Low-dimensional Representations of

Aut(Fg)

Dragomir Z. Dokovié¢ and
Vladimir P. Platonov

University of Waterloo

Department of Pure Mathematics
Waterloo, Ontario, Canada N2L 3Gl
CANADA

MP1/95-116

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY






Low-dimensional Representations of Aut(F3)

Dragomir Z. Pokovi¢ * and Vladimir P. Platonov !

Max Planck Institute of Mathematics,
and
University of Waterloo,
Department of Pure Mathematics.

*Supported in part by the NSERC Grant A-5285.
'Supported in part by an NSERC grant.



1 Introduction

Let F; = (z,y) be the free group of rank 2 with generators z and y. We will denote the
automorphism group Aut(F;) by ®;. There is a well known open problem concerning the
linearity of this group : Is it true that ®, has a faithful linear representation? Magnus
and Tretkoff {9] have conjectured that there is no such representation over any field. In
the case of free groups of rank > 3, the automorphism group is not linear [6].

The above conjecture is closely connected with the old problem of linearity of the
braid groups (see [1, 4]). It was proved in [4] that if By, the braid group on four strings,
has a faithful representation of degree m, then ®, has a faithful representation of degree
2m. For a very recent account of representations of braid groups see [2].

We consider a more general problem of describing all representations of ®, of degree
n for small n. Very little is known about this problem : we know only the paper [3]
where it is proved that ®, has no faithful 3-dimensional representations over any field of
characteristic 0. '

We shall now recall some facts about the structure of ®,. For a € F; let f, be the
inner automorphism of F, defined by a, i.e., (2)f, = a™'za for all z € F;. (In order to
conform with the usage in (8], we write f, on the right hand side of the element to which
it is applied.) Since F; has trivial center, the homomorphism a — f, is injective, and we
use it to identify F; with its image in ®,.

It is well known [8, p. 169] that ®; is generated by the following three elements :

Pizmoy, y—z
Uiz zy, yru
a:sz'I, T TH

and has a presentation consisting of the following relations :

P*=¢*=(0P)* = (PoPU)* = (UPs)* =1, (Us)®=(aU)> (1)

Let p : ®3 = GL(V) be a linear representation, where V is an n-dimensional vector
space over K. We can construct new representations :

P ep(P), U= ep(U), o — esp(o), (2)

where ¢; = 1 and €,63¢5 = 1.

We say that a representation p’ of ®; is weakly equivalent to the representation p if p’
is equivalent to one of the representations (2) or their dual representations.
Our main result can be stated as follows.

Theorem. Consider indecomposable representations p of ®; of degree n < 4, over
an algebraically closed field K, such that p(F;) # 1. There are no such representations if
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n < 2. If p(®;) s infinite then, up to weak equivalence, there ezist for n = 3 only one
such representation, and for n = 4 two if char K # 2,3, one if char K = 3, and none if
char K = 2. All the representations mentioned above are reducible, and are listed in the
last section. If p(®2) is finite, p factorizes through the natural homomorphism ®; — I},
where I'; are some finite groups of small orders defined in Lemma 2. :

Corollary. ®; has no faithful representation of degree n < 4 over any field.

If p(F2) = 1, then p factorizes through the natural homomorphism &; — &;/F, ~
GL(2,Z). It is easy to show that there exist infinitely many nonequivalent idecomposable
4-dimensional representations of GL(2, Z).

From our theorem it follows that for n < 4 there are only finitely many nonequivalent
n-dimensional representations of &, such that p(F;) # 1, and in all these cases p(F:) is
a solvable group. On the other hand, already for n = 6 there exists a one-parameter
family of irreducible nonequivalent representations of ®; such that p(F;) contains a free
non-Abelian subgroup. Hence it is impossible to extend our theorem to dimensions n > 6.
This also explains why the proof of our theorem involves a lot.of computations.

We indicate briefly how to construct the family mentioned above. For that purpose we
make use of the braid group By and the well known 3-dimensional Biirau representation
B: depending on a parameter t. This can be modified to obtain a one-parameter family of
3-dimensional representations 8y of By/Z,, where Z, is the center of By. We recall that
there is an embedding By/Zy — ®; (see [4]) such that the image of B,/Z, in ¥, has
index 2. The representations 3; induce 6-dimensional representations of ®; having the
properties stated above. The claim about the existence of free non-Abelian subgroups
follows from [10].

For n > 6 it would be interesting to describe the character variety of n-dimensional rep-
resentations of ®;. For the case of braid group By, the character variety of 3-dimensional
representations was recently described by Formanek [5].

In the last section of our paper we describe also some new 4-dimensional representa-
tions of By. Two of them are at the same time indecomposable and reducible. It would
be interesting to find some applications of these representations.

By using our identification of F; with a subgroup of ®;, we have y = (¢U)? and
z = PyP. Furthermore we have :

UlzU =2y, Uy=yU, oy=yo, ozo=2z"" (3)

The elements U and y generate a free Abelian group of rank 2. We introduce the element
w = Po P, which satisfies :

W =1 ow=wo WUw=U"! wyw=y' (4)

The subgroup Dy = (P,0) of ®; is a dihedral group of order 8. We shall use some
elementary facts about the representations of D4 over fields of characteristic # 2.

V. P. Platonov is grateful to the Max Planck Institute of Mathematics (Bonn) for the
support and the hospitality during the preparation of this paper.
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2 Some general facts and lemmas

In this section we recall some general facts about ®; and its representations. We prove
two lemmas concerning some particular factor groups of ®;. The proof of the theorem
proper will begin in the next section.

In our proof we shall use the following simple fact : Any two primitive elements of
F, are conjugate in ®;. Recall that a € F; is called primitive if there exists b € F, such
that {a,b} is a free basis of F2. In order to prove the above fact, let a and b be primitive
elements of F;. Then it is clear that there exists ¢ € ®; such that (a)¢ = b. This implies
that ¢~'o f,0¢ = fi, and, by using our identification, we obtain ¢~' -a-¢$ = b. Thus our
claim is proved. .

In particular, the elements z and zy are conjugate in ®;. So zy = z~!zz for some
z € ®;. This shows that y is a commutator in ®;, and consequently F, is contained in
the commutator subgroup of @,.

Given a linear representation p : ®; — GL(V), for the sake of simplicity, we shall refer

to the eigenvalues, trace, determinant, ... of p(y) as the eigenvalues, trace, determinant,

.. of y, and similarly for other elements of ®;. Since F; is contained in the commutator
subgroup of ®3, we have

det(y) = 1. (5)

Now assume that p(F;) # 1, or equivalently, that p(y) # 1. Under this hypothesis we
claim that p(y) is not a scalar operator. Indeed, if p(y) were a scalar, then we would have
p(z) = p(y) and p(zy~!) = 1. This is impossible since y and zy~* are conjugate in B,
and p(y) # 1

Lemma 1. Denote by I the quotient group of ®; obtained by adding the new defining
relation [U,(Po)?] =1 to the presentation (1). Then the image of F; in T is trivial.

Proof. Since (Po)? = ow = wo and wUw = U™, we have owlUwaU™! = y~!. Hence,
in ' we have y = 1, and consequently also z = 1. [ |

In the next lemma and its proof we denote by Cy a cyclic group of order k, by @ the
quaternion group of order 8, by S, the symmetric group of degree k, and by E(2*) an
elementary Abelian group of order 2.

Lemma 2. By adding new relations to the presentation (1), we obtain some finite
quotient groups as follows :

(i) relation U? = 1, quotient group 'y ~ Cy X Sy ;

(1) relation [U,0] = 1, quotient group Ty ~ C3 X Sy ;

(iii) relations U* = (aU)* = 1, quotient group 'y ~ E(64) x S; ;

(iv) relations U* = [P, (¢U)*] = 1, quotient group I'y ~ (Q#Q) x S ;
where # denotes the central product. In particular 'y and I'; have order 48, I'; order 384,
and 'y order 768.



Proof. 1t is straightforward to check that there exist surjective homomorphisms f :
[, = {£1} x Sy and g: 3 — {£1} x S, given by :

f(U) = (-lv (13))1 f(P) = (11 (23))1 f(O') = (-L (12)(34));

and

g(U) =(-1,(1234)), g(P)=(1,(23)), g(o)=(-1,(13)(24)).
To prove (i} and (ii) it suffices to show that |I';| < 48 and |[';| < 48, respectively. Let T
be the common factor group of Iy and I'; obtained from the presentation of ®; by adding
the relations U? = 1 and oU = Uo. These relations are equivalent to U? = 1, (¢U)? =1,
and so we have I'; /(z,y) ~ [ ~ Ty /{z,y).

In I we have 1 = (UP¢g)® = UPUePoUPoc = UPUPUwoPo = (UP)’w. Thus
(UP)® =1, and since w = Po P, we have o € (U, P). It follows that |['| < 12.

In Ty we have z = U™%2U? = U laylU = U 'zUy = zy?, and so y* = 1. It follows
that |(z,y)| < 4, and so |T'y| < 48. Thus (i) is proved.

In I'; we have y = (oU)? = U? and y~'zy = U~2z0U? = U~ 'zUy = zy’. Hence
yzy = 2z, and by conjugating by P we obtain zyz = y. So z? = y~%. As zyz~! =y,
by conjugating the equality z* = y~? by z, we obtain z? =y, and so z* = 1. If 2 # 1
in [y, then (z,y) = @ is the quaternion group. If (Pg)? # 1, as T’ has no elements of
order 4, we have (Po)? = z?. It follows that (Po)? is central in ', and Lemma 1 gives a
contradiction. We conclude that z? = 1 in T';, and so |[';| < 48. Hence (ii) holds.

We now prove (iv). Let G = (Q#Q') x Si where @' is another copy of Q. We
have Q = {+£1, &1, +j, £k}, where 1,7, 7, k are the quaternionic units, and analogously
Q' = {£1,£¢, £j', £k'}. We now describe the action of Sy on Q#Q’. First of all, both
@ and Q' are normal in G. The normal 4-group, say V, of S acts trivially on @, while
the subgroup S; acts as follows :

(12): 1—=3, J—1;
(123): i1—~—j, ok

The alternating subgroup A4 acts trivially on @’ and the odd permutations interchange

i and j'. It is now straightforward to verify that there is a surjective homomorphism
h : T4y = G such that :

h(U) = (k5',(1432)), A(P)=(1,(12)), h(s)= (35", (13)(24)).

In order to prove (iv), it suffices to show that |['4| < 768. In ['y we have z = U~*zU* =
zy®, and so z* = y* = 1. Asy = (¢U)? P and y*® commute in [y, and so z? = 3?
and |(z,y)| < 8. Let A be the factor group I'y/(z,y). Clearly A ~ GL3(Z)/N, where
N is the normal closure in GL3(Z) of (i 2
. SL3(Z)/{£1} is the unique normal subgroup of level 4, and so it has index 24. For these

). The image of N in the modular group
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facts we refer the reader to {11, Chapter VIII]. Hence the index of N in SL3(Z) is at most
48, and in GL3(Z) at most 96. It follows that |{I'4y] < 96 -8 = 768 and (iv) is proved.

We have shown above that h is an isomorphism. Since I'3 = I'y/P where P is the
normal closure of y? = (¢U)* in Ty, and A(y)? = (—1,1), (iii) follows from (iv). n

This lemma was proved first by using GAP, the symbolic computation package {7].
Subsequently we have constructed the homomorphisms f, g, A and succeded to eliminate
the reliance on GAP in our proof.

3 Representations of degree 2 and 3

For n = 1 the assertion of the theorem is obvious. In this section we prove the assertion
of the theorem when n = 2 or 3 and char K # 2.

Let n = 2. Since p(F;) # 1, Lemma 1 implies that p(Po)? # 1, and so the restriction
of p to D, is faithful. Hence we may assume that

por=(3 9. wm= (1)

Since oy = yo and det(y) = 1, we have

= () o)

As z = PyP, we have p(zy) = 1. Since y and zy are conjugate, we obtain that A =1, a
contradiction.

Now let n = 3. By Lemma 1, V is a sum of two irreducible Dy-modules : a 2-
dimensional and a 1-dimensional. Up to weak equivalence, we may assume that

-1 00 010
p(a):(O 1 0), p(P)=(1 0 0). (6)

0 01 0 01
e

a 0
ply)=[0 b
0 d
From (wy)? = 1, we obtain that c(b—¢) =d(b—e)=0and b* =€ = cd +1.
If b #£e,thenc=d=0,b= —e = +£1. As det(y) = 1, we have a = —1. From
ply) = diag(—1,b,—d) and p(z) = p(PyP) = diag(b, —1,—b), we obtain that p(zy) =
diag(—b,—b,1). As p(zy) # 1, we must have b = 1. By using the fact that y and U

commute, we have
a 0 g
pUy=10 v 0}.
d 0 €

6

As oy = yo, we have
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The eqation Uzy = zU implies that @ = ¢ = 0. Since y = (oU)?, we must have
B8 = ~v? = 1. Hence p(U?) = 1, and so Lemma 2 applies.
~ If b= e, then det(y) = 1 implies that a = 1. Hence

1 0 0 b 0 ¢
p(y)=(o b ) p(z)=(o : o).
0 d b d 0 b

Since zy and y are conjugate, we have tr(zy) = tr(y) = 1+ 2b. This gives 4> = 1, and
so c¢d = 0. By replacing p by its dual (if necessary) we may assume that d = 0.
If b = —1, then Uy = yU implies that p(o) and p(U) commute, and Lemma 2 applies.
If b= 1, then ¢ # 0 and we may assume that ¢ = 1. Since Uy = yU, we have

1 0 0 a 0 p
p(y)=(0 1 1), p(U)=(7 6 6)-
0 0 1 0 0 ¢

The equation (wU)? = 1 implies that 8 = 0, § = a, and a* = 1. The equation Uzy = zU
implies that @ = 1 and 7 = —1. Since y = (¢U)?, we must have ¢ = 1/2. Thus we obtain

1 0 0
p(U)=(—1 1 1/2). | ()
0 0 1

The equations (6) and (7) define an indecomposable representation of ®,. Obviously this
representation is reducible.

4 Representations of degree 4

In this section we begin the proof of the theorem when n = 4 and char K # 2. This part
of the proof will be completed in the next three sections.
We claim that the eigenvalues of y can be written as

ATt (8)

for some A\, u € K*. If all eigenvalues of y are +1, this follows from (5). If y has an
eigenvalue A # %1, then wyw = y~! implies that A~! is also an eigenvalue of y. Since
A™Y #£ A, (5) implies that the remaining two eigenvalues of y can be written as u, p~!.
This proves our claim.
By replacing p with a weakly equivalent representation, if necessary, we may assume
that
tr(o) =0,2. (9)



We shall denote by V' resp. V'~ the eigenspace of o for eigenvalue +1 resp. —1. Since
w and y commute with o, these subspaces are invariant under w and y. We shall denote
by p(w)* and p(y)* the restrictions of p(w) and p(y) to V¥, respectively.

We conclude this. section with two lemmas.

Lemma 3. Let p be a 4-dimensional representation of ®; and assume that char K # 2.

If tr (o) = 2, then all eigenvalues of y are £1.

Proof. We shall assume that y has an eigenvalue A # %1 and obtain a contradiction.
As tr(o)=2,dimV* =3 and dimV~ =1. If e, € V~, €4 # 0, then e4 is an eigenvector
of y. Say y(e4) = pes. Since wyw = y~! and V™ is w-invariant, we conclude that u = £1.

It follows that p(y)™ has three distinct eigenvalues A,A™!, and u. Let e; and e; be
eigenvectors of p(y)* belonging to A and u, respectively. Set e; = w(e;). Then

y(ez) = yW(Cl) = wy-l(el) = A_lw(cl) —_ /\_162,
and so {e;, ea, es3,€4} is a basis of V. .

Since p(w)*p(y)Tp(w)* = p(y~1)*, the subspace Ke; is w-invariant. From PoP = w
we deduce that tr(w) = 2, and so

w(e.‘l) = €2, u(ei) = €y, w(ea) = €3, L"’(64) = €4 .

By identifying linear operators with their matrices with respect to this basis, we have

100 O 0100 A0 0 0
=010 0ol frooo) [0 xtoo
PRO9=1 o001 o P loo1o0("PYT 00 uo

000 —1 0001 00 0 u
As U and y commute,

a 0 0 O
0 0 0
plU) = 0 g u v
0 0 w 2
The equality (wU)? = 1 implies that af =1 and
w=2=1-vw, vu+z)=wlu+z)=0. (10)
The equality y = (¢U)? implies that a? = X and
W=2=p4+vw, vu-z)=wlu-2)=0. (11)

If £ =1, the above equations imply v = w = 0. Hence p(o) and p(U) commute, and
Lemma 2 implies that p(y)? = 1. This contradicts the assumption that A # +1.
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If 4 = —1, then (10) and (11) imply that « = z = 0 and vw = 1. By conjugating by
the diagonal matrix diag(1, 1,1, w), we may assume that v = w = 1. Thus

a 0 0 0
' 0 a! 0 0
”(U)=0301
00 10

Since PoP = w and P? = 1, we must have

o o o
i
o0 0

where
2cf =1, b(2a+e)=d(2a+e) =0, € =4a’=1-2bd.
By conjugating by diag{1,1, f, f), we may assume that ¢ = 1/2 and f = 1.

If b= d = 0, then the {1,4) entries in p(UPc))® = 1 give ae(a® — 1) = 0. As o # 1,
we have ae = 0. Since ¢* = 4a?, we have a = ¢ = 0. As p(P) is nonsingular, we have a
contradiction.

If b# 0 or d # 0, then e = —2a and by comparing the (4, 3) entries in p(UPe))? =1,
we obtain that a(a? — 1) = 0, and so a = 0. By comparing (4,4) entries, we obtain a
contradiction. [ |

Lemma 4. Let p be a 4-dimensional representation of ®; and assume that char K # 2.
Then the Jordan canonical form of p(y) contains no Jordan blocks of size 3.

Proof. Assume that p(y) has a Jordan block of size 3. Then tr (o) # 0, and so by (9)
we have tr (o) = 2. We can choose a basis of V such that

100 O A1 0O
010 O 0 A 10
000 ~1 000 p

As wyw = y~!, we have A? = 1. Since det(y) = 1, we have A = p.

Since wo = ow, p(w) = A® B with A of size 3 and B = (+1). Since wyw =y, we
have A # 1 and tr(w) = tr(¢) = 2 implies that B = (1). By using wyw = y~! again, we
conclude that p(w) is upper triangular and that it has the form

1 v uw(u—-A)/2 0
0 -1 A—u 0
PW)=1¢ 1 0
0 0 0 1



By conjugating with a suitable matrix which commutes with p(¢) and p(y), we may
assume that » = 0.
Since U and y commute, we have

a b ¢ d a b c d
0 a b 0 0 —a da—-5 0
PUY=1 g 0 a0 | PO=|g o 4 o
00 e f 0 0 e f

From (wU)? = 1 we obtain that d(a + f) = e(a + f) = 0, and from y = (¢U)? that
d(a— f) = ela— f) = 0. Since a+ f or a — f is not zero, it follows that d = e = 0. Hence
p(U) and p(¢) commute and, by Lemma 2, p(®,) is finite. As p(y) has infinite order, we
have a contradiction. n

We now divide the proof into three cases, which will be treated separately in the next
three sections.

5 Casel: \#p,p’?

Up to weak equivalence, we may assume that tr (o) =0, 2.

Subcase 1: tr(o) = 0. Both V* and V~ have dimension 2. If det p(y)* = 1, then p(s)
is a central element of the centralizer of p(y) in GL(V), and in particular it commutes
with p(U). By Lemma 2, p factors through the homomorphism &; — TI';.

Now let det p(y)* # 1. Then the eigenvalues of p(y)* are, say, A and u, and those of
p(y)~ are A7! and p~'. Since w leaves invariant V* and V= and inverts y, it follows that
A = —p = %1 and that p(y) and p(w) commute. By choosing a suitable basis, we may
assume that

10 0 0O r 000
01 0 0 0010
P=1g0 -1 of PP)=lo 10 0
00 0 -1 0 00 s
where r, 8 = +1. Then p(w) and p(y) have the form
1 00 O a 0 00
0 -1 0 0 0 —a 0 0
=149 01 ol P”®=0o0 50 |
0 00 -1 00 0 -b
where a,b = 1. As p(z) # p(y), we have b = a. Hence p(wy) = £1. It follows that

4
p(U) = p(wyU(wy)™!) = p(U)~!. Hence p factors through the homomorphism &, — T';
of Lemma 2.
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Subcase 2 : tr(¢) = 2. Now V* has dimension 3 and V~ dimension 1. By Lemma
3, all eigenvalues of y are +1, and so A = —p = £1.

Assume first that p(y) is diagonalizable. Then p(y?) = 1, and p(e), p(w), and p(y)
commute. We can diagonalize them simultaneously. By Lemma 1, p(o) # p(w). Hence
we may assume that

100 0 10 00 e 0 0 0
o190 0 o1 00 10 & 0 0
P)=1oo01 of P00 10| PW=]0 0 &0 |

000 -1 00 01 0 0 0 e
where ¢; = %1, det(y) = 1, and tr(y) =0.
The equations P? = 1 and PoP = w imply that
. ab 00
c d 00
PPY=110 0 0 1/e
0 0 e 0
We may assume that e = 1. Since z = PyP and p(zy) # 1, we must have ¢; = —¢; and
€4 = —€3.
If €5 = —¢,, then
v 0 0 v
0 0
W=|o 110
w 0 0 2

The equation Uzy = zU implies that i = 0 (and so gh # 0), v = w = 0, and ac = bc =
bd = 0. Consequently b = ¢ = 0. This is impossible since p is indecomposable.
If 3 = €;, then

u 0 v 0

0 0
p(U) = wgzg

0 A 0 =

The equation Uzy = zU now implies that z = 0 (and so vw # 0) and ad = bc = 0. This
is impossible since ad — bc = %1.

Hence p(y) is not diagonalizable. By choosing a suitable basis {e;, €3, €3, €4} of V
and by replacing A with — A, if necessary, we may assume that

A

plo) =

O -=OO
-0 O o
o> o O
e OO O

1
A
0 —
0

OO O =
o O = O

0
» Py =1
0

11



Since wyw = y~!, the subspaces Ke,, Ke, + Kes, and Kes are w-invariant. As
tr (w) = tr(o) =2, p(w) must have the form :

-1 s 00 1 s 00
0100 0 -1 0 0
o010 " o o010
0001 0 00 1

By replacing p with its dual representation, we may assume that p(w) is given by the first
of these two matrices. By replacing e; with e; + (8/2)e;, we may assume that s = 0.
As U and y commute, we have

p(U) =

coo
cop
R~ =
oo

From (wU)? = 1, we obtain the equations a? = 1, a®> = d* = 1 — be, and from y = (oU)?
the equations A = 1, 8 = a/2, a? = d&* = bc — 1. It follows that ¢ = d = 0 and bc = 1.
By conjugating by diag(1, 1,1, c), we may assume that b = ¢ = 1. Hence

a af2 0 0

0 a 00
=19 o o1 | @=L

0 0 10

Since PeP = w and P? = 1, P must map the eigenspaces of ¢ to the corresponding
eigenspaces of w. It follows that

O >y O
O e O

0
oP=|
1/

- I e B«

where : Lo
(I): f) =(0 1)‘

The equation (UPg)® = 1 implies that f = a, 1 = —a, ¢ = 0, and h = a/2e. By
conjugating by diag(1,1, e, ¢), we may assume that e = 1. We compute p(z) and find that

-1 0 0 0
0 1 0 0
PE=1 g 1 -1 0
0 a 0 1
We obtain indeed an indecomposable representation of ®;. The choices @ = 1 and a = —1

give weakly equivalent representations.
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6 Case2: \=u#=+l

By Lemma 3, tr(o) = 0, and so both V* and V- have dimension 2. Choose e € V¥,
e; # 0, such that y(e;) = Ae;. Then the vector e; = w(ey) isin V* and y(e;) = A7le;. We
can choose similarly nonzero vectors es,eq in V™~ such that y(es) = Aes, y(eq) = A7 ley,
and w(e3) = e4. With respect to the basis {e1, ez, 3, €4} of V| we have

10 0 0 0100 A 0 0 0
01 0 O 1000 0 At 0 o0
00 0 -1 0010 0 0 0 X1

Since PoP = w and P? = 1, P must map the eigenspaces of o to the corresponding
eigenspaces of w. It follows that p(P) must have the form :

a ¢ a ¥

c —-—a -
p(P) = t; d p }
b d -8 —é

From P? =1 it follows that a = ¢ = +1/2, 8 = -6 = £1/2, a = v, b = —d, and 4ab = 1.
By replacing p with a weakly equivalent representation, we may assume that a = 1/2. By
conjugating with the diagonal matrix diag(1,1,2b, 2b), we may assume that b = a = 1/2.
Hence

1 1 1 1
1{1 1 -1 -1
p(P) = :9: 1 -1 e — , €= +1.
1 -1 —e¢ €
Since U and y commute, we have

v 0 v 0
0 « 0
pU) = w 0 z 0
0 w 0 ¥

From y = (¢U)? we obtain the equations:
vu—z)=w(lu—2)=0, u' =2"=vw+A

and from (wU)? =1 the equality



Assume first that » # z. Then v = w = 0, and consequently v = w’ = 0. Furthermore,
we have v’ = 1/u, 2z = —u, and 2’ = —1/u. By using £ = PyP and the equation
Uzy = zU, we obtain u? = 1. Hence A = 1, which is a contradiction.

Hence, we must have u = z, and so v’ = 2’. It follows that

u 0 v 0
0 A 0 —v/A

p(U) = w u(/) u T)/ , A=1u? —vw.
0 —w/A 0 wu/A

If ¢ = 1, by equating the (3,1)-entries of the matrices p(Uzy) and p(zU), we obtain the
equation A?(u+w) = u—w. Similarly, the (4,2)-entries give the equation A?*(u—w) = u+w.
Hence A* = 1. As A # %1, we must have A? = —1. It follows that v = 0 and w = —A/v.
By equating the (1,1)-entries of the above mentioned matrices, we obtain that v = 0,
which is impossible.

So we have ¢ = —1. The equation p(Uzy) = p(zU) now implies that A? = —1 and
w = —v. The relation (UPo)® = 1 implies that ‘

dul(u —v) = ABu—v)+ A -1,

4u?(u + v) = A(3u + v).

By taking into account that u?+v? = A, we obtain only one solution : u = v = —(1+1)/2.
In this case we indeed obtain an indecomposable representation of &;. Since p(U)* =1
and p(y?) = -1, p factorizes through the homomorphism &, — I'y of Lemma 2.

7 Case3: A=p==l1

Recall that D4 has (up to equivalence) only one 2-dimensional irreducible module and four
1-dimensional ones. Assume that V, as a D4-module, is a direct sum of two irreducible
2-dimensional modules. On an irreducible 2-dimensional Dg-module the element (Po)?
acts as minus the identity operator and so p( Po)? lies in the center of GL(V). By Lemma
1, p(F2) = 1 and we have a contradiction. The same argument applies when V is a sum
of four 1-dimensional D -modules. Thus we may assume that V is a direct sum of one
2-dimensional irreducible D4-module and two 1-dimensional modules.

Subcase 1 : tr(o) = 0. Up to weak equivalence, we may assume that (with respect
to a suitable basis of V)

-

—

"

e’

Il
co o
W
cor~o
-0 oo

1
0
P(a) = 0
0
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where » = £1. As w = Po P and yo = oy, we have

1 00 0 o B0 0
0 -1 0 O 8 0 0
PW=[o o1 ol P)= g 0 a g
0 00 -1 0 0 ~ §

Since all eigenvalues of y are equal A = +1, we have @ + § = 2) and ad — B~ = 1. Since
wyw = y~1, it follows that @ = § = X and By = 0. Similarily o/ = §' = A and 8’ = 0.

Up to weak equivalence, we have the following four possibilities :

() B # 0,7 =f=7=0,

(i) /#0,v=B=0,7#0;

(i) 8'#0,8#0,v' =7=0;

(iv) '="=7=0,0#0.

In fact, by using some elementary considerations, one can show that (i) and (iv) are
weakly equivalent. Furthermore, by conjugating by a suitable diagonal matrix which
commutes with p(P), we may assume that the nonzero parameters among 3, 3, and v
are all equal to 1. We now consider each of the first three possibilities separately.

(1) We have

A1 00 a b c d
0 A 0 O 00 a 00
P(y)— 0 0 A 0]’ p(U)— 0 e g h
0 0 0 A 0 f i j

The relation Uzy = zU implies that A = 1, h = 0, ¢ = a, and e = ra. The relation
y = (oU)? implies that a®* = j2 =1, di = 0, (a+7)t =0, and (a — 7) f = air. The relation
(PoPU)? = 1 implies that ¢ = 0, (a — j)t = 0, 2ab = 1, and (a + j)f = air. It follows
that 2 = f = 0. Finally the relation (UPo)® = 1 implies that j = —1, a = r, and d = 0.
Since d=h = f =1 =0, p is decomposable, contrary to the hypothesis.

(i) We have

A1 00 a b e f
lo a0 0 {0 a f O
0 0 1 A h 0 d ¢

From p(Uzy) = p(zU), by equating (4,4) and (2, 3) entries, we find that ¢(1 — ) =0
and f(1—A) = 0. Ascand f cannot both be 0, we infer that A = 1. From (3, 2) entries we
obtain g = 0. The entries (1, 2), (1,3), (4,2), and (4, 3) provide the equations a + f = rh,
c—a=rf a=c+h,and f = ¢+ rh, respectively. These equations imply that ¢ = —a,
h = 2a, f = —2ar, and a(4r — 1) = 0. As r = £1, we obtain a = 0, which is impossible
since p(U) is invertible.

15



(iii) We have

ply) = , p(U) =

[
O O D
o O
Q &0 A

=T g e B e ]
M= OO
S o OR
o Sw R oo

From Uzy = zU we obtain a(l — A) = e and e(1 — A) = 0. As a and e are not both
zero, we must have A = 1. Taking this into account, the same relation implies that ¢ = 0,
g=a, f—a,r=~1,and h = a — b~ c. The relation y = (¢U)? implies that a? = 1 and
a = 2b+c. From (PoPU)? = 1 we obtain that ¢ = 0, and so A = a—b. From (UPs)® = 1
we find that a = —1, b= —1/2, and 3d = 1/4. In particular char K # 3. Thus p(U) is
uniquely determined and all the defining relations are satisfied. One can easily check that
this representation of ®, is indeed indecomposable.
Subcase 2 : tr (o) = 2. By choosing a suitable basis of V', we have

-1 000 0100
01060 1 000
p(a’): 0010 1P(P)_ 0010 1
0 001 000 r
1 0 0O A0 00O
() = 0 -1 0O ()_ 0 a b c
PO=10 o010 |"PY 0o de f°
0 001 0 g h 1

where a, 8, A = £1.

By Lemma 4, p(y) has no Jordan blocks of size 3, and so (p(y) — A)* = 0. From this
equality and p(wy)? = 1 we obtain that p(wyw) = 2A—p(y). Hence we havea = e =i =}
and f = h = 0. Now the equation (p(y) — A)? = 0 implies that bd = ¢d = bg = ¢g = 0.
Hence p(y) has one of the forms : :

A0 OO A0 0O
0 A b ¢ 0 A0 0
00 A 0)° 0 d X0
0 0 0 A 0 g 0 A

By replacing p by its dual, we may assume that p(y) has the form given by the first of
these two matrices. At least one of b and ¢ is not 0. By conjugating by a suitable diagonal
matrix, which commutes with p(P), we may assume that b and c are either 0 or 1. Hence
there are three possibilities to consider :

iYb=1,¢=0; '

(i)db=0,¢c=1;

16



() b=c=1.

Furthermore, if 7 = 1 in p(P) then, without any loss of generality, it suffices to consider
the possibility (i) only. This can be achieved by conjugation by a matrix which commutes
with p(o) and p(P). We analyze each of these possibilities separately.

(1) Since y and U commute, we have

A0 0 O a 0 b ¢

o x 1 0 _|ld e f g
p(y)— 0 0 /\ 0 ) p(U)— 0 0 e 0 ]

0 0 0 X h O i j

where we are now reusing the letters a-j in a different role.

From Uzy = zU we obtain first ¢(1 — A) =0, and so A = 1, and then e = a, d = —a,
and h = 0. From y = (ocU)? we find that a®> = j2 = 1, ¢(a —j) = 0, i(a + j) = 0,
gla+j)+ac=0,and ab+2af+gi = 1. From (PoPU)? = 1 we obtain from (1,4) entries
that c(a + j) = 0. Since a # 0, this equation when combined with c(a — j) = 0 gives
c = 0. From (2,4) entries we obtain g(a — j) = 0. When combined with g(a + j) = 0,
we conclude that ¢ = 0. From (1,3) entries we obtain that b = 0. One of the previous
equations now gives f = 1/2a. Next we exploit the relation (UPg)® = 1. From (1,1)
entries we obtain a®> = 1. Since a? = 1, it follows that a = 1. From (4,3) entries we
obtain i(2r + 7) = 0. As j2 =r? =1, it follows that i = 0. Sincec=g=h=1i=0, p is
decomposable, and so we have a contradiction.

(i) We have r = —1 and

A

0 0 0 a 0 b ¢

10 A 01 _|d e f g
P(y) - 0 0 A 0 ) ,D(U) - h 0 ‘l: j ]

0 0 0 A 0 0 0 e

From Uzy = zU we obtain first from (2,2) entries the equation e(1 — A) = 0, and so
A = 1. Next from (3,4) entries we obtain h = 0, from (1,4) entries e = 4, and from (2, 4)
entries d = a. From (¢U)?* = (Uc)? by comparing (1,3) entries we obtain b(a — i) = 0.
Next we use the relation (PoPU)? = 1. From diagonal entries we find that a? =2 = 1.
From (1, 3) entries we obtain b(a + 1) = 0. By combining this equation with b(a —i) =0,
we conclude that b = 0. From (1, 4) entries we find that ¢ = 0. Finally we use the relation
(UPg)® = 1. From diagonal entries we find that ¢® = =1 and i* = 1. Asa? =i? =1, we
have a = —1 and 1+ = 1. Now from (1,4) entries we find that f = 0, and from (3,4) entries
7=0. Since b= f =h =3 =0, p is decomposable and so we have a contradiction.

(1) We have r = —1 and

A.0 00 a 0 b c
10 A1 1 | d e f
0 0 0 A —h 0 e—1 e—j
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From Uzy = zU we obtain first from (2,2) entries the equation e(1 — A) = 0, and so
A = 1. Now the (2,3) entries give e = —d, while (2,4) entries give e = d. We infer that
e = 0, which is a contradiction.

8 Characteristic 2 case

Let n = 2 and assume only that p is nontrivial. Since (wU)? = 1 and w? = 1, it follows that

det(U) = 1. Let X and A~! be the eigenvalues of U. Since (Po)* =1, p(Po) is unipotent.

As n = 2, we have p(Po)? = 1. Hence p(P) and p(c) commute, and so p(o) = p(w).
Assume first that A # 1. Since wUw = U™!, we can choose a basis of V' such that

)= (5 %), wo)=st) = 3)-

Since P? = 1, and p(P) commutes with p(c), we must have

p(P)=(a-T-1 ajz-l)

for some a € K. By examining the equation p(UPc)® = 1, one can show that a = 0 and
M+ X+4+1=0,ie, Ais a primitive cube root of 1. Hence we have an indecomposable
representations of &3 such that p(®;) ~ S;.

Assume now that A = 1. If p(U) = 1, then also p(P) = p(o) and p(®;) ~ C;. Thus

we may assume that
(@) 11
p = 0 1 .

Now let p(U) # 1. If p(o) # 1, we can choose a basis of V such that

w=(51) wn=(535) sr=(g5 1) b0

because both p(P) and p(U) commute with p(s). From (UPc)® = 1 we conclude that
a+b = 1. Hence we obtain a 1-parameter family of non-equivalent indecomposable repre-
sentation of ®; with p(®;) ~ C; x C;. If p(a) = 1, then p(UP)® = 1 implies that either,
say,

p(U)=p(P)=(3 )

or p(UP) has order 3, in which case we may assume that

=% 3) an=(14)
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where A is a primitive cube root of 1. Hence we obtain another indecomposable represen-
tation of @, with p(®,) ~ S,, which is not equivalent to the previous one.

In all of the representaiton mentioned above we have p(y) = p(cU)? = 1, and so
p(F3) = 1. In particular the assertion of the theorem holds if n = 2.

Now let n = 3 and assume that p is indecomposable and p(F2) # 1. Since wlw = U™,
the eigenvalues of U are A, A~} and 1.

If p(y) is diagonalizable, then p(y) # 1 implies that y has three distinct eigenvalues.
As yo = oy, p(o) is diagonalizable. Since p(¢) is also unipotent, we obtain p(¢) = 1, a
contradiction. :

Hence p(y) is not diagonalizable, and so must be unipotent. Since yU = Uy, it follows
that A = 1, i.e., p(U) is unipotent. Consequently p(U)* = 1. Since y = (¢U)? and p(y)
is unipotent, we conclude that p(y)? = 1. Hence p factorizes through the homomorphism
@2 — [s.

Finally let n = 4. We assume, as in the statement of the theorem, that p is indecom-
posable and that p(F;) # 1. The eigenvalues of y have the form A, A=, u, u~*. We divide
the proof into three subcases.

Subcase 1 : A = u = 1. Since p(y) is unipotent and y = (ocU)?, p(oU) is also
unipotent. As n = 4, we conclude that p(y)? = 1. Since z,y, and zy are conjugate in ®;,
we have also p(z)? = p(zy)? = 1. As p(F3) # 1, we conclude that p(F;) is a four-group.
The subspace W C V consisting of all vectors v such that p(z)(v) = p(y)}(v) = v has
dimension 1,2, or 3. Since F; is normal in ®;, W is $;-invariant.

We choose a basis of W and extend it to a basis of V. With respect to such a basis we

have
! %
P = ( % P” )

where p' (resp. p”) is the representation of ®; on W (resp. V/W) induced by p.
If p(U) is unipotent, then p(U*) = 1 and so p factorizes through the homomorphism
®, — I's. From now, untill the end of this subcase, we shall assume that p(U) is not

unipotent.
If U has an eigenvalue 1, then we'may assume that
1 a0 0
010 0
00 0 g1

with respect to some basis {ey, €3, €3,e4}. Since yU = Uy, p(y)? = 1, and p(y) # 1, we
have

ply) = , Y#0.

[ I e T S S

00
00
10
01

O OO -
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Hence B - aUo(e3) = (oU)*(e3) = y(ea), t.e., Ua(es) = B 'o(e3). This implies that
o(e3) = aeq for some a € K*. As 0 = 1 and oy = yo, we infer that

1460 0
010 0
p(CT) = 0 0 0 a-—l
0 0a O

An easy computation shows that p(cU)? = 1. Asy = (¢U)? and p(y) # 1, we have a
contradiction.

Now assume that U has no eigenvalue 1. This implies that dim(W) = 2 and that
p'(®2) and p”(®;) are both isomorphic to S3. For these representations we have p'(Po) =
p"(Po) =1, and consequently p(Po)? = 1. Now Lemma 1 gives a contradiction.

Subcase 2 : {\ A1} # {p,u71}. If A, # 1, then yo = oy and ¢? = 1 imply that
p(o) = 1, a contradiction. Now let, say, 4 = 1. If p(y) is not diagonalizable, its centralizer
in GL(V) is Abelian. Hence p(¢) and p(U) commute. By Lemma 2, p factorizes through
the homomorphism ®; — ;. We now assume that p(y) is diagonalizable. Since o and y
commute, o leaves invariant the eigenspaces of y. Consequently we can choose a basis of
V such that -

A 0 00 1 000

|0 Xt 00 @=| 0100

PV=10 o 10" [0o011

0 0 01 0001

Since wyw = y~! and w = Po P, we may also assume that
0100
1000
P)=|9 010
0 0 01
Since Uy = yU, we have

a 0 00
0 00
p(U) = Ogab
0 0 ¢ d

From y = (¢U)? we obtain
a®=X f=al, ¢c=a+d, ad+bc=1,
and from (wU)? = 1 we obtain that a-+d = 0. Consequently ¢ = 0, d = a = 1. Thus p(o)

and p(U) commute and we can apply Lemma 2.
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Subcase 3 : A = ; # 1. Both eigenspaces of y have the same dimension. If p(y)
is not diagonalizable, then the centralizer of p(y) in GL(V) is Abelian and we can use
Lemma 2 once again. Now let p(y) be diagonalizable. Then both eigenspaces of y have
dimension 2, and w interchanges these eigenspaces. It follows that 1+ w has rank 2. Since
w = PagP, 1+ o also has rank 2. As y and ¢ commute, we can choose a basis of V such
that

A0 0 0 1100
0 A 0 0 0100
00 0 A 0 001

Since w inverts y and commutes with o, we must have

0 0 & ¥
/

p(w) = S, 3, g % , a'd=»¥bd, ad=1.
0 ¢ 0 0

By conjugating p(w) by a suitable matrix which commutes with p(y) and p(o), we may
assume that ' = ¢ =land ¥ =d =0, i.e.,

0010

0 001

0100

Since Uy = yU, we have

w v 0 0
zZ w 0 0
POY=1| 3 0 4 v
0 0 2 w

From y = (6U)? we obtain the equations
W42+ z2(v+w) =w+z(v+w) = A7,

and s0 z = u+ w and
A7 = uv + vw + wu.

The equation (wU)? = 1 gives



and so

Aw Av 0 0
Alu + Au 0 0
p(oy = | M Fw) w00 (14)
0 0 v4+w w
The matrix
1000
0010
Fo=11100
0 011
satisfies the equation p(w)}Py; = Pyp(o). Since p( P) satisfies the same equation, the matrix
P;!p(P) commutes with . Consequently p(P) has the form
a b ¢ d a b c d
_ 00 a 0 ¢c|_|a B v ¢
p(P)=Fo: a B v 6| | a a+db ¢ c+d
0 a 0 ~ a a+f v v+46
Since P? = 1, we have the equations:
alat+c)+alb+d)=1, ala+c)=1, (15)
ala+B+d)=ar, alatr) =0, (16)
dla+7)+v(c+8)+8(B+68) =0, Sat+y)+7v* =1 (17

The second equations of (15),(16), and (17) imply that & = 4 = 1. The second equation
of (15) and the first equations of (16) and (17) give ¢ = 8 = § = 1 + a. From the first
equation in (15) we now obtain that d =1+ a + b. Thus

b l+a 1+a+b

a
|1 1l4a 1 l1+a
PPY=1 o a4b 14a b
1 a 1 a
By conjugating by the matrix
1 a 00
0100
0 01 a
0001
we may assume that
0 ¢t 1 1+t
111 1
101 0



where t = a + b+ a?. Although p(U) will change under this conjugation, it will still have
the form (14). By using this expression for p(P), we find that

AV 4rt ot rt rt
T A+t 0 Tt
plz) = rt . Al 4t ot
0 Tt T A4t
where
r=XA+A"1

By equating the diagonal entries of the matrices p(zU) and p(Uzy), we obtain the equa-

tions
(v+wt)® +uth + (v+w+wt)h+w+ut =0,

(u+wt)A + (v + v + ut)A? + wtd +v + ut = 0,
wtA® + (v + ut)A? + (v + wt)A +u + v + ut = 0,
(v 4w+ wt)A? + (w + ut)A? + (v + wt)A 4 ut = 0.

By adding the first two equations, we obtain

(A+1)-pt+w+(u+v)A] =0,
and by adding the last two, we obtain

A+1)-[ut+v+(v+w)r]=0.
Since A # 1, we have

u+v=A"%(v+w) = N(v+w),

and so v = v = w. By (12) and (14), p(¢) and p(U) commute and so, by Lemma 2,
p(y)? = 1. This gives A = 1, a contradiction.
This completes the proof of the theorem. [ |

9 Some indecomposable representations of &, and B,

In this section we list all, up to weak equivalence, indecomposable representations p of
®, of degree < 4 such that p(F;) # 1 and p(®;) is infinite. According to the previous
section, such reperesentations do not exist if char K = 2. We also include an interesting
example of an indecomposable representation of degree 4 with p(®;) finite.

One can use the above mentioned representations p of ®; in order to construct new
representations of B,. Recall that the braid group B, has the following presentation :

By = (0'1,0:,03 : [01,03] =1, 0,030y = 030103, 03030, = 0’3020:*.)-
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Furthermore there is a homomorphism A : By — ®; given by :
h(o,) = PUP, h(o3) =UeU™'P, h(o3) = PoU 'aP.
For readers convenience, we have also computed the images of ¢;'s in each case.

Representation 1. The generators o, P, and U of ®, are represented by the matrices

-1 0 0 010 1 0 0
p(ﬂ,)=(0 1 0), p(P)=(1 0 0), p(U)=(—1 1 1/2).
0 01 00 1 0 0 1

It is easy to verify that these matrices satisfy the defining relations (1) of ®,. A simple
computation shows that z = PyP and y = (¢U)? are represented by the matrices

1 01 100
p($)=(0 1 0), p(y)=(0 1 1)-
0 0 1 00 1

Hence p(F3) is a free Abelian group of rank 2.
The corresponding representation of By is determined by :

1 -1 1/2 0 -1 0 1 -1 —1/2
o=~ 0 1 0 , 00— 1 2 0], e5—-}0 1 0 .
0 0 1 0 0 1 0 0 1

Representation 2. The second representation p is defined by :

100 0 10 00 1 000
o110 o | o0 o021 12100
P)=1oo1 of =120 10| D=1 o0 1
000 -1 01 00 0 010

In this case we find that

1 0 00 10 0 0
0 -1 00 i1 0 0
PE) =11 o 10l P®=100 -1 o
1 0 01 00 0 —1

Now p(F3) is a solvable group which is not nilpotent.
For B, we have :
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1 0 0 0 1 000 1 000
/2 0 -1 0 001 ~1/2 01 0
172 -1 0 0 P —201 0 BT 12 160
/2 0 0 1 0 100 ~1/2 0 0 1

Representation 3. If characteristic of K is not 2 or 3, then we have a representation
p defined by : ’

10 0 0 100 0 1 1/2 0 1/12
01 0 O 001 0 01 0 0
PO)=1g0 -1 o> =010 o =106 1 1 12
00 0 -1 000 -1 0 0 0 1
In this case we have
101 O 1100
oo o100
PE=1001 of PW=1g0 11
000 1 0 001
In this case p(F3) is a non-Abelian unipotent group.
The corresponding representation of By is given by :
1 0 1/2 -1/12 1 0 0 1/16
Lot v - v |00 1 0
7loo 1 0o P70 -12 0o |
00 O 1 0 0 0 1
10 —-1/2 —~1/12
o v
?7loo0 1 0
00 O 1

All three representations above of ®; and By are at the same time indecomposable
and reducible.

Representation 4. This representation p is defined by :

10 0 0 1 1 1 1
01 0 0 11 1 -1 -1
Po)=|g o0 1 ol PP =31 1 1 1}
00 0 -1 1 -1 1 -1
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-1-z 0 -1-1 0

1 0 —1+i 0 1-—i
P=31 14i o —1-i o0 ’
0 —1+i 0 —1+i

where 2 = —1. One can show that p(®;) ~ (Q#Q) x S3, a quotient of the group Iy
defined in Lemma 2. The images of z and y generate one of the two quaternion groups
@. The basic vectors are common eigenvectors of o and y and, up to scalar multiples,
there are no other common eigenvectors. Since P does not preserve these eigenspaces, p
has no 1-dimensional invariant subspace. As p(F3) # 1, p cannot be direct sum of two
2-dimensional representations. Hence p 18 irreducible.

In this case the representation of B, is given by :

-1 i 1 - -1 1 1 -1
T N B R S 3 I S B B
1779 -1 =i =1 —i | 273 -1 -1 -1 -1 |°

- 1 i =1 1 1 -1 -1

~1 —i 1 i
RS RS S A
3Tl -1 i -1

t 1 - -1
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