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RAMIFICATIONS ON ARITHMETIC SCHEMES

XIAOTAO SUN

INTRODUCTION

It is weH known that ratnifieation theory on extensions of Dedekind domains
is a very classieal topie in algebraie number theory. There are also lllany works
on ramifieation theory in Noetherian rings ([1], [6], [7]) . This paper is interested in
applying them to study the geometry of arithnletic sehemes.

Let f : X. --+ Y be 30 morphism of finite type between regular schemes. For any
point x EX, oue eaIl define the ramifieation index r(0:1:/0f(x)) of f at x by using
Fitting ideals of n~ 10 ,alld the reduced ratnification index e(Ox/Of(x)) of f

:lI J(.,)

at x (see the foHowing defini tions ). When X and Y are of dirnension 1, a very
classical theorem ofDedekind gives the relation ofr(Ox/Oj(x)) and e(Ox/Oj(x)):
r(Ox /0f(x)) 2: e(CJx/Of(x)) - 1. This theorem was generalized to the case of bira­
tional extensions üf regular local rings ([10]) and had been used to study birational
morphisms of regular scheInes ([9],[12]). But an works only concerned the case that
the extension of function fields of X atld Y is finite, thus O-Fitting ideal is enough
for the story. BasicaHy, O-Fitting ideal is a principal ideal alld satisfies transitive
law, whieh make everything works well. In this paper, we are going to eonsider
the case that X/Y is a falllily of algebraic varietics, espccially a regular arithluetic
scheme. \Ve shall fonnulate the notation of ranüfication locus of f by using high
order Fitting ideals, which can be considered as the degeneracy loci of a morphism
between vector bundles. \iVhen f : X --+ Y is a fibration of algebraic surface over an
algebraically closed field of characteristic zero, the ranüfication locus of f is nothing
but the zero subscheme of a section of vector bundle n); 0 (f*n1)v. Sinee this fact,
Iversen ([5]) Call prove a fonnula expressing the diference of Euler characteristics
of singulat, fibre X s = L 1niri and a smooth fibre by

]{XIY . L(111.i - l)ri - (L(111i - 1)fi)2 + L J.Lx(f).
i i xEX lJ

There is no such vector bundle available in the case of arithmetic sllrfaees. However,
Bloch's formula cau express Artin eonductor by localizecl ehern class of n\-/y (see

[2] für the definition). By using Bloch's work ([2],[3]), we can generalize the above
formula to arithmetie surface replacing L:(11li - l)ri by ralnification divisor R(f)
of f (theorelu 3).

We colleeted SOlne facts of comnlutative algebra anel recalled some notations of
[11] in §O. In sect ion 1, we firstly proved a theorelu on ralnification index üf discretc
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2 XIAOTAO SUN

valuation rings, which is a generalization of Dedekind's theorem. After that, we
generalized a result of [11) to high dimensional aritlul1etic schen1es, which gave the
relations of relative canonical sheaf with ramifications anel differentials. In section
2, we proved a formulaexpressing Artin conductor by ramification locus of f, which
should be considered as a corollary of Bloch's thcoren1s. The section 3 is a comple­
ment to §2 of [11) about base extensions of arithmctic surfaces. One observation
here is that the changes of invariants of arithll1etic surfaces caused by a base ex­
tension are determined by the difference between the base extension 's ramification
and the ramification of lnorphism induced by the base extension. Applying this
observation to the ease of function fields, we ean give a very simple treatInent for
some known results and drive out a sharper height inequality of algebraic points
than [13].

All the morphisms and algebras in this paper are of finite type, and aU the rings
are noetherian domain. We use same results of [4] such as Riemann-Roch theorem
and Serre duality theorelll for curves on surface without 111ention.

Acknowledgement. I would express my heart thanks to Professor F. Hirzebruch
who invited me visit Max-Planck-Institut für Mathematik. I also thank R. Hübl for
the communications about theorem 1.

§O Prelinlinary.

Let us recall some notations of [11] in this seetion, the detail proofs cau be found
in [6] and [7]. We first recall the notations of Fitting ideals and ramifications.

Let R be a ring, lvI a finite R-module, and {nl,l , ... , 'ln n } a system of generators
of M. The exact sequence

o ---+ I( ---+ Rn ~ lvI ---+ 0

is called the presentation of M defined by {rn!, "., n1n }, where 0' lnaps the i-th
eanonical basis element ei onto mi(i = 1, , n)and 1( = keTO'. Let {vA} AEA be a
systelll of generators of 1( with VA = (X~, ,X~) E Rn (A E A). Then

(xt)i=l, ... ,n
AEA

is ealled a relation matrix of M with respect to {rnl' ... , m'n}.
Given such a matrix, let Fi(M) denote the .ideal of R generated by all (n - i)­

rowed subdeterminants of the relation matrix (i = 0, 1, .. ,n-1), and let Fi(M) = R
for i 2: n. One can prove that Fi(M) does not elepenel on the special choiee of the
relation matrix and the choice of the generating SYStell1 {nI, 1, "., rn n } of M. We eall
Fi(M) the i-th Fitting ideal of M.

Let A, B be two Ioeal rings with tT.deg(Q(A)/Q(B)) = d anel mA n B = mB,
where mA and mB are maximal ideals of A and B. For aJ1Y ideal 1 of A, we define
VA (1) to be the largest integer such that I ~ rn ~t (I). We eall

T(A/B) := vA(Fd(n~/B))

the ramification index of A over B, and
r

e(A/B):= n/,ax {VA (II xd I(Xl, .", X,.) are the generators of 1nB}
(Xl'···'X r ) .

I;;;; 1

the redueed ramifieation index of A over B
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Proposition 1. Let M be a finite R-moduleJ Fi(lvI) the i-th Fitting ideal 0/ M.
Then

(1) For each algebra SIR we haue

(2) 1/ N c R is a m'ltltiplicatively closed subset, then

(3) 1/ M has rank r := dirn/{(I( 0R ]1,11), then Fi(lvI) = {O} /or i = 0, ... , r - 1,
and Fi(M) i= {O} for i ~ r.

From ahove proposition, wc can see easily that to study r(AIB) and e(AIB) one
can always pass to the completions of A and B. For the convenience, we coHect
same facts of completion as a proposition without proof, which can be fOUlld in
books of H.Matsumura and O.Zariski.

Proposition 2. Let A be a noetherian ring, 1 an ideal 0/ A and A the 1-adic
completioll 0/ A. I/ M is al1 A -module such that MI1M is a finite AII -module,
then we haue

(1) A is regular i/ Ap is regular /or euery prime ideal P 0/ A cOl1taining !.
(2) The!-adic completion 0/ M is a finite A-module. In particular, i/ A is

complete and M is Hausdoff for the 1-adic topologYJ then M is a finite
complete A -mod7tle. __

(3) Let P :> ! be a prime ideal 0/ A, and P = PA, then

Then we want to recall the notations of higher lllodules of differential forms, all
ofwhich can be generalized to global case, i.e., sheaves on sehernes. Let !( := Q(R),
and M a finite R-module such that MI\.' := !( &; R A1 is a frce ](-rnodule of some
rank r. For a system of generators {x 1 , ... , X n} of A1, let

be thc presentation of M corrcsponding to {Xl, ... , Xn}, i.c. ß(ed = Xi for i = 1, ... , n
and U := ker ß. elearly A n - r +1 a = 0, since Ug :=]( 0R U of rank n - r. Then,
for euch rn E N, there is a canonical R-linear rnap (write F := Rn)

which is defined as the following: For w E Am A1 choose a preilnage wE Am F with
respect to Am ß. Thcn
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takes any u E Au-ru to J\n-ra(u) Aw E An-r+m F. Thcrefore, there is a canonical
commutative diagram

A7nM
epm

) Hom (An-ru An-"+7n F)R ,

1 lxm

A 7n lvIg
ep';;

) H ornK(A n-"Ug, An-r+mp,)1'.. ,

where x711(l) = idK 0 1 for any l E H O1nR(AU- r U, An-r+711 F). One can prove
that the R-submodule (c.pj() -1 (im X 711 ) of Am A1l't is independent of the choicc of
the system of generators of lvI. If S is aR-algebra, we take ]vI = nk/ R' the relative
differentiallllodule, then we call

the rn-th module of integral differential forms of SIR.

§1 Ramiflcation indexs and canonical sheaves.

In this section, we shall prove a theorenl on rarnification index of extensions of
discrete valuation rings at first, which was known as Declekind's ramification main
theorem in the case of finite extensions, our result is a generalization of Dedekind's
theorem to higher dimension (i.c. thc extensions may have transccndental degree).
Then we will discuss the relation of canonical sheaf of an arithmctic scheme with
its ramifications.

Theorenl 1. Let AlB be an extension 0/ discretc valnation rings, essentially 0/
finite type with residual jields k(A) and k(B). // k(A) is separably generated over
k( B) I we have

r(AIB) ~ e(AIB) - 1,

and the equality holds i/ and anly i/ e(AlB) is not a 1nultiplco/ char (k (B) ).

Proof. Let 1nB = (t)B and mA = (u)A be the nlaxirnal ideals of B and A, VB

and vA the valuations of Q(B) anel Q(A) detcrmillcel by B anel A. Without lost
generality, we suppose that A and B are conlplete and write t = aou e

, where
e = e(AIB) and vA(ao) = O.

Since k(A) is separably generated over k(B), we can choose Xl, ... , Xd, in A such
that k(A)lk(B)(Xl, ... , Xd) is a finite separable extension. Since B is a eliscrete
valuation ring) it is easy to see that Xl, ... , Xd are algebraic inelepondent over B.
Let P = (t)B[Xl, ... , Xd] anel R = (B[Xl, ... ,xdDp, it is not hard to prove that
A ;2 R ;2 B are extensions of discrete valuation rings with rnn = (t)R. Since
k(A)lk(R) is a finite separable extension, there exists a y E k(A) and a separable
minimal polynomial !(Y) E k(R)[Y] of degree r such that k(A) = k(R)(y) alld
!(y) = O. We can assurne that R is complete by passing to its conlpletion, so there
is a lifting of f} and !(Y), say y E A anel f(Y~) E R[}~], such that f(y) = O. By
Proposition 2, A is finite over R. On the other hand, AI(t)A is generateel by
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as a k(R)-lllodule. Thus, by Nakayama's leIIlllla, we have

A = R[[u,y]]
(f(y), t - aoue) .

So n~/B is generated by dy, du, dXI,' .. ,dXd with relations

d

L f)~~y) dx; + f'(y)dy = 0
i=l 1

Thus the relation matrix of n~/B is

5

(

ßf(y)

M - aXI'
- e Bao

U -a'
Xl

ßf(y)
... , aXd '

e aao
... ,U aXd'

f'(y),

e Bao
'lL ay'

By the definition of Fd(n~/B)' which is generated by all subdeterminants of M.
Thus we have

7'(A/B) = min{VA (subdeterminants of .A1)} 2:: e - 1,

and the equality holds if anel only if e is not a multiple of char(k(B)), we have
done.

Remark 1. From the proof) we know that r(A/B) :S r(A/R). In factJ consider
the followin9 commutative diagram (for simplitYJ we assume that R' = R)

o

o

) nk/B 0R A n~/B ) n~/R

r r r
AEBd ) AEB(d+2) ) AEB2

r r r
0 I( 0 I{'

--~) 0

--~) 0

--4) 0

we can see that a is an isomorphism and the images

a(t f)~~y) dx; + j'(y)dy) = f'(y)dy
i=l l

d

("""' cDao eBao (e aao C-I) I )
0' L u -a-:dXi + U a dy+ U a + eu - ao {u

i=l Xl Y u

aao aao e I
= u e _a dy + (u e -a +eu - ao)du

y u
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are generators 01 ](', so r(A/R) = VA(U e 8aa
o + eUe-laO) (one simply remarks that

u
vA(f'(y)) = 0 since fi is a separable element over k(B)). On the other hand, we
know that

r(A/B) = min{VA( U
C ~~ + eu e

-
l ao), VA( other subdeterminants of Mn.

When e is not a multiple 0/ char(k(B)), one can see easily that

Bao 1 .
VA(U e 8u + eu e

- ao) = e - 1 < vA(other subdetermlnants 0/ M),

hence 7'(A/B) = r(Aj R) = e - 1. But when e is a m'ltltiple 0/ char(k(B)), there is

no evidence that VA(U e ~~ + eue-lao) must be smaller than

vA (other subdeterminants 01 1\1).

Let S = Spec(A) be the spectrum of a Dedekind donlain whose residual field
at each prime ideal is perfeet 01' of chacteristic zero, and f : X --r S a flat and
projective scheme over S. By an arithmetic scheme of dilnension d + 1, we mean
that X is regular, generic smooth over S and tr. (Q()() j Q(S)) = d. The relative
canonical sheaf KXjs and the Fitting ideal shcaf F(XjS) can bc introduccd as the
following.

Definition 1. The presheaves 0/ JC x /s and F(Xj S) are dcfincd as the lollowing:
For any affine open set U = Spec B 01 X, let

KXjs(U) = ~d(BjA) F(XjS)(U) = Fd(nk/A)'

Let
i: X y P = IPs

be an embedding and I the ideal sheaf of )( in P, then we have the following
commutative diagrarn .

Adn~/s
rpd

) H ornox (An-dIj'P , Ani*n l )
PIS

(*) 1,d lxd

d

Adni/K
rpL

) H om L(An - d(I/Tl,) L , An(i*n~/S)L)'

where ,d, Xd are the canonical maps, and c.pd, c.p1( are defined as in §O. For a
coherent sheaf 9 on, we always denote 9 00...- L by 9L, and consider L here as a
constant sheaf. The relative canonical sheaf of ..:\{/ S is

JC x /s ~ Homo x (A n
-

dI/I2
, Ani*n~/s),

which can be seen as a subsheaf of the constant sheaf Adni/J(' If F(XjS) is the

Fitting ideal sheaf of XIS, then we can write :F(X/S) = IR . ID, where IR is
the ideal sheaf of rarnification divisor R(f), and ID dCllotcs thc ideal of J'esidual
scheme D.
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Theore1112. Let f : X -+ S be an arithmetic schemc 0/ dimension cl+ 1, and R :=

I: riCi the ramification divisor 0/ f. Then we have the /01l0win9 cxact sequence

In particular, we have

I/ mi = 1n(Cd denotes the multiplicity 0/ Ci in the fibre containing Gi, then

1'i ~ mi - 1.

The equality holds ij and only ij mi is not a multiple 0/ the characteristic 0/ residual
field 0/ f( Cd·
Proof. By using thcorenl 1, it is easy to see that theorcrTI 2 is a corollary of the
following lemma, which gives the relation of K x/s and thc image of Adn~\,)S nnder,d.
Lell1111a 1. Let f : X -+ S be a projective schcme 0/ dimension cl + 1. Then

Proof. It is enough to prove the lenlma locally, let U = Spcc B (md B = P / I,
where P = A[XI' ... , Xn]N. \Ve have the exact sequence

Tqen the diagram (*) becomes

~d d
---t) HomB(A n- 1/12 , An(B @p n~/A))

1x
d

We only nced to determine Im 'Pd.
Let {bI, ... , bn } be a basis of B @p n~/A such that {Wi = ß(bd : z = 1, ... , n}

generates n1/A' and let

I / I 2 = B t l +. . . + B t r + B 111 +. . . + B 1l m (111. ~ n - d)

such that 0'(Ul), ... , 0'(um) form a system of generators of a(1/12 ) and ti (i = 1, ... , r)
are torsion elements (i.e. a(td = 0). Then wc have

An-d I/ I 2 = L B(tjl /\ ... /\ tj8 /\ Ui 1 /\ ••• /\ Ui~),

s+JL=n-d
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B (a(ll· ) 1\ ... /\ a(ll . ))}1 }n-d ,

jl, ... ,jn-d

Let

n

a(lld = I: aijbj (i = 1, ... ,1n).
j=l

A=

a11 a12 al11

a21 a22 a2n

amI am 2 amn

be the relation matrix of n1/A with respect to {Wi = ß(bd : i = 1, ... , n}. Then, by

the definition of cpd,

(1.1 ) (l)d(W' 1\ ... /\ w· )(a(u' ) /\ ... 1\ o.(u· ))r 11 Id J1 Jn-d

=O'(U·)/\'" /\a(u· )/\b' /\···I\b·}1 }n-d 11 Zd

where A I
•
1

,'" ,I.d is obtained from A by keeping the raws with numbers jl, ... , jn-d
}l,···,}n-d

and deleting the columns with numbers i 1 , ... , id. So, by the definition of Fitting
ideal, we get

Note that di1nL(L 0B 0(1/]2)) = n - d, we cau assnme that a(ul)' ... , a(un-d)
consist a basis of L &JB o.(] / ]2), which means that there is a nozero element a E B
such that

a . a (An - d I / 12
) ~ B . (Cl: (111 ) /\ . • • 1\ a (1l n - d ) ) .

Thus every homomorphism

is determined by its image h(a(u1) 1\ ... /\ a( ll n -d)), since An(B 0 p n~/A) is a free

B-module of rank one. This fact and the above (1.1) show that

But

Adnk/A/(AdnkjA)tor.9 f"V ITn,d:: 1mcpd,

which completes the proof.
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§2 Ranliflcation nUluber alld Artin cOllductor.

In this section, we restriet ourself to the case of dinlension 2. More precisely,
let S = Spec{A) be the spectrum of a complete eliscrete valuation ring with alge­
braically closed residue fie1d k, anel f : X -+ S a Rat, proper schellle over S. We
assume that X is regular and of dimension 2 with special fibre X s = L: mir j and
smooth generic fibre )(t] l where sand 1] denote the closed point and genel'ic point
of S. Let Z be the subseherne of X determined by thc Fitting ideal sheaf of XIS.
We elenote :F(XjS) by Iz anel write Iz = IR' ID, where IR is thc ideal of a Cal'tier.
elivisor in X \vhose loeal cquation is the g.e. cl. of generators of Iz, and ID is the
ideal sheaf of residual scherne of Z. In the Chow groups CH 1 (Xs ) anel CHO(Xs ),

we have

We define the rarnification nurnber of f as

r(f) = I{x/s . R - R2 + L f-Lx(f)·
xEX,

One can pl'ove easily that R. is the ramification divisor R(f), and J.-lx(f) are nothing
but the Milnor nUlllbel's in the geornetric ease. Preciscly, let 1n.x = (u, v)Ox and
{t)A be the rnaximal ideal of A, then we havc

Ox ~ A[[u, v]] ,
(t-f(u,v))

8f B/ "
I z = (Du' Dv) CJx .

Bf Bf .
Let dx be the g.c.el. of -8 anel -B ,then, by the defintIoll, we have

1l v

VVhen X s is reducecl, Ilx(f) was defined by Deligne ancl ealled Milnor numbel'
(see [4]). However, when 1nj is a multiple of thc characteristic p = char( k), we even
failure to prove that fl x (f) = 0 at regular points of r i • Vve can give the following
simple description of 1'(/) nudel' the assumpation p f TI rn·i·

Propositon 3. Let s(Xs ) denote the set 0/ sing'll,larities 0/ X s,7'ed and p t TI 1ni.
Then

r(f) = 2(9 - Pa(Xs,red)) + L /lx(!),
xEs(X,)

where 9 is the genus 0/ Xt] and Pa(X-'l red ) the arithmeiic genus 0/ Xs,red. In
particular, when Xs,f'ed is a semi-stable curvc, we have

Proof. Since pt TI mj, by our theorern 1, we have
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The loeal eomputaion shows that J.lx(f) = 0 at x ~ S()l.9) and !-Lx(f) = 1 when x is
a rational double point, so we have done.

It is dear that r(f) is determined by loeal properties of f and can be eomputed
locally. Now we want to relate r(f) with thc Artin eonductor Art(XIS) of XIS,
whieh was defined as

where X(Xs ) and X(Xi]) are the etale Euler charaeteristic of X s and geometrie fibre
Xi], sw(XjS) is the Swan conductor (see [2J and [3] for the details).

Theorelll 3. Art(XjS) = 1'(/).

The proof heavily depends on Bloch's fonnula and should be eonsidered as a
remark of [2J and [3]. Firstly, we shall prove two lemmas.

Lenlllla 1. Let n:'(/S,tors be the torsion subsheaf 0/ n~'(/s' Then

(1) n~,(/S,tors is an invertible On-module . .o~/s00z is a locally free Oz-module
0/ mnk 2.

(2) We haue the following two exact seq'llcnccs

(2.1) 0 -t .o~/Sltor.9 -t .o:\,"/s (9 Oz -t (IzI(x/s) (90z -t 0

(2.2) 0 -t .o\/s,tors -t .o\/s (9 OR -t (lz!(x/s) (9 On -t O.

Proof. Locally, we have

. BI BI BI Bf .
Wnte w = Bu du + Bv dv and w' = d;l Du du + d;l 8v dv, we daun that

(n~\')s,tors)x = V x ' w', where w' denote the irnage of w' in (.o~/s)x.

It is deal' that Gx . w' ~ (S1:X-/S,tors)x since dxw' = dx-w' = w = O. If Wl E

(S1:X/ S ,tors)x, then there exist a E V x such that aWI E Gx . w. Write Wl ­

al du + az dv, then there is an element b E 0 x such that

which implies that alb aal , alb aB!' We can assun1e that a and b have no common
u v

divisor in Ox, thus aldxl which implies that Wl E Gx . w', we got thc claim. By the
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above claüll, it is easy to prove that nt/s t is an invcrtible tJR-Illodule. On thc./\ ,ors
other hand, we have an exact sequence

which ineluce an exact sequence

But the image of i 0 1 is zero, we have

namely, n~/s ~ Oz is a locally free Oz-nlodule of rank 2. We have shown (1).

By our theorem 2 and n1
x/s t rv nxl~/s t ~ Oz as a OX-Illodule, we have the... ,ars ! ars

exact sequence

We only nced to check that n\r/S,tars --+ n~/s 0 Oz is locally injective, namely

is injective. If fiW' E /z(n~\/s)x, then CUJ)' E /z . (Oxdu EB Oxdv). Thus

Hut dx is the greatest comlnon divisor of aal anel aa!' we have dx/a, namely, aW' = 0
1.l V

and (2.1) is exact. Thc salne argument implies that (2.2) is exact.
Before stating lemma 2, let us recall sonle notations of [4}. If J:. is a coheren 0 x­

module with support contained in X s , we define thc Eulcr-Poincarc characteristic
X( L:) of L: as

If K; is an OX-Inodulc cOlnplcx whose cohomology sheaf have supports in X s , we
define that

Lenuua 2. With above notations, wc hatlc

(1) Cl(n~/S,tors) = R.
(2) X(n~/S!tars) = R2 + X(tJR).
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Proof. Applying our theareln 2 to d = 1, we have exact sequence

whieh and Cl (n ~y/5) = 1('(/s iInplies that

But 1zJCx /s = 1DOX(1(x/s - R) anel

o-t 1DOx(1(x/5 - R) --+ OX(1(X/5 - R) -t OD(1(x/5 - R,) --+ 0,

we have
Cl (1z JCx /s ) = 1(X/5 - R- Ct(OD(1(x/5 - n.)).

Note that Cl (0D ®.c) = 0 for any invertible sheaf .c on ..Y, we get (1).
By the exact sequence (2.2) of lemma 1, we have

By using a lemlua of Bloch ([2], lemma 7.4), \ve clainl that

In fact, for any irreducible component ri of R, Bloch's lelnma says that, when one
consielers 01'.: 0 n~/5 as a locally free O1'j-moclule on ri, one has that

Thus Rielnann-Roch theorcn1 on r i ilnplies that

On the other hand, wc have exact scquence

(2.3)

which indllces the fallawing exact sequencc

o--+ Or i ( - R + r i) 0 n~/5 -t 0 R @ n~'(/s -t 0 n- r i @ n~/s -t 0,

since OR 0 n~/5 is a locally free On-module. ThllS

By induction for L: Ti, we have
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Use (2.3) again, we get

X(OR) = X(OR-rJ + x(OrJ - ri(R - r i ),

namely, we have the claim.
Now we want to corupute X(OR 0 Izlex /s ). Since Iz = IR . I D , we have

°-t On0ID -t Oz -t OD -t 0,

which ineluces

13

0-+ OR 0 IDO(I(x/s - R) --+ Oz!Sl O(I(x/s - R) -t OD 0 O(I{x/s - R) -+ 0.

But OR 0 IzlCx /s ~ On 0 IDO(I(x/s - R), we havc

X(OR 0 IzlCx /s ) = X(Oz 0 O(I(x/s - R.)) - X(OD 0 O(I(x/s - R)).

On the other hand, one has exact sequence

0-+ 000 O(-R) -t Oz -+ On -+ 0,

which implies that

X(Oz 0 O(]{x/s - R)) = X(OR(](X/S - R,)) + X(CJD 0 O(!(x/s - 2R)).

Note that x(0 D ®.c) = X( 0 D) for any invertible sheaf .c on ..r\, we get

x(n~\'"/S,tor.'l) = R
2 + x(On).

Proof of Theorenl 3.

Let IC' denote the following two terms conlplex

n~/s -+ lex/s·

Bloch's theoreln ([3], theorem 2.3) tell us that

Art(X/S) = X(K:').

Since he clefine the first term as degree -1, we have

A1·t(XjS) = X(H 1 (lC')) - X(HO(Ie')),

and

By using the exact sequence

o -+ OD 0 O(I(x/s - R) -+ Oz 0 1C x /s -+ On 0 1Cx /s -+ °
anel X(Oo 0 O(Kx /s - R)) = x(Oo) = ~Ilx(!), one has

X(H1(Ie')) = LJ.lx(!) + !(x/sR + X(OR).

Thus we have the formula

Art(XjS) = I{x/sR - R2 + L J.lx(!)'
xEX,
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Corollary 1. Let f : X --+ S be a regular arithmetic surface and f' : X' --+ S the
blowing up 0/ X at a closed point. Then

(1) r(f')=r(/)+l
(2) r(f) = 0 iff XI S smooth or X is 0/ gen1Ls 1 and 0/ type 10 .

§3. Some remarks on base changes.

In this section, we sha11 give a few remarks about base changes. Applying our
arguments to the case of fUllctioll fields of characteristic zero, sOllle known results
can be drived out easily. Let!( be a number field, CJ /{ the ring of algebraic integers
of !{, and let 1 : X --+ B = Spec CJ J( be a regular aritluuetic surface of genus
9 2:: 2 over B, namely, X is a regular projective scheIne of dilnension 2, XI<: is
geometrically irreducible of genus 9 2:: 2. If L ~ !( is a finite extension of degree A,
then the natural morphislll 1f : B = Spec CJ L --+ B is called a base change of X IB.
As the SaJ11e as [11]' we consider the following commutative diagram:

X ( p 1ft ) X X B B

B

Pt X)

B,

where 1fl is the nonualization of X x B B, 1f2 is the lninilual desingularization of
XI and p is the contractioll of (-1 )-curves in the singular fibres of /2,

Let 4> = PI 0 1fl and e.p = 4> 0 7[2, we call j : X --+ B the induced arithlnetic
surface of 1f. Let K S: / ii anel !(x/ B denote the Weil clivisors of JC Sf / ii and JC X / B

anel write 11 = e.p. K x / B - p. 1{x/ jj, we have known that V = I; R( 1f) - R( e.p) +R(p)

anel V = I; R(1f) - R( e.p) is an effective vertical divisor ([11]), where R(Jr), R( e.p )
and R(p) are ramification divisors of Jr, e.p anel p. Dur first relnark is an elementary
lemma

Lelnnla 3. Let PI, ... ,Ps be the points 0/ B 'where 12 has bad reductions and let

.............. .......

V = VI +... +Vs ,

--- -Iwhere Vi ~ 12 (Pi)' Then we have

(1) R' := R(e.p) - R(p) iB an eiJective divisor.
,.. 1-

(2) Let Xrr = degl.JC X / B - >..deg!.JCX/ B, then

s

x" = ~ Ldimk(?,JHO(OVi(J(X2/B +V;)).
i=1

Proof. Vve can write R' = D 1 - D 2 such that D 1 and D 2 are effective divisors
having no common conlponents and D2 ~ R(p). Thus
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since p.!(Xjjj . D2 = 0 and f; R(1r) . D2 = O. But D2 ~ R(p), D2 has to be zero.

We have shown (1).

From [11], we known that <p. !(x/ B - 1\"'(2/B = V. Thus we have

Since f2.0v(1{X2/B + V) is a torsion OL-moclule and R1ICx'}./D is a locally free
oL-module, we have exact sequence of 0 L-nlodules

which is also volume exact ([8]). By lliemann-Roch theoreln on arithmetic curves,
we have

1 - 1 ""'
deg!.lCx / B - ).deg!.1CX/ B = ).X(!2. CJv(](x

2
/ jj +1/ )),

namely, X,.. = t ~ lOL,P ((!2.0V(!{x
2

/ B+ V))p). Note that

if !2 has gooel reduction at P, we get (2).

Theorenl 4. Let f : X -+ B = Spec GI( be a regular arithmetie sur/aee 0/ genus
fL> 1) let L :::) ]( be a finite extension 0/ degree /\, OL the ring 0/ integers 0/ Land
B = Spec OL. Then we have

(1) "lICR/B :::; K~jB' and tdeg!.JC1\;jB :::; deg!.K x /B , whcre the seeond ill­

equality is valid for any metne on f.Kx/J3.

(2) -l-ICR/B = K~/n i/ and only i/ all fibres 0/ XI Bare red'ltced and X = X 2 )

Xl has only rational double points.

(3) XIC}/B = JC~jB if and only i/ tdeg].JCX/B = deg!*JCx/J).

(4) Let R(1r) = I: 1'p[PJ be the ramification divisor of 1r : jj -+ Band S = {b E
Blf ~as bad reduction at b}. 1/ D is an effective horizontal divisor on X,

and D is its proper trans/orm on X 2 . Then

(3.1)

(3.2)

.... 2 1 2 4g - 4 ~
I\.. VjB - -I\.. - - < l' P

1~ A x/n - A
,..(P) ES

Proof. (1) and (2) have been proved in [11]. For (3), we only need to show that

"ldeg!.KXjjj = deg!.K xjB implies V = 0, which is equivalent to V = 0 because
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Y = R(p) + V, and 11 = 0 will imply R(p) = O. By lenl111a 3 (2), if tdeg!*JCx/jj =
deg!*JCx /B, we havc

s

~ dim'k(PdHO(GYj(](X2/B + Vi)) = 0,
i=l

namely, for every i, onc has

Thus HO(Gy) f'V H 1 (CJ Vi (]{x
2

/ B + Vd) = 0, which ilnplies that Vi = 0 for any ~,

we get (3).
By lemma 3, we have the following two equalities, which will imply (3.1) and

(3.2) of (~) respectively if we relnark that R' cantains 1'p12-
1 (P) when 7r(P) rt s

and deg(D) = deg(D),

AI(3</B - I(~jB = (4g - 4) ~l'P - 2p*I\.'tjB· R' + y 2

P

AI(XjB' D - ]iX/ B ' p*D = deg(D)~ l'p - R'· D.
p

In the following example, we shall apply abave theareln ta the case of functian
fields of characteristic zero and drive out some known results (due to Tan, 8-L.).
However, our argument is very simple.

Exalnple. Let!: S --+ C be a non-isotrivial fibration 0/ complex algebraic sur/ace
0/ genus 9 with b = g(C). For any irreducible horizontal divisor D, we fix the
/ollowing notations

]is/e . D
hj((D) = deg(D) ,

d(D) = 2g(D) - 2
deg(D)

where D denotes the normalization 0/ D. I/ s denotes the number 0/ points 0/ C at
which ! has bad reduction. Then one has

(1) I(~/c ::; (2g - 2)(2b - 2+3s)
(2) hg(D) ~ (2g - 1)(d(D) + 3s) - s - I(~/c'

For any natural numbers d and e, a refinenlent of I<aclaira-Parshin construction
asserts that there is a cover 1f : C--+ C of degree de such that 1f is ramified to order
exactly e at all points lying aver points of C of bad rcduction. Applying above
theorem (4) to this base change 7f, we have

,..2 1"'2 e - 1 ( )
K s/c :::; del\.S/C + -e- 4g -4 .s.
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It is well known that J:S -+ 0 will be a senlistable fibration when e becomes very
large. Thus one can use \Tojta's inequality ([8])

!(§/c ::; (2g - 2)(2g(C) - 2 + s).

Note that s = ds and 2g(0) - 2 = de(2b - 2) + d( e - 1)s, one has

r2 (4g - 4)..'1
!\s/c ::; (2g - 2)(2b - 2 + 3..'1) - .

e

This is (1).
As it was pointed out in [13], when f : S -+ C is semistable, the following

inequality can be obtained by using Miyaoka-Yau inequality,

hg(D) ::; (2g - l)(d(D) +8) - K~/c'

The second step (nlain part of [13]) was devotcd to show the following inequality
for nonsemistable case,

hK(D) < (2g - l)(d(D) + 3..'1) - !(~/c.

We would like to present an alternative treabnent for the second step of [13] by
considering the cOlnlllutative diagrarn

s ( p

C 1'1"2) D

'P1 ) S

1f1 ) C,

where ?Tl : D -+ C is the normalization of D and ?T2 : C-t D is a cover of de~ree

de such that ?T2 is rarnified to order exactly e at all points lying ove,.: points of D ~f

bad reduction, 51 and 52 are minimal desingularizations of S Xc D and 51 X i5 C,
p is the contraction of (-1 )-curves in the singular fibres of 12.

Write 7f = ?TI?T2 and 'P = 'PI 'P2, let E be a section of 11 such that 'PI *E = D
and E the proper transfonn of E on 82 • Applying (3.2) of theorem 4 (4) to base

change ?T, since 'P*E = rleg(?T2)D and deg(?T) = de . deg(D), we have

!(s/c . D 1 -- 1 L_...:...-_- - !(- -. p*E < 7'p.
deg(D) de . deg(D) s/c - de . deg(D)

1'1"( P) ES

Let SI be the nUlllber of points of D where fJ has bad reduction, and take e big
enough so that j : S -+ Cis semistable. Then, note that d(p*E) = 2g(C) - 2, by
using the inquality of selllistable case and (3.1) of theorelll 4 (4), one has

)( ()
SI) .~2 4g - 3 "

hg(D) ::; (2g - 1 d D + de (D) - !\SjC + de. de (D) ~ rp.
9 9 1'I"(P)ES

The elementary computations tell us that L:1'I"(P)ES Tp = de . deg(D)s - ds l . Thus
we can rewrite above equality as the following

SJ "'2 4g-3 SI
hg(D) ~ (2g - l)(d(D) + 2..'1 + deg(D)) - Ii s/c - ..'I - e . deg(D)'

It is clear that we havc done by thc remark s ::; SI ::; deg(D)s.
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