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1 Introduction

Let F2 = (x, y) be the free group of rank 2 with generators x and y. We will denote the
automorphism group Aut(F2) by ~2' There is a weil known open problem concerning the
linearity of this group : Is it true that ~2 has a faithful linear representation? Magnus
and Tretkoff (9] have conjectured that there is no such representation over any field. In
the case of free groups of rank 2: 3, the automorphism group is not linear (6].

The above conjecture is closely connected with the old problem of linearity of the
braid groups (see [1, 4]). It was proved in [4] that if B4 , the braid group on four strings,
has a faithful representation of degree m, then ~2 has a faithful representation of degree
2m. For a very recent account of representations of braid groups see [2].

We consider a more general problem of describing all representations of ~2 of degree
n for small n. Very little is known about this problem: we know only the paper [3]
where it is proved that «l)2 has no faithful 3-dimensional representations over any field of
characteristic O.

We shall now recall some facts about the structure of ~2' For a E -F2 let /0. be the
inner automorphism of F2 defined by a, Le., (z)/o. = a-1za for all z E F2• (In order to
conform with the usage in [8], we write /0. on the right hand side of the element to which
it is applied.) Since F2 has trivial center, the homomorphism a I---f /0. is injective, and we
use it to identify F2 with its image in ~2'

It is weil known [8, p. 169] that ~2 ia generated by the foilowing three elements:

P: z Ho y,

U: z Ho zy,

u: x I---f Z-1,

Y Ho z;

Y I---f y;

Y Ho y;

and has a presentation consisting of the following relations :

p2 = u' = (UP)4 = (PuPU)2 = (UPu)3 = 1, (Uu)' = (uU)2. (1)

Let p : <1- 2 ~ GL(V) be a linear representation, where V is an n-dimensional vector
space over K. We can construct new representations :

(2)

where t; = ±1 and EIE2€3 = 1.

We say that a representation p' of <1- 2 ia weakly equivalent to the representation p if p'
is equivalent to one of the representations (2) or their dual representatioos.

Dur main result ean be stated as follow8.

Theorem. Consider indecomposable representations p 0/ ~2 0/ degree n ::; 4, over
an algebraically closed field K, such that p(F2) i=- 1. There are no such representations if
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n ~ 2. If p( ~2) is infinite thenJ up to weak equivalenceJ there erist for n = 3 only one
such representation, and for n = 4 two if char K =1= 2,3, one if char K = 3J and none if
char K = 2. All the representations mentioned above are reducible, and are listed in the
last section. 1f p( ~2) is finite, p factorizes through the natural homomorphism ep2 -+ r i ,

where ri are some finite groups of small orders defined in Lemma 2.

Corollary. ep2 has no faithful representation of degree n ::; 4 ouer any field.

If p(F2 ) = 1, then p factorizes through the natural homomorphism ep2 -+ ~2/F2 f"V

GL(2, Z). It is easy to show that there exist infinitely many nonequivalent idecomposable
4-dimensional representations of GL(2, Z).

From our theorem it follows that for n ~ 4 there are only finitely many nonequivalent
n-dimensional representations of ~2 such that p(F2 ) =1= 1, and in all these cases p(F2 ) is
a solvable group. On the other hand, already for n = 6 there exists a one-parameter
family of irreducible nonequivalent representations of <I-2 such that p(F2 ) contains a free
non-Abelian subgroup. Hence it is impossible to extend our theorem to dimensions n 2:: 6.
This also explains why the proof of our theorem involves a lot·of computations.
. We indicate briefly how to construct the family mentioned above. For that purpose we

make use of the braid group B4 and the weIl known 3-dimensional Bürau representation
ßt depending on a parameter t. This can be modified to obtain a one-parameter family of
3-dimensional representations ß: of B 4 /Z4 , where Z" is the center of B". We recall that
there is an embedding B,,/Z4 -+ ep2 (see [4)) such that the image of B4 /Z" in ep2 has
index 2. The representations ß; induce 6-dimensional representations of <1»2 having the
properties stated above. The claim about the existence of free non-Abelian subgroups
follows from {IO].

For n 2:: 6 it would be interesting to describe the character variety of n-dimensional rep­
resentations of ep2. For the case of braid group B4 , the character variety of 3-dimensional
representations was recently described by Formanek [5].

In the last section of our paper we describe also some new 4-dimensional representa­
tions of B4 • Two of them are at the same time indecomposable and reducible. It would
be interesting to find some applications of these representations.

By using our identification of F2 with a subgroup of ~2, we have y = (UU)2 and
x = Py P. Furthermore we have :

U- 1 zU = zy, Uy = yU, uy = yu, uxu = Z-l. (3)

The elements U and y generate a free Abelian group of rank 2. We introduce the element
w = PuP, which satisfies :

w2 = 1, uw = wu, wUw = U-1
, wyw = y-l. (4)

The subgroup D4 = (P, u) of ep2 is a dihedral group of order 8. We shall use some
elementary facts about the representations of D4 over fields of characteristic =12.

V. P. Platonov is grateful to the Max Planck Institute of Mathematics (Bonn) for the
support and the hospitality during the preparation of this paper.
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2 Some general facts and lemmas

In this section we recall some general facts about q.2 and its representations. We prove
two lemmas concerning some particular factor groups of q.2. The proof of the theorem
proper will begin in the next section.

In our proof we shall use the following simple fact: Any two primitive elements of
F2 are conjugate in q.2. Recall that a E F2 ia called primitive if there exists b E F2 such
that {a, b} is a free basis of F2 • In order to prove the above fact, let a and b be primitive
elements of F2. Then it is dear that there exists </1 E ~2 such that (a)</1 = b. This implies
that </1-1 0 /0. 0</1 = /b, and, by using our identifieation, we obtain </1-1 .a· </1 = b. Thus our
claim is proved.

In particular, the elements z and zy are conjugate in ~2' So zy = Z-1 ZZ for some
Z E ~2' This shows that y is a commutator in ~2, and consequently F2 is contained in
the commutator 8ubgroup of q.2.

Given a linear representation p : <P2 ~ GL(V), for the sake of simplicity, we shall refer
to the eigenvalues, trace, detenninant, ... of p(y) as the eigenvalues, trace, determinant,
... of y, and similarly for other elements of <P2. Since F2 is contained in the commutator
subgroup of <P2' we have

det(y) = 1. (5)

Now assume that p(F2 ) f. 1, or equivalently, that p(y) f. 1. Under this hypothesis we
claim that p(y) is not a sealar operator. Indeed, if p(y) were a scalar, then we would have
p( x) = p(y) and p(xy-l) = 1. This is impossible sinee y and xy-l are conjugate in <1»2

and p(y) =j; 1.

Lemma 1. Denote by r the quotient gro'Up 01 <P2 obtained by adding the new defining
relation [U, (Per) 2] = 1 to the presentation (1). Then the image 01 F2 in r is trivial.

Proof. Since (PO')2 = O'w = wO' and wUw = U- 1 , we have O'wUwO'U-1 = y-1. Hence,
in r we have y = 1, and consequently also z = 1. •

In the next lemma and its proof we denote by CI: a cyclie group of order k, by Q the
quaternion group of order 8, by S. the symmetrie group of degree k, and by E(2A1

) an
elementary Abelian group of order 2k

•

Lemma 2. By adding new relations to the presentation (1), we obtain some finite
quotient groups as lollows :

(i) relation U2 = 1, quotient group r 1 ~ C2 x S" ;
(ii) relation [U,O'] = 1, quotient group r 2 ~ C2 x 84 ;

(iii) relations U" = (O'U)" = 1, quotient group r a ~ E(64) )<J 83 ;

(iv) relations U4 = [P, (O'U)4] = 1, quotient group r 4 ~ (Q#Q) )<J 84 ;

where # denotes the central product. In particular r 1 and r 2 have order 48, r 3 order 384J

and r 4 order 768.
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Proof. It is straightforward to check that there exist surjective homomorphisms f :
r 1 ~ {±1} x 84 and 9 : r 2 ~ {±1} x 84 given by :

f(U) = (-1, (13)), f(P) = (1, (23)), f(u) = (-1, (12)(34));

and
g(U) = (-1, (1234)), g(P) = (1, (23)), g(u) = (-1, (13)(24)).

To prove (i) snd (ii) it suffices to show that Ird ~ 48 and Ir21~ 48, respectively. Let r
be the eommon faetor group of f 1 and f 2 obtained from the presentation of <1- 2 by adding
the relations U2 = 1 and uU = Uu. These relations are equivalent to U2 = 1, (UU)2 = 1,
and so we have f 1 / (x, y) ~ r ~ r2 / (x, y).

In r we have 1 = (UPU)3 = UPUuPuUPu = UPUPUwuPu = (UP)3W . Thus
(U P)6 = 1, and since w = PuP, we have u E (U, P). It follows that Ifl ::; 12.

In r 1 we have x = U-2XU2 = U-1xyU = U-1xUy = xy2, and so y2 = 1. It follows
that I(x, y}1:5 4, and so 1ft! ~ 48. Thus (i) is proved.

In r2 we have y = (uU)2 = U2 and y-Izy = U-2XU2 = U-1zUy = xy2. Hence
yxy = x, and by conjugating by P we obtain zyz = y. So x 2 = y-2. As xyx-1 = y-I,
by conjugating the equality x2 = y-2 by x, we obtain x2 = y2, and so x4 = 1. Ir x 2 =F 1
in r 2 , then (x, y) = Q is the qu-aternion group. Ir (PU)2 =F 1, as r has no elements of
order 4, we have (PU)2 = x 2

• It follows that (PU)2 is central in r 2 , and Lemma 1 gives a
contradiction. We conclude that x 2 = 1 in f 2 , and so Ir21~ 48. Hence (ii) holds.

We now prove (iv). Let G = (Q#Q') )<1 84 where Q' is another copy of Q. We
have Q = {±1,±i,±j,±k},where 1,i,j,k are the quaternionic units, and analogously
Q' = {±1, ±i',±j',±k'}. We now describe the action of 84 on Q#Q'. First of all, both
Q and Q' are normal in G. The normal 4-group, say V, of 84 acts triviallyon Q, while
the subgroup 83 aets as follows :

(12): i ~ j, j ~ i j

(123): i ~ - j, j ~ k.

The alternating subgroup Ac acta triviallyon Q' and the odd permutations interchange
i' and j'. It ia now straightforward to verify that there is a surjective homomorphism
h : f 4 ~ G such that :

h(U) = (kj', (1432)), h(P) = (1, (12)), h(u) = (jj', (13)(24)).

In order to prove (iv), it suffices to show that lr.1 ::; 768. In f 4 we have x = U- 4 XU4 =
xy\ and so x 4 = y. = 1. As y = (UU)2, P and y2 commute in r4 , and so x 2 = y2
and l(x,y}1 ::; 8. Let ß be the factor group r4 /(x,y). Clearly ß ~ GL2(Z)/N, where

N is the normal closure in GL.(Z) of (~ ~). The image of N in the modular group

. SL2(Z)/{±1} is the unique normal subgroup of level 4, and so it has index 24. For these
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p{P) = (~ ~).

facts we refer the reader to [11, Chapter VIII]. Hence the index of N in SL2(Z) is at most
48, and in GL2(Z) at most 96. It follows that If..1~ 96 ·8 = 768 and (iv) is proved.

We have shown above that h is an isomorphism. Since f 3 = f ..1P where P is the
normal closure of y2 = (uU)" in f 4 , and h(y)2 = (-1,1), (iii) follows from (iv). •

This lemma was proved first by using GAP, the symbolic computation package [7].
Subsequently we have constructed the homomorphisms /,9, h and succeded to eliminate
the reliance on GAP in our proof.

3 Representations of degree 2 and 3

For n = 1 the assertion of the theorem is obvious. In this seetion we prove the assertion
of the theorem when n = 2 or 3 and char K:j:. 2.

Let n = 2. Since p(F2 ) :j:. 1, Lemma 1 implies that p(PlT)2 # 1, and so the restriction
of p to D4 is faithful. Hence we mayassume that

p{ lT) = (~
1 n,

Since uy = YlT and det(y) = 1, we have

p{y) = (~ >,~1)'

As x = PyP, we have p(zy) = 1. Since y and zy are conjugate, we obtain that ..\ = 1, a
contradlction.

Now let n = 3. By Lemma 1, V is a sum of two irreducible D4-modules : a 2­
dimensional and aI-dimensional. Up to weak equivalence, we mayassume that

Ag uy = yu, we have

(-1 0 0)
p(u) = 0 1 0 ,

o 0 1
p{P) = 0~ n· (6)

(

a 0 0)
p(y) = 0 b c .

Ode

From (wy)2 = 1, we obtain that c(b - e) = d(b - e) = 0 and b2 = e2 ::::: cd +1.
If b :j:. e, then c = d = 0, b = -e = ±l. As" det(y) = 1, we have a = -1. From

p(y) = diag( -1, b, -b) and p(z) = p(PyP) = diag(b, -1, -b), we obtain that p(zy) =
diag( -b, -b, 1). As p(xy) :j:. 1, we must have b = 1. By using the fact that y and U
commute, we have

p{U)= (~ J ~).
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The eqation Uxy = xU implies that 0 = € = O. Since y = (aU)2, we must have
ß8 = ,1. = 1. Hence p(U'J) = 1, and so Lemma 2 applies.

If b = e, then det(y) = 1 implies that a = 1. Hence

(
1 0 0)

p(y) = 0 b c ,
o d b

Since xy and y are conjugate, we have tr (xy) = tr (y) = 1 + 2b. This gives b'J = 1, and
so cd = O. By replacing p by its dual (if necessary) we mayassume that d = O.

If b = -1, then Uy = yU implies that p(a) and p(U) commute, and Lemma 2 applies.
If b = 1, then c =I=- 0 and we mayassume that c = 1. Since Uy = yU, we have

(
1 0 0)

p(y) = 0 1 1 ,
001 (

0 0 ß)
p(U) = , 0 € •

000

The equation (WU)2 = 1 implies that ß = 0, 0 = 0:, and 0
2 = 1. The equation Uxy = zU

implies that 0 = 1 and , = -1. Since y = (aU)'J, we must have € = 1/2. Thus we obtain

(
1 0 0)

p(U) = -1 1 1/2 .
o 0 1

(7)

The equations (6) and (7) define an indecomposable representation of ~2' Obviously this
representation is redueible.

4 Representations of degree 4

In this seetion we begin the proof of the theorem when n = 4 and ehar K =I=- 2. This part
of the proof will be completed in the next three seetions.

We claim that the eigenvalues of y ean be written as

\ \ -1 -1
A, A , IJ,I' (8)

for some A, I' E K·. Ir all eigenvalues of y are ±1, this follows from (5). If y has an
eigenvalue A =I=- ±1, then wyw = y-l implies that A-1 is also an eigenvalue of y. Since
A-1 #- A, (5) implies that the remaining two eigenvalues of y can be written as 1', 1'-1.
This proves our claim.

By replaeing p with ~ weakly equ,..ivalent representation, if neeessary, we mayassume
that

tr (a) = 0, 2.

7
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We shall denote by V+ resp. V- the eigenspace of 0' for eigenyalue +1 resp. -1. Since
wand y commute with 0', these subspaces are invariant under w and y. We shall denote
by p(w)+ and p(y)+ the restrietions of p(w) and p(y) to V+, respectively.

We conclude this- section with two lemmas.

Lemma 3. Let p be a 4-dimensional representation 0/~2 and assume that char K i= 2.
f/ tr (0') = 2, then all eigentJalues 0/ y are ±l.

Proof We shall assume that y has an eigenvalue ..\ i= ±1 and obtain a contradiction.
As tr (0') = 2, dim V+ = 3 and dim V- = 1. Ir e. E V-, e4 i= 0, then e4 is an eigenvector
of y. Say y(e.) = Jle4. Since wyw = y-l and V- is w-invariant, we conc1ude that Jl = ±1.

It follows that p(y)+ has three distinct eigenvalues ..\,..\-1, and 1'. Let el and e3 be
eigenvectors of p(y)+ belonging to ..\ and 1', respectively. Set e2 = w(ed. Then

y(e2) = yw(ed = wy-l(ed = ..\-lw(ed = ..\-le2,

and so {et, e2, e3, e4} is a basis of V.

Since p(w)+p(y)+p(w)+ = p(y-1)+, the subspace Ke3 is w-invariant. From PuP = w
we deduce that tr (w) = 2, and so

w(ed = e2, w(e2) = et, w(e3) = ea, w(e.) = e•.

Ey identifying linear operators with their matrices with respect to this basis, we have

(

1 0 0 0 ) (0 1 0 0) (..\ 0 0 0)o 1 0 0 1 0 0 0 0 ..\-1 0 0
p(0') = 0 0 1 0 ,p(w) = 0 0 1 0 ,p(y) = 0 0 Jl 0 .

o 0 0 -1 0 0 0 1 0 0 0 Jl

As U and y commute,

(

a 00 0vO

z

)'

p(U) = ~ ~ :

The equality (WU)2 = 1 implies that aß = 1 and

221u = z = -vw, v(u+z) =w(u+z) = O. (10)

The equality y = (O'U)2 implies that a 2 = ..\ and

u 2 = Z2 = I-' + VW, v(u - z) = w(u - z) = O. (11)

If I' = 1, the above equations imply v = w = O. Hence p(O') and p(U) commute, and
Lemma 2 implies that p(y)2 = 1. This contradicts the assumption that ..\ i= ±1.
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If jj = -1, then (10) and (11) imply thac u = z = 0 and vw = 1. By conjugating by
the diagonal matrix diag(l, 1,1, w), we may assume that v = w = 1. Thus

(

0: 0
- 0 0:-1

p(U) = 0 0

o 0

Since PaP = w and p 2 = 1, we must have

o 0)o 0
o 1 .

1 0

p(P) = (: :: -~),
1 -I 0 0

where
2cl = 1, b(2a + e) = d(2a + e) = 0, e2 = 4a2 = 1 - 2bd.

By conjugating by diag(1, 1, I, f), we mayassume that c = 1/2 and f = 1.
If b = d = 0, then the (1,4) entries in p(UPa))3 = 1 give ae(a2 -1) = O. As a 2 -:/= 1,

we have ae = O. Since e2 = 4a2
, we have a = e = O. As p(P) is nonsingular , we have a

contradiction.
If b i= 0 or d #- 0, then e = -2a and by companng the (4,3) entries in p(UPa))3 = 1,

we obtain that a(0:2 - 1) = 0, and so a = O. By comparing (4,4) entries, we obtain a
contradiction. •

Lemma 4. Let p be a 4·dimensional representation O/f1)2 and assume that char K =12.
Then the Jordan canonical form 0/ p(y) contains no Jordan blocks 0/ see 3.

Proof. Assume that p(y) has a Jordan block of size 3. Then tr (a) i= 0, and so by (9)
we have er (a) = 2. We can choose a basis of V such that

p{a) = (~ ! ~ ~), p(y) = (~ ~ ! ~).
o 0 0 -1 0 0 0 P

As wyw = y-l, we have .,\2 = 1. Since det(y) = 1, we have .,\ = IJ.
Since wa = aw, p(w) = A E9 B with A of size 3 and B = (±1). Since wyw = y-l, we

have A #- 1 and tr (w) = tr (a) = 2 implies that B = (1). By using wyw = y-l again, we
conclude that p(w) is upper triangular and that it h88 the form

(

lu u(u - >')/2 ~~)
p(w) = ~ T >. ~ u

9



By conjugating with a suitable matrix which commutes with p(u) and p(y), we may
assume that 'U = O.

Since U and y commute, we have

p(U) = (! i!f), p(wU) = (! b c
-a Aa - b
o a
o e

f) .
Prom (WU)2 = 1 we obtain that d(a + f) = e(a + f) = 0, and from y = (UU)2 that
d(a - f) = e(a - f) = O. Since a + / or a - f is not zero, it follows that d = e = O. Hence
p(U) and p(u) commute and, by Lemma 2, p( c}2) is finite. As p(y) has infinite order, we
have a contradiction. •

We now divide the proof into three cases, which will be treated separately in the next
three sections.

Up to weak equivalence, we mayassume that tr (u) = 0,2.
Subcase 1: tr (u) = O. Hoth V+ and V- have dimension 2. H det p(y)+ = 1, then p(u)
is a central element of the centralizer of p(y) in GL(V), and in particular it commutes
with p(U). By Lemma 2, p factors through the homomorphism ep2 ~ r 2 •

Now let det p(y)+ "# 1. Then the eigenvalues of p(y)+ are, say, A and IJ, and those of
p(y)- are .A-1 and IJ-1. Since w leaves invariant V+ and V- and inverts y, it follows that
.A = -IJ = ±1 and that p(y) and p(w) commute. By choosing a suitable basis, we may
assume that

( ~ ~ ~~) (~~ ~~)p(u) = 0 0 -1 0 ,p(P) = 0 1 0 0

o 0 0 -1 0 0 0 s

where r, S = ±1. Then p(w) and p(y) have the form

p(w) = (~ - ~ ~ ~), p(y) = (~ ~a ~ ~ ),

o 0 0 -1 0 0 O-b

where a, b = ±1. As p(z) "# p(y), we have b = a. Hence p(wy) = ±l. It follows that
p(U) = p(wyU(wy)-l) = p(U)-l. Hence p factors through the homomorphism ~2 ~ r 1

of Lemma 2.
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Subcase 2 : tr (0') = 2. Now Y+ has dimension 3 and Y- dimension 1. By Lemma
3, all eigenvalnes of y are ±1, and so A = -p = ±1.

Assnme first that p(y) is diagonalizable. Then p{y2) = 1, and p(a), p{w), and p{y)
commute. We can diagonalize them simultaneously. B;' Lemma 1, p{a) =1= p(w). Hence
we may asanme that

p{a) = (~ ! ~ ~ ), p(w) = (~ !J~), p{y) = (or ~2 ~3 ~ ),

o 0 0 -1 0 0 0 1 0 0 €4

where €, = ±1, det(y) = 1, and tr (y) = O.
The equations p 2 = 1 and PaP = w imply that

(

a b 00 )
c d 0 0

p(P) = 0 0 0 1/e .
o 0 e 0

We may assnme that e = 1. Sinee x = PyP and p(xy) =1= 1, we must have €2 = -€I and
€4 = -€3·

If €3 = -€I, then

p{U) = (~ , f ~).
w 0 0 z

The equation Uzy = xU implies that i = 0 (and so gh =1= 0), v = w = 0, and ac = bc =
bd = O. Consequently b = c = O. This is impossible sinee p is indeeomposable.

Ir €3 = €1, then

(U) = (~ ~ ~ ~).p w 0 z 0
o h 0 i

The equation Uxy = zU now implies that z = 0 (and so vw =1= 0) and ad = bc = O. This
is impossible sinee ad - bc = ±1.

Hence p{y) is not diagonalizable. Hy choosing a suitable basis {eI, e2, e3, e4} of Y
and by replacing A with -A, if necessary, we mayassume that

p(a) = (~ ! ~ ~. ), p(y) = (i ~ J ~ ).
o 0 0 -1 0 0 O-A

11



Since wyw = y-l, the subspaces K el, K el + K e2, and K e3 are w-invariant. As
tr (w) = tr (o-) = 2, p{w) mnst have the form:

(-~ 1~ ~) or

000 1
(

1 S 0 0)o -1 0 0
o 0 1 0 .
o 0 0 1

By replacing p with its dual representation, we mayasaume that p{w) is given by the first
of these two matrices. By replacing e2 with e2 + (s/2)el' we may assume that s = O.

As U and y commute, we have

p(U) = (f ~ ~ ~).
o 0 c d

From (WU)2 = 1, we obtain the equations a 2 = 1, a 2 = lP =1 - bc, and from y = (UU)2
the equations A= 1, ß = a/2, a 2 = lP = bc - 1. It follows that a = d = 0 and bc = 1.
By conjugating by diag(I,I, 1, c), we may assnme that b = c = 1. Hence

(

a a/2 0 0)o a 0 0
p(U) = 0 0 0 1 '

o 0 1 0

Since PuP = w and p 2 = 1, P must map the eigenspaces of (T to the corresponding
eigenspaces of w. It follows that

where

p{P) = ( ~
l/e

o 0 e)f 9 0
h i 0 '
000

( I 9)2 (1 0)
h i = 0 1 .

The equation (UPU)3 = 1 implies that 1 = a, i = -a, 9 = 0, and h = a/2e. By
conjugating by diag(1, 1, e, e), we mayassume that e = 1. We compute p{z) and find that

p(z) = (I I o 0)o 0
-1 0 .
o 1

We obtain indeed an indecomposable representation of ~2' The choices a = 1 and a = -1
give weakly equivalent representations.
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6 Case 2 : A = J.L =I ±1

By Lemma 3, tr (u) == 0, and so both V+ and V- have dimension 2. Choose e1 E V+,
e1 =1= 0, such that y(ed == Ae1' Then the vector e2 == w(ed ia in Y+ and y(e2) == ,,\-l e2 . We
cau choose similarly nonzero vectors e3, e4 in V- such that y( e3) == Ae3, y(e4) == A-1 e4,
and w(e3) == e4' With respect to the basis {e1, e2, e3, e4} of Y, we have

p(u) == (~ !J ~ ),p(w) == (! ~ ~ ~), p{y) == (~ A~I ~ ~ ).
o 0 0 -1 0 0 1 0 0 0 0 ,,\-1

Since PuP == w and p2 == 1, P must map the eigenspaces of u to the corresponding
eigenspaces of w. It follows that p(P) must have the form :

(

a c er i)
a c -er -,

p(P) == b d ß J .

b d -ß -8

Prom p2 == 1 it follows that a == c == ±1/2, ß == -J == ±1/2, er == " b == -d, and 4erb == l.
By replacing p with a weakly equivalent representation, we may assume that a == 1/2. By
conjugating with the diagonal matrix diag(l, 1, 2b, 2b), we mayassume that b == er == 1/2.
Hence

C
1 1 1)1 1 1 -1 -1

p(P) = "2 ~ -1 f -f '
f == ±l.

-1 -f f

Since U and y commute, we have

p(U) = ( ~
0

v 0)11.' 0 v'
0 z o .
w' 0 z'

Prom y = (UU)2 we obtain the equations:

v (tL - z) = w (u - z) = 0, 11.
2 = z2 = VW + A,

and from (wU)2 = 1 the equality

13



Assume first that u '# z. Then v = w = 0, and consequently v' = w' = O. Furthermore,
we have u' = I/u, z = -u, and z' = -1/11.. By using x = PyP and the equation
Uxy = xU, we obtain u2 = 1. Hence Ä = 1, which is a contradiction.

Hence, we must have 11. = z, and so u' = z'. It follows that

p(U) =
(

11. 0 v 0 )o u/Ä 0 -v / Ä

w 0 u 0 '
o -w/Ä 0 u/Ä

If € = 1, by equating the (3,I)-entries ofthe matrices p(Uxy) and p(xU), we obtain the
equation ,,\2 (u+w) = lL-W. Similarly, the (4,2)-entries give the equation Ä2(U-W) = lL+W.
Hence ,,\4 = 1. As ,,\ '# ±1, we must have Ä2 = -1. It follows that 11. = 0 and w = -Ä/v.
By equating the (I,I)-entries of the above mentioned matrices, we obtain that V = 0,
which is impossible.

So we have f = -1. The equation p(Uxy) = p(xU) now implies that ,,\2 = -1 and
w = -v. The relation (U PO')3 = 1 implies that

41L2 (u - v) == Ä(31L - v) + Ä -1,

4u2 (u + v) = Ä(3u +v).

By taking into account that u 2 +v2 = Ä, we obtain only one solution: u = v = -(I+Ä)/2.
In this case we indeed obtain an indecomposable representation of ep2. Since p(U)4 = 1
and p(y2) = -1, p factorizes through the homomorphism «1»2 -+ r 4 of Lemma 2.

7 Case 3 : ,\ = J.l = ±1

Recall that D4 has (up to equivalence) only one 2-dimensionaI irreducible module and four
i-dimensional ones. Assurne that V, as a D4-module, is a direct sum of two irreducible
2-dimensional modules. On an irreducible 2-dimensional D4-module the element (PO')2
acts as minus the identity operator and so p(PO')2 lies in the center of GL(V). By Lemma
1, p(F2 ) = 1 and we have a contradiction. The same argument applies when V is a surn
of four I-dimensional D,,-modules. Thus we may assume that V is a direct sum of one
2-dimensional irreducible D,,-module and two I-dimensional modules.

Subcase 1 : tr (0') = O. Up to weak equivalence, we mayassume that (with respect
to a suitable basis of V)

p(u) = (! o 0
1 0
o -1
o 0

j). pep) = (!
14
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o 1
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where r = ±1. As w = PuP and yu = uy, we have

(
1 0 0 0) (a' ßI 0 0)o -1 0 0 " J' 0 0

p(w) = 0 0 1 0 ,p(y) = 0 0 aß'

o 0 0 -1 0 0 , J

Since all eigenvalues of y are equal A= ±1, we have a +&= 2A and aJ - ß, = 1. Since
wyw = y-l, it follows that a = J = .\ and ß, = O. Slmilarily a' = 8' = .A and ßI,' = O.

Up to weak equivalence, we have the following four possibilities:

(i) ß' # 0, " =ß =, = 0 ;
(ii) ß' # 0, " = ß = 0, , # 0 ;
(ili) ß' # 0, ß # 0, " = , = 0 ;
(iv) ß' = " =, = 0, ß # O.
In fact, by using some elementary considerations, one can show that (i) and (iv) are

weakly equivalent. Furthermore, by conjugating by a suitable diagonal matrix which
commutes with p(P), we mayassume that the nonzero parameters among ß', ß, and ,
are all equal to 1. We now consider each of the first three possibilities separately.

(i) We have

(
A1 0 0) (a b C d)o .A 0 0 0 a 0 0

p(y) = 0 0 A 0 ' p(U) = 0 e 9 h .

o 0 0 A 0 f i j

The relation Uxy = xU implies that A = 1, h = 0, 9 = a, and e = ra. The relation
y = (UU)2 implies that a2 = j2 = 1, di = 0, (a+ j)i = 0, and (a - j)f = air. The relation
(PUPU)2 = 1 implies that C = 0, (a - j)i = 0, 2ab = 1, and (a + j)f = air. It follows
that i = 1 = O. Finally the relation (UPu)3 = 1 implies that j = -1, a = r, and d = O.
Since d = h = f = i = 0, p is decomposable, contrary to the hypothesis.

(ii) We have

(
A 1 ° 0)o A 0 0

p(y) = 0 0 .A 0 '

o 0 1 A
(

a b e f)
(U) = 0 a f 0 .

p 9 h c 0
h 0 d c

From p(Uzy) = p(zU), by equating (4,4) and (2,3) entries, we find that c(1 - A) = 0
and 1(1-.A) = O. As C and f cannot both be 0, we infer that ..\ = 1. From (3,2) entries we
obtain 9 = O. The entries (1,2), (1,3), (4,2), and (4,3) provide the equations a + f = rh,
C - a = r f, a = c + h, and f = c + rh, respectively. These equations imply that c = -a,
h = 2a, f = -2ar, and a(4r - 1) = O. As r = ±1, we obtain a = 0, which is impossible
since p(U) is invertible.
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(iii) We have

(

A 1 0 0) (a b C d)o A 0 0 0 a 0 C
p(y) = 0 0 ,\ 1 ' p(U) = e f 9 h .

o 00,\ 0 e 0 9

Prom Uxy = xU we obtain a(l - ,\) = e and e(l - A) = O. As a and e are not both
zero, we must have ,\ = 1. Taking this into account, the same relation implies that e = 0,
9 = a, f - a, r = -1, and h = a - b - c. The relation y = (UU)2 implies that a 2 = 1 and
a = 2b+ c. Prom (Pu PU)2 = 1 we obtain that c = 0, and so h = a - b. PrOfi (U PU)3 = 1
we find that a = -1, b = -1/2, and 3d = 1/4. In particular char K # 3. Thus p(U) is
uniquely determined and all the defining relations are satisfied. One can easily check that
this representation of <1»2 is indeed indecomposable.

Subcase 2: tr (0") = 2. By choosing a suitable basis of V, we have

( -1
0 0

!l' p(P) = (l 1 0 !1'p(u) = ~
1 0 0 0
0 1 0 1
0 0 0 0

p(w) = (! 0 0 !l' p(y) = (!0 0

~ l'
-1 0 a b

0 1 d e
0 0 9 h

where a,ß,.\ = ±1.
By Lemma 4, p(y) has no Jordan blocks of size 3, and so (p(y) - .\)2 = O. Prom this

equality and p(wy)2 = 1 we abtain that p(wyw) = 2.\-p(y). Hence we have a = e = i =.\
and f = h = O. Now the equation (p(y) - ..\)2 = 0 implies that bd = cd = bg = cg = O.
Hence p(y) has one of the forms :

( ~~~~l' (~;~~l'o 0 0 ..\ 0 9 0 ..\

By replacing p by its dual, we may a8sume that p(y) has the form given by the first of
these two matrices. At least one of band cis not O. By conjugating by a suitable diagonal
matrix, which commutes with p(P), we mayassume that band c are either 0 or 1. Hence
there are three possibilities to consider :

(i) b = 1, c = 0 ;
(ii) b = 0, c = 1 j
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(iii) b = c = 1.
Furthermore, if T = 1 in p( P) then, without any lass of generality, it suffices to consider

the possibility (i) only. This can be achieved by conjugation by a' matrix which commutes
with p(u) and p(P). We analyze each of these possibilities separately.

(i) Since y and U commute, we have

(

A 0 0 0)o A 1 0
p(y) = 0 0 A 0 '

o 0 0 A
(

a 0 b C)
d e / 9

p(U) = 0 0 e 0 '

h 0 i j

where we are now reusing the letters a-j in a different roie.
From Uzy = zU we obtain first e(1 - A) = 0, and so A = 1, and then e = a, d = -a,

and h = O. From y = (uU)2 we find that a2 = j2 = 1, c(a - j) = 0, i(a + j) = 0,
g(a+ j) +ac = 0, and ab+2af +gi = 1. From (PUPU)2 = 1 we obtain from (1,4) entries
that c(a + j) = O. Since a :j:. 0, this equation when combined with c(a - j) = 0 gives
c = O. From (2,4) entries we obtain g(a - j) = O. When combined with g(a + j) = 0,
we conclude that 9 = O. Prom (1,3) entries we obtain that b = O. One of the previous
equations now gives / = 1/2a. Next we exploit the relation (UPU)3 = 1. FrOll (1,1)
entries we obtain a3 = 1. Since a 2 = 1, it follows that a = 1. PrOll (4,3) entries we
obtain i(2r + j) = O. As j2 = r 2 = 1, it follows that i = O. Since c = 9 = h = i = 0, p is
decomposable, and so we have a contradiction.

(ii) We have r = -1 and

(

A 0 0 0)o A 0 1
p(y) = 0 0 ,\ 0 '

o 00'\
Prom Uzy = zU we obtain first from (2,2) entries the equation e(1 - A) = 0, and so

A = 1. Next from (3,4) entries we obtain h = 0, from (1,4) entries e = a, and from (2,4)
entries d = a. Prom (UU)2 = (UU)2 by comparing (1,3) entries we obtain b(a - i) = O.
Next we use the relation (PuPU) 2 = 1. Prom diagonal entries we find that a2 = i2 = 1.
PrOll (1,3) entries we abtain b(a + i) = O. By combining this equation with b(a - i) = 0,
we conclude that b = O. Prom (1,4) entries we find that c = O. Finally we use the relation
(UPU)3 = 1. Prom diagonal entries we find that a3 = -1 and i 3 = 1. As a 2 = i2 = 1, we
have a = -1 and i = 1. Now from (1,4) entries we find that / = 0, and from (3,4) entries
j = O. Since b = / = h = j = 0, p is decomposable and so we have a contradiction.

(iii) We have T = -1 and

(

A ,0 0 0)
o A 1 1

p(y) = 0 0 A 0 '

o 0 0 ..\

p(U) = (~ ~
-h 0

17
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From Uxy = zU we obtain first from (2,2) entries the equation e(l - A) = 0, and so
A = 1. Now the (2,3) entries give e = -d, while (2,4) entries give e = d. We infer that
e = 0, which is a contradiction.

8 Characteristic 2 case

Let n = 2 and assnme only that pis nontrivial. Since (WU)2 = 1 and w2 = 1, it follows that
det(U) = 1. Let A and A- 1 be the eigenvalues of U. Since (PU)4 = 1, p(pq) is unipotent.
As n = 2, we have p(pq)2 = 1. Hence p(P) and p(q) commute, and so p(u) = p(w).

Assume first that A =j:. 1. Since wUw = U- 1
, we can choose a basis of V such that

Since p 2 = 1, and p(P) commutes with' p(q), we must have

(P) = ( a a + 1 )
p a + 1 a

for some a E K. By examining the equation p(Upq)3 = 1, one can show that a = 0 and
A2 + A+ 1 = 0, i.e., A is a primitive cube root of 1. Hence we have an indecomposable
representations of ~2 such that p(~2) ~ 53.

Assume now that ,,\ = 1. If p(U) = 1, then also p(P) = p(q) and P(<I»2) ~ C2 • Thus
we may a8sume that

p(u) = (~ ~).
Now let p(U) =j:. 1. Ir p(q) =j:. 1, we can choose a basis of V such that

p(u) = n~), p(P) = (~ ~), p(U) = nn, b# 0,

because both p{P) and p(U) commute with p{q). From (Upq)3 = 1 we conclude that
a+b = 1. Hence we obtain al-parameter family of non-equivalent indecomposable repre­
sentation of ~2 with P{~2) ~ C2 X C2. Ir p(O') = 1, then p{UP)3 = I implies that either,
say,

p(U) = p(P) = (~ i)
or p(U P) has order 3, in which case we mayassume that
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( p' *)p = 0 pli

where A is a primitive cube root of 1. Hence we obtain another indecomposable represen­
tation of 4,)2 with p( 4,)2) ~ 83, which is not equivalent to the previous one.

In all of the representaiton mentioned above we have p(y) = p(O'U)2 = 1, and so
p(F2 ) = 1. In particular the assertion of the theorem holds if n = 2.

Now let n = 3 and assume that pis indecomposable and p(F2 ) =11. Since wUw = U- 1 ,

the eigenvalues of U are A, A-1, and 1.
If p(y) is diagonalizable, then p(y) f. 1 implies that y has three distinct eigenvalues.

As YO' = O'y, p(O') ia diagonalizable. Since p(O') is also unipotent, we obtain p(O') = 1, a
contradiction.

Hence p(y) is not diagonalizable, and so must be unipotent. Since yU = Uy, it follows
that A = 1, i.e., p(U) is unipotent. Consequently p(U)4 = 1. Since y = (O'U)2 and p(y)
is unipotent, we conclude that p(y)2 = 1. Hence p factorizes through the homomorphism
<I»2 -+ r3 •

Finally let n = 4. We assume, as in the statement of the theorem, that p is indecom­
posable and that p(F2 ) =11. The eigenvalues of y have the form A, A-1, IJ, IJ-1. We divide
the proof into three subcases.

Subcase 1 : A = IJ = 1. Since p(y) is unipotent and y = (O'U)2, p(O'U) is also
unipotent. As n = 4, we conclude that p(y)2 = 1. Since x, y, and xy are conjugate in <1>2,
we have also p(X)2 = p(xy)2 = 1. As p(F2) =I 1, we conclude that p(F2 ) is a four-group.
The subspace W C V consisting of all vectors v such that p(z)(v) = p(y)(v) = v has
dimension 1,2, or 3. Since F2 is normal in <1>2, W is ~2-inva.riant.

We choose a basis of W and extend it to a basis of V. With respect to such a basis we
have

where p' (resp. pli) is the representation of <1>2 on W (resp. V/W) induced by p.
If p(U) is unipotent, then p(U4

) = 1 and so p factorizes throngh the homomorphism
<1>2 ---t r 3. From now, untill the end of this subcase, we shall assume that p(U) is not
unipotent.

If U has an eigenvalue 1, then we\may assume that

p(U) = (~ ~ i ~ l' ß =I 1,
o 0 0 ß-1

with respect to same basis {eI, e2, e3, e4}' Since yU = Uy, p(y)2 = 1, and p(y) :j:. 1, we
have

19



Henee ß . uUu(e3) = (uU)2(e3) = y(ea), i.e., Uu(ea) = ß-lu(ea). This implies that
0'(ea) = ae4 for some a E K·. As 0'2 = 1 and uy = yu, we infer that

An easy eomputation shows that p(O'U)2 = 1. As y = (O'U)2 and p(y) =11, we have a
eontradiction.

Now assume that U has no eigenvalue 1. This implies that dim(W) = 2 and that
P'(~2) and P"(cI»2) are both isomorphie to 53. For these representations we have p'(Po') =
p"(Pu) = 1, and consequently p(PU)2 = 1. Now Lemma 1 gives a contradiction.

Subcase 2 : {A, A-1 } =I {J.', J.'-I}. If A, J.' =f:. 1, then yo' = O'y and 0'2 = 1 imply that
p(u) = 1, a contradiction. Now let, say, J.' = 1. If p(y) is not diagonalizable, its centralizer
in GL(V) is Abelian. Hence p(u) and p(U) commute. By Lemma 2, p factorizes through
the homomorphism cI»2 ~ r 2 • We now assume that p(y) is diagonalizable. Since 0' and y

commute, 0' leaves invariant the eigenspaces of y. Consequently we can choose a basis of
V such that

p(y) = (~ A~l ~ ~), p(o') = (~ ~ ~ ~).
0001 0001

Since wyw = y-l and w = PuP, we may also assu.m.e that

p(w) = (! ~ ~ ~).
000 1

Since Uy = yU, we have

PrOfi Y = (O'U)2 we obtain

a2 =A, ß=a-1
, c=a+d, ad+bc=l,

and from (WU)2 = 1 we obtain that a +d = O. Consequently c = 0, d = a = 1. Thus p(u)
and p(U) commute and we can apply Lemma 2.
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Subcase 3 : A = jj =I 1. Both eigenspaces of y have the same dimension. If p(y)
is not diagonalizable, then the centralizer of p(y) in GL(V) is Abelian and we can use
Lemma 2 onee again. Now let p(y) be diagonalizable. Then both eigenspaces of y have
dimension 2, and w interehanges t~ese eigenspaees. It follows that 1 +w has rank 2. Sinee
w = PuP, 1 + u also has rank 2. As y and u eommute, we can choose a basis of V such
that

p(y) = (~ ~ A~l ~ ), p(u) = (~ i ~ ~).
o 0 0 ,\-1 0 0 0 1

Sinee w inverts y and commutes with u, we must have

(12)

(

0 0 a' b')o 0 0 a'
p(w) = cf d' 0 0 '

o cf 0 0

'Jf b" " 1aa = c, ac = .

By conjugating p(w) by a suitable matrix which commutes with p(y) and p(u), we may
assume that a' = d = 1 and b' = tf = 0, Le.,

p(w) = (! !!!). (13)

Sinee Uy = yU, we have

(

u' v' 0
z' w' 0

p(U)= 00 0 u

o z
i) .

From y = (uU)2 we obtain the equations

u 2 + Z2 + z(v + w) = w2 + z(v + w) = ..x-1
,

and so z = u + w and
A-1 = uv +vw +wu.

The equation (WU)2 = 1 gives

(
u' v') = ('U v) -1 ,

Z' w' z w

21



and so

( AW AV 0

i) .p(U) = A(U: W) AOU 0
(14)

u
o 0 u+w

The matrix

Po=(1!!!)
satisfies the equation p(w )Po = Pop(u). Since p( P) satisfies the same equation, the matrix
po-l p(P) commutes with (1. Consequently p(P) has the form

p(P) = Po . (~ ~ ~ i) -(~ a~ b ~ cl d ) .
o a 0 , 0: o:+ß , 1+8

Since p2 = 1, we have the equations:

a(a + c) + a(b + d) = 1, a(a + c) = 1, (15)

0(a+ß+8)=a1, 0(0:+,)=0, (16)

d(o: + 1) + ,(c + 8) + a(ß + 8) = 0, J(o: + 1) +,2 = 1. (17)

The second equations of (15),(16), and (17) imply that a = i = 1. The second equation
of (15) and the first equations of (16) and (17) give c = ß = 8 = 1 + a. Prom the first
equation in (15) we now obtain that d = 1 + a + b. Thus

(

a b 1+a 1+a+b)
(P)= 1 1+a 1 1+a

p a a+b l+a b
1 a 1 a

Hy conjugating by the matrix

(~ ~ ~ ~)
o 0 1 a
000 1

we may assume that
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where t = a + b + a 2
• Although p(U) will change under this conjugation, it will still have

the form (14). By using this expression for p(P), we find that

where

(

A-l r+ rt

p(z) = rt

o

Tt
Ä +Tt

Tt
Tt

rt
o

A-1 + rt
T

rt )rt
Tt

Ä+rt

r = A + ,\ -1.

By equating the diagonal entries of the matrices p( zU) and p(Uzy), we obtain the equa­
tions

(v +wt),\3 + utA2 + (v +w + wt)'\ +w + u.t = 0,
(11. + wt)A3 + (u +v +ut)A2+ wtA +v +ut = 0,
wtA3+ (v + ut)A2 +{u + wt)A + 11. + V + ut = 0,
(v +w + wt)A3 + (w + ut),\2 + (v +wt)'\ + u.t = O.

By adding the first two equations, we obtain

(,\ + 1) . [v +w + (u + v),\2] = 0,

and by adding the last two, we obtain

(,\ + 1) . {u +v + (v + w),\2] = O.

Since ,\ =f 1, we have
u + v = ,\-2(v + w) = ,\2(v + w},

and so u = v = w. By (12) and (14), p(q) and p(U) commute and so, by Lemma 2,
p(y)2 = 1. This gives ..\ = 1, a contradiction.

This completes the proof of the theorem. •

9 Some indecomposable representations of <1>2 and B4

In this section we list all, up to weak equivalence, indecomposable representations p of
«fl 2 of degree ~ 4 such that p(F2) =F 1 and P(cI»2) is infinite. According to the previous
section, such reperesentations do not exist if char K = 2. We also include an interesting
exampIe of an indecomposable representation of degree 4 with p( cI» 2 ) finite.

One can use the above mentioned representations p of eJ.)2 in order to construct new
representations of B4 • Recall that the braid group B4 has the following presentation :

23



Furthermore there is a homomorphism h : B4 -+ <1»2 given by :

For. readers convenience, we have also computed the images of o/s in each case.

Representation 1. The generators u, P, and U of <1»2 are represented by the matrices

(

-1 0 0)
p(oJ = 0 1 0 ,

o 0 1 (
0 1 0)

p(P) = 1 0 0 ,
001 (

1 0 0)
p(U) = -1 1 1/2 .

o 0 1

It is easy to verify that these matrices satisfy the defining relations (1) of <1»2. A simple
computation shows that x = PyP and y = (UU)2 are represented by the matrices

(
1 0 1)

p(x) = 0 1 0 ,
001 (

1 0 0)
p(y) = 0 1 1 .

001

Hence p(F2 ) is a free Abelian group of rank. 2.
The corresponding representation of B4 is determined by :

U1 -+ (~ ~1 1~2), U2 ~ (~ ~1 ~), U3 -+ (~ ~1
001 001 00

-1/2 )
o .
1

Representation 2. The second representation p is defined by :

C00 ~) ,
( 10 o 0) C 0 0

1) .o 1 0 o 0 o 1 (U) = 1/2 1 0
p(q) = 0 0 1 p(P) = 1/2 0 -1 0 ,p 0 0 0

000 -1 o 1 o 0 0 0 1

In this case we find that

p(x) = (! 0
o 0)

p(y) = (i 0 0

~ ).
-1 o 0 1 0

0 -1 0 ' 0 -1
0 o 1 0 0 -1

Now p(F2 ) is a solvable group which is not nilpotent.
For B4 we have :
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(
1 0

1/2 0
0"1 --+ 1/2-1

1/2 0
(

1 000)
000 1

0"2 --+ -1/2; 0 1 0 l

o 100
(

1 0 0 0,)
-1/2 0 1 0

0"3 --+ 1/2 1 GO'

-1/2 0 0 1

Representation 3. If characteristic of K is not 2 or 3, then we have a representation
p defined by :

(1 0 0 0) co o 0) (1
1/2 o 1/12)o 1 0 0 o 0 100 1 o 0

p(O") = 0 0 -1 0 ' p(P) = 0 1 o 0 ,p(U) = 0 1 1 1/2 .
o 0 0-1 o 0 o -1 0 0 o 1

In this case we have

p(z) = (! o 1 0) C1 0 !).1 0 -1 0 1 0
o ~1 0 ' p(Y) = 0 0 1
001 0 0 0

In this case p(F2) is a non-Abelian unipotent group.
The corresponding representation of B4 is given by :

CO 1/2 -1/12)
U2~ (! 0 0 1/016 )o 1 1· -1/2 0 1

0"1 -+ 0 0 1 0 l -1 2 o '
o 0 o 1 0 0 1

(1 0 -1/2 -1/12 )
011 1/2

0"3 --+ 0 0 1 o .
o 0 0 1

All three representations above of <}2 and B.. are at the same time indecomposable
and reducible.

Representation 4. This representation p is de11ned by :

p(u) = (~ ~ _~ ~ ), p(P) = ~ (11~ j =~ -~) l

o 0 0 -1 -1 1-1
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o
-1+i

o
-1+i

-1-i
o

-1-i
o

o )1- i
o '

-1+i

where i 2 = -1. One can show that P(~2) ~ (Q#Q) >3 53, a quotient of the group r 4

defined in Lemma 2. The images of z and y generate one of the two quaternion groups
Q. The basic vectors are common eigenvectors of Cf and y and, up to scalar multiples,
there are no other common eigenvectors. Since P does not preserve these eigenspaces, p
has no 1-dimensional invariant subspace. As p(F2 ) =I 1, p cannot be direct sum of two
2-dimensional representations. Hence p is irreducible.

In this case the representation of B4 is given by :

( -1
'l. 1

-i ) ( -1
1 1

-1 )1 -i -1 -'l. -1 1 1 -1 1 -1
0"1 -7 2" _~ -1- -1

. ,
0"2 --+ 2" _~ -1 -1 -1 '-1.

-'& 1 , -1 1 -1 -1

0"3 --+ ~ (

-1 -1- 1 -q.1. -1 1.

-1 1- -1
't 1 -1- -1
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