorname{End}(\mathrm{V})$ but not necessarily $\mathrm{E}_{\lambda}-$ Lie subalgebra. Clearly, $\operatorname{Im}\left(\rho^{c}\right)$ is an open subgroup of finite index in $\operatorname{Im}(\rho)$ and , therefore, $\operatorname{Lie}(\operatorname{Im}(\rho))=\operatorname{Lie}\left(\operatorname{Im}\left(\rho^{c}\right)\right)$ for all finite algebraic extensions K^{k} of K.

Now, one may easily check that ρ infinitisemally absolutely irreducible if and only if the natural representation of $\operatorname{Lie}(\operatorname{Im}(\rho))$ in V is "absolutely irreducible", i. e., there is no non-trivial $\operatorname{Lie}(\operatorname{Im}(\rho))$-invariant E_{λ}-vector subspaces in V and the centralizer of $\operatorname{Lie}(\operatorname{Im}(\rho))$ in $\operatorname{End}(\mathrm{V})$ coincides with E_{λ}.

Further, ρ always assumed to be infinitisemally absolutely irreducible. In this case one may check that $\operatorname{Lie}(\operatorname{Im}(\rho))$ is a reductive Q_{Γ}-Lie algebra and its center is a Q_{Γ} vector subspace of E_{λ} id. Here id: $V \rightarrow V$ is the identity map. Indeed, let B be a non-zero $\operatorname{Lie}(\operatorname{Im}(\rho))$-invariant Q_{l}-vector
subspace of V such that the natural representation of $\operatorname{Lie}(\operatorname{Im}(\rho))$ in B is irreducible. Clearly,

$$
\mathrm{V}=\Sigma e B \quad\left(e \in \mathrm{E}_{\lambda}\right)
$$

and the simple $\operatorname{Lie}(\operatorname{Im}(\rho))$-module $e B$ is isomorphic to B for all $e \in \mathrm{E}_{\lambda} \backslash\{0\}$.
This implies that the representation of $\operatorname{Lie}(\operatorname{Im}(\rho))$ in the $\mathrm{Q}_{\boldsymbol{l}}$-vector space V is isomorphic to the quotient of the direct sum of $\left[\mathrm{E}_{\lambda}: \mathrm{Q}_{\boldsymbol{p}}\right]$ copies of the simple $\operatorname{Lie}(\operatorname{Im}(\rho))$-module B. This implies, in turn, that the $\mathrm{Q}_{\boldsymbol{l}}$-vector space V is also isotype representation of $\operatorname{Lie}(\operatorname{Im}(\rho))$. In particular, it is semisimple and, therefore, $\operatorname{Lie}(\operatorname{Im}(\rho))$ is reductive.

Since it is more convenient to work with E_{λ}-Lie algebras, let us define $E_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))$ as the E_{λ}-Lie subalgebra of $\operatorname{End}(V)$ spanned by $\operatorname{Lie}(\operatorname{Im}(\rho))$. Clearly, the natural representation of $\mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))$ in V is faithful and absolutely irreducible. In particular, $\mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))$ is a reductive E_{λ}-Lie algebra. Let us split $E_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))$ into the direct sum

$$
\mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))=c \oplus \mathfrak{g}_{\rho}
$$

ofits center c and a semisimple E_{λ}-Lie algebra g_{ρ}. The absolute irreducibility implies that either $c=\{0\}$ or $c=E_{\lambda}$ id. In both cases the natural representation of \mathfrak{g}_{ρ} in V is absolutely irreducible. In addition, $\mathrm{E}_{\lambda} \mathrm{Lie}(\operatorname{Im}(\rho))$ is an algebraic E_{λ}-Lie subalgebra of End(V) .
0.3. Ranks of semisimple Lie algebras . Let r be the rank of the semisimple E_{λ}-Lie algebra \mathfrak{g}_{ρ}. Clearly, r does not exceed the rank r^{\prime} of the semisimple part of the reductive Q_{Γ} Lie algebra $\operatorname{Lie}(\operatorname{Im}(\rho))$. Notice, that if $r=0$, then $\mathfrak{g}_{\rho}=\{0\}$ and the absolute irreducibility of the $g_{\rho}-$ module V implies that
$\operatorname{dim}(V)=1$. Further, we will assume that $\mathfrak{g}_{\rho} \neq\{0\}$, i. e., $r>0$. The aim of this paper is to give upper bounds for $\operatorname{dim}(V)$ in terms of r for certain class of λ-adic representations described in the next subsection.
0.4. Integral λ-adic representations of weight n. Let us fix a positive integer n.

Definition. λ-adic representation ρ is called E -integral of weight n if for all but finitely many places \mathbf{v} of K the following conditions hold:
a) ρ is unramified at \mathbf{v};
b) let $\mathrm{Fr}_{\mathbf{v}} \in \operatorname{Im}(\rho)$ be a Frobenius element attached to \mathbf{v} (defined up to conjugacy $[6,5]$) and let
$\mathrm{P}_{\mathrm{v}}(\mathrm{t})=\operatorname{det}\left(1-\mathrm{t} \mathrm{Fr}{ }_{\mathrm{v}}{ }^{-1}, \mathrm{~V}\right)$ be its characteristic poynomial.
Then all the coefficients of P_{v} lie in E and even in \mathcal{O}.
c) (the Weil - Riemann conjecture). All (complex) reciprocal roots of P_{v} and their conjugate over Q have absolute value $q(v)^{n / 2}$ where $g(v)$ is the number of elements of the residue field $k(v)$ at v .

Clearly, if ρ is E -integral of weight n, then ρ^{r} are also E-integral of weight n for all finite algebraic extensions K^{\prime} of K.

Remark. The Weil - Riemann conjecture easily implies that
$\operatorname{Lie}(\operatorname{Im}(\rho))$ is not semisimple, i. e. $\mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))=\mathrm{E}_{\lambda} \mathrm{id} \oplus \mathfrak{g}_{\rho}$. Indeed, the determinant $\operatorname{det}\left(\mathrm{Fr}_{\mathrm{v}}{ }^{-1}, \mathrm{~V}\right)$ of $\mathrm{Fr}_{\mathbf{v}}{ }^{-1}$ is an algebraic integer $\in \mathrm{E}_{\lambda}{ }^{*}$, which is not a root of 1 , since its (any) archimedean absolute value is equal to $q(\mathrm{v})^{n \operatorname{dim}(\mathrm{~V}) / 2} \neq 1$. Notice that $\operatorname{det}\left(\mathrm{Fr}_{\mathrm{v}}{ }^{-1}, \mathrm{~V}\right)$ is a λ-adic unit, because the image of the determinant map $\operatorname{Im}(\rho) \rightarrow \mathrm{E}_{\lambda}{ }^{*}$ oughts to be a
compact subgroup. On the other hand, the logarithm map

$$
\log : \operatorname{Im}(\rho) \rightarrow \operatorname{Lie}(\operatorname{Im}(\rho))
$$

for the compact b-adic Lie group $\operatorname{Im}(\rho)$ is also defined [1]. One may easily check that
$\operatorname{tr}(\log u)=\log (\operatorname{det}(u, V)) \in \mathrm{E}_{\lambda}$ for all $u \in \operatorname{Im}(\rho) \subset \operatorname{Aut}(\mathrm{V})$.
Here $\operatorname{tr}: \operatorname{End}(V) \rightarrow \in E_{\lambda}$ is the trace map. Now, if we put
$\mathrm{fr}_{\mathbf{v}}=\log \left(\mathrm{Fr}_{\mathbf{v}}{ }^{-1}\right)=-\log \left(\mathrm{Fr}_{\mathbf{v}}\right)$, then
$\operatorname{tr}\left(\mathrm{fr}_{\mathbf{v}}\right)=\log \left(\operatorname{det}\left(\mathrm{Fr}_{\mathbf{v}}{ }^{-1}, \mathrm{~V}\right) \neq 0\right.$,
i. e. $\operatorname{Lie}(\operatorname{Im}(\rho))$ contains an operator with non-zero trace .(Henniart [4] even proved that $\operatorname{Lie}(\operatorname{Im}(\rho))$ contains scalar operators Q_{l} id .)

Our main result is the following assertion .
0.5 . Main theorem. There exists an absolute constant $D=D(r, n)$, depending only on n and r, enjoying the following properties:

Let $\rho: \mathrm{G}\left(K^{\prime}\right) \rightarrow \mathrm{Aut}(\mathrm{V})$ be infinitisemally absolutely irreducible E -integral λ-adic representation of weight n. If the rank of the semisimple $\mathrm{E}_{\lambda^{-L i e}}$ algebra \mathfrak{g}_{ρ} is equal to r then $\operatorname{dim}(\mathrm{V})<D(r, n)$.

Remark. For $r=0$ one may put $D(0, n)=1$ (see Sect. 0.3).
Corollary of Theorem 0.5. Let $\rho: \mathrm{G}(K) \rightarrow \operatorname{Aut}(\mathrm{V})$ be infinitisemally absolutely irreducible E -integral λ-adic representation of weight n. Let r 'be the rank of the semisimple part of the reductive Q_{Γ} Lie algebra $\operatorname{Lie}(\operatorname{Im}(\rho))$. Then $\operatorname{dim}(\mathrm{V})<\max \left\{D(j, n), 0 \leq j \leq r^{\nu}\right\}$.

Indeed, one has only to recall that $r \leq r$ (Sect. 0.3) and apply Theorem 0.5.
0.6 . Remark. Let C be the algebraic closure of E_{λ} (= algebraic closure of. \mathbf{Q}_{l})). Let us put

$$
W:=\mathrm{V} \otimes_{\mathrm{E}_{\lambda}} C, \mathfrak{g}:=\mathfrak{g}_{\rho}{ }^{\oplus} \mathrm{E}_{\lambda} C \subset \mathrm{End}_{C}{ }^{W}
$$

and consider the simple module W over the semisimle C-Lie algebra \mathfrak{g} of rank r. In order to prove Theorem 0.5 it suffices to prove that there exists a positive constant D^{\prime}, depending only on r and n, and such that the highest weight of the simple \mathfrak{g}-module W is a sum of no more than D^{\prime} fundamental weights. Let us split \mathfrak{g} into the direct sum

$$
\mathfrak{g}=\oplus \mathfrak{g}_{i}(1 \leq i \leq s)
$$

of simple C-Lie algebras \mathfrak{g}_{i}. Clearly, $s \leq r$ and the rank of each \mathfrak{g}_{i} does not exceed r. Then one may decompose W into the tensor product $W=W_{i}$ of simple \mathfrak{g}_{i}-modules $W_{i}(1 \leq i \leq s)$.

So, in order to prove Theorem 0.5 it suffices to prove that there exists a positive constant $D^{\prime \prime}$, depending only on n and r, and such that for all i the highest weight of the simple \mathfrak{g}_{i}-module W_{i} is a sum of no more than $D^{\prime \prime}$ fundamental weights.
0.7. Key lemma . Let
$f \in \mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))=\mathrm{E}_{\lambda} \mathrm{id} \oplus \mathfrak{g}_{\rho} \mathrm{C} \operatorname{End}(\mathrm{V})$ be a regular element of the reductive $\mathrm{E}_{\lambda}-$ Lie algebra $\mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))$. Since $\operatorname{End}(\mathrm{V}) \subset$ End $_{\mathrm{C}}(\mathrm{W})$, one may view f as a C-linear operator in W. Let $\operatorname{spec}(f) \subset C$ be the set of all eigen values of $f . W \rightarrow W$. Let $Q(f)$ be the Q-vector subspace of C, spanned by $\operatorname{spec}(f)$. Let us assume that there exists a finite set A of rational numbers and a finite set M of Q -linear maps $0 . \mathrm{Q}(f) \rightarrow \mathbf{Q}$, enjoying the following properties:

1) $\theta(\operatorname{spec}(f)) \subset A$ for all $\theta \subset M$;
2) the $\operatorname{map} \mathrm{Q}(f) \rightarrow \mathrm{Q}^{M}, a \rightarrow\{\theta(a)\}_{\theta \in M}$ is an embedding.

Then for all $i($ with $1 \leq i \leq s)$ the highest weight of the simple \mathfrak{g}_{i}-module W_{i} is a sum of no more than $[\operatorname{card}(A)-1]$ fundamental weights .

Here $\operatorname{card}(A)$ is the number of elements of A.
We will prove Key Lemma in Section 2.
So, in order to prove Theorem 0.5 it suffices to prove the existence of such f, A and M with A, depending only on r and n.

1. Proof of Main theorem.

Our proof consists of the following steps..
Step 1. Replacing, if necesary, K by its suitable finite algebraic extension K^{k} and ρ by ρ^{k}, we may and will assume that K enjoys the following properties:

1) K is a Galois extension of Q;
2) K contains a subfield, isomorphic to E .

Let us fix a prime number p and a place \mathbf{v} of K, enjoying the following properties:
3) p is unramified in K, v lies above p and the residue field $k(v)$ at v coincides with the finite prime field $\mathbf{Z} / p \mathbf{Z}$.;
4) ρ is unramified at v and the characteristic polynomial $P_{v}(t)$ of the corresponding Frobenius element Fr_{v} lies in $1+\mathrm{t} \mathfrak{O}[\mathrm{t}]$ and satisfies the Weil-Riemann conjecture with weight n;
5) all the eigen values of $\mathrm{Fr}_{\mathrm{v}}{ }^{-1}$ are congruent to 1 modulo ${ }^{2}$ and the - -adic $\operatorname{logarithm} \mathrm{fr}_{\mathbf{v}}:=\log \left(\mathrm{Fr}_{\mathbf{v}}{ }^{-1}\right)=-\log \left(\mathrm{Fr}_{\mathbf{v}}\right)$ is a regular element of the reductive \mathbf{Q}_{Γ}-Lie algebra $\operatorname{Lie}(\operatorname{Im}(\rho)$) (use Chebotarev density theorem).

The regularity condition implies that fr_{v} is a semisimple endomorphism of the $Q_{\boldsymbol{l}}$-vector space V and, therefore, is a semisimple endomorphism of the E_{λ}-vector space V. Clearly, fr_{v} is also regular in the
reductive reductive E_{λ}-Lie algebra $\operatorname{Lie}(\operatorname{Im}(\rho)){ }^{\otimes}{ }_{\mathrm{Q}_{l}} \mathrm{E}_{\lambda}$. Since $\mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))$ is isomorphic to the quotient of $\operatorname{Lie}(\operatorname{Im}(\rho)) \otimes{ }_{Q_{l}} \mathrm{E}_{\lambda}, \mathrm{fr}_{\mathrm{v}}$ is also regular in $\mathrm{E}_{\lambda} \operatorname{Lie}(\operatorname{Im}(\rho))$.

Step 2. Let us fix an embedding of E in K. Now we may and will assume that E is a subfield of K. Since K is a Galois extension of Q, the condition 3 of Step 1 implies that p splits completely in K. Since E is a subfield of K, p also splits completely in E .

Recall that C is the algebraic closure of E_{λ}. Let L be the subfield of C obtained by adjunction to E of the set R of all eigenvalues of $\mathrm{Fr}_{\mathbf{v}^{\mathbf{1}}}{ }^{-1}$. Clearly, it is a finite Galois extension of E and all elements of R are algebraic integers. For each embedding of L into the field C of complex numbers all elements of R have absolute value $p^{n / 2}$. Let us denote by Γ the multiplicative subgroup of L^{*} generated by R. Since all elements of R are congruent to 1 modulo η, Γ does not contain roots of 1 different from 1 . So, Γ is a finitely generated free abelian group. I claim that the rank $\operatorname{rk}(\Gamma)$ of Γ does not exceed $r+1$. Indeed, the F-adic logarithm maps R into the set $\operatorname{spec}\left(\mathrm{fr}_{\mathrm{v}}\right)$ of all eigen values of the C-linear operator $\mathrm{fr}_{\mathrm{v}}: W \rightarrow W$, and, therefore, defines an isomorphism between Γ and the additive subgroup $Z\left(\mathrm{fr}_{\mathrm{v}}\right)$ of C, generated by $\operatorname{spec}\left(\mathrm{fr}_{\mathrm{v}}\right)$. Let me recall that fr_{v} is a semisimple element of $\mathrm{E}_{\lambda} \mathrm{id} \oplus \mathfrak{g}_{\rho} C C$ id $W^{\oplus} \mathfrak{g}$ where $\mathrm{id}_{W}: W \rightarrow W$ is the identity map and \mathfrak{g} is the semisimple C-Lie subalgebra of $\operatorname{End}(W)$, having the rank r. Now, E. Cartan theory of modules with highest weight [2] easily implies that the additive subgroup, generated by all eigen values of each operator from g, has the rank $\leq r$. Since fr_{v} is the sum of a scalar operator and an operator from \mathfrak{g}, the rank of $\mathbf{Z}\left(\mathrm{fr}_{\mathbf{v}}\right)$ does not exceed $r+1$.

Notice, that the Galois group $\operatorname{Gal}(\mathrm{L} / \mathrm{E})$ acts naturally on Γ. This action defines an embedding

$$
\operatorname{Gal}(\mathrm{L} / \mathrm{E}) \rightarrow \operatorname{Aut}(\Gamma) \approx \mathrm{GL}(\mathrm{rk}(\Gamma), \mathrm{Z}) \subset \mathrm{GL}(r+1, \mathrm{Z})
$$

Since $\operatorname{Gal}(\mathrm{L} / E)$ is finite, it is isomorphic to a finite subgroup of $\mathrm{GL}(r+1, \mathrm{Z})$. Applying a theorem of Jordan we obtain that there exists a positive constant $D_{1}=D_{1}(r)$, depending only on r, such that the order of $\operatorname{Gal}(\mathrm{L} / \mathrm{E})$ divides D_{1}, i. e. the extension degree [L:E] divides D_{1}.

Step 3. Let $\mathfrak{O}_{\mathrm{L}}$ be the ring of integers in L . Conditions 3 and 4 of Step 1 imply that all elements α of R are algebraic integers in L and for each embedding of L into C we have

$$
\alpha^{\prime} \alpha=p^{n}
$$

Here α^{\prime} is the complex-conjugate of α and, of course, also, an algebraic integer. This implies that if \mathbf{p} ' is a prime ideal in $\mathfrak{O}_{\mathrm{L}}$, not lying above p, then α is a p^{\prime}-adic unit for all $\alpha \in R$. Notice, that $\alpha^{\prime}=p^{n} / \alpha$ lies in L and even in $\mathfrak{O}_{\mathrm{L}}$.

Let S be the set of prime ideals in \mathcal{O}_{L}, lying above p. For each p from S let

$$
\operatorname{ord}_{\mathbf{p}}: \mathrm{L}^{*} \rightarrow \mathbf{Q}
$$

be the discrete valuation of L attached to p and normalized by the condition

$$
\operatorname{ord}_{\mathbf{p}}(p)=1
$$

Recall that p completely splits in E . This implies that
$\operatorname{ord}_{\mathbf{p}}\left(\mathrm{E}^{*}\right)=\operatorname{ord}_{\mathbf{p}}\left(\mathrm{Q}^{*}\right)=\mathbf{Z}$,
$n=\operatorname{ord}_{\mathbf{p}}\left(p^{n}\right)=\operatorname{ord}_{\mathbf{p}}(\alpha)+\operatorname{ord}_{\mathbf{p}}\left(\alpha^{\prime}\right)$ for all $\alpha \in R$.
Since α, α^{\prime} are algebraic integers, the rational numbers ord ${ }_{\mathbf{p}}(\alpha)$, ord $\mathbf{p}^{\left(\alpha^{\prime}\right)}$ are non-negative, and, therefore,
$0 \leq \operatorname{ord}_{\mathbf{p}}(\alpha) \leq n$ for all $\alpha \in R$.
Since [L:Q] divides D_{1},
$\operatorname{ord}_{\mathbf{p}}\left(\mathrm{L}^{*}\right) \subset\left(1 / D_{1}\right) \operatorname{ord}_{\mathbf{p}}\left(\mathrm{E}^{*}\right)=\left(1 / D_{1}\right) \mathbf{Z}$.
Let us put $A:=\left\{c \in \mathbf{Q}, 0 \leq c \leq n, D_{1} c \in \mathbf{Z}\right\}$. Clearly, A is a finite set of rational numbers, consisting of ($D_{1} n+1$) elements and depending only on n and r. We have
$\operatorname{ord}_{\mathbf{p}}(\alpha) \in A$ for all $\alpha \in R, \mathbf{p} \in S$.
Let ord: $\Gamma \nrightarrow Q^{S}$ be the homomorphism defined by the formula
$\operatorname{ord}(\gamma)=\left\{\operatorname{ord}_{\mathrm{p}}(\gamma)\right\}_{\mathrm{p} \in S}$.
Clearly, $\operatorname{ord}(R) \subset A^{S} \subset Q^{S}$.
I claim that ord is an embedding. Indeed, if $\operatorname{ord}(\gamma)=0$ for some $\gamma \in \Gamma$ then γ is an unit in L . The Weil - Riemann conjecture implies the equality of all archimedean valuations on the elements of Γ. Therefore, the product formula implies that $|\gamma|=1$ for all archimedean valuations on L . This implies that γ is a root of 1 . Since Γ does not contain non-trivial roots of $1, \gamma=1$.

One may extend ord by Q-linearity to an embedding
$\Gamma \otimes \mathbf{Q}+\mathbf{Q}^{S}$,
which we will also denote by ord .

Step 4. Let $\mathrm{Q}\left(\mathrm{fr}_{\mathrm{v}}\right)$ be the $\mathrm{Q}-$ vector subspace of C, spanned by $\operatorname{spec}\left(\mathrm{fr}_{\mathrm{v}}\right)$. We have
$\operatorname{spec}\left(\mathrm{fr}_{\mathbf{v}}\right) \subset \mathbf{Z}\left(\mathrm{fr}_{\mathbf{v}}\right) \subset \mathbf{Q}\left(\mathrm{fr}_{\mathbf{v}}\right)$.
The l-adic logarithm defines the isomorphism
log: $\Gamma \rightarrow \mathbf{Z}\left(\mathrm{fr}_{\mathrm{v}}\right)$,
which can be extended by Q-linearity to an isomorphism

$$
\Gamma \otimes Q \rightarrow Q\left(f_{v}\right),
$$

which we will also denote by \log. Clearly, the \mathbf{Q}-vector space
$\operatorname{Hom}\left(\mathbf{Q}\left(\mathrm{fr}_{\mathbf{v}}\right), \mathbf{Q}\right)$ is generated by maps
$\operatorname{ord}_{\mathrm{p}} \log ^{-1}: \mathbf{Q}\left(\mathrm{fr}_{\mathbf{v}}\right) \rightarrow \Gamma \otimes \mathbf{Q} \rightarrow \mathbf{Q} \quad(\mathbf{p} \in S)$.
Notice, that
$\operatorname{ord}_{\mathbf{p}} \log ^{-1}\left(\operatorname{spec}\left(\mathrm{fr}_{\mathbf{v}}\right)\right)=\operatorname{ord}_{\mathbf{p}}(R) \subset A$ for all $\mathbf{p} \in S$.
Now, I claim that the highest weight of each simple \mathfrak{g}_{i}-module W_{i} is the sum of no more than $n D_{1}$ fundamental weights. Indeed, one has only to apply Lemma 0.7 to the regular element $f=\mathrm{fr}_{\mathrm{v}}$, the set
$M=\left\{\operatorname{ord}_{\mathbf{p}} \log ^{-1}\left(\operatorname{spec}\left(\mathrm{fr}_{\mathbf{v}}\right)\right): \mathbf{Q}\left(\mathrm{fr}_{\mathbf{v}}\right) \rightarrow \mathbf{Q} \mid \mathbf{p} \in S\right\}$
of homomorphisms $\mathbf{Q}\left(\mathrm{fr}_{\mathbf{v}}\right) \rightarrow \mathbf{Q}$ and A.

2. Proof of Key Lemma .

We start the proof with the following remarks. First, we have natural embeddings

$$
\mathrm{E}_{\lambda} \mathrm{id} \otimes \mathfrak{g}_{\rho} \subset\left(\mathrm{E}_{\lambda} \mathrm{id} \otimes \mathfrak{g}_{\rho}\right) \otimes_{\mathrm{E}_{\lambda}} C=C \mathrm{id}_{W^{\oplus} \mathfrak{g} \subset \mathrm{End}_{C}} W
$$

Since f is regular in the reductive E_{λ}-Lie algebra E_{λ} id $\otimes \mathfrak{g}_{\rho}$, it remains regular in the reductive C-Lie algebra $C \mathrm{id}_{W} \oplus \mathfrak{g}$. We have

$$
f=c \operatorname{id}+\Sigma f_{i}(1 \leq i \leq s)
$$

with $c \in C, f_{i} \in \mathfrak{g}_{i}$. Since f is regular, all f_{i} are non-zero semisimple elements of \mathfrak{g}_{i}. Let $\operatorname{spec}\left(f_{i}\right) \subset C$ be the set of all eigen values of the C-linear operator $f_{i} W_{i} \rightarrow W_{i}$ (recall that W_{i} is the faithful simple $\left.\mathrm{g}_{i}-\operatorname{module}\right)$. If $\alpha \in \operatorname{spec}\left(f_{i}\right)$ then we write mult $_{i}(\alpha)$ for the multiplicity of the eigen value α of the operator f_{i}. Clearly,

$$
\Sigma_{\alpha \in \operatorname{spec}\left(f_{i}\right)} \operatorname{mult}_{i}(\alpha)=\operatorname{dim}\left(W_{i}\right)
$$

Since $\mathfrak{g}_{\boldsymbol{i}}$ is the (semi) simple subalgebra of $\operatorname{End}\left(W_{i}\right)$, the trace

$$
\operatorname{tr}\left(f_{i}, W_{i}\right):=\Sigma \Sigma_{\alpha \in \operatorname{spec}\left(f_{i}\right)} \operatorname{mult}_{i}(\alpha) \alpha=0 .
$$

We have

$$
\begin{aligned}
& \operatorname{spec}(f)=c+\Sigma_{i} \operatorname{spec}\left(f_{i}\right)= \\
& =\left\{c+\Sigma_{i} \alpha_{i} \mid \alpha_{i} \in \operatorname{spec}\left(f_{i}\right), 1 \leq i \leq s\right\} .
\end{aligned}
$$

Claim. For all i there exists $c_{i} \in \mathbb{Q}(f)$ such that
$\operatorname{spec}\left(f_{i}\right) \subset c_{i}+\operatorname{spec}(f)$.
In particular, $\operatorname{spec}\left(f_{i}\right) \subset Q(f)$.
We will prove Claim at the end of this Section .

Proof of Key Lemma (modulo Claim). We will identify \mathfrak{g}_{i} with its image in $\operatorname{End}\left(W_{i}\right)$. Let $\mathbf{Q}\left(f_{i}\right)$ be the \mathbf{Q}-vector subspace of C spanned by $\operatorname{spec}\left(f_{i}\right)$. Clearly, $\mathbf{Q}\left(f_{i}\right) \subset \mathbf{Q}(f)$. To each homomorphism $\varphi: \mathbf{Q}\left(f_{i}\right) \rightarrow C$ corresponds a C-linear operator $f_{i}^{(\varphi)}: W_{i} \rightarrow W_{i}$ called a replica of f and defined as follows [10].

Each eigen vector $x \in W_{i}$ of f is also an eigen vector of $f_{i}^{(\varphi)}$ and $f_{i}^{(\varphi)} x=\varphi(\alpha) x$ if $f x=\alpha x\left(\alpha \in \operatorname{spec}\left(f_{i}\right) \subset \mathbf{Q}\left(f_{i}\right)\right)$.
Clearly, the set $\operatorname{spec}\left(f_{i}^{(\varphi)}\right)$ of the all eigen values of $f_{i}^{(\varphi)}$ coincides with $\varphi\left(\operatorname{spec}\left(f_{i}\right)\right)$.

Since g_{i} is simple, it is an algebraic Lie subalgebra of $\operatorname{End}\left(W_{i}\right)$ and, therefore, contains all the replicas of their elements [10] . This implies that
$f_{i}^{(\varphi)} \in \mathfrak{g}_{i} \subset \operatorname{End}\left(W_{i}\right)$
for all φ. Clearly, $f_{i}^{(\varphi)}$ is a semisimple element of \mathfrak{g}_{i}.
Since $\mathbf{Q}\left(f_{i}\right) \subset \mathbf{Q}(f)$, one may attach to each homomorphism $\psi: Q(f) \rightarrow C$ its restriction $\psi^{\prime}: \mathbf{Q}\left(f_{i}\right) \rightarrow C$ and consider the corresponding
replica

$$
f_{i}^{\left(\psi^{\prime}\right)} \in \mathrm{g}_{i} \subset \operatorname{End}\left(W_{i}\right)
$$

Clearly, $f_{i}^{(\psi)} \neq 0$ if and only if the restriction of ψ to $\mathbf{Q}\left(f_{i}\right)$ does not vanish identically . We have
$\operatorname{spec}\left(f_{i}^{\left(\psi^{\prime}\right)}\right)=\psi\left(\operatorname{spec}\left(f_{i}\right)\right)=\psi\left(\operatorname{spec}\left(f_{i}\right)\right) \subset \psi\left(c_{i}+\operatorname{spec}(f)\right)=$
$=\psi\left(c_{i}\right)+\psi(\operatorname{spec}(f))=\left\{\psi\left(c_{i}\right)+\psi(\alpha), \alpha \in \operatorname{spec}(f)\right\}$
Now, let us choose a homomorphism $\theta: \mathbf{Q}(f) \rightarrow \mathbf{Q} \subset C$ such that $\theta \in M$ and the restriction of θ to $\mathbf{Q}\left(f_{i}\right)$ does not vanish identically. Then $f_{i}^{\left(\theta^{n}\right)} \in \mathfrak{g}_{i} \subset \operatorname{End}\left(W_{i}\right)$
is a non-zero semisimple operator and
$\operatorname{spec}\left(f_{i}^{\left(\theta^{r}\right)}\right) \subset \theta\left(c_{i}\right)+\theta(\operatorname{spec}(f)) \subset \theta\left(c_{i}\right)+A$.
In particular, $f_{i}^{\left(\theta^{\prime}\right)}$ has, at most, $\operatorname{card}(A)$ different eigen values.
Let me recall that if a linear irreducible simple Lie algebra contains a non-zero semisimple operator with exactly m different eigen values, then the highest weight of the corresponding irreducible representation is the sum of no more than ($m-1$) fundamental weights ([11] , Th. 2.2) .

Applying this assertion to a non-zero semisimple element $f_{i}^{\left(O^{\prime}\right)}$ of linear irreducible simple Lie algebra $\mathfrak{g}_{i} \subset \operatorname{End}\left(W_{i}\right)$ we obtain that the highest weight of the simple g_{i}-module W_{i} is the sum of no more than $[\operatorname{card}(A)-1]$ fundamental weights .QED.

Proof of Claim. First let us assume that $s=1$, i. e., $\mathfrak{g}=\mathfrak{g}_{1}$ is simple and $W=W_{1}$. Then $f_{1}=f-c$ id $W_{W} \in \mathfrak{g}_{1}$ and

$$
c=\operatorname{tr}(f, W) / \operatorname{dim}(W)
$$

where $\operatorname{tr}(f, W)$ is the trace of $f . W \rightarrow W$. This implies that $c \in \mathbb{Q}(f)$ and

$$
\operatorname{spec}\left(f_{1}\right)=(-c)+\operatorname{spec}(f)
$$

One has only to put $c_{1}=-c$.

Now, let us assume that $s>1$. For each j let us choose an eigen value $\beta_{j} \in \operatorname{spec}\left(f_{j}\right)(1 \leq j \leq s)$. Then for each $\alpha \in \operatorname{spec}\left(f_{i}\right)$

$$
c+\alpha+\Sigma_{j \neq i} \beta_{j} \in \operatorname{spec}(f) .
$$

So, if we put $c_{i}=-\left(c+\Sigma_{j \neq i} \beta_{j}\right)$, then $\alpha \in c_{i}+\operatorname{spec}(f)$, i.e.

$$
\operatorname{spec}\left(f_{i}\right) \subset c_{i}+\operatorname{spec}(f) .
$$

One has only to check that $c_{i} \in \mathbf{Q}(f)$. But we may write the following explicit formula (recall that the trace of f_{i} vanishes and the sum of multiplicities of all eigen values of f_{i} is equal to $\left.\operatorname{dim}\left(W_{i}\right)\right)$.

$$
c_{i}=-\left(\Sigma_{\alpha \in \operatorname{spec}\left(f_{i}\right)} \operatorname{mult}_{i}(\alpha)\left(c+\alpha+\Sigma_{j \neq i} \beta_{j}\right)\right) / \operatorname{dim}\left(W_{i}\right) .
$$

This formula implies that c_{i} is a linear combination of eigen values $c+\alpha+\Sigma_{j \neq i} \beta_{j}$ of f with rational coefficients, i. e. $c_{i} \in \mathrm{Q}(f)$. QED.

3. Applications to Abelian varieties.

Let X be an Abelian variety defined over K. Let $\mathrm{T}_{(}(X)$ be the Tate Z_{Γ}-module of X and

$$
\mathrm{V}_{l}(X)=\mathrm{T}(X) \otimes \mathrm{z}_{l} \mathrm{Q}_{l} .
$$

It is well-known that $\mathrm{V}_{l}(X)$ is the $\mathrm{Q}_{\boldsymbol{l}}$-vector space of dimension $2 \operatorname{dim} X$. There is a natural b-adic representation $[6,5]$

$$
\rho_{\dot{l}} \mathrm{G}(K) \rightarrow \operatorname{Aut}^{\mathrm{V}}(X)
$$

A theorem of Faltings [3] asserts that ρ_{l} is semisimple and the centralizer
 ring of all K-endomorphisms of X. This implies that the $\mathrm{Q}_{\boldsymbol{\sigma}}$ Lie algebra $\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{l}\right)\right.$ is reductive, its natural representation in $\mathrm{V}_{l}(X)$ is semisimple and the centralizer of $\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{l}\right)\right)$ in End $\mathrm{V}_{l}(X)$ coincides with End $X \otimes \mathrm{Q}_{l}$ Here End X is the ring of all endomorphisms of X (over $K(a)$). Recall
that the ring End X is a free abelian group of finite rank. We write $\operatorname{rk}(\operatorname{End} X)$ for the rank of End X.

Let us split the reductive $\mathbf{Q}_{\boldsymbol{\Gamma}}$ Lie algebra $\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{l}\right)\right.$ into the direct sum

$$
\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{l}\right)=\mathfrak{c}_{l} \oplus \mathfrak{g}_{l}\right.
$$

of its center c_{l} and a semisimple Q_{l} Lie algebra g_{l}. Let $\tau(X)$ be the rank of \mathfrak{g}_{l}. The results of [7] combined with the theorem of Faltings imply that $\uparrow(X)$ does not depend on l.

3.1. Theorem . Let us put

$$
H=H(r(X))=\max \{D(j, 1), 0 \leq j \leq r(X)\}
$$

where D are as in Theorem 0.5. Then
$\operatorname{dim}(X) \leq H \operatorname{rk}($ End $X) / 2$.
In particular, the dimension of X is bounded above by $\operatorname{rk}(\operatorname{End} X)$ times certain constant, depending only on $r(X)$.

Example. If $r(X)=0$ then X is of CM-type and $\operatorname{dim} X \leq \operatorname{rk}(\operatorname{End} X) / 2$.

Remark. If $\gamma(X)=1$ then results of [9] imply that
$\operatorname{dim} X \leq \operatorname{rk}($ End $X)$.
Remark. One may deduce from several conjectures [8](e. g., the conjecture of Mumford - Tate or a conjecture of Serre [12]) that $\operatorname{dim} X$ does not exceed $2^{r(X)-1} \operatorname{rk}($ End $X)$.
3.2. Proof of Theorem 3.1. In the course of the proof we may and will assume that all endomorphisms of X are defined over K and X is absolutely simple. Then Endo $X=$ End $X \otimes Q$ is a division algebra of finite
dimension over \mathbf{Q}. Let us fix a maximal commutative \mathbf{Q}-subalgebra E in Endo X. Then E is a number field, coinciding with its centralizer in Endo X; the degree $[\mathrm{E}: \mathrm{Q}]$ divides $\mathrm{rk}(\operatorname{End} X)$. In particular, $[\mathrm{E}: \mathrm{Q}] \leq \mathrm{rk}($ End $X)$.

In addition, [E:Q] divides $2 \operatorname{dim} X$ and the natural embedding

$$
\mathrm{E} \otimes_{\mathrm{Q}} \mathrm{Q}_{l}+\text { Endo } X \otimes{ }_{\mathrm{Q}} \mathrm{Q}_{l}=\text { End } X \otimes \mathrm{Q}_{l} \subset \text { End } \mathrm{V}_{l}(X)
$$

provides $\mathrm{V}_{(}(X)$ with the structure of a free $\mathrm{E} \otimes_{\mathrm{Q}} \mathrm{Q}_{\Gamma}$-module of rank $2 \operatorname{dim} X /[\mathrm{E}: \mathrm{Q}][5]$.

Let \mathfrak{O} be the ring of integers in E . There is a natural splitting

$$
\mathrm{E} \otimes_{Q} \mathrm{Q}_{l}=\oplus \mathrm{E}_{\lambda}
$$

where λ runs through the set of dividing l prime ideals in \mathfrak{O}. Clearly,

$$
[\mathrm{E}: \mathrm{Q}]=\Sigma\left[\left[\mathrm{E}_{\lambda}: \mathrm{Q}_{p}\right]\right.
$$

Since $\mathrm{V}_{l}(\mathrm{X})$ is the free $\mathrm{E}{ }^{\otimes} \mathrm{Q}^{\mathrm{Q}}{ }_{l}$-module of rank $2 \operatorname{dim} X /[\mathrm{E}: \mathrm{Q}]$, there is a natural splitting

$$
\mathrm{V}_{\lambda}(X)=\oplus \mathrm{V}_{\lambda}
$$

where $\mathrm{V}_{\lambda}=\mathrm{E}_{\lambda} \mathrm{V}_{l}(X)$ is the E_{λ}-vector space of dimension $2 \operatorname{dim} X /[\mathrm{E}: \mathrm{Q}]$. Clearly, each V_{λ} is $\mathrm{G}(K)$-invariant and ρ_{l} is the direct sum of the corresponding λ-adic representations

$$
\rho_{\lambda}: \mathrm{G}(K) \rightarrow \mathrm{Aut}_{\mathbf{E}_{\lambda}} \mathrm{V}_{\lambda}
$$

One may easily check, using the theorem of Faltings, that each ρ_{λ} is absolutely irreducible and even infinitisemally absolutely irreducible λ-adic representation (see [9], Sect. 0.11.1) .

Let us split the reductive $\mathrm{Q}_{\boldsymbol{\sigma}}$ Lie algebra $\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{\lambda}\right)\right.$ into the direct sum

$$
\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{\lambda}\right)=\mathfrak{c}_{\lambda} \oplus \mathfrak{g}_{\lambda}\right.
$$

of its center \mathfrak{c}_{λ} and a semisimple Q_{Γ} Lie algebra \mathfrak{g}_{λ}. Let r_{λ} ' be the
rank of \mathfrak{g}_{λ}.
Claim . $r_{\lambda}{ }^{\prime} \leq \pi(X)$.
In order to prove this inequality it suffices to construct a surjective homomorphism $\mathfrak{g}_{l} \rightarrow \mathfrak{g}_{\lambda}$ of semisimple $\mathrm{Q}_{\boldsymbol{l}}$ Lie algebras. In turn, in order to construct such a homomorphism it suffices to construct a surjective homomorphism

$$
\mathfrak{c}_{l} \oplus \mathfrak{g}_{l}=\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{l}\right) \rightarrow \mathfrak{c}_{\lambda} \oplus \mathfrak{g}_{\lambda}=\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{\lambda}\right)\right.\right.
$$

of reductive Q_{l} Lie algebras and take its restriction to g_{l}. But it is very easy to constuct the latter homomorphism. One has only to consider the surjective homomorphism $\operatorname{Im}\left(\rho_{l}\right) \rightarrow \operatorname{Im}\left(\rho_{\lambda}\right)$ of Q_{Γ} Lie groups, induced by the projection map $\mathrm{V}_{l}(\mathrm{X}) \rightarrow \mathrm{V}_{\lambda}$, and take the corresponding homomorphism of the Q_{Γ} Lie algebras .

It is well known $[6,5]$ that for all but finitely many places v of K the following conditions hold:

1) ρ is unramified at v;
2) the characteristic polynomial
$\operatorname{det}\left(\mathrm{tid}-\mathrm{Fr}_{\mathrm{v}}, \mathrm{V}_{\lambda}\right)$
lies in $\mathfrak{O}[t]$; all its (complex) roots and their conjugate over Q have absolute value $q(v)^{1 / 2}$ (a theorem of A. Weil).

In order to obtain E-integral λ-adic representation of weight 1 let us consider the dual E_{λ}-vector space

$$
\mathrm{V}_{\lambda}^{*}=\operatorname{Hom}_{\mathrm{E}_{\lambda}}\left(\mathrm{V}_{\lambda}, \mathrm{E}_{\lambda}\right)
$$

and the isomorphism

$$
\tau: \operatorname{Aut}_{\mathrm{E}_{\lambda}}\left(\mathrm{V}_{\lambda}\right) \rightarrow \operatorname{Aut}_{\mathrm{E}_{\lambda}}\left(\mathrm{V}_{\lambda}^{*}\right)
$$

defined by the formula $\tau(u)=\left(u^{*}\right)^{-1}$ where u^{*} is the adjoint of u.
Clearly, $\operatorname{dim} E_{\lambda} V_{\lambda}=\operatorname{dim}_{E_{\lambda}} V_{\lambda}{ }^{*}$.

Let us consider the dual λ-adic representation

$$
\rho_{\lambda}^{*}=\tau \rho_{\lambda}: \mathrm{G}(K) \rightarrow \operatorname{Aut}_{\mathrm{E}_{\lambda}}\left(\mathrm{V}_{\lambda}\right)+\operatorname{Aut}_{\mathrm{E}_{\lambda}}\left(\mathrm{V}_{\lambda}\right)
$$

Clearly,$\rho_{\lambda}{ }^{*}$ is E -integral λ-adic representation of weight 1 . One may easily check that $\rho_{\lambda}{ }^{*}$ is also infinitisemally absolutely irreducible . Notice that τ induces an isomorphism $\operatorname{Im}\left(\rho_{\lambda}\right) \approx \operatorname{Im}\left(\rho_{\lambda}{ }^{*}\right)$ of Q_{Γ} Lie groups, which, in turn, induces an isomorphism

$$
\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{\lambda}\right)\right) \approx \operatorname{Lie}\left(\operatorname{Im}\left(\rho_{\lambda}{ }^{*}\right)\right)
$$

of the corresponding Q_{Γ} Lie algebras. This implies that the rank of the semisimple part of the Q_{Γ} Lie algebra $\operatorname{Lie}\left(\operatorname{Im}\left(\rho_{\lambda}{ }^{*}\right)\right)$ is also equal to $r_{\lambda}{ }^{\prime}$ and, therefore, does not exceed $r(X)$.

Applying Corollary of Theorem 0.5 to infinitisemally absolutely irreducible E-integral λ-adic representation $\rho_{\lambda}{ }^{*}$ of weight 1 we obtain that

$$
\operatorname{dim}_{\mathrm{E}_{\lambda}} \mathrm{V}_{\lambda}^{*} \leq \max \left\{D(j, 1), 0 \leq j \leq r_{\lambda}^{\prime}\right\}
$$

Since $r_{\lambda}{ }^{\prime} \leq \pi(X)$ and $\operatorname{dim}_{\mathrm{E}_{\lambda}} \mathrm{V}_{\lambda}{ }^{*}=\operatorname{dim}_{\mathrm{E}_{\lambda}} \mathrm{V}_{\lambda}$,

$$
\begin{aligned}
& \operatorname{dim}_{\mathbf{Q}_{l}} \mathrm{~V}_{\lambda}=\left[\mathrm{E}_{\lambda}: \mathbf{Q}_{p}\right] \operatorname{dim}_{\mathrm{E}_{\lambda}} \mathrm{V}_{\lambda} \leq\left[\mathrm{E}_{\lambda}: \mathbf{Q}_{\boldsymbol{p}}\right] \max \{D(j, 1), 0 \leq j \leq r(X)\}= \\
& \quad=\left[\mathrm{E}_{\lambda}: \mathbf{Q}_{\boldsymbol{p}}\right] H .
\end{aligned}
$$

Summing up over λ we obtain that

$$
\begin{aligned}
2 \operatorname{dim} X & =\operatorname{dim}_{\mathbf{Q}_{l}} \mathrm{~V}_{f}(X)=\Sigma \operatorname{dim}_{\mathbf{Q}_{1}} \mathrm{~V}_{\lambda}(X) \leq H \Sigma\left[\mathrm{E}_{\lambda}: \mathrm{Q}_{l}\right]= \\
& =H[\mathrm{E}: \mathbf{Q}] \leq H \operatorname{rk}(\operatorname{End} X) .
\end{aligned}
$$

REFERENCES

1. N. Bourbaki, Groupes et algèbres de Lie, Ch. $2-3$, Hermann, Paris, 1972.
2. N. Bourbaki, Groupes et algèbres de Lie, Ch. 7-8, Hermann, Paris, 1975.
3. G.Faltings, Endlichkeitssätze fur Abelsche Varietäten uber Zahlkörpern, Invent. Math. , 73, $349-366$ (1983).
4. G. Henniart, Représentations $⺊$-adiques abeliennes, Séminaire de Théorie de Nombres, Paris, 1980-81, Progress in Math., 22, Birkhäuser, 1981, 107-126.
5. K. A. Ribet, Galois actions on division points of abelian variety with many real multiplications, Amer. J. of Math., 98, 751 - 804 (1976) .
6. J. - P. Serre, Abelian $⺊$-adic representations and elliptic curves, Benjamin, New - York, Amsterdam, 1968 .
7. Yu. G. Zarhin, Abelian varieties, l-adic representations and Lie algebras. Rank independence on l, Invent. Math. , 55, 165 - 176 (1979).
8. Yu. G. Zarhin, Weights of simple Lie algebras in the cohomology of algebraic varieties, Math. USSR Izvestija, 24, 245 - 282 (1985) .
9. Yu. G. Zarhin, Torsion of Abelian varieties over GL(2)-extensions of number fields, Math. Ann., 1989, to appear .
10. C. Chevalley, Théorie de groupes de Lie, Groupes algèbriques, Hermann, Paris, 1951 .
11. Yu. G. Zarhin, Linear semisimple Lie algebras containing an operator with small number of eigen values, Arch. Math. , Basel , 46, $522-532$ (1986).
12. J. - P. Wintenberger, Motifs et ramification pour les points d'ordre fini des variétés abéliennes, Séminaire de Théorie de Nombres, Paris, 1986-87, Progress in Math., 75, Birkhäuser, 1988, 453-471 .
