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RAMIFICATIONS ON ARITHMETIC SCHEMES

XIAOTAO SUN

INTRODUCTION

It is well known that ramification theory on extensions of Dedekind domains
is a very classical topic in algebraic number theory. There are also many works
on ramification theory in Noetherian rings ([1],[6],[7]). This paper is interested in
applying them to study the geometry of arithmetic schemes.

Let f: X — Y be a morphism of finite type between regular schemes. For any
point z € X, one can define the ramification index (0, /O (,)) of f at = by using
Fitting ideals of Qlo,/o,(,)’ and the reduced ramification index e(Oz/Oy(s)) of f

at z (see the following definitions). When X and Y are of dimension 1, a very
classical theorem of Dedekind gives the relation of 7(O./Oy(,)) and e(Oz/Ofz)):
™(Oz/Of(x)) 2 €(Oz/Of(z)) — 1. This theorem was generalized to the case of bira-
tional extensions of regular local rings ([10}) and had been used to study birational
morphisms of regular schemes ([9],[12]). But all works only concerned the case that
the extension of function fields of X and Y is finite, thus 0-Fitting ideal is enough
for the story. Basically, 0-Fitting ideal is a principal ideal and satisfies transitive
law, which make everything works well. In this paper, we are going to consider
the case that X/Y is a family of algebraic varieties, especially a regular arithmetic
scheme. We shall formulate the notation of ramification locus of f by using high
order Fitting ideals, which can be considered as the degeneracy loci of a morphism
between vector bundles. When f : X — Y is a fibration of algebraic surface over an
algebraically closed field of characteristic zero, the ramification locus of f is nothing
but the zero subscheme of a section of vector bundle Q% ® (f*Q1)V. Since this fact,
Iversen ([5]) can prove a formula expressing the diference of Euler characteristics
of singular fibre X; = Y m;I"; and a smooth fibre by

Kxy -Z(m,— —10 = O mi— D) + Y pa(f).

i reXN,

There is no such vector bundle available in the case of arithmetic surfaces. However,
Bloch’s formula can express Artin conductor by localized Chern class of Q3 Y (see
{2] for the definition). By using Bloch’s work ([2],{3]), we can generalize the above
formula to arithmetic surface replacing 3 (m; — 1)I'; by ramification divisor R(f)
of f (theorem 3).

We collected some facts of commutative algebra and recalled some notations of
[11] in §0. In section 1, we firstly proved a theorem on ramification index of discrete

This work was done during my staying in Max-Planck-Institut fur Mathematik, I thank its
hospitality and financial support.

Typeset by Ap4S-TEX



2 XIAOTAO SUN

valuation rings, which is a generalization of Dedekind’s theorem. After that, we
generalized a result of {11] to high dimensional arithmetic schemes, which gave the
relations of relative canonical sheaf with ramifications and differentials. In section
2, we proved a formula expressing Artin conductor by ramification locus of f, which
should be considered as a corollary of Bloch’s theorems. The section 3 is a comple-
ment to §2 of [11] about base extensions of arithmetic surfaces. One observation
here is that the changes of invariants of arithmetic surfaces caused by a base ex-
tension are determined by the difference between the base extension’s ramification
and the ramification of morphism induced by the base extension. Applying this
observation to the case of function fields, we can give a very simple treatment for
some known results and drive out a sharper height inequality of algebraic points
than [13].

All the morphisms and algebras in this paper are of finite type, and all the rings
are noetherian domain. We use some results of [4} such as Riemann-Roch theorem
and Serre duality theorem for curves on surface without mention.

Acknowledgement. I would ezpress my heart thanks to Professor F. Hirzebruch
who invited me visit Maz-Planck-Institut fir Mathematik. I also thank R. Hubl for
the communications about theorem 1.

§0 Preliminary.

Let us recall some notations of [11] in this section, the detail proofs can be found
in [6] and [7]. We first recall the notations of Fitting ideals and ramifications.

Let R be a ring, M a finite R-module, and {m,,...,m,} a system of generators
of M. The exact sequence

03K —3R"3S M-—0

is called the presentation of M defined by {m,,...,m,}, where o maps the i-th
canonical basis element e; onto m;(z = 1,...,n)and K = kera. Let {va}rea be a
system of generators of I with vy = (z7,...,2}) € R® (A € A). Then

(z;\)i=l,...,n

AEA
is called a relation matrix of M with respect to {m,...,m,}.

Given such a matrix, let F;(M) denote the ideal of R generated by all (n — 7)-
rowed subdeterminants of the relation matrix (: =0, 1, ..,n—1), and let F;(M) = R
for 1 > n. One can prove that F;(M) does not depend on the special choice of the
relation matrix and the choice of the generating system {my,...,m,} of M. We call
F;(M) the i-th Fitting ideal of M.

Let A, B be two local rings with tr.deg(Q(A4)/Q(B)) = d and ms N B = mp,
where m 4 and mp are maximal ideals of A and B. For any ideal I of A, we define

va(I) to be the largest integer such that I C 77131"“). We call
r(A/B) = va(Fa(Qy/p))

the ramification index of A over B, and

L1400y T

e(A/B) := ( maz ){'UA(H zi)(z1,...,x,) are the generators of mp}
i=1

the reduced ramification index of A over B
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Proposition 1. Let M be a finite R-module, F;(M) the i-th Fitting ideal of M.
Then

(1) For each algebra S/R we have
Fi(S@p M) =25 Fi(M).
(2) If N C R is a multiplicatively closed subset, then
Fi(MN) = Fy(M)n.

(3) If M has rank v := dim (K ®r M), then F;(M) ={0} fori=0,...,r — 1
and Fy(M) # {0} fori>r.

?

From above proposition, we can see easily that to study 7(A/B) and ¢(A/B) one
can always pass to the completions of A and B. For the convenience, we collect

some facts of completion as a proposition without proof, which can be found in
books of H.Matsumura and O.Zariski.

Proposition 2. Let A be a noetherian ring, I an ideal of A and A the I-adic
completion of A. If M s an A-module such that M/IM s a finite A/I-module,
then we have
(1) A is reqular if Ap is regular for every prime ideal P of A containing I.
(2) The I-adic completion of M 1s a finite A-module. In particular, if A is
complete and M is Hausdoff for the I-adic topology, then M 1is a finite
complete A-module.

(3) Let P DI be a prime ideal of A, and P=rA , then

(AP)A = m AP/P”AP = Lﬂl Eﬁ/ﬁ"ﬁﬁ = (Eﬁ)/\

Then we want to recall the notations of higher modules of differential forms, all
of which can be generalized to global case, 1.e., sheaves on schemes. Let K := Q(R),
and M a finite R-module such that My := K ®r M is a free K-module of some
rank r. For a system of generators {z1,...,z,} of M, let

0USR L M0
be the presentation of M corresponding to {z1,...,z,},1.c. fle;) =zifori=1,..,n
and U := ker 3. Clearly A" "*la =0, since Uy := K ®@p U of rank n — . Then,
for each m € N, there is a canonical R-linear map (write ¥ := R")

Som ' AmM — HOTHR(A"_TU , An—r+mF),

which is defined as the following: For w € A™M choose a preimage @ € A™ F with
respect to A™(3. Then

™ (w): AMTTU — AMTTTTE
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takes any u € A"7"U to A" Ta(u)AD € A"t F. Therefore, there is a canonical
commutative diagram

APM = Homp(A"™'U, A"-"+mF)

1 L+

A" My —2E5 5 Homg(Am~"Uk, A"THmE),

where x™(l) = idx ® [ for any | € Hompg(A"""U, A" ""™F). One can prove
that the R-submodule (o)~ (im x™) of A™My is independent of the choice of
the system of generators of M. If § is a R-algebra, we take M = Q}S/ s the relative
differential module, then we call

A™(S/R) = (p})™ (imx™)
the m-th module of integral differential forms of S/ R.

§1 Ramification indexs and canonical sheaves.

In this section, we shall prove a theorem on ramification index of extensions of
discrete valuation rings at first, which was known as Dedekind’s ramification main
theorem in the case of finite extensions, our result is a generalization of Dedekind’s
theorem to higher dimension (i.e. the extensions may have transcendental degree).
Then we will discuss the relation of canonical sheaf of an arithmetic scheme with
its ramifications.

Theorem 1. Let A/B be an ertension of discrete valuation rings, essentially of
finite type with residual fields k(A) and k(B). If k(A) is separably generated over
k(B), we have

H(A/B) > e(A/B) - 1,

and the equality holds if and only if e(A/B) s not a multiple of char(k(B)).

Proof. Let mp = (¢)B and m4 = (u)A be the maximal ideals of B and A, vp
and v4 the valuations of Q(B) and @Q(A) determined by B and A. Without lost
generality, we suppose that A and B are complete and write ¢ = apu®, where
e =e(A/B) and va(ap) = 0.

Since k(A) is separably generated over k(B), we can choose z4,...,z4, in A such
that k(A)/k(B)(Z1,...,%4) is a finite separable extension. Since B is a discrete
valuation ring, it is easy to see that zi,...,z4 are algebraic indepondent over B.
Let P = (t)B[z1,...,xq] and R = (B[z1,...,zaq])p, it is not hard to prove that
A D R D B are extensions of discrete valuation rings with mp = (¢)R. Since
k(A)/k(R) is a finite separable extension, there exists a ¥ € k(A) and a separable
minimal polynomial f(Y) € k(R)[Y] of degree r such that k(A) = k(R)(7) and
f(#) = 0. We can assume that R is complete by passing to its completion, so there
is a lifting of § and f(Y), say y € A and f(Y') € R[Y], such that f(y) = 0. By
Proposition 2, A is finite over R. On the other hand, A/(¢)A is generated by

Yl |0<i<r—1,0<j<e—1}
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as a k(R)-module. Thus, by Nakayama’s lemma, we have

_ _ Ryl
(f(y),t — agu®)’

So Q;/B is generated by dy,du,dzy,- - ,dzq with relations

d i+ fy)dy =0

0a0dm,+t %dy—i—( T—f—eu “ag)du =0

Thus the relation matrix of Q1 /B is

ofy)  Ofw)

]
e, 0
M _ aml ? ? axd b f (y)7
- u® . 930 ueaao u® 9ag us dao +eula
Oz, 7 Ozy’ dy’ Au 0

By the definition of Fy(Q} / p), which is generated by all subdeterminants of M.
Thus we have

r(A/B) = min{v4(subdeterminants of M)} > e —1,

and the equality holds if and only if e is not a multiple of char(k(B)), we have
done.

Remark 1. From the proof, we know that v(A/B) < r(A/R). In fact, consider
the following commutative diagram (for simplity, we assume that R’ = R)

T T T

0 ——  ADT 5 A%, 4@ 4

I T T

0 _ K —5 K —— 0

we can see that o 1s an somorphism and the images

d
Z '(w)dy) = f'(v)dy
°, B . dao z
Q(Zu E{;dz, + u a—dy—l—( — +eu Yag)du)
i=1
8(10 6

=u® By —dy + (uf —a—-l—eu Yag)du
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0 .
are generators of K', so r(A/R) = UA(u°§O- + eut"lag) (one simply remarks that
U

va(f'(y)) = 0 since § is a separable element over k(B)). On the other hand, we
know that

%
% + eut"ag), va(other subdeterminants of M)}.

When e is not a multiple of char(k(B)), one can see easily that

r(A/B) = min{va(u®

a
vA(uea—O +eut"lag) = e — 1 < va(other subdeterminants of M),
u

hence r(A/B) = r(A/R) = e — 1. But when ¢ is a multiple of char{k(B)), there is

. a
no evidence that UA(u"a—o + eu®"lag) must be smaller than
u

va(other subdeterminants of M).

Let S = Spec(A) be the spectrum of a Dedekind domain whose residual field
at each prime ideal is perfect or of chacteristic zero, and f : X — § a flat and
projective scheme over S. By an arithmetic scheme of dimension d + 1, we mean
that X is regular, generic smooth over S and tr.(Q(X)/Q(S)) = d. The relative
canonical sheaf K x,s and the Fitting ideal sheaf F(X/S) can be introduced as the
following.

Definition 1. The presheaves of Kx;s and F(X/S) are defined as the following:
For any affine open set U = Spec B of X, let

Kx/s(U)=A4B/A)  F(X/S)(U) = Fa(Qy ).

Let
1: X o5 P=P%

be an embedding and 7 the ideal sheaf of X in P, then we have the following

commutative diagram
d
MQY g ——  Homo, (A"'Z/T, A™itQ) )
(%) J‘,Td L\‘d
AMQY e —— Homp(A"HZ/T%)., A(*Q% )L,

where 7%, x? are the canonical maps, and ¢?, ¢4 are defined as in §0. For a
coherent sheaf G on, we always denote G ®p, L by G;,, and consider L here as a
constant sheaf. The relative canonical sheaf of X/5 is

Kxss = Homoy (AN*7'Z/T*, A™"Qp)s),

which can be seen as a subsheaf of the constant sheaf !\dQL/K. If F(X/S) is the
Fitting ideal sheaf of X/S, then we can write F(X/S) = I - Ip, where Ipg is
the ideal sheaf of ramification divisor R(f), and Ip denotes the ideal of residual
scheme D.
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Theorem 2. Let f : X — S be an arithmetic scheme of dimension d+1, and R :=
S=r:C; the ramification divisor of f. Then we have the following ezact sequence

0= (A’Q/g)tors = AR /5 = Kx/s ® Ox(—R) = Op(—R) ® Kx/s — 0
In particular, we have
Kx/s 2 Ox(R) @ox A'Qy]S-
If mi = m(C) denotes the multiplicity of C; in the fibre containing C, then
ry 2> m; — L.

The equality holds if and only if m; is not a multiple of the characteristic of residual
field of f(C).

Proof. By using theorem 1, it is easy to see that theorem 2 is a corollary of the

following lemma, which gives the relation of K y/s and the image of Ade\. /s under
d

~¥e.
Lemma 1. Let f: X — S be a projective scheme of dimension d+ 1. Then
A s/ (A Qx5 )tora = K xys @0y F(X/S).

Proof. It is enough to prove the lemma locally, let U = Spec B and B = P/I,
where P = Afz1,...,2n|n. We have the exact sequence

I/I* 5 BRp Qb 5 Q4 0.

Then the diagram (*) becomes

d s
Ay ——  Homp(A"I/I*, A™(B®pQp,))

S L«

d
AMQY o —Z Homp(A"=4(I/1%)y, AML®p Qb))

We only need to determine I'm ¢,
Let {b1,...,bn} be a basis of B ®p Q}’/A such that {w; = B(b;) : ¢ = 1,...,n}
generates Qp /> and let

I/I*=Bt;+--+-4+Bt,+Bu;j+- - +Bu, (m>2n-d)

such that e(u;), ..., a(um) form a system of generators of a(I/I?) and ¢; (1 = 1,...,7)
are torsion elements (i.e. o(t;) = 0). Then we have

AU = )T B, A Aty Aug A A,
s+pu=n—d
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oA"Y = > Bla(ui) A Aaluj,_,)),

jlj'--yj'n—d

n
alu;) = Za,-jbj (1=1,...,m).
=1

Let
art a2 A1n
a1 dp2 an
A= oo
Am1  4m2 Umn

be the relation matrix of Q}B/A with respect to {w; = B(b;) 11 =1,...,n}. Then, by
the definition of (¢,

(1.1) P wiy A Nwig)(aluj ) A Aaluj,_,)
=auj)A - ANa(uj,_ ) Abi, A Ab;,
= AT by A Aby,

Lyreadn—d
'»"d

wJIn—d
and deleting the columns with numbers 2;,...,74. So, by the definition of Fitting

ideal, we get

where A;i . is obtained from A by keeping the raws with numbers 3, ..., Jn—4g

Im? C Fy(Qp,,) - Homp(A"I/I* A"(B®p Qpy)) = Fa(Qp,) - AY(B/A).

Note that dimp(L ®p «(I/I?)) = n — d, we can assume that a(u1),...,a(un—d)
consist a basis of L ® g a(I/I*), which means that there is a nozero element a € B
such that

a-a(A"I/IYC B - (a(u)) A A alun—g)).

Thus every homomorphism
h € Homp(A™™I/I* A™(B®p Upyy))

is determined by its image h(a(u1) A< Aa(un—q)), since A*(BQp Q:D/A) is a free
B-module of rank one. This fact and the above (1.1) show that

Im g = Fy(Qp)s) - Homp(A™I/I* A*(B®p Qpyy)) = Fa(Qp0) - AYB/A).

But
Ad‘Q’lB/A/(AdQIB/A)tom =Im ";(d > I'm (pd,

which completes the proof.



RAMIFICATIONS ON ARITHMETIC SCHEMES 9

§2 Ramification number and Artin conductor.

In this section, we restrict ourself to the case of dimension 2. More precisely,
let S = Spec(A) be the spectrum of a complete discrete valuation ring with alge-
braically closed residue field k, and f : X — S a flat, proper scheme over 5. We
assume that X is regular and of dimension 2 with special fibre X, = Y~ m;I'; and
smooth generic fibre X, where s and 7 denote the closed point and generic point
of §. Let Z be the subscheme of X determined by the Fitting ideal sheaf of X/S.
We denote F(X/S) by Iz and write Iz = I Ip, where Ig is the ideal of a Cartier.
divisor in X whose local equation is the g.c.d. of generators of Iz, and Ip is the
ideal sheaf of residual scheme of Z. In the Chow groups C H(X,) and CH°(X,),

we have
Rl=Y"rTs, (D)= Y ualf)le)

We define the ramification number of f as

r(f)=Kxss - R=R*+ ) il f).

IE/\’;

One can prove easily that R is the ramification divisor R(f), and p,(f) are nothing
but the Milnor numbers in the geometric case. Precisely, let m,; = (u,v)O, and
(t)A be the maximal ideal of A, then we have

5 o _ Allu,v]] _(9f 9f ;
N o) N T T

Let d, be the g.c.d. of ?i and g—f, then, by the defintion, we have
u v

O, ) Ellu,v
pel) =lo. (g7 —) = dim 7 “ a}] |

(a/dm av/dx) (au/dl‘v %/dl‘)

When X, is reduced, p.(f) was defined by Deligne and called Milnor number
(see [4]). However, when m; is a multiple of the characteristic p = char(k), we even
failure to prove that u.(f) = 0 at regular points of I';. We can give the following
simple description of r(f) under the assumpation p 4 [] m;.

Propositon 3. Let s(X,) denote the set of singularities of X, ,eq and p 1 [[ m..

Then
r(f) =200 = paXarea)) + >, p2(f),

z€s(X,)

where g 1s the genus of X, and pa(Xs rea) the arithmetic genus of X, eq. In
particular, when X, 1.q i5 a semi-stable curve, we have

r(f) = 2(9 — pa(Xs,rea)) + #5(Xs).

Proof. Since p1[]mi, by our theorem 1, we have

R(f) = Z(TH,‘ — 1)].—‘1 = -X_g - ‘Xa,red;
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which implies that

KX/S -R(f) - R(f)2 =2(g - Pa(XS,red))'

The local computaion shows that p.(f) =0 at z ¢ s(X,) and gz (f) =1 when z is
a rational double point, so we have done.

It is clear that r(f) is determined by local properties of f and can be computed
locally. Now we want to relate r(f) with the Artin conductor Art(X/S) of X/S,
which was defined as

Art(X/S) = x(Xs) — x(X5) — sw(X/S5),

where x(X,) and x(Xj5) are the étale Euler characteristic of X, and geometric fibre
X5, sw(X/S) is the Swan conductor (see [2] and [3] for the details).

Theorem 3. Art(X/S) =r(f).

The proof heavily depends on Bloch’s formula and should be considered as a
remark of [2] and [3]. Firstly, we shall prove two lemmas.

Lemma 1. Let Q}Y/S,w” be the torsion subsheaf of Q,l\'/s- Then

(1) Qf\./simm 18 an nvertible O p-module. Q}WSQ@OZ 15 a locally free O z-module
of rank 2.
(2) We have the following two ezact sequences

(2.1) 0— Q}\'/S,rors - Q}w/s ®O0z —+ (IzKx/s)®0z = 0
(2.2) 0— Q;{/S,tors — Q;/S Q@ Or — (sz‘f;(/s) & Or — 0.

Proof. Locally, we have

Ordu @ Ordv
1 ~ T T
(Q‘,\’/S)I - (afd . afd )
—du+ —dv
Ou v
Write w = 6—fdu + gdv and w’ = d;! gidu +d;! a—fdv, we claim that
Ou v Ou v

(Q}\,/s’w”)x = O, &', where@ denote the image of w’ in (Qk’/s)r-

It is clear that O, - @ C (lefs'w”)z since dyo' = dyw’ = @ = 0. f @ €
(Q}\,/Swra)x, then there exist @ € O such that aw, € Oy - w. Write w; =
a1du + azdv, then there is an element b € O, such that
d 0
aw :bw:b—fdu+b /

ou v

dv,

af af

which implies that a|b—, a|b-—. We can assume that ¢ and b have no common
v

divisor in Oy, thus a|d,, which implies that w;, € O, - w', we got the claim. By the
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above claim, it is easy to prove that Qf\ /5,tors is an invertible Ogp-module. On the
other hand, we have an exact sequence

0= O w = Opdu @ Opdv — (Q/5)z — 0,

which induce an exact sequence

O -w®Oz0 2% Ogudu® Ozudv - (V)5 ® Oz)z — 0.
But the image of 1 @ 1 is zero, we have
(/s ®02): 20z, Oz,

namely, Q% /s ® Oz is a locally free Oz-module of rank 2. We have shown (1).

By our theorem 2 and Q}\{/S,tors o Q}{/S,tom ® Oz as a Ox-module, we have the
exact sequence

Qx/s00rs = Uxys ® Oz = (IzKx/5) ® Oz = 0.

We only need to check that 2% /Sitors Q% /s ® Oz is locally injective, namely

(/)
QL =0, & 5 — 5
( A/S.tors)lf z IZ(Q}\’/s)x

is injective. If ad’ € IZ(Qf\'/S)z, then aw’ € Iz - (Oxdu ® Oxdv). Thus

of
“Bu

of

dz| d;?, dz|a5; .

-1
d; .

0 d
But d; is the greatest common divisor of —f and a—f, we have d,|a, namely, ao’ =0
v

u
and (2.1) is exact. The same argument implies that (2.2) is exact.

Before stating lemma 2, let us recall some notations of [4]. If £ is a coheren O x-
module with support contained in X,, we define the Euler-Poincaré characteristic

X(L) of £ as
x(L) = dimi H°(L) — dimy H' (L).

If K is an Ox-module complex whose cohomology sheaf have supports in X,, we
define that
X(K) = (=1 (H(K).

Lemma 2. With above notations, we have

(1) Cl(Qﬁf/S,tom) = R.
(2) X(Q}(/S,lors) = RZ + X(OR)



12 XTAOTAO SUN
Proof. Applying our theorem 2 to d = 1, we have exact sequence
0 = QX /510r0 = /s = 12K x5 = 0,
which and Cl(‘Q}Y/S) = K x/s implies that
ct(x/5,10rs) = Kxys — c1(IzK xs).
But IzK x/s = IpOx(Ix;s — R) and
0= IpOx(Kyx/s — R) = Ox(Kx;s — R) = Op(Ky;s — R) =+ 0,

we have
C](IzK:X/S) = I{X/S - R- C_|(OD(I(X/S — R))

Note that ¢;(Op @ £) = 0 for any invertible sheaf £ on X, we get (1).
By the exact sequence (2.2) of lemma 1, we have

X(x/s,00rs) = X(Or ® Uy /5) — X(Or © 12K x5)-
By using a lemma of Bloch ([2], lemma 7.4), we claim that
X(Or ® Qx/s) = Kx;s R+ 2x(Or).

In fact, for any irreducible component I'; of R, Bloch’s lemma says that, when one
considers Or; ® Q‘IX /s 88 @ locally free Or;-module on I';, one has that

c1(Or; ® Qy/5) = Tilx/s.
Thus Riemann-Roch theorem on I'; implies that
X(Or; ® Qxs) = Tilix/s + 2x(Or)).
On the other hand, we have exact sequence
(2.3) 0— Op,(~R+T;) = Og = Op_r, =0,
which induces the following exact sequence
0= O (—R+T:) 80/ = Or® Qx5 = On-r, @ Qf\:/s — 0,
since Or ® /s is a locally free @ g-module. Thus
X(Or @ Q/s) = X(Or-r, ® Uy;s) + X{Or, ® QY 5) — 2Ti(R —T).
By induction for 3 r;, we have

X(Or ® U /s) = Kx/sR+2x(Or-r;) + 2x(Or;) — 2T4(R - T).
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Use (2.3) again, we get
X(Or) = x(Or-r;) + x(Or;) = Ti(R - T),

namely, we have the claim.
Now we want to compute x(Or ® 12K xs). Since Iz = Ig - Ip, we have

05 Or®Ip— Oz Op—0,
which induces
0= OrQIpO(Nyxs —R) > 0z O0(Kx/s — R) = Op®@O(Ky;s — R) = 0.
But Or @ IzK x)s = Or ® IpO(K x;s — R), we have
X(Or®I1zKx/s) = x(0z @ O(Kx;s — R)) — x(Op ® O(K x5 — R)).
On the other hand, one has exact sequence
0>0pRO(-R) » Oz = Op — 0,
which implies that
x(0z ® O(Kxs — R)) = x(Or(Kx/s — R)) + Xx(Op ® O(Kx/s — 2R)).
Note that x(Op ® £) = x(Op) for any invertible sheaf £ on X, we get
X(Q/8,t0r) = B + X(Or).

Proof of Theorem 3.

Let X denote the following two terms complex

Qs = Kxys-
Bloch’s theorem ([3], theorem 2.3) tell us that
Art(X/S) = x(K).

Since he define the first term as degree —1, we have

Art(X/S) = x(H'(K")) — x(H°(K")),

and
HO(K) = Qi\'/s,tora
Kx/s
H(K) = —= = 0zQK
(K7) TiKx/s z X/S

By using the exact sequence
0=20p®0O(Kx/s—R)=20z8Ky/s 2 Or®Kx/s =0
and x(Op ® O(Kx;s — R)) = x(Op) = 3_ ptz(f), one has

XHYK)) =Y pa(f) + KxysR+ x(Or).

Thus we have the formula

Art(X/S) = Kx;sR—R*+ > 1(f).
reX,



14 XIAOTAO SUN

Corollary 1. Let f: X — S be a regular arithmetic surface and f' : X' — S the
blowing up of X at a closed point. Then

() r(f)=r(f) +1
(2) 7(f) =0 tff X/S smooth or X 1s of genus 1 and of type Iy.

§3. Some remarks on base changes.

In this section, we shall give a few remarks about base changes. Applying our
arguments to the case of function fields of characteristic zero, some known results
can be drived out easily. Let K be a number field, O the ring of algebraic integers
of K, and let f : X — B = SpecOg be a regular arithmetic surface of genus
g 2 2 over B, namely, X is a regular projective scheme of dimension 2, X is
geometrically irreducible of genus g > 2. If L D K is a finite extension of degree A,
then the natural morphism 7 : B = Spec Oy, — B is called a base change of X/B.
As the same as [11], we consider the following commutative diagram:

lf sz lfl lm lf

B B —/5 B,

where m; is the normalization of X X pg B , T2 is the minimal desingularization of
X1 and p is the contraction of (—1)-curves in the singular fibres of fs.

Let ¢ = p; om and p = ¢ o wy, we call f : X — B the induced arithmetic
surface of w. Let Kﬂ’/ﬁ and Ky g denote the Weil divisors of K:,‘?/ﬁ and Kx/p

and write V = ¢*Ky/p — p* Kz 5, we have known that V = fa R(m)— R(¢)+ R(p)

and V = f3R(r) — R(p) is an effective vertical divisor ([11]), where R(r), R(¢)
and R(p) are ramification divisors of 7, ¢ and p. Our first remark is an elementary
lemma

Lemma 3. Let Py,---, P, be the points ofﬁ where fo has bad reductions and let

where Vi C Iy yp
(1) R":= R(y
(2) Let xn =

;). Then we have

) — R(p) s an effective divisor.
de Qf*hA/B degf,}C}?/ﬁ, then

1< . - &
Xt = ")'\' Zdz7nk(P;)HD(Ol7‘» (I"XQ[E + V;))
=1

Proof. We can write R = Dy — Dy such that D; and D4 are effective divisors
having no common components and D, € R(p). Thus

D} =¢"Kx;g-Dy+ Dy Dy 20
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since p*Kf/E - Dy =0 and f3R(r)- Dy = 0. But Dy C R(p), D2 has to be zero.
We have shown (1).
From [11], we known that p*Kx,g — Ky, 5 =V. Thus we have

0— K,‘X2/§ — (p*I'CX/B — Of;(fi"\.z/ﬁ + ‘7) - 0.

Since f2*0i7(KX2/§ + V) is a torsion O-module and Rllezfﬁ is a locally free
Or-module, we have exact sequence of Of-modules

0— fz*}C‘\’,/E — foup’Kx/p = fz*Or/(I\f‘\.?/ﬁ + f//') — 0,

which is also volume exact ([8]). By Riemann-Roch theorem on arithmetic curves,
we have

- 1 ~ 1 . ~
degf*’k}(/B - Xdegft"c X/B = X?\'(f2tof/(ﬁ,\’2/§ + V),

namely, X= = 1 5 lo, p(f2:Op(Ky, 5+ V))p). Note that
(f2:0p(K x5+ V))p =0

if f2 has good reduction at P, we get (2).

Theorem 4. Let f : X = B = SpecOg be a regular arithmetic surface of genus
g>1,let L D K be a finite extension of degree \, Oy the ring of integers of L and
B = SpecOy,. Then we have

(1) %IC2~ = < K’?\’/B’ and %degfﬂu'qulg < degfuKx/B, where the second in-

equglftil 1s valid for any metric on f.Ky,5.

(2) %KZ},E = K:?‘\’/B if and only if all fibres of X/B are reduced and X = X5,
X1 has only rational double points,

(3) -}K}/g = K%(/B if and only if %degﬂicffg =degfilkx;i-

(4) Let R(r) = Y. rp[P) be the ramification divisor of m: B — B and S = {b €
B\f has bad reduction at b}. If D is an effective horizontal divisor on X,
and D 1s its proper transform on X,. Then

. 1 49 — 4
n(P)ES
. 1., ~  deg(D
(3.2) Kyx/p-D~Kgg p.D < # > e

n(P)ES

Proof. (1) and (2) have been proved in [11]. For (3), we only need to show that
%degﬂ}\fg/ﬁ = degf K x;p implies V = 0, which is equivalent to V' = 0 because
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V = R(p)+V, and V = 0 will imply R(p) = 0. By lemma 3 (2), if Sdegf. K35 =
degf.K x/p, we have

Zdim'k(P.-)Ho(O\?;(I{Xg/E + V1) =0,

=1

namely, for every 7, one has
. r T7 - 7 1 P 17
_dzmk(P;)H](OV,- (I‘,\'E/E + Vi) = X(Ofi,.(f‘*x,_/g +Vi)= X4 Kx/p-Vi20.

Thus HO(OT/,.) > HI(O{;‘,(K{\.#B- + V;)) = 0, which implies that ¥; = 0 for any 1
we get (3).

By lemma 3, we have the following two equalities, which will imply (3.1) and
(3.2) of (4) respectively if we remark that R’ contains rp f, ' (P) when 7(P) ¢ S
and deg(ﬁ) = deg(D),

/\I(?\'/B —I\P%/E = (4g_4)z7p _2[)*[&"?/5 'RI+V2
P

Mix/p-D—Kg,5-psD=deg(D)y rp—R-D.
13

In the following example, we shall apply above theorem to the case of function
fields of characteristic zero and drive out some known results (due to Tan, S-L.).
However, our argument is very simple.

Example. Let f: 5 — C be a non-isotrivial fibration of complex algebraic surface
of genus g with b = g(C). For any irreducible horizontal diwisor D, we fiz the
follouwnng notations

2¢(D) — 2

_Ksc-D _
deg(D) ’ (D) = deg(D)

hi(D) =

where D denotes the normalization of D. If s denotes the number of points of C at
which f has bad reduction. Then one has

(1) K%jc < (29 —2)(2b— 2+ 3s)

(2) hg(D) < (29 —1)(d(D) 4-3s) — s — Kg/c*'

For any natural numbers d and e, a refinement of Kodaira-Parshin construction
asserts that there is a cover 7 : C = C of degree de such that 7 is ramified to order
exactly e at all points lying over points of C' of bad reduction. Applying above
theorem (4) to this base change 7, we have
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It is well known that f : S — C will be a semistable fibration when e becomes very
large. Thus one can use Vojta's inequality ([8])

K%,z < (29— 2)(2¢(C) - 2 + 3).

Note that § = ds and 2¢(C) — 2 = de(2b — 2) + d(e — 1)s, one has
(49 —4)s

e

I\.S/C (29 — 2)(2b — 2 + 3s) —

This is (1).
As it was pointed out in [13], when f : S — C is semistable, the following
inequality can be obtained by using Miyaoka-Yau inequality,

hie(D) < (29— D)D) +5) — K0

The second step (main part of [13]) was devoted to show the following inequality
for nonsemistable case,

hi(D) < (29 = 1)(d(D) + 3s) — K5/

We would like to present an alternative treatment for the second step of [13] by
considering the commutative diagram

S<P 52 SPI}SI ‘m}S

N

=~ m
s D L C,

where my : D — C is the normalization of D and Ty C — D is a cover of degree
de such that m; is ramified to order exactly e at all points lying over points of D of
bad reduction, S| and S; are minimal desingularizations of S x¢ D and 51 X5 C
p is the contraction of (—1)-curves in the singular fibres of f;.

Write # = mymg and ¢ = @102, let E be a section of fi such that . E = D
and E the proper transform of E on Sz2. Applying (3.2) of theorem 4 (4) to base
change 7, since go,,E' = deg(my)D and deg(n) = de - deg(D), we have

Kgc- D 1 i T

- Kz,5 p.E <
: 5/6 =
deg(D) de - deg(D) de - deg de - deg(D) r(Pres

Let 53 be the number of points of D where fi has bad reduction, and take e big
enough so that f: S — C is semistable. Then, note that d(p,.E) = 2¢(C) — 2, by
using the inquality of semistable case and (3.1) of theorem 4 (4), one has

hix(D) < (29 — 1)(d(D) + de;( )) f§/0+;€i—€;(3m >
n(P)ES

The elementary computations tell us that 3 p)cs7p = de- deg(D)s — ds;. Thus
we can rewrite above equality as the following

_.s‘_) K2 _4g-3 s

deg(D) tsje e deg(D)’

It is clear that we have done by the remark s < 51 < deg(D)s.

hi(D) < (29 — 1)(d(D) + 2s +
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