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HEISENBERG DOUBLES AND DERIVED CATEGORIES

M. Kapranov

Let A be an Abelian category of finite homological dimension in which all Ext, (A, B)
are finite sets. One can, following C.M. Ringel [R1-3|, associate to A an algebra R(A), a
version of the Hall algebra construction. Tts structure constants are suitably normalized
numbers of short exact sequences. Ringel has shown that in the case A = Repp (T),
the category of F,-representations of a Dynkin quiver I, the algebra R(A) is identified
with the “nilpotent” subalgebra U,(n™) in the g-quantization Uy(g) of the semisimple Lie
algebra corresponding to I'. This discovery has lead to several substantial advances in
quantum group theory [Lu 1]. He has also shown how to put an algebra structure on the
space B(A) = C[KoA] ® R(A) (here Ko A is the Grothendieck group of A) so that for
A = Repp, (I') one has B(A) = Uy(b™), the “Borel” part of Uy(g).

The idea of extending the Hall algebra formalism to triangulated categories such as
the derived category D®(A), seems to have been voiced by several people independently.
It appears naturally if one tries to find a construction of the full quantum group U,(g) in
_ terms of A = Repg, (I'). Indeed, various Abelian subcategories in DP(A) obtained from
A by repeated application of derived Bernstein-Gelfand-Gelfand reflection functors [GM]
(and the Hall algebras of these subcategories) look temptingly similar to Borel subalgebras
b¥ C g obtained from b¥ by action of elements of the Weyl group. Unfortunately, a
direct mimicking of the Hall algebra construction but with exact triangles replacing exact
sequences, fails to give an associative multiplication, even though the octohedral axiom
looks like the right tool to establish the associativity. One way to get around this difficulty
is, as it was done in [X1], to “amalgamate” the (associative) Hall algebras of various
Abelian subcategories in D®(A), but it seems to be not clear whether the resulting algebra
is indeed Uy(g) nor that it is a Hopf algebra at all.

The aim of the present paper is to exhibit an algebra L(.A) which, although defined
in terms of A, is invariant under derived equivalences and can be thus called the “Hall
algebra of the derived category”. We call L(.A) the lattice algebra of A. Its construction
was suggested by the fact that Uy(g) can be obtained from the Hopf algebra Uy(b™*) by the
Drinfeld double construction, while the Hopf algebra structure on B(.A) can be described
in purely categorical terms, as follows from the recent work of Green [Gr| (see [X2], [Kap]).
However, it turned out that it is not the Drinfeld double which appears naturally in the
study of D°(A), but rather the so-called Heisenberg double of [AF] [ST]. In fact, one can
find counterparts in Hopf algebra theory of several different versions of derived categories,
as shown in the following table:



Categories related to an Algebras related to the

Abelian category A Hopf algebra E = B(A)

DI=1.0( 4), the category of Z-graded HD(E), the Heisenberg double

complexes situated in degrees 0, —1

D®(A), the standard bounded derived L(A), the lattice algebra
category
D@ (A), the category of 2-periodic DD(E), the Drinfeld double

(Z/2-graded) complexes

The relation of DI=19(A) to the Heisenberg double of & = B(A) is the easiest to
understand: the commutation relations in H D(Z) involve certain products of the structure
constants for the multiplication and comultiplication in =, and they can be interpreted as
numbers of some 4-term exact sequences in 4, which are obviously related to exact triangles
in DI-1.01(4).

The algebra L{A) is obtained by taking one copy of C[Ky(A)] and infinitely many
copies of R(A), one for each site of an infinite 1-dimensional lattice and then imposing
Heisenberg double-type commutation relations between copies of R(A) at adjacent sites
and oscillator relations of the form AB = AspBA, Aap € R, between basis vectors of .
non-adjacent copies. This algebra is similar to the “lattice Kac-Moody algebras” of [AFS].
The reason for taking an infinite lattice is clear: the nth copy of R(A), n € Z, corresponds
to the Abelian subcategory A[n] C D°(A).

The author would like to acknowledge financial support from NSF grants and A.P.
Sloan Research Fellowship as well as from the Max-Planck Institute fiir Mathematik in
Bonn which provided excellent conditions for working on this paper.



§1. Heisenberg doubles for Hall-Ringel algebras

(1.1) The Heisenberg double. Let = be a Hopf algebra over C. We denote by
A'ZE2EZQZ €:Z-5C, S:2E-Z2

the comultiplication, the counit and the antipode of Z respectively. Forz € Zlet r; : E —
= be the operator of right multiplication by z, i.e., r.(y) = yz, and let D, : Z* = E* be
the dual to rg, i.e., for f € E* the functional D,(f) € Z* takes y — f(yz). Then the
correspondence z — D gives an embedding of algebras D : £ — End(Z*).

For f € E* let I; : Z* — E* be the operator of left multiplication by f (with respect
to the algebra structure on Z* defined by the map dual to A), i.e., lf(¢) = f¢p. Again, we
get an embedding of algebras [ : * — End(Z*).

The Heisenberg double HD(Z) is defined as the subalgebra in End(Z*) generated by
the images D(Z) and [(Z*). It is known [ST] that the map

E*®E— HD(E), f®zw— Dy,

is an isomorphism of vector spaces. Thus to describe the structure of HD(Z) completely,
it is enough to explain how to bring a product Dgl; to a linear combination of products
of the form {,D,,. We will do this in the coordinate-dependent language, following {Kas).

Let {e;},7 € I, be a basis of Z and {e*} be the dual (topological) basis of Z*. Introduce
the structure constants for the multiplication and comultiplication with respect to our
basis:

(1.1.1) €i€j = mejek, A(ek) = Z,uije,' ® €.
k

Then one easily finds that

(1.1.2) De(e¥) =S "mbel, la(eh) = uikel.
i
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(1.1.3) Proposition. In HD(Z) we have the identity

Deles = Y mlypitlea D,

a,b,c

Proof: By (1.1.2), our statement is equivalent to:

ir_k _ j  be..r ,,ad R
E W my; = E m?, pimhopst, Vi j,r,s.
k abc,d



This equality, however, expresses the coincidence of the coefficients at e; ® e, in A(e,e;)
and Af{e;)A(e;), and so it is true.

In view of this proposition we will regard HD(Z) as an abstract algebra generated by
symbols Z;, Z',i € I subject to the relations:

(1.1.9) Z:2;=Y mkZy, 7'29=Y ulz*,
k k
(1.1.5) 220 =" md ute 20 2,
a,b,c

Note that HD(E) is not a Hopf algebra.

(1.2) Heisenberg double with respect to a Hopf pairing. It is convenient to intro-
duce a version of the above formalism which avoids dualizing possibly infinite-dimensional
spaces. More precisely, let = and Q be Hopf algebras. A Hopf pairing of = and  is a
bilinear map ¢ : = x 2 — C satisfying the following conditions:

(1.2.1) $(E€',w) = ¢22(E® €', A(w)),
(1.2.2) $(&,wu') = ¢B2(A(E),w B W)
(1.2.3) $(Lw) =ea(w), (1) = ez(§)-

Ths conditions (1.2.1-2) simply mean that the multiplication and the comultiplication are
conjugate with respect to the pairing. We did not include here any conditions on the
antipodes since we will not need them.

If ¢ is a Hopf pairing of = and 2, we define the Heisenberg double HD(Z,Q, ¢)
associated to ¢ to be the tensor product 2 ®c = with the multiplication given as follows:
First, both Q (realized as 2 ® 1) and = (realized as 1 ® Z) are required to be subalgebras.
Second, for £ € Z,w €  we impose the condition:

(1.3.4) tw = (1d ® ¢ ® Id)(Ag(w) ® Az(£)),

where Id@¢QRId: QRNQERE — Q@ ZE is the map induced by the transposed pairing
¢°P : 2 ® Z — C on the second and third factors. '
Thus, when 2 = Z* and ¢ is the canonical pairing, we get the definition of (1.1).

(1.3) Hall and Ringel algebras. We now describe a partlcular class of Hopf algebras,
whose Heisenberg doubles we will be interested in.
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Let A be an Abelian category. We will say that A has finite type, if if, for any objects
A, B € A all the groups Extit(A,B) have finite cardinality and are zero for almost all 3.
If A is of finite type, then, for any objects A, B,C € A, the number of subobjects A’ C A
such that A’ ~ A and C/A' ~ B, is finite. Denote this number ¢$p.

Let H(A) be the C-vector space with basis [A] parametrized by all the isomorphism
classes of objects A € A. The rule

(1.3.1) [A]e [B] =) 9$5(C]
c

makes H (A) into an associative algebra with unit 1 = [0], see [R1-3]. This algebra is called
the Hall algebra of A.

Let Ko(A) be the Grothendieck group of A. For an object A € A let A be its class in
Ko(A). The rule

(1.3.2) (A,B) = [[][Extiy(4,B)|-V', A, BeA
i>0

extends uniquely (because of the behavior of Ext in exact sequences) to a bilinear form
Ko(A)®Ko(A) = R* known as the Euler form. We will often write just (A, B) for (4, B),
if A, B are objects. The symmetrization of the Euler form will be denoted by

(1.3.3) (@lB) = (2, B) - (B,a), @B € Ko(A).

The twisted multiplication
(1.3.4) [A]*[B] = (B, A) - [A] o [B]

is still associative. We will denote R(A) and call the Ringel algebra of A the same vector
space as H(A) but with * as multiplication.

(1.3.5) Remark. It was C.M. Ringel {R3] who first drew attention to the particular twist
(1.3.4). More generally, one can twist by any bilinear form on Ky(.A), and the associativity
will still be preserved. In fact, several such twists were used in earlier papers by G. Lusztig
[Lu2-3], without specially distinguishing the Euler form (1.3.2).

Let C[K.A] be the group algebra of KA, with basis K4, a € oA and multiplication
K,Kg = Kqp. Let us extend the algebra R(A) by adding to it these symbols K, which
we make commute with [A] € R(A) by the rule

(1.3.6) [AlKp = (A|B)Kp[A].

Denote the resulting algebra B(A). So as a vector space B(A) ~ C[KyA] ®c R(A), with
K, ® [A] = K,A establishing the isomorphism. We will call B(.A) the extended Ringel
algebra of A.



Assume now that A satisfies two additional conditions. First, any object of A has
only finitely many subobjects. Second, Ext}, (A, B) =0 for all A, B and all i > 1. We will
state the second condition by saying that the homological dimension of A is less or equal
to 1 and write hd(A) < 1. The next statement follows from results of Green [Gr], see [X1]
[Kap] for a detailed deduction.

(1.3.7) Theorem. B(A) is a Hopf algebra with respect to the comultiplication given on
generators by

A(Ka) =K, ® Kcn
|Aut(A)] - [Aut(A/4")]
|[Aut(A)|

A([A]) = D (4/A,A) (AT @ Ka[A/A],

A'CA

the counit € : B(A) = C given by
e(Kao[A])=1, f A=0 and 0, if A#0

and the antipode S : B(A) = B(A) given by

o0 n " o |[Aut Aj Aj—l
SRA) = Y1 S T A, Ay Pzt Bam )L
n=1 ApgC..CA,=A1i=1

[Ao] % [Ar/A] 5 ... [An/An 1} KUK

where Ag C ... C A, = A runs over arbitrary chains of strict (A; # Aiy1) inclusions of
length n.

(1.4) The Hopf pairing on B(A). The elements K,[A] form a C-basis of B(.4). Let us
define a bilinear pairing ¢ : B(A) x B(A) = C by putting

(1.4.1) $(KalA], Kp[B]) = (l)([4), [B]) = (CTfifEﬁ’)[f]‘

(1.4.2) Proposition. The pairing ¢ is a Hopf pairing on B(A).

Proof: We need to prove the equality (1.3.1) (the other equality (1.3.2) will then follow by
symmetry). In other words, we need to prove that

(1.4.3) ¢(KalA]Kp| B, K,[C)) = ¢%%(Ka[A] ® Kg[B], A(K,[C]))
To prove this, notice that the left hand side is

(A1B)(Ka+slAl[B], K4[C)) = (A|B) (e + Blm)#([A] * [B], [C]) =
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= (4|8) (e ;o JAUE(CT)] - [AUt(C/C’)[.
(A]B)(c+ Blv) CZC:C(C/C 100 |Aut(C)|

(14.4) $(4,C") - ¢(B,C/C"),
while the right hand side of (1.4.3) is

|Aut(C")| - |Aut(C/C)|

0 (KalAl® KalBl, Y (0/C",C)

e [Aut(C)|
(1.4.5) K [Ce Kcﬂ[c"]) _
_ r oy JAUK(CT)] - [Aut(C/C7))| =

c'ce
#([A), [C']) - (B, [C/C")).

Notice now that in order that ¢(A,C’) # 0, we should have A ~ C’, and under this
assumption the corresponding summands in (1.4.4) and (1.4.5) coincide. Proposition is
proved.

(1.5) The Heisenberg double of B(A). Let Heis(A) be the Heisenberg double
HD(B(A), B(A), ¢), see (1.2). We will denote its generators as follows:

(1.5.1) ZI=10[4], Z;=[4®1, K.=1®K,, K;=K,®1.

Thus, the Z7 together with the K, form a copy of B(.A) inside Heis(A), and the same for
the Z; with the K. To find the cross-relations between the plus and minus generators
more explicitly, let us introduce the following notations. For any objects A, B,M,N € A
let FMN be the set of all exact sequences

(1.5.2) 0+M-BAASNS0

and by y¥& the quotient |FMN|/|Aut(A)| - |Aut(B)|. The following statement, with its
proof, is an adaptation of Proposition 6.2.12 from [Kap| which, however, used a more
cumbersome approach.

(1.5.3) Proposition. We have the following equalities in Heis(A):

(1.5.4) Z3Z5 =Y (B-M,M)-(N,B-M) v{§ Z2yKp_wZ% =
MN



=) vap (B-M,M-N) - ZyZ{Kp_s,

(1.5.5) ZaKo=(Al0)"'KoZ3, ZiK; =K Z}, KIK;=(alf)KzK}.
Proof: By (1.3.4) and the definition of the Z¥, we have
Z37Z5 = (1d ® ¢ ® I)(A([B]) ® A([A)])) =

. , [Aut(M)] - [Aut()] - JAut(I")] - [Aus (V)|
=2 2 (M) (N.I)sr - af Aut(B)|- [Aut(A) "

MII'N
xp(Kp[I],[I')) - [M]® K1 N.

Note that ¢(Kar[I], [I']) = On,1r/|Aut(I})|, so we can just put I’ = I. Further, for any
three objects A, B, C let e:f,;‘B be the set of exact sequences

0A->C—=B-=0.

Thus MN c
JMN _ |4 4G, = €4sl
AB T Aut(A)] - [Aut(B)]” TAB T |Aut(A)| - |Aut(B)|

Notice now that

(1.5.6) FMN = I (8 x &fv) /Aut(D),
I€0Ob(A)/1s0

with Aut(]) acting freely. This just means that any long exact sequence (1.5.2) can be
split into two short sequences with 7 = Im(v). Let F44V (1) be the Ith part of the disjoint
union (1.5.6). Then, by taking all the above equalities into account, we find:

Zt75 = Z (I,M)-(N,I) 7is U)l Z5KiZy
ATE T e U Aut(A)] - [Aug(B)| M

and to get the claimed equality (1.5.4), it remains to notice that = B—M once F}N(I) #
. The equalities (1.5.5) are obtained in a straightforward way. Proposition is proved.



§2. Heisenberg doubles and tilting.

(2.1) Generalities on derived categories. Let A be an Abelian category. By C%(A) -
we denote the category of bounded complexes A® = (A%, d; = d; a4 : A* — A" over
A. The shifted complex A®[n],n € Z, is defined by (A*[n))* = A", d; 4 = (=1)"d; 4.
The homology objects of a complex A* are denoted by H*(A*) = Ker(d;)/Im(d;_1). We
denote by DP(A) the bounded derived category of A. It is obtained from C®(A) by
formally inverting quasi-isomorphisms. If A, B are two objects of A (regarded as complexes
concentrated in degree 0), then

(2.1.1) Homps(4)(A, B[i]) = Ext},(4, B).

For any triangulated category D and any morphism f: X — Y in D we will denote
by Cone(f) the isomorphism class of third terms Z of possible exact triangles

xLyszoxn)

Let us say that A has homological dimension d and write hd(A) < d if Ext’, (A, B) =

0 for any A,B € A and any ¢ > d. We say that A has finite homological dimension
(hd(A) < oo) if hd(A) < d for some d.

(2.1.2) Proposition. If hd(A) < 1, then each object of D®(A) is isomorphic to the
complex H*(A*) formed by the cohomology of A* and equipped with zero differential.

This proposition is interesting for us because it gives a very explicit description of
D®(A) as a category. Indeed, given any two complexes A®, B* with zero differential, we
have A* = P,z A~*[1] and similarly for B®, so by (2.1.1)

(2.1.3) Homps(4y(A®, B*) = P Homa(4, B) @ P Exth(4',B)

In other words, a morphism f : A®* — B*® is the same as a sequence of components
fHom € Homy(AY, BY) and fE** € Ext4(A*, B*~'). In the sequel (including proof of
(2.1.2) we will use this notation for the components of a morphism.

Proof of (2.1.2): The proposition for D?(A) seems to be well known. A simple argument
(pointed out to me by A. Bondal) is to show by induction that any bounded complex is
quasiisomorphic to the sum of its last cohomology object and its canonical truncation just
below this object. Here we include, for completeness sake, a different proof which does
nt use induction and so is applicable not just to D®(A) but also to other types of derived
categories (unbounded, periodic etc.).

Let (A®,d) be a complex, and let K¥ = ker(d,), I¥ = Im(d,_1). We have short exact
sequences

(2.1.4) 0 K¥ 3% A4v Ty v+l 0,
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(with 7, induced by d,) which fit together into an exact sequence of complexes
(2.1.5) 0— (K*,0) 5 (4%,d) 5 (I°[1],0) — 0.

This sequence gives rise to an exact triangle in D?(A), in particular, we get the boundary
map & : (I°[1],0) — (K*[1],0) such that (A*,d) ~ Cone(5)[—1]. We want to compare
(2.1.5) with the short exact sequence

(2.1.6) 0— (I°,0) 5 (K°,0) 5 (H*,0) > 0

defining the cohomology H®* = H*(A®). This sequence implies that H*® ~ Cone(¢). Note
that ¢ has only Hom-components ¢, = ¢Ho™ : I¥ < K¥. Note also that ¢, = §[—1]Ho™.
Indeed, the latter map is just the boundary homomorphsm in the long cohomology sequence
of (2.1.5), and this homomorphism is straightforwardly found to be ¢,. As to 6[—1]B%, it
is the class of the extension (2.1.4) and may well be non-zero. However, the situation is
saved by the following fact.

(2.1.7) Lemma. There exists an automorphism W of (K*,0) in the derived category
such that Wé[—1] = ¢.

The lemma implies our proposition by the axiom TR2 of triangulated categories (a
commutative square extends to a morphism of triangles).

Proof of the lemma: Since hd(A) =1 and ¢, is injective, the restriction map
¢r : ExtL (KY, K1) — Ext} (1, K¥71)

is surjective. Let w, € ExtY (K”, K¥~1) be any element mapping into 6[—1]2%*, Now define
W : (K*,0) — (K*,0) to have the components WHo™ = Id and WE** = —¢,,. Then W is
an isomorphism since it is given (with respect to the decomposition K* = @ K~*[:}) by a
triangular matrix with identities on the diagonal. One immediately sees that Wé[—1] = ¢,
since the Ext-terms in the composition will cancel. Lemma and Proposition 2.1.2 are
proved.

(2.1.8) Corollary. Ifhd(A) < 1, then each indecomposable object of D®(A) has the form
Ali] where ¢ € Z and A is an indecomposable object of A.

(2.2) The category D(-19(A) and tiltings. Let A be as before. Denote by DI=1.0(4)
the full subcategory in D®(A) formed by complexes situated in degrees —1,0 only. Given
two Abelian categories A and B, we will call an equivalence F' : D°(A4) — D% B) of
triangulated categories a tilting, if F(A) < DI=L(B). This condition is satisfied for
equivalences given by the so-called tilting modules [Ha).

From now on we assume that all the Abelian categories we consider have homological
dimension less or equal to 1 and satisfy all the finiteness conditions of §1. Thus, for any
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such category A we have the Hopf algebra B(A) and its Heisenberg double Heis(.A). For
two objects A, B € A denote

(2_2'1) [A,B] — |Hom(A, B)l+1/2 . |Ext1(A,B)|+1/2_

Because of two plus signs in the exponents, this quantity does not descend to the Grothendieck
group.
Let us associate to any object (complex with zero differential) A* = A~![1] & A° €
DI=1.0(A) the following element of Heis(.4):
(222) z(4% = —ZanKanZh ZELIELIT .
(A=1,A-1) - [AD A-1] (A1 A-1) . (A0, A1) - |Ext! (A0, A-1)|

Now we can formulate the main result of this section.

(2.3) Theorem. If F : D®(A) — D%B) is a tilting, then the correspondence [A) —
Z(F(A)) gives an injective homormorphism of algebras F, : R(A) — Heis(B).

Before starting the proof, we do some preliminary work in the next subsection.

(2.4) Counting exact triangles. If G is a finite group acting on a finite set X, we will
call the ratio |X|/|G| the orbifold number of elements of X modulo G. This number is
the same as 3 . yc /i 1/|Stab(z)], the sum being over G-orbits on X, and  being one
representative chosen for each orbit {z}.

Let A be as above. For any three objects A®, B®,C* of D*(A) we denote by gg:,B.
the orbifold number of exact triangles

(2.4.1) A= c* = B* 3 A

modulo Aut{A®) x Aut(B*).
If A®,B* C* are three bounded Z-graded objects of A (i.e., complexes with zero
differentials), we denote by 'ygf _pe the orbifold number of long exact sequences

2.4.3 S A O B Y gy
( )

modulo [; Aut(A*) x Aut(B*).

If A, B,C € A are three objects considered as Z-graded objects (complexes with zero
differential) concentrated in degree 0, then clearly v§p = g4 coincides with the number
introduced in (1.3). For general complexes with zero differential, g§. _pe differs from 5. Be-
We will need one particular case when these numbers can be easily compared.

(2.4.3) Proposition. Let A, B, M, N be any objects of A. Then

M N M N
gHION _ (MUIN 5t (N, M)|.

11



Proof: The number v, g%ﬁ counts exact sequences

(2.4.4) 0-M3BHAZNS0
and thus is equal to

[{¢: B — A] Ker(p) ~ M, Coker(p) = N}| - |Aut(M)] - |Aut(N)|

(2.4.5) |Aut(A)[- |Aut( )

The number g$. . counts exact triangles

(2.4.6) A% MU en S B an).

Of course, any such triangle gives rise to a sequence of the form (2.4.4}, but the correSpon-
dence is not bijective.

More precisely, let us fix ¢ : B — A. By (2.1.2), in order that a triangle (2.4.6) with the
boundary map ¢[1] exists, it is necessary and sufficient that Ker{y) ~ M, Coker(p) ~ N.
If ¢ satisfies this property, then the axiom TR2 of triangulated categories implies that a
triangle (2.4.6) can be constructed uniquely modulo an isomorphism of triangles identical
on A and B[1]. Such an isomorphism is the same as just an automorphism of M[1]& N.

So

1 : B — A| Ker M, Coker(p) ~ N}|- |Aut(M[l]®& N
(2.4.7) gﬂaﬁN”—"'{w - ]ziig( A)l - |Aut(B)] - IStab%')I| S

where Stab(p) C Aut(M[1] & N) is the subgroup of automorphisms which, together with
the identities of A and B[1], give an automorphism of the triangle (2.4.6). In fact, we claim
that Stab(y) = {Id}. To see this, note that Aut(M[1] & N} is the block matrix group

(2.4.8) (Aut(M) Ext'(N, M))

0 Aut(N)

Let ¢ = (¥ar, ¥nar, ¥n) be an element of Stab(ip), so ¥ar € Aut(M), ¥y € Ext' (N, M),
Yy € Aut(N). Then tpr = Id since u : M — B is an injection, and ¥y = Id since
v : A —» N is a surjection and since ¥ together with Ids,idp forms a morphism of
triangles. Further, the commutativity of the diagram

A 5 M[]®N

| L= (p )

A = M[l|eN

means that Yy ov = 0 in Ext'(4, M). But because hd(A) < 1, the surjection v: A - N
induces an injection Ext!(N, M) — Ext'(A4, M), so ¥pn = 0. This proves our claim that
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Stab(y) = {Id}. The proposition follows now by comparing (2.4.7) with (2.4.5) and taking
into account the factorization (2.4.8).

(2.5) Proof of Theorem 2.3. First of all let .A; C A be the full subcategory of A such
that F'(A) € B[i],7 = 0,1. Notice that for A; € A; we have, denoting B; = F(A;)[-i] € B

(2.5.1(1.) HOIHA(Al, Ao) = HOI'IlDb(B) (Bl[l], Bo) = 0,

(251b) Exti(Ag,Al) = HOI’I]Db(B)(Ao,Al[Q]) = EXf%(Ao,A]_) =0.

Let us denote by F, : R(A) — Heis(.A) the unique C-linear map taking [A] to Z(F(A)).
Its injectivity is clear from the behavior on basis vectors, so the main task is to prove that
F, is an algebra homomorphisin, i.e., that

(2.5.2) F.([A] * [A")) = F,([A]F.((A"]), VA", A" € A.

The proof will be done in two steps. The first is given in the next proposition.

(2.5.3) Proposition. The equality (2.5.2) holds in the case when A’ = A} € A;, A” =
Al € A; for some i, j € {0,1}.

The second step is to deduce the general case from these particular cases. Let us
first explain how this is done and then prove Proposition 2.5.3. Namely, by (2.1.8) each
indecomposable object of A lies in one of the A;. So each A € A can be uniquely written
as A= Ay @® A; with A; € A;. By (2.5.1) we have

(2.5.4) [A] = [Hom(A, A1)|7Y/%[A,] * [Ag).

This means that we have a kind of normal form for elements of R(A), i.e., the map
R(A1)®c¢ R(Ap) — R(A) given by the multiplication, is an isomorphism of vector spaces.
So the second step is accomplished by the next easy lemma.

(2.5.5) Lemma. Let R be a C-algebra and Ry, Ry C R be subalgebras such that the
multiplication induced an isomorphism of vector spaces R ®c Ry — R. Let § be another
algebra and ¢ : R — S be a C-linear map. Suppose that the equality ¢(a’a”) = ¢(a’)p(a”)
holds whenever o’ € R;,a"” € R; for some t,j. Then it holds for any a’,d”, i.e., ¢ is an
algebra homomorphism.

Proof of (2.5.5): 1t is enough, by linearity, to consider the case when o’ = afag,a” = afaj

with af,al € R;. Then, by our assumptions,

$la')p(a") = ¢(a1)B(ag)d(ay)$(ag)-

Let us write agal = 3, ool with ol € R;, using our assumption on R. Then, by our
assumptions on ¢,

P(ap)p(al) = Z daMp(ad),

13



and so

$(a’)p(a") = Zea(ala“’)es(aé”aa' =Y ¢(aiaPafaf) = d(alahalal) = ¢(a'a"),

as claimed.
We now prove Proposition 2.5.3 by considering all four possibilities for i, j.

Case (0,0): A" = Aj, A" = Aj € Ay. Let F(A') = B, F(A”) = B"”. Then F,(4") =
Z} and F.(A") = Z}.. Since F is an embedding of an admissible Abelian category, it
establishes a bijection between short exact sequences

0-A 5A3A4" =0
in A and short exact sequences
0—-B =-B—>B">50

in B (since both kinds of sequences are interpreted as exact triangles in the same triangu-
lated category D?(B)). Thus the equality (2.5.2) holds.

Case (1,1): A’ = A, A" = A] € A;. Let F(A") = B'[1], F(A") = B"[1]. If
0= A =5A4A5A"=0
is a short exact sequence in A, then A € A;, and denoting B = F(A)[-1], we have

94 an = 9B .. By our definition, F,([4")) = Z5 K5/ (B',B’)~!, and similarly for
F,([A"]). Therefore

- K:l77, K7} Z5 25, K5 5
FLADF(A") = BT E T
(BI’BI) . (BH)BII) (BI,BI) (Bll BH) (BI|BH)

_ 2p98p(B", B)Z5Kp'
(B, B)

Here we used the fact that B = B’ + B"” whenever g5, 5., # 0.

Case (1,0): A" = A} € Ay, A" = A € A,. Let F(A") = B'[1], F(A") = B". We have, by
definition of F,

F([A]*[A"]).

F.([AN)F.([A")) = Zg Kp! Zf. - (B', B)) 7Y,
while, by (2.5.4), (2.5.1) and by definition of Fi,

|Ext!(B”, B\Y2Z5. K5 Z .
(B',B') - |Hom(B", B')|}/2 - |[Ext'(B", B')|*/%’

F([A]+[A"]) = [Hom(A", A)[V2F([A'©A")) =

14



which is the same as the previous quantity once we recall that Hom(B”, B') = Ext™!(A", A’) =

0.
Case (0,1): A" = Aj € Ap, A" = A} € Ay. Let F(A') = B', F(A") = B"[1]. We want to
verify that

F(ADF(A") = F (A% [A) = Y gd an Fu(14]).

A€A

Note that the A entering the last sum, may not lie in any of the A4;. However, if A is
included into an exact sequence

00 A 54— A0,

then F(A), which necessarily has the form M[1] @ N for some M, N € B, is included into
an exact triangle
B’ — M[l]® N - B"[1] = B'[1],

and this correspondence is a bijection, i.e., g4, Ar = Jg[g?ﬁ; If such a triangle exists,

then in Ko(B) we have M — N = B"” — B'| as it follows from the corresponding 4-term
exact sequence. Now, by (2.2.2), we have

o o L5 2 Kpt
F(ADR(4) = ZREETE —

M[H@N (B” - M,M) . (N, B” -
= Z 7B’,B”[l] <BH,BH)

M,NeB
7M[1]®N (BH,M} ' (Nr B”)
B 5 0N (57, B - (M, M) - (N, W) - (BT

) - _
ZMKB”—MZIT’KB’I’ =

= ZuKit 75
M,N
Note that the quantity represented by the fraction in the last expression, can be written

as (BH’M _ N) B (BH,BH _ BI)
(B", B"Y- (M,M) - (N,M)  (B",B")-(M,M)-{N,M)’

Therefore, applying Proposition 2.4.3, we find:

RADE(AT) = S ey (BUNBTZB) g
* * MN’YBf,BH[l] (B",.B”) - (M, M) ] (N, M) MM SN
K1zt
= (5'18) 2 o33 TR

9B, B0 (a1 MY - (N, M) - |[Ext (N, M)|

= (A", A) Y i an Fu([A]) = B[4+ [A"]).
AcA

This finishes the proof of Theorem 2.3.
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§3. The lattice algebra and the full derived category.

(3.1) Definition of the lattice algebra. Let A be an Abelian category with hd(A4) <1
satisfying all the finiteness conditions of §1. Let B(A) O R(A) be its extended Ringel
algebra and Heis(A) be the Heisenberg double of B(A). As we saw in §2, Heis(A) is
naturally related to the subcategory DI=19)(4) in the derived category D?(.A). Hereby the
two copies of A inside DI=1.0)(A), given by complexes concentrated in degree 0 (resp. (—1)),
give rise to two copies of R(A) in the double. We now introduce an algebra L(.A), called the
lattice algebra of A by taking not just two but infinitely many copies of R(.A) (one for each
site of an infinite lattice) and by imposing Heisenberg double-like commutation relations
between algebras at adjacent sites. More precisely, L(A) is, by definition, generated by
symbols ZAm) with A € Ob(A)/Tso, m € Z and K4, a € Ko(A) which are subject to the
following relations:

(3.1.1) KoKp=Kerg, ZUEK, = (Ala) V" Ko 2™,
(3.1.2) z{Mz8Y = (B, A ¢5528",
C
(8.1.3)  Z{VZEY =N AMNB - M M- N) - 250 2 RS
M N
(3.1.4) 70 Z§) = (A|B)-VD" T (mmA ) g g0 s g

It is clear from these relations that the rule
(3.1.5) 52§ = 20, B(K.) = K31,

defines an automorphism ¥ : L{A) — L(A) which we call the shift (or suspension) auto-
morphism.

(3.2) Compatibility of the relations. We now want to show that the relations (3.1.1-
4) are compatible in the sense that any element can be brought to a unique normal form
in which the upper indices of the Zgn) are increasing. More precisely, for any sequence
(a;)icz of elements of a possibly non-commutative algebra S, almost all equal to 1, we
define their ordered product to be

—

1

where p, g are such thar ¢; =1 unless p <1 < gq.

16



(3.2.2) Proposition. The map of vector spaces

v:C[Ko(A)]® ® R(A), K,® ®[Am] = (H ZS{H))Ka;

m
meZ ™m
is an isomorphism.

Here and elsewhere in the paper all infinite tensor products of algebras are understood
in the restricted sense: almost all factors in any decomposable tensor are required to be 1.
We will refer to an element explicitly realized as the value on v on some tensor, as being
brought to the normal form.

Proof: The map v is clearly surjective. To see the injectivity, we need to establish the
following two lemmas.

(3.2.3? Lemma. For any A,B,C € A and m € Z the two possible ways of bringing
Z(t Z&M 781 to the normal form by using (3.1.3), lead to the same answer.

(3.2.4) Lemma. If|m—n| > 2,|m+1—n| > 2, then for any A, B, C € A the multiplicative
commutators with Z((;.") of the left and the right hand sides of (3.1.3) (the commutators
being prescribed by (3.1.4)), are the same.

Proof of Lemma 3.2.3: The first way of bringing our monomial to the normal form is:

(3.25) 252§D = N AN B - i, i - N2 2K 26 <
M,N

= yMN(B—M,M - N)-(C|B - M)—l(]v,é)—lzgzl)zém——l)zgvm-{»-l)f{__

1)m+1
B-M

= YAE 1he(C—P,P-Q)-(B~M,M-N)-(C|B-M)"}(N,C)"(C - P|N)x

(-1

xzg" Vz§M PRSI RS

while the other way is as follows:

(326) ZVZEVZEY = S AEG(C - PP 0) - 2502V 2 KS =
PU

=SS ABG(C - PP - O)AIPy 22 2 RE =
PU PU
5 B B F 17 A A plm=1,m) Hntl) (=)™ (-1)™F
= Y ABGA3N(C-P, P-U)(AIP)HT-Q,Q-N)Z{ 250 2TV KRS K G
PUQ,N
Let us start to compare these two expressions. Our first remark is that the y-quantities
coincide.
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(3.2.7) Lemma. For any A, B,C, P,Q,N € A we have the equality
P N
Y oK e = Zvﬁgvfu
M

Proof: Both sides of the proposed equality have the following conceptual meaning. They
are equal to the orbifold number (mnodulo Aut(A)x Aut(B)x Aut(C)) of systems consisting,
first, of a complex of length 2:

cABAA $p=0,
and, second, of an identification of its cohomology, i.e., of isomorphisms
P — Ker{y), Q — Ker(¢)/Im(y)), N — Coker(¢).

The object M in the left hand side is Im(%), while U in the right hand side is Im(¢).
Q.ED.

Notice further that whenever a summand in any of the two sums in (3.2.7) is non-zero,
we have the equalities

(3.2.8) G-P=B-U=M-0, U-G=A-N=B-II,

which are obtained by applying the fact that the Euler characteristic (in the Grothendieck
group) of a 4-term exact sequence is 0.

It follows from (3.2.8) that the “K™ factors in the end results of (3.2.5) and (3.2.6)
are the same. So it remains to compare the numerical factors given by the values of the
Euler form and its symmetrization. We first compare the angle brackets, by noticing that
in virtue of (3.2.8),

P
P—

(€ -
(C =

)

—~~—

U@, ) {U-Q.Q-N) _
(B-M,M - N) ({U-Q,M~N) B

9 !

P,
P,

(3.2.5) is

_(C-PIQ-D) (AP)"'  _ (C-P|Q-0) (1B~ ) (PIN) _
(CIB - ¥)-1(NIC)-1(C - PIV) (4[P)

(€~ PIQ-0)-(CIB - 1) (PIN - &) = (C - PIQ - U)- (C\B - i) - (P|# — B) =
)=1



Lemma 3.2.3 is proved.

Proof of Lemnma 3.2.4: The product of Zﬁlm'H) and Zgn) in any order gives, when moved

()

through Z ", the factor

(_1)7n—n+l

((n—=m)A — (n—m+1)B|C)

Thus it is enough to show that whenever y4 ¥ + 0, one has the following equality in
}Co(.A)Z

n—m)A-(n—-m+1)B-(n-m)N-(n-m+1)M~ (B~ M),

_1ym+1 .
where the last summand on the right comes from commuting K%_li? with Z((:."). But,

indeed, A — B =N — M, once v} # 0, and the desired equality follows.
This concludes the proof of Lemma 3.2.4 and Proposition 3.2.2.

(3.3) A basis in L(A4). It is natural to label monomials in the ZS) by (isomorphism
classes of) graded objects of A4, i.e., by isomorphism classes of objects of D®(.4) which we
represent as complexes with zero differential.

More precisely, to any graded object A* = € A~'[i] € D*(A) we associate the mono-
mial

' — Z(i_)K(—_l)i+1i(Ai Ai)i
- oy Al Al )
(3.3.1) zA)=1] A ,

1

where [A*, A*~1] was defined in (2.2.1). The results of the previous subsection give:

(3.3.2) Proposition. The elements Z(A®*)K,, for A* € Ob(D?(A))/Iso and o € Ko(A),
form a C-basis in L{A).

This, together with the homological interpretation of the quantities in Lemma (3.2.7),
suggests a deeper relation between L(A) and the derived category. More precisely, let
F : D*(A) — D%(B) be any equivalence of triangulated categories (we assume that both
A and B satisfy our conditions of finiteness and homological dimension). Then F' induces
an isomorphism of Grothendieck groups Fx : Ko(A) = Ko(B) in a standard way. Our aim
in this section is to prove the following result.

(3.4) Theorem. If F is an equivalence of derived categories as above, then the corre-
spondence

ZP - ¥P(Z(F(A)),A€ ApeZ, Ku— Kpeay o€ Ko(A),
defines an isomorphism of algebras F, : L(A) — L(B).

Proof: Our analysis is similar to that of (2.3). Namely, for : € Z let 4; C A be the full
subcategory of A such that F(A) € B[i]. Then, if A; € Ai, A; € A;, we have

(3.4.1a) Hom 4(A;, 4;) =0 for j—i¢{0,1},
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(3.4.1b) Exty(Ai, 4;) =0 for j—1i¢ {-1,0}.

Also, each A € A can be written uniquely as A = B A; with A; € A; and in the algebra
R(A) we have the equality

(342) [A] = ﬁ[A,] . IHOIII(A,', Ai_1)|_1/2.

This means that the ordered product map defines an isomorphism of C-vector spaces

Q) R(A;) — R(A),

where the tensor product on the left is the restricted one. Denote by R{A;[—j]) the
subalgebra in L(A) spanned by Zﬁi) with A € A;. Proposition 3.3.2 implies then the
following.

(3.4.3) Proposition. The map of vector spaces

ClKo(A)] ® Q) R(Al~1]) = L(A), Ko® R Z{ (ﬁﬁzm)

i,j€Z i
is an isomorphism.

The proof of Theorem 3.4 consists basically of checking the relations and it is conve-
nient to first prove the following particular case, generalizing Theorem 2.3.

(3.5) Proposition. For F' as above the rule [A] » Z(F(A)) defines an injective homo-
morphism of algebras F, : R(A) — L(B).

Proof: By an argument similarly to Lemma 2.5.5, it is enough to prove the following partial
statement.

(3.5.1) Proposition. Foranyi,j € Z and any A' € A_;, A” € A_;, one has the equality
F ([A]+[A"]) = FL(IA)F([A"]).

The minus sign is chosen for convenience, because A € A; means that F(A), as a
complex, is situated in degree (—17).
Proof of (3.5.1): We will work out several cases, similarly to the proof of Theorem 2.3.
Case 1:1=3. Let A/, A” € A_; and let F(A') = B[], F(A") = B"[-t]. If A is such
that gﬁ,A” # 0, then A € A_; and, denoting B = F(A), we have gﬁ,A” = gg,B,.. Thus

RAADE(A") = zOKGV T 20 kGO By (BY, By =

= z0 O K0

Bra B (B/ ) (B” BH) (BI|BH)1' —
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= S (B, BB 5. 2D KS VB, BY = Fu((A] + [A"),
BeB

where we used the equality B = B’ + B holding each time when g5, 5. # 0.
Case 2: j =1+ 1. Let F(A") = B'[—i], F(A") = B"[—i — 1]. We have

F*([AI])F,.([A”]) - Zg’)K};‘1)-'+1;‘Zg'-!-l)K(B—’rl)i+9(i+1) . (BI,ny' ) (BII’BH>i+1’
while
Fu([A] % [A"]) = Hom(A", &)Y F([A' @ A")) =

_ |Hom(A”, ANY2 (B B (B, B")i+1
" |Hom(B", B')|\/2 - |Ext (B", B')[1/2

which is exactly the same once we recall that

ZOR GV gD g GO G,

Ext!(B", B') = Hom(A4", A"), Hom(B",B') = Ext™}(A"”, A") = 0.
Case 3: j =i—1 and ¢ is even. Let F(A') = B'{—i], F(A") = B”"[-i+ 1]. Then
F((ADF.(4") = Z5) K5 25 K i (B, BY(B", By =
Z5 25K gy (B, BY(B", By~ (B|B") ™ =

— Z}(;/)Zg;l)K—iB'ﬁ-(i—l)B” (BI _ BII}BI _ B”)i(B”,B”)_l —

Bll _ M’M N, B (B/ _ BH’BI _ Bl/)i i1 i
ng\lg”< )< (B”)B”) Zl(ld KB"—IVIZ.%I)K-—iB'+(i—1)I§”'

M,N

We can transform the fraction in this expression in the same way as in the proof of Case
(0,1) of Proposition 2.5.3, getting:

N[-il@M[—i+1] Zg}_l)Kﬁlzz(:f)Ki(B"—B')(B" - B, B" - B')

(B"[—i+1),B'[~1]) > gpi_ingni_:
= B'[=i),B"[~i+1] (M, M) - (N, M) - |Ext}(N, M)

Notice that for any non-zero summand we have B” — B’ = M — N. Therefore the last
expression equals

(i-1) pri=1 ) =i/ A7 _ K7 N — AP i
. . _aeMl—it1) Zy VKATYZWKSHN — M, N — M)} (N|M)
B'"—i+11. B'[— N'[ z}eﬂ'dl[ i+1] M M ¢NON ) -
(B"[~i+1], B[~1]) ZNQB [—41,B"[—i+1] (M, M) - (N,M) - |Ext'(N, M)|

(i=1) pri=1 (i) pr—i i—1 i
(B _; i Ni-iom-i+1] Ly Ky ZN KM, M)'™ (N, N)* _
=({B"{-i+1].B [_“DMZNQB'[-i],B"[-i+11 (N, M] =
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= (A", A') Y ghanFu([4]) = F((A] + [4")).

AcA

Case 4: 7 =1 — 1 and 7 is odd. Keeping the conventions for A’, A”, B’, B” the same as
before, we have

FL([A)F.([A") = 2§ K5 257V K5t (B!, By (B", B")* ! =

= 75255 Kip -y (B', BY(B", B'Y = (B'|B") ™ =

= 2525V Kip 1y (B = B", B' = B")(B",B") ™} =
S (B" — M,M)-(N,B")-(B' = B",B' - B")’
M\N

(i-1) i
BH (B”)B”) ZM KM—B”ZEV)KT:B’—(I:—].)B” =

. ) Z(i—l)K Z{i)K- o (B — B" B — B
= (B 1], B Y ot e T BB = D )
MN HhET (M, M) (N,M) - |Ext (N, M)|

-] Z: GNeMI—i+1) Zy VKT YK (N - M, N - MY (NIM)

—_— H
= (B"[—i+1], B/[i],B"[~i+1] (M, M)[N, M|

(i=1) fr—it1 () i-1
Ni-iloM(-i+1) Zy Ky T Zy KM, M) Y(N, N)*
= (B"[~i+1], B~ Z‘B'[—q Bi—i+1] [N, M] !

and the argument is ﬁmshed as in Case 3.

Case 5: |i — j| > 2. Let F(A") = B'[~i], F(A") = B"[~j]. Then

(3.5.2) Hom(A’, A”) = Ext'(4’, A”) = Hom(A", A') = Ext' (4", 4") = 0.

Thus [A’']x[A”] = [A’@A”]. On the other hand, (3.5.2) implies that (A’|A”) = (B'|B") =0

and therefore
F ([A ]) ([AH]) Zgr)K( 1)t 44 Zg,)rK(B,;l)J+Ij(B’: Bi)i . (B”, BH)j —
= R[4 © A"]) = (4] < [4")).

Proposition 3.5 is proved.

(3.6) End of the proof of Theorem 3.4. Let us define a linear operator F, : L{A) —
L(B) by postulating its values on generators to be as stated in the theorem and extending
it to products of generators by using the normal form of Proposition 3.2.2. In other words,

we put )
((H Z(m)) ) = (I:IF*(ZLT,)))KF,C(Q).

It is clear that F, is bijective, so we need only to prove that it is an algebra homomorphism,
i.e., that it preserves the relations (3.1.1-4) in L(A). For (3.1.1) it is clear. The preservation
of (3.1.2) is the content of Proposition 3.5. The condition that F, preserves (3.1.3-4) can
be stated after some change of notation as follows:
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(3.6.1) Proposition. Let A’, A” € A. Then

F(Z5Y R (20) =
Z rYAJAN AH M M) ( A” M) F (Z(p))K( 1) F (ZJE\IIJ'*'I))‘

M,NcA F(A®)=F ()

(3.6.2) Proposition. For A’; A” € A and q < p— 2 we have
F(Z§)F.(Z5)) = (AIB)V" 0+ p (20 FL (2,

Before proceeding to prove these statements, let us note the following.

(3.6.3) Lemma. To establish Propositions 3.6.1-2 in full generality, it is enough to prove
them under the assumption that A’ € A_;, A" € A_; for some1,j.

Proof of the lemma: Indeed, the multiplication law in L(A) with respect to the basis
K,Z(A*®) consists of bringing the product of two basis vectors to the normal form using
(3.1.1-4). So our propositions, together with what has been already proved, just say that

(3.6.4) F(ZzONF. (29 = F(z8 2(0).

If this is known each time when A" € A_;, A” € A_;, then Proposition 3.4.3 together with
an obvious modification of Lemma 2.5.5 give that (3.6.4) is valid in general.

(3.7) Proof of Proposition 3.6.1 when A’ ¢ A_;, A” € A_;. Again, we have to
consider several cases.
Case 1: j = 1. Let F(A") = B'[-i], F(A") = B"[—i]. In this case F establishes a bijection
between exact sequences

0oM—oA"5A SN0

in A and exact sequences
0-C—->B"-B -D—-0

in B, so that for C, D corresponding to M, N we have v}%., = v§7,. From this the

statement follows rather directly, by comparing the normal form of F,(Z8*F,(Z%))
with the image under F, of the normal form of ZE_H)ZEI:?.

Case 2: j =i+ 1. Let F(A') = B[—i], F(A") = B"[—i —1]. Then
F.(Z20) = 25KV B, B, FU(Z) = 28V RGD T (B By,

Let F~!: D?(B) — D®(A) be an inverse equivalence, and (F~1),; L(8) — L(.A) be the
corresponding linear operators. The The argument needed is to handle our case is identical
to the reasoning (already made in the proof of Proposition 3.5) that (F~'), realizes R(B)

inside L{.A).
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Case 3: j =i —1. Let F(A") = B'[-i},F(A") = b]][~i + 1]. Then Hom(A", A") =
Ext™'(B",B') = 0, so v, = 0 always except the case M = A", N = A’, in which casc
the value is 1. This means that

232G = 2828,

and we have to verify that F, preserved this commutativity. We have:

F,‘ (Z‘g:'l'l)) - Z(Bl)’+i+1)K(B—11)3’+‘i<BI, Bl)i, F*(Z‘(A;:,) — Zg;i—i—l)KI(B-ul)P'H(i—l)(BH’ Bn’l)‘i—l’

and these expressions indeed commute because

Z&HH Z0=1) _ (g pry-1z{EHY gleiEy)

and because of the commutation relation of the K’s with the Z’s.

Case 4: |j—1| > 2. If F(A") = B'[—i], F(A") = B"[—j], then all the Hom and Ext between
A’ and A” in either order are 0, so (A’|A”) = (B/|B”) = 1, and the argument is the same
as in the previous case, only simpler because we do not have to care about (B'|B").

(3.8) Proof of Proposition 3.6.2 when A’ € A_;, A” € A_;. We consider several cases
as to the relative position of p+i and ¢+ 7. We denote F(A') = B'[-i], F(A") = B"[-j].

Case 1: |(p+1) — (g + )| > 2. In this case

F(29) = 28 RGYTTNBL BY, FU(29) = 28 KGY™ T B, By,
and by our assumption we have
FU(Z8)F.(230) = (B|B" F(Z{E)F(Z()),
where
A= ()PP (g j—p-1—1+i—j) = (-1)PP 9 (g-p-1),

and once we take into account that (B'|B”) = (A/|A”)(=D""7 we get the claimed state-
ment.

Case 2: p+1 = g+ j. This implies that | — j| > 2 and thus there is neither Hom nor Ext
between A’; A” in either direction, hence (4’|A”) = 0. So ZS),) commutes with Ziﬁ?. On
the other hand, the vanishing of Hom and Ext implies that

Zg)‘+i)zg:|-i) - Zl(ap,:i-i)Z(BP‘+i) — Zg}‘-gg”,

so we are done.
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Case3: (p+i)—{(g+3j) =1 Thusi—j =q—-p+1. Since |g—p| > 2, we will
have |t — j| > 2 always except the case ¢ —p = —2, when ¢ — j = —1. In any event,
Homg(B", B') = Ext’{?(A"”, A") = 0. On the other hand,

F(Z§) = 2GH KRGV B By, FUE) = 28K (B, B,

and bringing their product to the normal form involves quantities 4%, which vanish
unless B’ = N,B”" = M. So Zg,+’) and Zgj_'_l) commute, and therefore

F(ZE)F.(28) = (B'\B") I F.(25)F.(ZD),
which is exactly what we need, once we recall that 1 — 7 = ¢ — p+ 1 and thus
(B.rlBu)j—i - (AllArl)(—l)i_j(j—i) - (ArlAu)(-l)‘?‘P"'l(p-q-l) — (AI$AH)(-1)Q_?(Q—])+1).

Case 4: (p+1) — (¢ +j) = —1 is treated in an similar way. Theorem 3.4 is completely
proved.
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§4. Examples and discussion.

(4.1) Example: the “universal cover” of the quantum group. Let us illustrate the
construction of the lattice algebra on the classical example of representations of quivers
[R1-3]. Let G be a semisimple simply laced complex Lie algebra and I' be its Dynkin graph.
Thus vertices of I' are identified with the simple roots of G and for two such vertices i # j
the entry a;; of the Cartan matrix of G is minus the number of edges joining ¢ and j.
Suppose that an orientation of I' is chosen and let 4 = Requ(I‘) be the category of
representations of I' over the finite field F,. Recall that such a representation V' is a rule
which associates to any vertex 7 a finite-dimensional F,-vector space V; and to any edge
i = j a linear operator V, : V; = V;. As shown by Ringel (loc. cit.), the algebra B(A) is
in this case isomorphic to Uy(b™), a natural “Borel” subalgebra in Uy (G), the quantized
enveloping algebra of G. More precisely, U,(G) is generated by the symbols Ef:, K ;tl for
i € Vert(T') subject to the relations:

(4.1.1) EfK; =™ K;Ef, KK;=K;Ki,
1=ay 1 — qus
(412) S (1) mrrEpEn e =0 i
v=0 q
i (K; — K1)
4.1, Ef E7]=L—"—1
(4.1.3) (B 5'] g—1 ’

and B(A) is isomorphic to the subalgebra generated by the E;" and KE!. Explicitly, E;"
corresponds to the element [V (7)] where V() is the respesentation associating F, to the
ith vertex and 0 to all other vertices. Similarly, K; corresponds to the element Ky ;) of
B(A).

From this and the form of the comultiplication in Uy(b™) it is easy to deduce the
following fact.

(4.1.4) Proposition. For A = Repy (I') the algebra L(A) is generated by the symbols
Zi(m), m € Z,1 € Vert(I') and K,-il, i € Vert(I') subject only to the following relations:

(4.1.5) ZIVEK; = O Kz KK = KK,

l—ay;;
(4.1.6) Z (1 a:g) (Zi(m))uZJ(_m)(Zi(m))l—a.-j—u =0, i£j€ Vert(I‘),m €Z,
q

124
v=0
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(4.1.7) (zi™, Zm=] =
qg—1

3 )

(4.1.8) ZiM Z{M = UM v m ez 20 gy i ) > 2.

This shows that L(A) can be viewed as the “universal cover”, or the Z-periodic version
of Uy(G). Note that the right hand side of the relation (4.1.7) is just one summand of the
right hand side of the similar relation (4.1.3): informally, in L{A) the other summand is
still present but pertains to a different pair of generators. Let us also note the similarity
of L(A) with so-called “lattice Kac-Moody algebras” of [AFS].

(4.2) “Naive” lattice algebras. The compatibility of the relations in L(.A) is not quite
obvious, in particular because of the oscillator-type relations (3.1.4) between copies of
R(A) associated to non-adjacent lattice sites. So it may be useful to compare L(.A) with

the following general construction which produces algebras in which such compatibility
holds for free.

Let Z,,,m € Z, be Hopf algebras and ¢, : E,, X Z4+1 = C be Hopf pairings. Define
the natve lattice algebra N = N({E, ¢m }) to be generated by elements of all the algebras
= so that inside each Z,, the elements are multiplied according to the multiplication law
there while for elements of different algebras we impose the relations:

(4.2.1) Emirbm = (1A ® fy ®1d)(As,, () ® Az, (Ems1))s

§m£m’ = Em'fm: Im - 'm‘fl 2 2.

Thus if we put =, at the mth site of a lattice, then the adjacent algebras form a Heisenberg
double while non-adjacent algebras commute.

(4.2.3) Proposition. The ordered product map @,,cz Em —+ N is always an isomor-
phism.

Proof: We need only to verify that the two ways of bringing any element §m+1§mém—1 to
the normal form 5};’_155,1)5,(,&1 by using (4.2.1), give the same result. But this easily

follows from the coassociativity of Ag .

Applying this construction ot the case when for each m we take Z,, = B(A) and
ém = ¢ to be the Hopf pairing of (1.4), we get an algebra N(A) similar to L(A). It is
generated by symbols Yfgm),m €Z Ac Aaswelas K", me Z,ac Ko(A) with
relations which are easy to find from Proposition 1.5.3. In particular, for each m the K c(,’")
form a copy of C[Ky(A)], but adjacent copies do not commute. Because of this, N(A) is

not invariant under derived equivalence.

(4.3) The bracket-free algebra F'(A). Most of the trouble in dealing with the algebra
L(A) comes from manipulating products of brackets, i.e., of values of the Buler form. So
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1t is tempting to define another, simpler algebra, by just dropping all these brackets. More
precisely, let F'(A) be the algebra generated by synbols Xfim), A e Am € Z subject to
the following relations:

(43.1) XIXEY =3 oG XEY,

C
(4.3.2) x Gt x(m) Z F AN x () x (D)
(4.3.3) xMx = xWx™ im—n|>2

Note that these relations are compatible, as it follows from Lemma 3.2.7. In other words,
the elements

—
x(ay =[x, A= am[-m),amec 4
m m
form a basis in F'((4). The multiplication law in this basis can be described very nicely:

(4.3.4) X(ADX(B*) =) 15.5.X(C")

where 'yf{'.. pe s the orbifold number of long exact sequences (2.4.3). Also, the procedure
of bringing a maximally non-normal product to the normal form can be nicely described
in homological terms:

(n) y(n=1) 1 (0) _ Z s(4N 1 |Aut(HT(A*))]
(4-3-5) X.A_“X —n41- XAO -_ X(Hd(A )) lAut(ATﬂ)' 3
d:A® 5 A%(1) m
d2=0

where the sum is over all differentials making A® into a complex, and H7*(A®) is the mth
cohomology with respect to d.

Analogs of (4.3.4-5) can be obtained for the algebra L({A) as well, but they will be
encumbered by a lot of extra factors. However, these factors seem necessary to ensure the
invariance of the algebra under derived equivalence. In fact, the reason why L(.A) possesses
such invariance, is a subtle matching of two discrepancies. First is the discrepancy between
the number g§. 5. of exact triangles in DI=H9(A4) and the number ¥§. 5. of corresponding
long exact sequences, which (for a particular case) was determined in Proposition 2.4.3 to
be the factor [Ext!(N, M)|. The second is the discrepancy between the Hall multiplication
o in H(A) and its modification * obtained by multiplying with (B, A), see (1.3.4). When
one term of a short exact sequence in .4 becomes shifted by 1 under a derived equivalence
(so that we get an exact triangle in DI=10(A)), the difference between * and o will
correspond to the difference between g and «.
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