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COBLE FOURFOLD, S6-INVARIANT QUARTIC THREEFOLDS,

AND WIMAN–EDGE SEXTICS

IVAN CHELTSOV, ALEXANDER KUZNETSOV, AND CONSTANTIN SHRAMOV

To Arnaud Beauville, on the occasion of his 70th birthday

Abstract. We construct two small resolutions of singularities of the Coble fourfold (the
double cover of the four-dimensional projective space branched over the Igusa quartic).
We use them to show that all S6-invariant three-dimensional quartics are birational to
conic bundles over the quintic del Pezzo surface with the discriminant curves from the
Wiman–Edge pencil. As an application, we check that S6-invariant three-dimensional
quartics are unirational, obtain new proofs of rationality of four special quartics among
them and irrationality of the others, and describe their Weil divisor class groups as
S6-representations.
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1. Introduction

Consider the projectivization P5 of the standard permutation representation of the
symmetric group S6 over an algebraically closed field k of characteristic zero, and the
invariant hyperplane P4 given by the equation

(1.1) x1 + x2 + x3 + x4 + x5 + x6 = 0

therein, where x1, . . . , x6 are homogeneous coordinates in P5. Consider the classical family
of S6-invariant quartics Xt, t ∈ k ∪ {∞}, in this hyperplane defined by the equations

(1.2) (x4
1 + x4

2 + x4
3 + x4

4 + x4
5 + x4

6)− t(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)2 = 0,

cf. [Bea13]. Every S6-invariant quartic in P4 is one of the quartics Xt; moreover, most of
these quartics have automorphism groups isomorphic to S6, and every quartic threefold
with a faithful S6-action is isomorphic to some Xt (see Lemma 3.4). We refer to these
quartics as S6-invariant quartics.

Every quartic Xt is singular along a certain 30-point orbit Σ30 ⊂ P4 of the group S6

(see §3.1), and Σ30 coincides with Sing(Xt) unless t =∞ or t is in the finite discriminant
set

(1.3) D :=

{
1

4
,
1

2
,
1

6
,

7

10

}
.

For these special values of t the singular locus of Xt is even larger (see Theorem 3.3 for
its detailed description).

The quartic X1/4 that corresponds to the parameter t = 1/4 is particularly interesting.
Its equation can be written as

(1.4)
(
x4

1 + x4
2 + x4

3 + x4
4 + x4

5 + x4
6

)
− 1

4

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)2

= 0

inside the hyperplane (1.1). It is called the Igusa quartic. The Igusa quartic is singular
along a union of 15 lines (that itself forms an intersting configuration CR, called the
Cremona–Richmond configuration). In this sense, X1/4 is the most singular of all S6-
invariant quartics, except for X∞ (which is a double quadric, i.e., a quadric with an
everywhere non-reduced scheme structure).

The quartic X1/2 is known as the Burkhardt quartic. It has the largest symmetry group
among the other quartics in this family (with the exception of X∞), see [Cob06] and
Lemma 3.4. It also has many other interesting properties, see for instance [Tod36],
[dJSBVdV90], and [Hun96, §5].

The quartics X1/6 and X7/10 have been studied in [CS16b], cf. [Tod33, Tod35, CS14].
The double cover of P4 branched over the Igusa quartic is called the Coble fourfold. We

denote it by Y and write

π : Y → P4

for the double covering morphism. The Coble fourfold can be written as a complete
intersection in the weighted projective space P(2, 16) of the hyperplane (1.1) with the
hypersurface

(1.5) x2
0 =

(
x4

1 + x4
2 + x4

3 + x4
4 + x4

5 + x4
6

)
− 1

4

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)2

,
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where x0 is the coordinate of weight 2. The Coble fourfold Y is singular along the
Cremona–Richmond configuration CR, because so is the Igusa quartic. Moreover, it has
a big group of symmetries: it carries an action of the symmetric group S6 by permutation
of coordinates

(1.6) g · (x0 : x1 : x2 : x3 : x4 : x5 : x6) := (x0 : xg(1) : xg(2) : xg(3) : xg(4) : xg(5) : xg(6)),

and also the Galois involution σ : Y → Y of the double cover

(1.7) σ(x0 : x1 : x2 : x3 : x4 : x5 : x6) := (−x0 : x1 : x2 : x3 : x4 : x5 : x6),

commuting with the symmetric group action. One can check (see Corollary 3.5) that they
generate the whole automorphisms group

Aut(Y ) ∼= S6 × µ2,

where µ2 denotes the group of order 2. Sometimes it is convenient to twist the action of
the symmetric group by the Galois involution. The obtained action

(1.8) g�(x0 : x1 : x2 : x3 : x4 : x5 : x6) := (ε(g)x0 : xg(1) : xg(2) : xg(3) : xg(4) : xg(5) : xg(6)),

where g ∈ S6 and ε(g) is the sign of the permutation g, is called the twisted action.
In contrast, the action (1.6) is called the natural action. It is important not to confuse
between these two actions, so we strongly recommend the reader to keep an eye on them.
Note however, that the actions agree on the alternating group A6 ⊂ S6. Similarly, if G
is a subgroup of S6, by the natural and the twisted action of G on Y we mean the
restrictions to G of the natural and the twisted actions of S6, respectively.

Recall that the group S6 has outer automorphisms (in fact, the group Out(S6) is
of order 2, see for instance [HMSV08]) characterized by the property that they take a
transposition in S6 to a permutation of cycle type [2, 2, 2]; see Lemma 5.11 for other
information about outer automorphisms. If the image of a subgroup G ⊂ S6 under an
outer automorphism is not conjugate to G, we call this image a non-standard embedding
of G. For instance, we have non-standard embeddings of S5, A5, S4 ×S2, etc.

The first main result of this paper is a construction of two small resolutions of singular-
ities of the Coble fourfold that are equivariant with respect to maximal proper subgroups
of S6; note that the rank of the S6-invariant Weil divisor class group of Y (with re-
spect both to the natural and the twisted action of S6) equals 1, see Corollary 5.3, hence
there are no small resolutions of singularities of Y equivariant with respect to the entire
group S6. The varieties Y4,2 and Y5,1 discussed below already appeared in [FV16] in a
slightly different context. A smooth quintic del Pezzo surface S is unique up to isomor-
phism, and Aut(S) ∼= S5, see for instance [Dol12, §8.5]; we fix such an isomorphism.

Theorem 1.9. Consider the twisted S6-action (1.8) on the Coble fourfold Y .

(i) For every non-standard embedding S4×S2 ↪→ S6 there is an S4×S2-equivariant
small resolution of singularities

ρ4,2 : Y4,2 = BlP0,P1,P2,P3(P2 × P2)→ Y ,

where BlP0,P1,P2,P3(P2 × P2) is the blow up of P2 × P2 at a general quadruple of
points P0,P1,P2,P3 ∈ P2 × P2.
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(ii) For every non-standard embedding S5 ↪→ S6 there is an S5-equivariant small
resolution of singularities

ρ5,1 : Y5,1 = PS(U3)→ Y ,

where S is the quintic del Pezzo surface and U3 is a vector bundle of rank 3 on S.
(iii) The maps ρ4,2 and ρ5,1 are isomorphisms over the complement of the Cremona–

Richmond configuration CR ⊂ Y and are uniquely defined up to the Galois invo-
lution σ of Y over P4 by the above properties.

(iv) For every non-standard embedding S5 ↪→ S6 and every subgroup S4 ⊂ S5 there
is a unique S4-equivariant small birational map θ1 : Y5,1 99K Y4,2 such that the
diagram

(1.10)

Y5,1

p

��

θ1 //

ρ5,1 !!

Y4,2

p1

��

ρ4,2}}
Y

S
ϕ // P2

commutes, where p : Y5,1 = PS(U3) → S is the natural projection, p1 is the com-
position Y4,2 → P2×P2 → P2 of the blow up with the first projection, and ϕ is the
unique S4-equivariant birational contraction S → P2.

The Coble fourfold is constructed from the Igusa quartic X1/4, but it turns out that
it has a very interesting property with respect to all S6-invariant quartics. Since the
pencil {Xt} is generated by X1/4 and the double quadric X∞, we have

X 1
4
∩Xt = X∞ ∩Xt for any t 6∈

{
1

4
,∞
}

.

Hence the restriction of X1/4 to Xt has multiplicity 2, so that the double cover π : Y → P4

splits over Xt. In other words, π−1(Xt) is the union of two irreducible components that
are isomorphic to Xt and are swapped by the Galois involution (1.7). It is natural here
to replace the parameter t in the pencil with the new parameter τ defined by

(1.11) t =
τ 2 + 1

4
,

and define the subvarieties Xτ ⊂ Y ⊂ P(2, 16) by (1.1), (1.5), and the formula

(1.12) x0 +
τ

2

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)
= 0.

Note that Xτ ⊂ Y is fixed by the natural action of S6, but is not fixed by the twisted
action. This trivial observation leads to various reductions of groups of symmetries.

With this definition of Xτ we have an equality (see Lemma 3.12)

π−1
(
X τ2+1

4

)
= Xτ ∪X−τ .

The map σ : Xτ → X−τ is an isomorphism, and the map π : Xτ → X(τ2+1)/4 is an
isomorphism for all τ 6=∞. The map π : X∞ → (X∞)red is the double covering branched
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over (X∞)red∩X1/4. Thus, the threefolds Xτ have the same singularities as the quartics Xt

(except for X∞ which becomes smooth away from the S6-orbit Σ30, see Remark 3.13).
We consider the preimages of the divisors Xτ in the small resolutions Y5,1 and Y4,2:

(1.13) X 5,1
τ := ρ−1

5,1(Xτ ), X 4,2
τ := ρ−1

4,2(Xτ ).

Because of the mixture of the natural and the twisted action, the natural groups of
symmetries of the maps ρ5,1 : X 5,1

τ →Xτ and ρ4,2 : X 4,2
τ →Xτ (that is, the groups with

respect to which these maps are equivariant) get smaller. In particular, for τ 6= 0,∞ the
first of them reduces to A5 and the other to

A4,2 := (S4 ×S2) ∩ A6
∼= S4.

Our second main result is the following. Recall the discriminant set D defined in (1.3).

Theorem 1.14. The maps

ρ5,1 : X 5,1
τ →Xτ and ρ4,2 : X 4,2

τ →Xτ

are birational contractions for all τ , and are small for τ 6= 0. Similarly, the maps

π ◦ ρ5,1 : X 5,1
τ → X τ2+1

4

and π ◦ ρ4,2 : X 4,2
τ → X τ2+1

4

are birational contractions for all τ 6=∞, and are small for τ 6= 0,∞. Moreover, X 5,1
τ is

smooth (and thus ρ5,1 is a small resolution of singularities of Xτ ) unless

t =
τ 2 + 1

4
∈ D.

The above maps are equivariant with respect to the following group actions:

ρ5,1 or π ◦ ρ5,1 ρ4,2 or π ◦ ρ4,2

τ 6= 0,∞ A5 A4,2

τ = 0 or τ =∞ S5 S4,2

where all subgroups of S6 are non-standard and the action is twisted.

We use the above results to construct an interesting (birational) conic bundle structure
on the quartics Xt as follows. The fourfold Y5,1 = PS(U3) by definition comes with a P2-
fibration p : Y5,1 → S over the quintic del Pezzo surface S. We consider its restriction to
the threefolds X 5,1

τ ⊂ Y . We show that the maps

p : X 5,1
τ → S

are A5-equivariant conic bundles (and for τ = 0,∞ they are S5-equivariant). We also
discuss their properties, and identify their discriminant curves in S with the Wiman–
Edge pencil (see §3.2 for its definition and the choice of parameterization) of A5-invariant
divisors from the linear system | − 2KS|.

All this is combined in our third main result. Recall that a flat conic bundle X → S
is called standard if both X and S are smooth and the relative Picard rank ρ(X /S)
equals 1.
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Theorem 1.15. The map p : X 5,1
τ → S is a flat conic bundle, equivariant with respect

to the group A5 (for τ = 0,∞ it is S5-equivariant). It is a standard conic bundle unless

t =
τ 2 + 1

4
∈ D.

Its discriminant locus is the curve ∆s(τ) ⊂ S from the Wiman–Edge pencil, where

(1.16) s(τ) =
τ 3 − τ
5τ 2 + 3

for an appropriate choice of the resolution ρ5,1.

We apply the above results in several ways. First, we prove unirationality of S6-
invariant quartics Xt. Further, we give a new and uniform proof of rationality and ir-
rationality of the quartics Xt. For t 6∈ D irrationality follows from the description of
the intermediate Jacobian of a resolution of singularities of Xt via the Prym variety aris-
ing from the conic bundle, see Theorem 4.4. For t ∈ D we show that the conic bundle
can be transformed birationally into the product S × P1, hence Xt is rational, see Theo-
rem 4.6. Finally, we describe the class groups Cl(Xt) of Weil divisors of the quartics Xt

as S6-representations (see Theorem 5.1), and discuss G-Sarkisov links centered at these
quartics for some subgroups G ⊂ S6. We also prove unirationality and irrationality of
the threefold X∞, and describe its class group as an S6 × µ2-representation.

The plan of our paper is the following. In §2 we construct the resolutions of the Coble
fourfold Y and prove Theorem 1.9. In §3 we discuss the conic bundle structures on
the S6-invariant quartics induced by the resolutions of the Coble fourfold, and prove
Theorems 1.14 and 1.15. In §4 we prove rationality and irrationality of the quartics Xt,
and in §5 we describe the S6-action on their class groups. In Appendix A we discuss the
Cremona–Richmond configuration CR = Sing(X1/4) of 15 lines in P4 and show that such
configuration is unique up to a projective transformation of P4.

Throughout the paper k denotes an algebraically closed field of characteristic zero;
however, many constructions do not use the assumption that the field is algebraically
closed. By µn we denote the cyclic group of order n. Furthermore, we denote by

(1.17) Sn1,n2
∼= Sn1 ×Sn2 ⊂ Sn1+n2 and An1,n2 = An1+n2 ∩Sn1,n2 ⊂ An1+n2

the subgroup of Sn1+n2 that consists of permutations preserving the subsets of the first n1

and the last n2 indices, and its intersection with the alternating group An1+n2 ⊂ Sn1+n2 .
Note that An−2,2

∼= Sn.

We are grateful to A. Beauville, S. Bloch, I. Dolgachev, G. Kapustka, D. Markushevich,
Yu. Prokhorov, and E. Tevelev for useful discussions. This paper was written during the
first author’s stay at the Max Planck Institute for Mathematics in 2017. He would like to
thank the institute for the excellent working conditions. All authors were supported by
the Russian Academic Excellence Project “5–100”. The second and the third authors were
also supported by the Program of the Presidium of the Russian Academy of Sciences № 01
“Fundamental Mathematics and its Applications” under grant PRAS-18-01, and by RFBR
grants 15-01-02164 and 15-01-02158. The third author was also supported by Young
Russian Mathematics award.
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2. Small resolutions of the Coble fourfold

Recall that the fourfold Y is defined by (1.5) as the double cover of P4 (considered
as the hyperplane (1.1) in P5) branched over the Igusa quartic (1.4). It comes with the
natural and the twisted actions of the symmetric group S6, see (1.6) and (1.8), the double
covering π : Y → P4 and its Galois involution σ : Y → Y , see (1.7), commuting with both
actions of S6.

The fourfold Y has been studied by Coble in [Cob15, Cob16, Cob17]. He showed that Y
is a compactification of the moduli space of ordered sets of 6 points in the projective
plane. A modern treatment of Y has been given in [DO88, MSY92, Hun96, HMSV08],
see also [BV10]. In particular, Dolgachev and Ortland proved in [DO88] that Y can be
obtained as the GIT-quotient (P2)6�SL3(k) with respect to the diagonal action of SL3(k).
In [Hun96], Hunt called it the Coble variety (he also denoted it by Y ). In the current
paper we prefer to call Y the Coble fourfold.

Since the Coble fourfold Y is singular, it is interesting to construct its resolution of
singularities that would be natural from the geometric point of view. One interesting
resolution was provided by Naruki [Nar82], see also [HKT09] and [DvGK05, §2]. It has
plenty of important properties due to its interpretation as a moduli space of cubic surfaces.
However, it is quite big (it has a horde of exceptional divisors). On the other hand, one
can observe that the variety Y has non-Q-factorial singularities, so we can hope to have
a nice small resolution (i.e., with exceptional locus of codimension 2).

In this section we construct two small resolutions of singularities of Y ; one is equivariant
with respect to a subgroup S4,2 ⊂ S6, and another is equivariant with respect to a
subgroup S5 ⊂ S6. Note that in both cases a non-standard embedding of the subgroup
is used (equivalently, a standard embedding is composed with an outer automorphism
of S6), and in both cases we consider the twisted action of S6 on Y .

2.1. Blow up of P2 × P2. Let W3 be the irreducible three-dimensional representation
of the symmetric group S4 with the non-trivial determinant, i.e., a summand of the
four-dimensional permutation representation. Explicitly, W3

∼= R(3, 1) in the notation
of [FH91, §4.1]. Choose a S4-orbit of length 4

{P0, P1, P2, P3} ⊂ P(W3) ∼= P2.

In appropriate coordinates such quadruple can be written as

(2.1) P0 = (1 : 1 : 1), P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1).

Denote by

PiPj ⊂ P(W3), 0 6 i < j 6 3,

the line passing through the points Pi and Pj.
Consider the diagonal action of S4 on P(W3)× P(W3) and the diagonal quadruple

P = {P0,P1,P2,P3} ⊂ P(W3)× P(W3), Pi = (Pi, Pi).

The vector space W3⊗W3 can be regarded as a representation of the group S4,2, see (1.17),
where the non-trivial element of S2 interchanges the factors. The linear span of the
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points Pi in P(W3 ⊗W3) induces an embedding of the permutation representation k4

of S4 (with the trivial action of S2) into W3 ⊗W3. We denote by

(2.2) W5 := (W3 ⊗W3)/k4

the quotient five-dimensional representation of S4,2. Note that as a representation of S4

it is the direct sum W5|S4
∼= R(2, 2)⊕R(2, 1, 1); here we again use the (standard) notation

of [FH91, §4.1].
The linear projection W3 ⊗W3 →W5 induces a rational map

π̄4,2 : P(W3)× P(W3) ↪→ P(W3 ⊗W3) 99K P(W5).

Note that the center of this projection is the linear span of P in P(W3 ⊗W3), which
intersects P(W3)× P(W3) exactly by P. Therefore, to regularize the map π̄4,2 we should
consider the blow up Y4,2 of P(W3)× P(W3) in the quadruple P:

(2.3) Y4,2 := BlP0,P1,P2,P3(P(W3)× P(W3))
β−−→ P(W3)× P(W3)

with β being the blow up morphism. This induces a commutative diagram

(2.4)

Y4,2

β

ww

π4,2

##
P(W3)× P(W3)

π̄4,2 // P(W5)

By construction the fourfold Y4,2 is smooth and carries a faithful action of S4,2. The
above diagram is S4,2-equivariant.

We are going to show that the map π4,2 : Y4,2 → P(W5) defined by the diagram (2.4)
factors through the Coble fourfold; more precisely, π4,2 factors as a composition

Y4,2
ρ4,2−−−→ Y

π−−→ P(W5),

with ρ4,2 being a small S4,2-equivariant resolution of singularities. We accomplish this in
two steps.

First, consider the linear projection

P(W3)× P(W3) ↪→ P(W3 ⊗W3) 99K P5

from the linear span of the points P1, P2, and P3; as before, the latter linear span
intersects P(W3)×P(W3) exactly by the triple P1, P2, P3. If (u1 : u2 : u3) and (v1 : v2 : v3)
are homogeneous coordinates on the first and the second factors of P(W3)× P(W3) such
that (2.1) holds, this map is given by

(2.5) ((u1 : u2 : u3), (v1 : v2 : v3)) 7→ (u2v3 : u3v1 : u1v2 : u3v2 : u1v3 : u2v1),

and it is easy to describe its structure. We denote by y1, y2, y3, z1, z2, and z3

the homogeneous coordinates on P5, so that the right hand side of (2.5) is the
point (y1 : y2 : y3 : z1 : z2 : z3).
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Lemma 2.6. The linear projection P(W3)× P(W3) 99K P5 with center in the span of the
points P1,P2,P3 induces an S3,2-equivariant commutative diagram

BlP1,P2,P3(P(W3)× P(W3))
ρ′4,2

))

β′

tt
P(W3)× P(W3) // Y ′

4,2
� � // P5

where β′ is the blow up, Y ′
4,2 ⊂ P5 is a singular cubic hypersurface given by the equation

(2.7) y1y2y3 = z1z2z3,

and ρ′4,2 is a small birational contraction. The map ρ′4,2 contracts

• the proper transforms of the six planes P(W3)×Pi and Pi×P(W3), 1 6 i 6 3, and
• the proper transforms of the three quadrics PiPj × PiPj, 1 6 i < j 6 3,

onto nine lines Lij, 1 6 i, j 6 3, given in P5 by the equations

yk = zl = 0, k 6= i, l 6= j.

Moreover, ρ′4,2 is an isomorphism over the complement of the lines Lij. Finally, the

map ρ′4,2 ◦ (β′)−1 takes the point P0 to the point P′0 = (1 : 1 : 1 : 1 : 1 : 1) ∈ Y ′
4,2.

Proof. The map is toric, so everything is easy to describe. We skip the actual computation
which is straightforward but tedious. �

Using equation (2.7) one can easily check that the union of the nine lines Lij is the
singular locus of the cubic Y ′

4,2.
The second step is to project the cubic Y ′

4,2 from the point P′0.

Lemma 2.8. The linear projection π̄′4,2 : Y ′
4,2 99K P(W5) from the point P′0 defines a

regular map π′′4,2 : BlP′0(Y
′

4,2) −−→ P(W5) that fits into a commutative diagram

(2.9)

BlP′0(Y
′

4,2)
ρ′′4,2 //

π′′4,2

%%

β′′

zz

Y

π

||
Y ′

4,2

π̄′4,2 // P(W5)

where Y is the Coble fourfold, π : Y → P(W5) is the double covering, and ρ′′4,2 is a small
birational morphism. Furthermore, the exceptional locus of ρ′′4,2 is the union of proper
transforms of the six planes Πw ⊂ Y ′

4,2 given by the equations

zi = yw(i), 1 6 i 6 3,

indexed by all bijections w : {1, 2, 3} → {1, 2, 3}; the map ρ′′4,2 contracts them onto six lines
in Y (i.e., rational curves that are isomorphically projected to lines in P(W5)), and is an
isomorphism over the complement of those.

Proof. Note that the point P′0 is a smooth point of the cubic Y ′
4,2, so the projection from

it factors through a double covering of P(W5); in fact, this is the Stein factorization for
the morphism π′′4,2. We only have to identify its branch divisor with the Igusa quartic.
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Take a point

(yi : zi) = (y1 : y2 : y3 : z1 : z2 : z3)

in P5 which is different from P′0. The line M(yi:zi) in P(W5) passing through the
point (yi : zi) and the point P′0 can be parameterized as

(2.10) M(yi:zi) = {(λ+ µy1 : λ+ µy2 : λ+ µy3 : λ+ µz1 : λ+ µz2 : λ+ µz3)},

where λ and µ are considered as homogeneous coordinates on this line. Substituting this
parameterization into (2.7), we see that the intersection of M(yi:zi) with the cubic Y ′

4,2 is
given by the equation

(λ+ µy1)(λ+ µy2)(λ+ µy3) = (λ+ µz1)(λ+ µz2)(λ+ µz3).

Expanding both sides and canceling the factor µ that corresponds to the intersection
point P′0, we can rewrite the above equation as

(2.11) (s1(y)− s1(z))λ2 + (s2(y)− s2(z))λµ+ (s3(y)− s3(z))µ2 = 0,

where sd denotes the elementary symmetric polynomial of degree d. Restricting equa-
tion (2.11) to the hyperplane

(2.12) y1 + y2 + y3 + z1 + z2 + z3 = 0,

which is identified by the linear projection π̄′4,2 from the point P′0 with the space P(W5),
we obtain the equation of the double cover over P(W5) we are interested in (embedded into
the projectivization of the vector bundle OP(W5) ⊕ OP(W5)(−1) over P(W5)). The branch
divisor of π̄′4,2 is given in the hyperplane (2.12) by the discriminant of the quadratic
equation (2.11):

(2.13) (s2(y)− s2(z))2 − 4(s1(y)− s1(z))(s3(y)− s3(z)) = 0.

Let us show that the quartic X ′′ ⊂ P4 defined by equations (2.12) and (2.13) is isomor-
phic to the Igusa quartic; this will identify the double covering with the Coble fourfold in
a way respecting the projection to P4, that is, ensuring that the upper right triangle in
diagram (2.9) is commutative.

To do this we use the following substitutions:

(2.14)

x1 = y1 − 2
3
s1(y) + 1

3
s1(z), x4 = z1 + 1

3
s1(y)− 2

3
s1(z),

x2 = y2 − 2
3
s1(y) + 1

3
s1(z), x5 = z2 + 1

3
s1(y)− 2

3
s1(z),

x3 = y3 − 2
3
s1(y) + 1

3
s1(z), x6 = z3 + 1

3
s1(y)− 2

3
s1(z).

They express the composition of the projection π̄′4,2 with a particular identification of

its target space P(W5) with the hyperplane (1.1) in P5. A direct verification shows that
substituting these expressions into equation (1.4) of the Igusa quartic we get (2.13). This
proves that (2.13) is isomorphic to the cone over the Igusa quartic with the vertex at the
point P′0, hence its intersection with (2.12) is isomorphic to the Igusa quartic.

Finally, we describe the exceptional locus of the projection π′′4,2. Clearly, it is the union
of those lines M(yi:zi) that are contained in the cubic Y ′

4,2, i.e., the subvariety of those
points (yi : zi) for which (2.11) is identically zero. This condition can be rewritten as:

s1(y)− s1(z) = s2(y)− s2(z) = s3(y)− s3(z) = 0
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Of course, this is equivalent to (yi : zi) ∈ Πw for some permutation w. Thus the excep-
tional locus is the union of the proper transforms of the planes Πw. Each of these planes
passes through P′0, hence is contracted onto a line in P4 ∼= P(W5). �

Remark 2.15. There is also a computation-free way to identify the branch divisor X ′′ of
the map π′′4,2 with the Igusa quartic. Indeed, note that the singular locus of X ′′ contains 15
lines (the images of the 9 singular lines Lij of Y ′

4,2 and the images of the 6 planes Πw), then
check that they form a Cremona–Richmond configuration (e.g., by using Theorem A.7),
and then apply Corollary A.13.

Remark 2.16. Using equation (2.11) it is easy to write the (birational) in-
volution of the double covering Y ′

4,2 99K P4 explicitly. Indeed, choose a

point (yi : zi) = (y1 : y2 : y3 : z1 : z2 : z3) on the cubic Y ′
4,2 ⊂ P5 different from P′0. Using

the parameterization (2.10), we see that the point (yi : zi) corresponds to λ = 0. Keeping
in mind that s3(y) = s3(z) at our point (yi : zi), and finding the second root of the equa-
tion (2.11) in λ/µ, we conclude that the involution of the double covering Y ′

4,2 99K P4 is
given by

(2.17) (yi : zi) 7→
(

(s1(y)−s1(z))yi− (s2(y)−s2(z)) : (s1(y)−s1(z))zi− (s2(y)−s2(z))
)
.

Furthermore, the induced birational involution of P(W3)× P(W3) can be written as

(2.18) σ̄4,2 : ((u1 : u2 : u3), (v1 : v2 : v3)) 7→

7→
((

v2 − v3

det ( u2 u3v2 v3 )
:

v3 − v1

det ( u3 u1v3 v1 )
:

v1 − v2

det ( u1 u2v1 v2 )

)
,

(
u2 − u3

det ( u2 u3v2 v3 )
:

u3 − u1

det ( u3 u1v3 v1 )
:

u1 − u2

det ( u1 u2v1 v2 )

))
;

to see this one can just compose (2.5) with (2.17) and observe that it gives the same
result as a composition of (2.18) with (2.5). Similarly, we deduce from (2.13) that the
ramification divisor of the map π̄4,2 is given by the equation

s2(u2v3, u3v1, u1v2) = s2(u3v2, u1v3, u2v1),

that can be compactly rewritten as

(2.19) det
(
u1v1 u2v2 u3v3
u1 u2 u3
v1 v2 v3

)
= 0.

This gives a determinantal representation of a threefold birational to the Igusa quartic.

Combining the results of Lemmas 2.6 and 2.8 we obtain a commutative diagram

(2.20)

P(W3)× P(W3)

π̄4,2

��

BlP1,P2,P3(P(W3)× P(W3))
β′oo

ρ′4,2 ��

Y4,2
oo

��
Y ′

4,2
π̄′4,2

rr

BlP0(Y
′

4,2)
β′′oo

ρ′′4,2��
P(W5) Y

πoo

where the upper right square is Cartesian and the composition Y4,2 → P(W3)×P(W3) of
the upper horizontal arrows is the blow up map β.
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Proposition 2.21. The linear projection π̄4,2 : P(W3)×P(W3) 99K P(W5) with center in
the span of the points P0, P1, P2, and P3 gives rise to a commutative diagram

(2.22)

Y4,2

ρ4,2 //

π4,2

##

β

ww

Y
π

||
P(W3)× P(W3)

π̄4,2 // P(W5)

where ρ4,2 is a small resolution of singularities defined uniquely up to a composition with
the Galois involution σ : Y → Y . The map ρ4,2 contracts:

• the proper transforms of the eight planes P(W3)× Pi and Pi × P(W3), 0 6 i 6 3,
• the proper transforms of the six quadrics PiPj × PiPj, 0 6 i < j 6 3, and
• the proper transform of the diagonal P(W3) ↪→ P(W3)× P(W3),

and is an isomorphisms on the complement of those. Moreover, the morphism π4,2 induces
a non-standard embedding S4,2 → S6 such that ρ4,2 is S4,2-equivariant with respect to the
twisted action of S4,2 on Y .

Proof. We define the map ρ4,2 as the composition of the right vertical arrows in (2.20).
Its uniqueness up to σ is evident. We note that the composition

ρ4,2 ◦ β−1 : P(W3)× P(W3) 99K Y ⊂ P(2, 16)

can be defined by explicit formulas:

(2.23)



x0 = −u1u3v1v2 − u1u2v2v3 − u2u3v1v3 + u1u2v1v3 + u2u3v1v2 + u1u3v2v3,
x1 = 1

3
( u2v3 − 2 u3v1 − 2 u1v2 + u3v2 + u1v3 + u2v1),

x2 = 1
3
(− 2 u2v3 + u3v1 − 2 u1v2 + u3v2 + u1v3 + u2v1),

x3 = 1
3
(− 2 u2v3 − 2 u3v1 + u1v2 + u3v2 + u1v3 + u2v1),

x4 = 1
3
( u2v3 + u3v1 + u1v2 + u3v2 − 2 u1v3 − 2 u2v1),

x5 = 1
3
( u2v3 + u3v1 + u1v2 − 2 u3v2 + u1v3 − 2 u2v1),

x6 = 1
3
( u2v3 + u3v1 + u1v2 − 2 u3v2 − 2 u1v3 + u2v1).

Indeed, x0 defines in Y the ramification divisor of the map π, hence its pullback
to P(W3) × P(W3) coincides (up to a scalar) with the equation (2.19) of the ramifica-
tion divisor of π̄4,2. The pullbacks of x1, . . . , x6 are given by the composition of (2.14)
and (2.5), which gives the required formulas. Substituting those into (1.5), we see that
the scalar in the formula for x0 is ±1. So, (2.23) gives one of the two maps ρ4,2, while the
other sign choice gives σ ◦ ρ4,2.

For the description of the exceptional locus of ρ4,2 we combine the results of Lemmas 2.6

and 2.8 with the simple observation (using (2.5)) that the map ρ′4,2◦β′
−1 from (2.20) takes

the two planes P(W3)×P0 and P0×P(W3) to the planes Πw, where w are cycles of length 3;
takes the three quadrics P0Pi × P0Pi to the planes Πw, where w are transpositions; and
takes the diagonal to Πw, where w is the identity permutation.

The space W5 by definition (2.2) comes with an S4,2 action, such that the
map π4,2 : Y4,2 → P(W5) obtained by resolving the indeterminacy of the linear projec-
tion π̄4,2 is S4,2-equivariant. It follows that its branch divisor, which was shown to be the
Igusa quartic X1/4, is invariant under this action. On the other hand, it is well known
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that Aut(X1/4) ∼= S6 (this follows for instance from [Fin87, §3] and [Hun96, Proposi-
tion 3.3.1], see also Lemma 3.4 below). Thus, we obtain an embedding S4,2 ↪→ S6.

Moreover, for every element g ∈ S4,2 the conjugation of the diagram (2.22) by g gives
a diagram of the same form. Since ρ4,2 is uniquely defined up to σ, we obtain an equality

g ◦ ρ4,2 ◦ g−1 = σk(g) ◦ ρ4,2,

where k : S4,2 → Z/2Z is a group homomorphism. Using the explicit expression for x0

provided by (2.19) it is easy to see that transpositions in the group S4,2 change the sign
of x0. This means that k is the homomorphism of parity S6 → Z/2Z restricted to S4,2,
which means that the map ρ4,2 is equivariant with respect to the twisted action (1.8)
of S6 on Y .

Finally, to show that the embedding S4,2 ↪→ S6 is non-standard, we use (2.23) to
observe that transpositions in S4,2 go to permutations of cycle type [2, 2, 2] in S6. Alter-
natively, we could notice that the restriction of the representation (1.1) with respect to a
standard embedding S4 ↪→ S6 decomposes as a direct sum of three irreducible represen-
tations of S4 (cf. (5.10) and Lemma 5.11), while (2.2) is the sum of two irreducibles. �

Let us emphasize again that there are exactly two maps ρ4,2 that fit into commutative
diagram (2.22): the first is given by (2.23) and the second is obtained by its composition
with σ, i.e., by the change of sign of x0. The particular choice (2.23) will lead us to a
particular choice of the map ρ5,1 in the next subsection.

Remark 2.24. For each three-element subset I ⊂ {1, . . . , 6} denote by Ī ⊂ {1, . . . , 6} its
complement. Consider the hyperplane HI ⊂ P4 defined in (1.1) by the equation

(2.25)
∑
i∈I

xi = 0.

Note that HI = HĪ . In the terminology of the Appendix A these are the ten jail hyper-
planes of the Cremona–Richmond configuration. The preimage of HI on Y splits as a
union of two irreducible components. Indeed, consider the subvariety HI ⊂ Y defined
by the equation (2.25) together with the equation

(2.26) x0 +
1

2

(∑
i∈I

x2
i −

∑
i∈Ī

x2
i

)
= 0.

Then it is easy to check that

π−1(HI) = π−1(HĪ) = HI ∪HĪ .

Even an easier way to see this splitting is provided by the morphism ρ4,2. Indeed, using
formulas (2.23) one can check that the preimages on P2× P2 of the six hyperplanes H124,
H125, H134, H136, H235, and H236 are divisors given by equations

(u1 − u3)v2 = 0, u1(v2 − v3) = 0, u3(v1 − v2) = 0,

(u2 − u3)v1 = 0, (u1 − u2)v3 = 0, u2(v1 − v3) = 0,

respectively. Each of these divisors is a union of two irreducible components, and each
component is the product PiPj × P2 or P2 × PiPj for appropriate i and j. Note that the
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action of S4,2 on the set of all twelve of these irreducible components is transitive. For
each I denote

H 4,2
I := ρ−1

4,2(HI).

Therefore, if I is one of the above six triples or one of their complements, then β(H 4,2
I ) is

one of the above twelve components, hence these divisors H 4,2
I form a single S4,2-orbit.

Similarly, formulas (2.23) show that the preimages on P2 × P2 of the remaining four
hyperplanes H123, H156, H246, and H345 are irreducible divisors singular at the points P0,
P1, P2, and P3, respectively. This means that for each of the above four triples I the
preimage π−1

4,2(HI) of HI on Y4,2 consists of two irreducible components, one of them
being the exceptional divisor of the blow up β over the corresponding point Pr. A
straightforward computation shows that

H 4,2
123 , H 4,2

156 , H 4,2
246 , H 4,2

345

are the exceptional divisors, while

H 4,2
456 , H 4,2

234 , H 4,2
135 , H 4,2

126

are the proper transforms of irreducible divisors from P2 × P2.
Using the above observations we can write down the resolution ρ4,2 as a blowup. Set

H 4,2
+ = H 4,2

123 + H 4,2
156 + H 4,2

246 + H 4,2
345 , and H 4,2

− = H 4,2
456 + H 4,2

234 + H 4,2
135 + H 4,2

126 .

Then the divisor −H 4,2
+ is β-ample. Since rk Pic(Y4,2)S4,2 = 2, the divisor H 4,2

+ is ρ4,2-

ample, so that the divisor −H 4,2
− is also ρ4,2-ample. We conclude that the small birational

morphism ρ4,2 is the blow up of the Weil divisor H456 + H234 + H135 + H126 on Y . Note
that the other choice of an S4,2-equivariant small resolution of singularities of Y , that
is, the morphism σ ◦ ρ4,2, is the blow up of the Weil divisor H123 + H156 + H246 + H345

on Y .

2.2. P2-bundle over the quintic del Pezzo surface. In this section we construct
another resolution of the Coble fourfold, using geometry of the quintic del Pezzo surface.
Before explaining the construction, we start with recalling this geometry (we refer the
reader to [Dol12, §8.5] and [CS16a, §6.2] for more details).

Let S be the (smooth) del Pezzo surface of degree 5. Recall that S can be represented as
the blow up of P2 in four points (in five different ways), and one has Aut(S) ∼= S5. The vec-
tor space H0(S, ω−1

S ) is the unique irreducible six-dimensional representation of S5 (cor-
responding to the partition (3, 1, 1) in the notation of [FH91, §4.1]), see [SB89, Lemma 1];
in particular, this representation is invariant under the sign twist. Moreover, the anti-
canonical line bundle ω−1

S is very ample and defines an S5-equivariant embedding

S ↪→ P5 = P
(
H0
(
S, ω−1

S

)∨)
such that S is an intersection of five quadrics in P5. The five-dimensional space of quadrics
passing through S in P5 is an irreducible representation of S5, see [SB89, Proposition 2].
We denote by

(2.27) W5 := H0(P5, IS(2))∨

its dual space. Later, we will identify this space with the space defined by (2.2).
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Below we consider the Grassmannian Gr(2,W∨
5 ) ∼= Gr(3,W5) of two-dimensional vector

subspaces in W∨
5 (respectively, three-dimensional subspaces in W5) and denote by U2

and U3 the tautological rank 2 and rank 3 subbundles in the trivial vector bundles on
this Grassmannian with fibers W∨

5 and W5, respectively.
The following result is well known.

Lemma 2.28. There is an S5-equivariant linear embedding P5 ⊂ P(Λ3W5) such that

S = Gr(3,W5) ∩ P5 ⊂ P(Λ3W5)

is a complete intersection of the Grassmannian Gr(3,W5) with P5.

Proof. We use the technique of excess conormal bundles developed in [DK18, Appendix A].
Since S is an intersection of quadrics, the composition

W∨
5 ⊗ OP5 → IS(2)→ (IS/I

2
S)(2)

is surjective. The conormal sheaf IS/I
2
S is locally free of rank 3 on S, hence the above sur-

jection induces an S5-equivariant map S → Gr(3,W5) such that the pullback of the dual
tautological bundle U ∨

3 from Gr(3,W5) to S is isomorphic to (IS/I
2
S)(2). By adjunction

formula we have

det(IS/I
2
S) ∼= ωP5|S ⊗ ω

−1
S
∼= det(W∨

5 )⊗ ω6
S ⊗ ω−1

S ,

hence

det((IS/I
2
S)(2)) ∼= det(W∨

5 )⊗ ω−1
S ,

hence the pullback of OGr(3,W5)(1) ∼= det(U ∨
3 ) to S is isomorphic to det(W∨

5 )⊗ ω−1
S . The

induced map

Λ3W∨
5
∼= H0

(
Gr(3,W5),OGr(3,W5)(1)

)
→ H0

(
S, det(W∨

5 )⊗ω−1
S

) ∼= det(W∨
5 )⊗H0(S, ω−1

S )

is S5-equivariant and surjective (since the target space is an irreducible S5-
representation). Moreover, since the S5-representation H0(S, ω−1

S ) is invariant under
a sign twist, the above composition defines an embedding

P5 = P(H0(S, ω−1
S )∨) ↪→ P(Λ3W5)

such that S ⊂ Gr(3,W5)∩P5. It remains to show that this embedding of S is an equality.
Since Gr(3,W5) ⊂ P(Λ3W5) is cut out by Plücker quadrics that are parameterized

by the space W∨
5 ⊗ det(W∨

5 ), we obtain a map (where the first isomorphism takes place
by [DK18, Proposition A.7])

(2.29) W∨
5 ⊗ det(W∨

5 ) ∼= H0
(
P(Λ3W5), IGr(3,W5)(2)

)
→ H0(P5, IS(2)) ∼= W∨

5

which by construction commutes with the natural S5-action. It is non-zero
since Gr(3,W5) does not contain P5, hence it is an isomorphism by irreducibility of W5.
Since S is an intersection of quadrics, it follows that S = Gr(3,W5) ∩ P5. �

Remark 2.30 (cf. [SB89, Corollary 3]). In (2.29) we obtained an S5-equivariant iso-
morphism W∨

5 ⊗ det(W∨
5 ) ∼= W∨

5 . This allows to identify W5 as the (unique) irreducible
five-dimensional representation of S5 with det(W5) being trivial. It corresponds to the
Young diagram of the partition (3, 2) in the notation of [FH91, §4.1].
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We denote the restriction of the tautological bundles U2 and U3 to S also by U2 and U3.
The tautological embeddings U2 ↪→W∨

5 ⊗OS and U3 ↪→W5⊗OS induce S5-equivariant
maps

PS(U2)→ P(W∨
5 ) and PS(U3)→ P(W5).

Below we describe these maps explicitly. We start with the first of them.

Lemma 2.31. The image of the map $ : PS(U2)→ P(W∨
5 ) is the Segre cubic hypersurface

in P(W∨
5 ) ∼= P4, and PS(U2) provides its small S5-equivariant resolution of singularities.

Proof. Let us describe the fiber of $ over a point of P(W∨
5 ). Thinking of such a point as

of a four-dimensional subspace U4 ⊂W5, we conclude that

$−1([U4]) = Gr(3, U4) ∩ P5 ⊂ Gr(3,W5) ∩ P5 = S.

Since Gr(3, U4) ∼= P3, this intersection is a linear space contained in S, hence either is
empty, or is a point, or is a line. Conversely, if L ⊂ S is a line, then

U2|L ∼= OL ⊕ OL(−1)

because U ∨
2 is globally generated with det(U ∨

2 ) ∼= ω−1
S . Moreover, the section

L = PL(OL) ↪→ PL(U2|L) ↪→ PS(U2)

of the projection PL(U2|L)→ L is contracted by the map $. This proves that $ contracts
precisely the exceptional sections over the ten lines of S, hence the image

Z := $(PS(U2)) ⊂ P(W∨
5 )

is a hypersurface with ten isolated singular points. On the other hand, since det(U2) ∼= ωS,
it follows that

ωPS(U2)
∼= $∗OP(W∨5 )(−2).

Hence ωZ ∼= OP(W∨5 )(−2)|Z , so that Z is a cubic hypersurface. It remains to notice that
the only three-dimensional cubic with ten isolated singular points is the Segre cubic, see
e.g. [Dol15, Proposition 2.1]; alternatively, one can also deduce this from the invariant
theory of the group S5 acting in the irreducible five-dimensional representation W∨

5 . �

Remark 2.32 (cf. [Dol15, §2], [Pro10, Proposition 4.6]). The relation of the quintic del
Pezzo surface S and the Segre cubic threefold Z extends to an S5-equivariant diagram

M0,6

yy $$
Bl 5 pt(P3)

{{ %%

oo // PS(U2)

zz ""
P3 Z S ∼=M0,5

Here M0,n is the moduli spaces of stable rational curves with n marked points, the left
outer diagonal arrows provide its Kapranov’s representation (the lower left arrow is the
blow up of five general points on P3), the right outer diagonal arrows compose to the
forgetful map M0,6 → M0,5, the inner diagonal arrows contract ten smooth rational
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curves each (and provide two S5-equivariant small resolutions of Z), and the dashed
arrow is a flop in these curves.

The above diagram can be thought of as an S5-Sarkisov link from the Mori fiber
space PS(U2)→ S to P3 centered at Z, see §5.1 below for explanation of terminology. It
is natural to ask what is the S5-Sarkisov link starting from PS(U3)→ S. We will see in
diagram (2.45) below that it is a symmetric link centered at the Coble fourfold Y .

So, we consider the projectivization PS(U3) of the rank 3 bundle U3 and denote it by

Y5,1 := PS(U3).

The embedding U3 ↪→W5 ⊗ OS induces an S5-equivariant diagram

(2.33)

Y5,1

p

~~

π5,1

##
S P(W5)

where p is the natural projection Y5,1 = PS(U3) → S, and π5,1 is the composition of the
embedding Y5,1 ↪→ S × P(W5) with the projection to the second factor. In particular, the
restriction of the map p to any fiber of π5,1 is an isomorphism to its image. This allows
to consider every fiber

Sw := π−1
5,1(w)

of the map π5,1 as a closed subscheme of S. In the next lemma we describe these sub-
schemes.

For each point w ∈ P(W5) denote by W5/w the four-dimensional quotient of W5 by
the line in W5 that corresponds to w. Every two-dimensional subspace in W5/w gives
(by taking preimage) a three-dimensional subspace in W5 containing w. This allows to
consider Gr(2,W5/w) as a subvariety of Gr(3,W5).

Lemma 2.34. The fiber Sw of the map π5,1 over a point w ∈ P(W5) can be described as

Sw = Gr(2,W5/w) ∩ P5 ⊂ Gr(3,W5) ∩ P5 = S.

In particular, Sw is either a zero-dimensional scheme of length 2, or a line, or a conic.

Proof. The first equality is obvious. Consequently, Sw is a linear section of the four-
dimensional quadric Gr(2,W5/w) of codimension at most 4. So, if Sw is zero-dimensional,
it is a scheme of length 2. Furthermore, if Sw is one-dimensional, it is either a line or a
conic. It remains to notice that dimSw < dimS = 2 since S is irreducible. �

Our goal is to describe the map π5,1 in (2.33). We start by presenting some surfaces
in Y5,1 contracted by it. Recall that S contains 10 lines. Recall also that U3 is a subbundle
in the trivial vector bundle with fiber W5 over S, so that Y5,1 is a subvariety in S × P(W5).

Lemma 2.35. For every line L ⊂ S there is a unique line L′ ⊂ P(W5) such that for the
surface RL = L× L′ one has

(2.36) RL ⊂ Y5,1 ⊂ S × P(W5).

In particular, the map π5,1 contracts RL onto the line L′. Moreover, if L1 6= L2 are distinct
lines on S then the corresponding lines L′1, L

′
2 ⊂ P(W5) are distinct as well.
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Proof. Since L is a line on Gr(3,W5), there is a unique two-dimensional subspace U2 ⊂W5

such that L ⊂ P(W5/U2) ⊂ Gr(3,W5). Then for every point [U3] of L we have U2 ⊂ U3,
that is, U2 ⊗ OL ⊂ U3|L, hence

L× P(U2) = PL(U2 ⊗ OL) ⊂ PS(U3) = Y5,1.

Thus, the line L′ = P(U2) ⊂ P(W5) has the required property.
Furthermore, for any two-dimensional subspace U2 ⊂W5 the intersection

P(W5/U2) ∩ S = P(W5/U2) ∩ P5

is a linear space contained in S, hence is either empty, or a point, or a line. In particular,
two distinct lines L1 and L2 on S cannot correspond to the same subspace U2 ⊂ W5,
hence the corresponding lines L′1 and L′2 in P(W5) are distinct. �

As we already mentioned, a quintic del Pezzo surface is classically represented as the
blow up of P2 in four general points. Let ϕ : S → P2 be one of such blow up representations
with exceptional divisors E0, E1, E2, and E3. Denote by ei their classes in Pic(S), and
by ` the pullback of the line class from P2 to S, so that

KS ∼ −3`+ e0 + e1 + e2 + e3.

The line bundle OS(`) defines the contraction ϕ : S → P2 and the line bun-
dle OS(2`− e0 − e1 − e2 − e3) defines a conic bundle ϕ̄ : S → P1. The combination of ϕ
and ϕ̄ defines an embedding

ϕ× ϕ̄ : S ↪→ P2 × P1,

whose image is a divisor of bidegree (2, 1). Moreover, the composition of ϕ× ϕ̄ with the
Segre embedding P2 × P1 ↪→ P5 is the anticanonical embedding of S, therefore we have
an exact sequence of normal bundles

(2.37) 0→ NS/P2×P1 → NS/P5 → NP2×P1/P5|S → 0.

The first of these bundles is isomorphic to

ϕ∗OP2(2)⊗ ϕ̄∗OP1(1) ∼= OS(4`− e0 − e1 − e2 − e3),

and the second is isomorphic to U3(6`− 2e0− 2e1− 2e2− 2e3) by Lemma 2.28. The third
vector bundle in (2.37) is isomorphic to

ϕ∗(TP2)⊗ ϕ̄∗(TP1) ∼= ϕ∗TP2 ⊗ OS(4`− 2e0 − 2e1 − 2e2 − 2e3),

where TPk is the tangent bundle of Pk; this is a simple computation with the Euler
sequences on P2, P1, and P5. So, twisting the normal bundle sequence (2.37) by the line
bundle OS(−6`+ 2e0 + 2e1 + 2e2 + 2e3) we obtain

(2.38) 0→ OS(−2`+ e0 + e1 + e2 + e3)→ U3 → ϕ∗(TP2(−2))→ 0

Denote by rϕ : S → PS(U3) the section of the projection p induced by the first map
in (2.38).
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Lemma 2.39. There is a line Γϕ ⊂ P(W5) and a commutative diagram

S
rϕ //

ϕ̄

��

PS(U3)

π5,1

��
Γϕ
� � // P(W5)

that identifies the line Γϕ with the base of the conic bundle ϕ̄. In particular, for any w ∈ Γϕ
the fiber Sw = π−1

5,1(w) is a conic from the pencil ϕ̄.

Proof. By definition of rϕ the composition

π5,1 ◦ rϕ : S → P(W5)

is given by the line bundle OS(2`−e0−e1−e2−e3) on S, hence factors as the projection ϕ̄
followed by a linear embedding. This proves that we have the required diagram. Moreover,
it follows that for every w ∈ Γ the fiber π−1

5,1(w) contains a conic from the pencil ϕ̄. By
Lemma 2.34 the fiber coincides with this conic. �

For each contraction ϕ : S → P2 (recall that for a quintic del Pezzo surface S there are
five such contractions), define a surface

(2.40) Rϕ = rϕ(S) ⊂ PS(U3),

so that the map π5,1 contracts it onto the line Γϕ ⊂ P(W5).

Lemma 2.41. The five lines Γϕ ⊂ P(W5) corresponding to the contractions ϕ : S → P2

are pairwise disjoint. Moreover, for each ϕ the line Γϕ is distinct from the
lines L′ ⊂ P(W5) associated with the lines L on S in Lemma 2.35.

Proof. If w is a common point of the curves Γϕ and Γϕ′ , then by Lemma 2.39 the fiber Sw
is a conic that belongs to the corresponding pencils ϕ̄ and ϕ̄′, hence the pencils coincide,
hence ϕ = ϕ′.

Assume that Γϕ = L′, where L′ is associated with some line L ⊂ S as in Lemma 2.35.
By Lemma 2.35 we have L ⊂ Sw, and by Lemma 2.39 when w runs over Γϕ the curves Sw
run over the corresponding pencil of conics ϕ̄. So, the assumption we made implies that
every conic in the pencil contains the line L, which is absurd. �

Now we are ready to prove the main result of this subsection.

Proposition 2.42. The S5-equivariant morphism π5,1 : Y5,1 → P(W5) gives rise to a
commutative diagram

(2.43)

Y5,1

ρ5,1 //

π5,1 ##

p

~~

Y

π||
S P(W5)

where Y is the Coble fourfold, π : Y → P(W5) is the double covering, and ρ5,1 is a
small resolution of singularities, defined uniquely up to the composition with the Galois
involution σ : Y → Y . Furthermore, the exceptional locus of ρ5,1 is the union of 15
irreducible rational surfaces {RL}L⊂S ∪ {Rϕ}ϕ : S→P2, such that
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• RL
∼= P1 × P1; each of these surfaces is contracted by p onto the line L ⊂ S and

by π5,1 onto the line L′ ⊂ P(W5);
• Rϕ

∼= S with the map p : Rϕ → S being an isomorphism, and with the map π5,1|Rϕ
being the conic bundle ϕ̄ : Rϕ � Γϕ over the line Γϕ ⊂ P(W5).

Moreover, the morphism π5,1 induces a non-standard embedding S5 → S6 such that ρ5,1

is S5-equivariant with respect either to the natural or to the twisted action of S5 on Y .

Using a compatibility result of Proposition 2.47, we will show in §2.4 that ρ5,1 is S5-
equivariant with respect to the twisted action of a non-standard S5.

Proof. Denote by R ⊂ Y5,1 the ramification locus of the morphism π5,1 : Y5,1 → P(W5)
and by B = π5,1(R) ⊂ P(W5) its image. Let us show that B is the Igusa quartic. For this
we show that B is projectively dual to the Segre cubic Z = $(PS(U2)), see Lemma 2.31.

Indeed, by Lemma 2.34 we know that B is the locus of w ∈ P(W5) such that Sw is either
a double point or a curve. On the other hand, w defines a hyperplane P(w⊥) ⊂ P(W∨

5 ) in
the dual projective space, and

$−1(Z ∩ P(w⊥)) = PS(U2)×P(W∨5 ) P(w⊥)

is a relative hyperplane in the P1-bundle PS(U2) → S. Moreover, the zero locus of the
corresponding section of U ∨

2 is precisely the scheme Sw. If Sw is zero-dimensional then
by [Kuz16, Lemma 2.1] we have

$−1
(
Z ∩ P(w⊥)

)
= BlSw(S),

and if it is one-dimensional, then $−1(Z ∩P(w⊥)) contains the surface PSw(U2|Sw), hence
is reducible. Thus, $−1(Z ∩ P(w⊥)) is singular if and only if w ∈ B. Since the singular
points of Z are nodes, and $ resolves them, it follows that B is the projective dual of Z.
Hence B = X1/4 is the Igusa quartic (see [Hun96, Proposition 3.3.1]).

It follows from Lemma 2.34 that the map π5,1 is an étale double cover over P(W5) \B,
and that the Stein factorization of the map π5,1 provides a (unique up to σ) decomposition

Y5,1
ρ5,1−−−→ Y

π−−→ P(W5),

where ρ5,1 is a birational map.
Let us show that ρ5,1 is small. Indeed, since det(U3) ∼= ωS, it follows that

(2.44) ωY5,1
∼= π∗5,1OP(W5)(−3) ∼= ρ∗5,1π

∗OP(W5)(−3).

On the other hand, π is a double covering branched over a quartic, hence one
has ωY

∼= π∗OP(W5)(−3). Thus ωY5,1
∼= ρ∗5,1ωY , i.e., the map ρ5,1 is crepant. Since Y5,1 is

smooth it follows that the map ρ5,1 is an isomorphism over the smooth locus of Y , hence
the exceptional locus of ρ5,1 is contained in

ρ−1
5,1

(
Sing(Y )

)
= ρ−1

5,1

(
Sing(X 1

4
)
)

= π−1
5,1

(
CR
)
,

i.e., in the preimage of the Cremona–Richmond configuration of 15 lines. But by
Lemma 2.34 the fibers of π5,1 are at most one-dimensional, hence dim(π−1

5,1(CR)) 6 2.
This proves that ρ5,1 is small.
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Next, let us show that

π−1
5,1 (CR) =

(⋃
ϕ

Rϕ

)
∪

(⋃
L

RL

)
.

By Lemmas 2.35 and 2.39 the surfaces RL and Rϕ are contracted onto the union of ten
lines L′ and five lines Γϕ in P(W5), which are pairwise distinct by Lemmas 2.35 and 2.41.
Therefore

CR =

(⋃
ϕ

Γϕ

)
∪

(⋃
L

L′

)
.

It remains to show that for any w ∈ Γϕ or w ∈ L′ the fiber Sw = π−1
5,1(w) is contained

either in Rϕ or in RL. If w ∈ Γϕ, this is proved in Lemma 2.39. Now take w ∈ L′. By
Lemma 2.35 we have L ⊂ Sw, hence by Lemma 2.34 the curve Sw is either the line L
(hence Sw ⊂ RL) or a conic (hence Sw ⊂ Rϕ for appropriate ϕ).

The vector space W5 by definition (2.27) comes with a natural S5-action, such that the
map π5,1 : Y5,1 → P(W5) is S5-equivariant. It follows that its branch divisor B = X1/4 is
invariant under this action. This gives an embedding S5 ↪→ Aut(X1/4) ∼= S6 ⊂ Aut(Y ),
such that for every element g ∈ S5 the conjugation of the diagram (2.43) by g gives a
diagram of the same form. Therefore, one has

g ◦ ρ5,1 ◦ g−1 = σk(g) ◦ ρ5,1,

where k : S5 → Z/2Z is a group homomorphism. If it is trivial, then ρ5,1 is equivariant
with respect to the natural action, and if k is the homomorphism of parity, then ρ5,1

is equivariant with respect to the twisted action (as we mentioned above, we will show
in §2.4 that k is indeed the homomorphism of parity).

To show that the embedding S5 ↪→ S6 is non-standard we use the same argument as in
the proof of Proposition 2.21. The restriction of the five-dimensional representation (1.1)
to the image of a standard embedding S5 ↪→ S6 decomposes as a direct sum of two
irreducible representations (cf. Lemma 5.11), while the S5-representation W5 is irreducible
by (2.27) and [SB89, Proposition 2]. �

Similarly to the case of ρ4,2, the morphism ρ5,1 is not uniquely defined even when the
corresponding non-standard subgroup S5 is fixed. Moreover, there is a commutative
diagram

(2.45)
Y5,1

ρ−1
5,1◦σ◦ρ5,1 //

σ◦ρ5,1 !!

p

~~

Y5,1

ρ5,1}}

p

  
S Y S

Here ρ−1
5,1 ◦ σ ◦ ρ5,1 is a small birational map. In fact, we know that rk Pic(S)S5 = 1, see

for instance [CS16a, Lemma 6.2.2(i)]; this means that

rk Cl(Y5,1)S5 = rk Pic(Y5,1)S5 = 2,

and therefore rk Pic(Y )S5 = 1. The latter implies that ρ5,1 and σ ◦ ρ5,1 are the only S5-
equivariant small resolutions of singularities of Y , and that ρ−1

5,1 ◦ σ ◦ ρ5,1 is an S5-flop.
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Consequently, the diagram (2.45) is an S5-Sarkisov link between two copies of the Mori
fiber space Y5,1 → S centered at Y (see §5.1).

Remark 2.46. Recall the notation of Remark 2.24. Denote

H 5,1
I := ρ−1

5,1(HI),

so that one has π−1
5,1(HI) = π−1

5,1(HĪ) = H 5,1
I ∪ H 5,1

Ī
. One can check that ten out of

twenty divisors H 5,1
I ⊂ Y5,1 are the preimages of lines on S via the map p, and the other

ten are relative hyperplanes for p (this decomposition is the orbit decomposition for the
action of S5). We denote by H 5,1

+ the sum of the divisors of the first type, and by H 5,1
−

the sum of the divisors of the second type. The divisor H 5,1
+ is the p-pullback of an

ample divisor on S, hence it is ρ5,1-ample. Consequently, −H 5,1
− is ρ5,1-ample, hence the

small birational morphism ρ5,1 is the blow up of the Weil divisor ρ5,1(H 5,1
− ) on Y . See

Remark 2.54 below for an explicit description of this blow up.

2.3. Compatibility of resolutions. In this section we relate the resolutions Y4,2

and Y5,1 of the Coble fourfold. Recall that the first of them is associated with a non-
standard embedding S4,2 ↪→ S6, and the second is associated with a non-standard em-
bedding S5 ↪→ S6. Note that each (standard or non-standard) subgroup S4 ⊂ S6 can
be extended to a subgroup S4,2 ⊂ S6 and such extension is unique. Indeed, the second
factor S2 in S4,2

∼= S4 × S2 is just the centralizer of S4 in S6. Recall also that for
each S4 ⊂ S5 = Aut(S) there is a unique S4-equivariant contraction ϕ : S → P2 of the
quintic del Pezzo surface S onto the plane.

Proposition 2.47. Let S5 ↪→ S6 be a non-standard embedding. Choose a sub-
group S4 ⊂ S5 and let S4,2 ⊂ S6 be its unique extension. Let ρ4,2 : Y4,2 → Y be the S4,2-
equivariant resolution of singularities constructed in Proposition 2.21 and let ϕ : S → P2

be the unique S4-equivariant contraction of the quintic del Pezzo surface. Then there is
a unique S5-equivariant resolution ρ5,1 : Y5,1 → Y as in Proposition 2.42 and a unique
S4-equivariant small birational map θ1 : Y5,1 99K Y4,2 such that the diagram (1.10) is
commutative.

Of course, if ρ5,1 is fixed, there is only one θ1 such that the inner triangle in the
diagram (1.10) commutes, namely, θ1 = ρ−1

4,2 ◦ ρ5,1. But it is a priori not clear why the
outer square commutes. So, to prove Proposition 2.47 we move in the opposite direction:
we first construct θ1 such that the outer square commutes, and after that check that the
inner triangle commutes for this θ1 for an appropriate choice of ρ5,1.

We start with some notation and a lemma. Let ϕ : S → P2 be the S4-equivariant
contraction, and, as before, denote by E0, E1, E2, and E3 the exceptional divisors of the
blow up ϕ, by ei their classes in Pic(S) and by ` the pullback of the line class of P2. Recall
also the rank 3 bundle U3 on S.

Since U ∨
3 is globally generated and det(U ∨

3 )|Ei ∼= ω−1
S |Ei ∼= OEi(1), we have

U3|Ei ∼= OEi ⊕ OEi ⊕ OEi(−1).
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Therefore, we have a canonical surjective morphism U3 → OEi(−1) of sheaves on S. The
sum of these morphisms gives an exact sequence

(2.48) 0→ E → U3 →
3⊕
i=0

OEi(−1)→ 0

and defines a rank 3 vector bundle E on S.

Lemma 2.49. One has E ∼= OS(−`)⊕3.

Proof. Consider the composition of the embedding

OS(−2`+ e0 + e1 + e2 + e3) ↪→ U3

from (2.38) with the projection U3 → OEi(−1). If it is equal to zero, then the
map U3 → OEi(−1) factors through ϕ∗(TP2(−2)). But the sheaf ϕ∗(TP2(−2)) restricts
to Ei trivially, hence no such map exists. This contradiction shows that the composition
is non-trivial. But since

OS(−2`+ e0 + e1 + e2 + e3)|Ei ∼= OEi(−1),

any non-trivial morphism OS(−2`+ e0 + e1 + e2 + e3)→ OEi(−1) is surjective. Therefore,
the sum of these morphisms OS(−2` + e0 + e1 + e2 + e3) →

⊕3
i=0 OEi(−1) is surjective,

hence its kernel is OS(−2`) and we have a commutative diagram

0 // OS(−2`) //

��

OS(−2`+ e0 + e1 + e2 + e3) //

��

⊕3
i=0 OEi(−1) // 0

0 // E // U3
//
⊕3

i=0 OEi(−1) // 0

Taking into account (2.38), we see that the first column extends to an exact sequence

(2.50) 0→ OS(−2`)→ E → ϕ∗(TP2(−2))→ 0.

It remains to show that it coincides with the pullback of a twist of the Euler sequence
on P2. Since the pullback functor ϕ∗ is fully faithful, and the Euler sequence is the unique
non-split extension of TP2 by OP2 , it is enough to show that (2.50) is non-split.

Assume on the contrary that there is a splitting ϕ∗(TP2(−2))→ E . Composing it with
the embedding E ↪→ U3, we obtain a splitting ϕ∗(TP2(−2)) → U3 of (2.38). It induces
an embedding

S ×P2 Fl(1, 2; 3) ∼= PS(ϕ∗(TP2(−2))) ↪→ PS(U3) = Y5,1,

such that its composition with π5,1 coincides with the projection

S ×P2 Fl(1, 2; 3)→ Fl(1, 2; 3)→ (P2)∨.

But this contradicts the fact that ρ5,1 is a small contraction. �

Proof of Proposition 2.47. Let us construct the map θ1. Let V1 be a three-dimensional
vector space such that the target plane of ϕ is P(V1). We can choose an isomorphism

α1 : P(V1)
∼−−→ P(W3)



24 IVAN CHELTSOV, ALEXANDER KUZNETSOV, AND CONSTANTIN SHRAMOV

such that the points of P(V1) to which the divisors Ei are contracted by ϕ go to the
points Pi of P(W3) defined by (2.1). Note that such an isomorphism is unique and S4-
equivariant.

Next, let V2 be the three-dimensional vector space such that E ∼= V2 ⊗ OS(−`). Note
that V2

∼= H0(S,E (`)) has a natural structure of an S4-representation, and the isomor-
phism E ∼= V2⊗OS(−`) is S4-equivariant. Under this identification the first map in (2.48)
becomes an S4-equivariant embedding of sheaves

(2.51) V2 ⊗ OS(−`) ξ−→ U3,

which is an isomorphism away from the union of Ei. Its dual map extends to an exact
sequence

(2.52) 0→ U ∨
3

ξ∨−−→ V ∨2 ⊗ OS(`)→
3⊕
i=0

OEi → 0.

The second map defines four linear functions on V ∨2 , i.e., four points on P(V2). We can
choose an isomorphism

α2 : P(V2)
∼−−→ P(W3)

such that these points go to the points Pi of P(W3) defined by (2.1). Again, such an
isomorphism is unique and S4-equivariant.

Now we put all the above constructions together. The morphism ξ defined by (2.51)
induces a birational map

S × P(V2) ∼= PS(V2 ⊗ OS(−`)) ξ //PS(U3) = Y5,1 .

We define θ1 as the composition

Y5,1
ξ−1

//S × P(V2)
ϕ×id //P(V1)× P(V2)

α1×α2 //P(W3)× P(W3)
β−1

//Y4,2,

where the last map is the inverse of the blow up (2.3). Clearly, θ1 is birational and S4-
equivariant, since all the maps used in its definition are. Finally, its composition with p1

equals ϕ ◦ p by construction, hence the outer square in (1.10) commutes.
Next, let us show an equality of the maps

(2.53) π4,2 ◦ θ1 = π5,1

from Y5,1 to P(W5). For this, consider a diagram

W∨
5 ⊗ OS

// W∨
3 ⊗W∨

3 ⊗ OS

(P0,P1,P2,P3)
//

(α∨2⊗α∨1 )

��

3⊕
i=0

OS

W∨
5 ⊗ OS

H0(S,ξ∨)
//

��

V ∨2 ⊗ V ∨1 ⊗ OS
//

��

3⊕
i=0

OS

��

U ∨
3

ξ∨ // V ∨2 ⊗ OS(`) //
3⊕
i=0

OEi
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Here the bottom line is (2.52), the middle line is obtained from it by passing to global
sections and tensoring with OS, and the maps between these lines are induced by eval-
uation of the sections (hence the lower squares commute). The top line is obtained by
identification (2.2), the upper-right square commutes by definition of α1 and α2. There-
fore, there is a unique identification of the spaces W∨

5 in this diagram (note that the one
in the top line is defined by (2.2), while the other is defined by (2.27)) such that the
upper-left square commutes. From now on we use implicitly the induced identification of
the spaces W5.

As a result of this commutativity two morphisms W∨
5⊗OS → V ∨2 ⊗OS(`) in the diagram

coincide. One of them induces the rational map

S × P(V2)
ξ //Y5,1

π5,1 //P(W5) ,

and the other induces the rational map

S × P(V2)
ϕ×id //P(V1)× P(V2)

α1×α2 //P(W3)× P(W3)
π̄4,2 //P(W5);

the map ϕ appears here because all the global sections of OS(`) are pullbacks via ϕ. So,
we have an equality of rational maps

π̄4,2 ◦ (α1 × α2) ◦ (ϕ× id) = π5,1 ◦ ξ

from S × P(V2) to P(W5). Composing it with the map ξ−1 on the right and using (2.4)
and the definition of θ1, we deduce the required equality (2.53).

From (2.53) we further deduce an equality

π ◦ (ρ4,2 ◦ θ1) = π4,2 ◦ θ1 = π5,1.

Therefore, the composition ρ4,2 ◦ θ1 provides one of the two possible factorizations ρ5,1 of
the morphism π5,1. This shows that for one of the two choices of ρ5,1, the inner triangle
in (1.10) is commutative. �

It is worth noting that if we want to replace the projection p1 in the diagram (1.10)
by another projection p2 and preserve its commutativity, we will have to replace the
subgroup S5 containing S4 by the unique other such subgroup (more precisely, we will
have to replace the embedding S5 ↪→ S6 with the one obtained from it by a conjugation
with the factor S2 in S4,2).

Remark 2.54. Recall the notation of Remarks 2.24 and 2.46, and assume that we are in the
situation of Proposition 2.47: the resolution ρ4,2 is defined by (2.23) and the resolution ρ5,1

is such that the diagram (1.10) commutes. Then we have

H 5,1
+ = H 5,1

123 + H 5,1
156 + H 5,1

246 + H 5,1
345 + H 5,1

124 + H 5,1
136 + H 5,1

235 + H 5,1
145 + H 5,1

256 + H 5,1
346 ,

H 5,1
− = H 5,1

456 + H 5,1
234 + H 5,1

135 + H 5,1
126 + H 5,1

356 + H 5,1
245 + H 5,1

146 + H 5,1
236 + H 5,1

134 + H 5,1
125 .

Consequently, ρ5,1 is the blowup of the Weil divisor

H456 + H234 + H135 + H126 + H356 + H245 + H146 + H236 + H134 + H125

on Y .
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2.4. Proof of Theorem 1.9. In Proposition 2.21 we constructed the morphism ρ4,2 for
some non-standard subgroup S4,2 ⊂ S6, and checked that it is S4,2-equivariant for the
twisted action and small. To construct ρ4,2 for any other non-standard embedding, we
may use a conjugation by an appropriate element of S6. This proves assertion (i).

Similarly to the above, in Proposition 2.42 we constructed a morphism ρ5,1 for some
non-standard embedding S5 ↪→ S6 (and the same trick as above then gives ρ5,1 for any
other non-standard S5 ⊂ S6) and checked that it is small. Moreover, the compatibility
isomorphism θ1 was constructed in Proposition 2.47; by the way it proves assertion (iv).

Furthermore, we checked that the morphism ρ5,1 is S5-equivariant with respect either
to the natural or to the twisted action of S5 on Y . To show that the action is twisted, we
use Proposition 2.47. Choose a subgroup S4 ⊂ S5, a transposition g ∈ S4, and consider
the commutative diagram (1.10). Since θ1 is S4-equivariant and g ◦ ρ4,2 ◦ g−1 = σ ◦ ρ4,2

(as ρ4,2 is equivariant with respect to the twisted action), we have

g ◦ ρ5,1 ◦ g−1 = g ◦ ρ4,2 ◦ θ1 ◦ g−1 = g ◦ ρ4,2 ◦ g−1 ◦ θ1 = σ ◦ ρ4,2 ◦ θ1 = σ ◦ ρ5,1,

hence ρ5,1 is equivariant with respect to the twisted action as well. This completes the
proof of assertion (ii).

Finally, recall that we checked in Propositions 2.21 and 2.42 that ρ5,1 and ρ4,2

are isomorphisms over the complement of the Cremona–Richmond configura-
tion CR = Sing(X1/4) ⊂ P4. This gives the proof of assertion (iii) and completes the
proof of Theorem 1.9. �

We write down here a simple consequence of the above results concerning the Weil
divisor class group of the Coble fourfold.

Corollary 2.55. One has rk Cl(Y ) = 6.

Proof. Since the map ρ4,2 : Y4,2 → Y is a small resolution of singularities, it induces an
isomorphism Cl(Y ) ∼= Pic(Y4,2), and since Y4,2 is the blow up of P2 × P2 in 4 points, its
Picard rank equals 6. �

In Theorem 5.1 we will describe the action of the group S6 × µ2 on Cl(Y )⊗Q.

3. Conic bundle structures on S6-invariant quartics

Recall the pencil {Xt} of S6-invariant quartics defined by the equation (1.2) inside the
hyperplane P4 ⊂ P5 given by (1.1). In this section we discuss the conic bundle structures
on the quartics Xt induced by the resolutions of the Coble fourfold.

3.1. S6-invariant quartics revisited. We start by collecting some facts about auto-
morphisms groups of Xt, their singularities and class groups.

Let CR be the Cremona–Richmond configuration of 15 lines with 15 intersection points,
see Appendix A. The intersection points of the lines of CR form the orbit

Υ15 = {g · (2 : 2 : −1 : −1 : −1 : −1) | g ∈ S6}.
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Besides this, we consider also the orbits

Σ6 = {g · (5 : −1 : −1 : −1 : −1 : −1) | g ∈ S6},
Σ10 = {g · (1 : 1 : 1 : −1 : −1 : −1) | g ∈ S6},
Σ15 = {g · (1 : −1 : 0 : 0 : 0 : 0) | g ∈ S6},
Σ30 = {g · (1 : 1 : ω : ω : ω2 : ω2) | g ∈ S6},

where ω is a primitive cubic root of unity and the lower index on the left hand side stands
for cardinality of the orbit. We note that

Υ15, Σ30 ⊂ CR, (Σ6 ∪ Σ10 ∪ Σ15) ∩ CR = ∅.

Remark 3.1. The quartic X∞ defined by equation (1.2) with t = ∞ is the quadric Q∞
given by the equation

(3.2) x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = 0

taken with multiplicity 2. Note that

Q∞ ∩Υ15 = ∅, Q∞ ∩ CR = Σ30,

and the intersection is transversal.

The singularities of the quartics Xt have been described by van der Geer in [vdG82] in
terms of these orbits. Recall the discriminant set D defined by (1.3).

Theorem 3.3 ([vdG82, Theorem 4.1]). One has

t t 6∈ D ∪ {∞} t = 1
4

t = 1
2

t = 1
6

t = 7
10

Sing
(
Xt

)
Σ30 CR Σ30 ∪ Σ15 Σ30 ∪ Σ10 Σ30 ∪ Σ6

In particular, Xt is normal if t 6=∞.
Moreover, all singular points of the quartics Xt are nodes provided that t 6= 1/4,∞.

One can describe automorphism groups of the quartics Xt.

Lemma 3.4. The following assertions hold.

(i) One has Aut(X1/2) ∼= PSp4(F3), where F3 is the field of three elements.
(ii) One has Aut(Xt) ∼= S6 provided that t 6∈ {1/2,∞}.

(iii) If X is a normal quartic hypersurface with a faithful action of the group S6, then X
is isomorphic to one of the quartics Xt.

Proof. Assertion (i) is well known, see e.g. [Cob06].
Take any t 6=∞. Since the quartic Xt is normal by Theorem 3.3, its hyperplane section

is the anticanonical class, hence the group Aut(Xt) is naturally embedded into PGL5(k).
Moreover, one has S6 ⊂ Aut(Xt) by the definition of Xt. It follows from the classification
of finite subgroups of PGL5(k) that either Aut(Xt) ∼= S6, or Aut(Xt) ∼= PSp4(F3),
see [Fei71, §8.5]. But the group PSp4(F3) has a unique invariant quartic hypersurface
in P4, which is the Burkhardt quartic X1/2. This proves assertion (ii).

Finally, assume that X is a normal quartic hypersurface invariant under some faithful
action of the group S6 on P4. Using the classification of projective representations of the
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group S6 we deduce that this action comes from an irreducible five-dimensional represen-
tation of S6; in fact, it is enough to look at the classification of projective representations
of the smaller group A6, which can be found for instance in [CCN+85, p.5]. The latter S6-
representation is unique up to an outer automorphism and a sign twist (cf. Lemma 5.11).
This implies assertion (iii). �

Corollary 3.5. We have Aut(Y ) ∼= S6 × µ2.

Proof. The group on the right hand side acts on Y by (1.6) and (1.7), and the ac-
tion is clearly faithful. It remains to show that any automorphism of Y belongs to
this group. For this we note that the morphism π : Y → P4 is defined by the ample
generator of Pic(Y ). Indeed, rk Pic(Y ) = 1 by Lefschetz hyperplane section theorem
(see [Dol82, Theorem 4.2.2]), because Y is a hypersurface in the weighted projective
space P(2, 15). The pullback of the hyperplane in P4 via π is not divisible in Pic(Y ) by
degree reasons, and thus generates Pic(Y ). Hence π is equivariant with respect to any
automorphism of Y . This induces a homomorphism Aut(Y )→ PGL5(k) whose kernel is
generated by the Galois involution σ. The image of the homomorphism is the subgroup
of PGL5(k) that fixes the branch divisor X1/4 of π. Moreover, the latter subgroup acts
faithfully on X1/4, hence is contained in Aut(X1/4) ∼= S6. �

For further reference we state here a description of the class groups of Xt.

Lemma 3.6. The following table lists the ranks of the class groups of the quartics Xt:

t t 6∈ D ∪ {∞} t = 1
4

t = 1
2

t = 1
6

t = 7
10

rk Cl(Xt) 6 1 16 11 7

Proof. First, assume t 6∈ D ∪ {∞}. Let X̃t be the blow up of Xt at its singular points.

Then X̃t is smooth by Theorem 3.3. Now the assertion follows from [Cyn01, Theorem 2]
and [Bea13, Lemma 2].

The cases t = 1/2, t = 1/6, and t = 7/10, are discussed in [Kal11, Theorem 1.1(iii)]
and [CS16b, §§5–6].

Finally, consider the case t = 1/4. As it was already mentioned, the Igusa quartic X1/4

is projectively dual to the Segre cubic threefold Z ⊂ P4. In fact, projective duality
gives an S6-equivariant birational map Z 99K X1/4 that blows up 10 ordinary double
points of Z and blows down the proper transforms of 15 planes on Z, see e.g. the proof
of [Pro10, Lemma 3.10]. In particular, one has

rk Cl
(
X1/4

)
= rk Cl(Z) + 10− 15,

and since the class group of the Segre cubic Z has rank 6 (see e.g. [Pro13, Theorem 7.1]),
we obtain rk Cl

(
X1/4

)
= 1. �

In Theorem 5.1 we will describe the action of the group S6 on Cl(Xt)⊗Q.

3.2. Wiman–Edge pencil. Consider the projective plane P2 with homogeneous coordi-
nates w1, w2, and w3 and the following two polynomials of degree six

(3.7)
Φ0(w1, w2, w3) = (w2

2 − w2
3)(w2

3 − w2
1)(w2

1 − w2
2),

Φ∞(w1, w2, w3) = w6
1 + w6

2 + w6
3 + (w2

1 + w2
2 + w2

3)(w4
1 + w4

2 + w4
3)− 12w2

1w
2
2w

2
3.
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It is easy to see that the sextic curves on P2 defined by these polynomials are singular at
the following four points

(3.8) (1 : 1 : 1), (1 : −1 : −1), (−1 : 1 : −1), (−1 : −1 : 1),

hence they induce a pair of global sections

Φ0,Φ∞ ∈ H0(S, ω−2
S )

of the double anticanonical line bundle on the blow up S of P2 at the points (3.8), i.e., on
the quintic del Pezzo surface. By [Edg81] the section Φ∞ is invariant with respect to the
action of Aut(S) ∼= S5, while the Φ0 is acted on by S5 via the sign character. Therefore,
there is an S5-invariant pencil of A5-invariant curves ∆s ⊂ S given by the equation

(3.9) Φ0 + sΦ∞ = 0, s ∈ k ∪ {∞}.
As we already mentioned, the curves ∆s are double anticanonical divisors on S. We
refer to the pencil (3.9) as the Wiman–Edge pencil. It was studied in various contexts in
[Wim96b], [Edg81], [IK05], [CS16a, §6.2], [DFL17], [Zam18], etc.

Theorem 3.10 (see [Edg81] or [CS16a, Theorem 6.2.9]). The Wiman–Edge pencil con-
tains exactly five singular curves: ∆0, ∆±1/

√
125, and ∆±1/

√
−3. They can be described as

follows:

• ∆0 is the union of 10 lines on S; it has 15 singular points.
• ∆±1/

√
125 are unions of 5 smooth conics; each of these curves has 10 singular points.

• ∆±1/
√
−3 are irreducible rational curves; each of these curves has 6 singular points.

Every singular point of any of these curves is a node. The group A5 acts transitively on
the set of singular points and on the set of irreducible components of each of these curves.

Remark 3.11. The curves ∆0 and ∆∞ in the Wiman–Edge pencil are not just A5-invariant,
but also S5-invariant. The first of them, as we already mentioned, is the union of 10
lines. The other one is a smooth curve of genus 6 known as the Wiman’s sextic curve,
see [Wim96b, Edg81]; it should not be confused with a smooth plane sextic curve studied
by Wiman in [Wim96a]. By construction, ∆∞ admits a faithful action of the group S5,
and one can show that its full automorphism group is also S5.

3.3. Preimages of S6-invariant quartics in the Coble fourfold. Recall that the
Coble fourfold Y is defined as a complete intersection in the weighted projective
space P(2, 16) of the hyperplane (1.1) with the hypersurface (1.5). It comes with a double
covering π : Y → P4 over the projective space in which the pencil {Xt} of S6-invariant
quartics sits, and with the Galois involution σ : Y → Y of the double covering.

As in §1, we define a pencil of hypersurfaces Xτ ⊂ Y by (1.12). By definition each
of the varieties Xτ is S6-invariant with respect to the natural S6-action. Moreover, X0

and X∞ are invariant under the whole group Aut(Y ) = S6 × µ2.

Lemma 3.12. For every τ 6=∞ we have

π−1
(
X τ2+1

4

)
= Xτ ∪X−τ ,

and the involution σ induces an S6-equivariant isomorphism σ : Xτ → X−τ for the nat-
ural action of S6. The map π : Xτ → X(τ2+1)/4 is an isomorphism for all τ 6= ∞, and
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the map π : X∞ → X∞ is the double covering over the quadric Q∞ = (X∞)red defined
by (3.2) that is branched over X1/4∩Q∞. The map π is S6×µ2-equivariant for τ = 0,∞
and S6-equivariant otherwise.

Proof. The hypersurface π−1(X(τ2+1)/4) ⊂ Y is defined by the equation(
x4

1 + x4
2 + x4

3 + x4
4 + x4

5 + x4
6

)
− τ 2 + 1

4

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)2

= 0,

which in view of equation (1.5) of Y can be rewritten as

0 = x2
0 −

τ 2

4

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)2

=

=
(
x0 +

τ

2

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)2
)(

x0 −
τ

2

(
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

)2
)
.

Hence π−1(X(τ2+1)/4) is the union of Xτ and X−τ . The Galois involution σ acts
by x0 7→ −x0, hence defines an isomorphism between Xτ and X−τ . To check that the
map π : Xτ → X(τ2+1)/4 is an isomorphism, just use (1.12) to express x0 in terms of
other xi; plugging it into the equation of the Coble fourfold Y , we deduce the equation
of the quartic Xt. For τ =∞ this of course does not work, but the equations of X∞ just
give

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = x2
0 − (x4

1 + x4
2 + x4

3 + x4
4 + x4

5 + x4
6) = 0

which defines a double covering of Q∞ whose branch locus is X0 ∩Q∞ = X1/4 ∩Q∞.
The equivariance of the maps σ and π is obvious. �

Remark 3.13. The singular locus of X∞ consists of the unique S6-orbit of length 30 that
is projected by π to the S6-orbit Σ30, see e.g. [PS16, §6].

Now we say a couple of words about the Weil divisor class groups of the threefolds Xτ .
Consider the set

(3.14) D̂ :=

{
0,±1,± 1√

−3
,± 3√

5

}
,

that is, the preimage of the discriminant set D defined in (1.3) under the map (1.11).

Lemma 3.15. The following table lists the ranks of the class groups of the threefolds Xτ :

τ τ 6∈ D̂ τ = 0 τ = ±1 τ = ± 1√
−3

τ = ± 3√
5

rk Cl(Xτ ) 6 1 16 11 7

Proof. If we assume that τ 6= ∞, then the assertion follows from Lemma 3.6 in view of
Lemma 3.12. For τ = ∞ we argue similarly to the proof of Lemma 3.6 (cf. the proof

of [PS16, Proposition 6.3]). Let X̃∞ be the blow up of X∞ along its singular locus, i.e.,

the preimage of the S6-orbit Σ30, see Remark 3.13. Then X̃∞ is smooth, and one proceeds
as in [Cyn01, Theorem 2], using the computation of [Bea13, Lemma 2]. �
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3.4. Pencil of Verra threefolds. We consider the pullbacks X 5,1
τ and X 4,2

τ of the
threefolds Xτ to the resolutions Y5,1 and Y4,2 of singularities of the Coble fourfold, so
that X 5,1

τ ⊂ Y5,1 and X 4,2
τ ⊂ Y4,2 are defined by (1.13). In the next section we will study

the first of them, but now let us consider the second one. We assume that the map ρ4,2

is defined by (2.23).
To simplify the situation, we consider the images of the threefolds X 4,2

τ with respect
to the contraction β : Y4,2 → P2 × P2 = P(W3)× P(W3), see §2.1. Define

X̄ 4,2
τ = β(X 4,2

τ ) ⊂ P2 × P2.

As in §2.1 we use (u1 : u2 : u3) and (v1 : v2 : v3) for coordinates on the factors of P2×P2,
and let Pi = (Pi, Pi) with Pi defined by (2.1).

Below we consider divisors of bidegree (2, 2) in P2×P2 (and call them Verra threefolds)
as conic bundles over the first factor. We write their equations as symmetric 3×3-matrices
with coefficients being quadratic polynomials in u1, u2, u3. So, if q(u) = (qij(u)) is such
a matrix, the corresponding equation is q(u)(v) :=

∑
qij(u)vivj = 0.

Proposition 3.16. The subvariety X̄ 4,2
τ ⊂ P2 × P2 is a Verra threefold given by the

equation

(3.17) q0(u)(v) + τq∞(u)(v) = 0,

where

q0(u) =
1

2

(
0 u3(u2−u1) u2(u1−u3)

u3(u2−u1) 0 u1(u3−u2)
u2(u1−u3) u1(u3−u2) 0

)
, and(3.18)

q∞(u) =
1

6

(
4(u22−u2u3+u23) u3(u1+u2)−2u1u2−2u23 u2(u1+u3)−2u1u3−2u22

u3(u1+u2)−2u1u2−2u23 4(u21−u1u3+u23) u1(u2+u3)−2u2u3−2u21
u2(u1+u3)−2u1u3−2u22 u1(u2+u3)−2u2u3−2u21 4(u21−u1u2+u22)

)
.(3.19)

Proof. By (1.12), the variety X̄ 4,2
0 is given by the equation x0 = 0. Writing the formula

for x0 from (2.23) in the matrix form, we get (3.18). Similarly, X̄ 4,2
∞ is given by the

equation
1

2
(x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6) = 0.

Substituting expressions for xi from (2.23) and rewriting everything in the matrix form,
we get (3.19). Therefore, equation (3.17) is the same as (1.12). �

Remark 3.20. Of course, one can cancel the common factor 1/2 in (3.18) and (3.19).
However, we prefer to keep it so that q0(u)(v) and q∞(u)(v) are the same as the two
summands in (1.12).

Since the maps β : X 4,2
τ → X̄ 4,2

τ and π4,2 = π◦ρ4,2 : X 4,2
τ → X(τ2+1)/4 are birational for

all τ 6= ∞, the projection p1 : X̄ 4,2
τ → P2 provides every (reduced) S6-invariant quartic

with a birational structure of a conic bundle. Similarly, the map p1 : X̄ 4,2
∞ → P2 provides

a birational structure of a conic bundle on the threefold X∞. The explicit formulas of
Proposition 3.16 allow to compute their discriminant loci.

Lemma 3.21. The discriminant curve of the conic bundle p1 : X̄ 4,2
τ → P2 is the

curve ∆τ ⊂ P2 defined by the equation

(3.22) (5τ 2 + 3)Φ0 + (τ 3 − τ)Φ∞ = 0,
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where Φ0 and Φ∞ are the sextic polynomials (3.7), and the coordinates (w1 : w2 : w3) are
related to (u1 : u2 : u3) by the formula

u1 = w2 + w3, u2 = w1 + w3, u3 = w1 + w2.

Proof. A straightforward computation shows that

12 det
(
q0(u) + τq∞(u)

)
= (5τ 2 + 3)Φ0 + (τ 3 − τ)Φ∞. �

The drawback of this conic bundle model is the lack of flatness. Indeed, it is easy to
see that over each of the points Pi (see (2.1)) the matrix q0(u) is identically zero, so the
fiber of X̄ 4,2

0 over Pi is the whole P2. In the next subsection we check that using the
resolution Y5,1 of the Coble fourfold, we obtain flat conic bundles.

3.5. Pencil of conic bundles over the quintic del Pezzo surface. Recall
that X 5,1

τ ⊂ Y5,1 is defined in (1.13) as the preimage of the threefold Xτ ⊂ Y un-
der the resolution ρ5,1 : Y5,1 → Y . For its investigation it will be very convenient to use
explicit formulas of §3.4. So, to benefit from those we assume that we are in the situation
of Proposition 2.47, i.e., a subgroup S4 ⊂ S5 and a non-standard embedding S5 ↪→ S6

are chosen, the choice of ρ4,2 is fixed as in (2.23), the map θ1 : Y5,1 99K Y4,2 is a birational
isomorphism for which the outer square of diagram (1.10) commutes, and ρ5,1 = ρ4,2 ◦ θ1.

Remark 3.23. As we already discussed, for τ 6= 0,∞ the subvariety Xτ is invariant with
respect to the natural action of S6, while the map ρ5,1 : Y5,1 → Y is equivariant with
respect to the twisted action of S5 ⊂ S6. As a result, the subvariety X 5,1

τ ⊂ Y 5,1 is
only invariant under the action of the subgroup A6 ∩S5 = A5, on which the two actions
agree. Similarly, the projection ρ5,1 : X 5,1

τ → Xτ is only A5-equivariant. On the other
hand, for τ = 0 or τ = ∞, the subvariety X 5,1

τ ⊂ Y is S5-invariant and the map ρ5,1

is S5-equivariant.

Lemma 3.24. The map p : X 5,1
τ → S is a flat conic bundle with the discriminant

curve ∆s(τ) ⊂ S defined by (3.9), where

(3.25) s(τ) =
τ 3 − τ
5τ 2 + 3

.

This map is A5-equivariant for τ 6= 0,∞ and S5-equivariant for τ = 0,∞.

Proof. Equivariance of the maps p : X 5,1
τ → S follows from invariance of X 5,1

τ discussed in
Remark 3.23 and S5-equivariance of the P2-bundle p : Y5,1 → S. The restriction of (1.10)
gives a commutative diagram

(3.26)

X 5,1
τ

p

��

θ1 //

ρ5,1 ""

X 4,2
τ

β
��ρ4,2||

Xτ X̄ 4,2
τ

p1
��

S
ϕ // P2
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The divisor X 5,1
∞ ⊂ Y is the preimage of the quadric Q∞ ⊂ P(W5) with respect to

the map π5,1 : Y5,1 → P(W5), hence it is the zero locus of a section of the line bun-
dle OPS(U3)/S(2). Since X 5,1

τ form a pencil, all of them are the zero loci of sections
of the same line bundle, hence correspond to symmetric morphisms U3 → U ∨

3 on S (in
particular, p : X 5,1

τ → S is a conic bundle). Therefore, the discriminant curve of X 5,1
τ is

the zero locus of a morphism

ωS ∼= det(U3)→ det(U ∨
3 ) ∼= ω−1

S ,

i.e., a double anticanonical divisor.
On the other hand, the above diagram shows that the discriminant locus of X 5,1

τ con-
tains the proper transform of the discriminant curve ∆τ of X̄ 4,2

τ whose equation is (3.22).
If τ 3− τ 6= 0 it is a sextic curve passing with multiplicity 2 through each of the points Pi,
hence its proper transform to S is a curve on S with equation

(3.27) (5τ 2 + 3)Φ0 + (τ 3 − τ)Φ∞ = 0,

i.e., the curve ∆s(τ). In the case when τ 3 − τ = 0, the curve ∆τ is the union of six
lines on P2, and its proper transform on S is the union of six lines on S. But the conic
bundle p : X 5,1

τ → S is A5-equivariant. Thus its discriminant curve is A5-invariant, and
hence it should also contain the other four lines of S. We conclude this case by noting
that the sum of the ten lines ∆0 on S is a double anticanonical divisor, and it is indeed
given by the equation (3.27) with τ 3 − τ = 0.

It remains to show that the conic bundle is flat. For this we note that a non-flat point
of a conic bundle is a point of multiplicity at least 3 on its discriminant curve. But by
Theorem 3.10 all singular points of these curves are nodes. �

Before going further, we discuss some properties of the map s : P1 → P1 defined
by (3.25).

Lemma 3.28. The map s : P1 → P1 is a triple covering with simple ramification at four
points τ = ±

√
−3 and τ = ±1/

√
5.

Proof. A direct computation. �

In the next table we list some special values of τ together with the values of the
functions s(τ) and t(τ) = (τ 2 + 1)/4 at these points.

τ 0 1 −1 ± 1√
−3
±
√
−3 ∓ 3√

5
± 1√

5
∞ ±

√
−3

5

s(τ) 0 ∓ 1√
−3

∓ 1
5
√

5
∞

t(τ) 1
4

1
2

1
2

1
6

−1
2

7
10

3
10

∞ 1
10

The second row contains the values of the parameter s that correspond to singular mem-

bers of the Wiman–Edge pencil (see Theorem 3.10) and infinity. The first row contains
their preimages; gray cells mark ramification points of the map s(τ), see Lemma 3.28.
The third row contains the values of the map t(τ) at these points; gray cells mark the
points of the discriminant set D and infinity.
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Since the degree of the map s is 3, the same singular curves in the Wiman–Edge pencil
may appear as the discriminant loci of the preimages X 5,1

τ of different quartics Xt. For
instance, the Igusa and the Burkhardt quartics both correspond to the union ∆0 of the
ten lines on S. Note also that the quartics X1/6 and X7/10 share their discriminant curves
with non-special quartics X−1/2 and X3/10 respectively. As we will see in Proposition 3.30,
these two are characterized by the fact that the corresponding curves in the Wiman–Edge
pencil are singular, while the total spaces of the threefolds X 5,1

τ are smooth.
To proceed we will need the following general result. Its proof can be found

in [Bea77, Proposition 1.2] or [Sar82, Proposition 1.8], except for the fact that the sin-
gularity of XP is a node, but this can also be extracted from the arguments in either of
these two papers.

Lemma 3.29 ([Bea77, Proposition 1.2], [Sar82, Proposition 1.8]). Let p : X → S be a
flat conic bundle over a smooth surface S. Assume that its discriminant locus ∆ ⊂ S
has a node at a point P ∈ S. Then X has a singular point over P if and only if the
fiber XP = p−1(P ) is a conic of corank 1 (that is, a union of two distinct lines), and in
this case the singularity of X over P is a node at the (unique) singular point of XP .

The next assertion describes the singular loci of the threefolds X 5,1
τ . Recall the mor-

phism π5,1 defined in (2.33) and the discriminant set D̂ from (3.14).

Proposition 3.30. The threefold X 5,1
τ is smooth for all τ 6∈ D̂ (including τ = ∞).

For τ ∈ D̂ the singular locus of X 5,1
τ maps isomorphically to a subset of P4 as follows:

τ 0 ±1 ± 1√
−3
± 3√

5

π5,1(Sing(X 5,1
τ )) Υ15 Σ15 Σ10 Σ6

For τ ∈ D̂ the singularities of X 5,1
τ form a single A5-orbit, every singular point Q of X 5,1

τ

is a node, and the fiber p−1(p(Q)) is a union of two distinct lines intersecting at Q.

Proof. To start with, let us show that for τ 6= 0 the threefold X 5,1
τ is smooth along the

exceptional locus of the morphism ρ5,1, which by Proposition 2.42 is the reducible surface

(3.31)

(⋃
L

RL

)
∪

(⋃
ϕ

Rϕ

)
= π−1

5,1(CR) ⊂ Y5,1.

Recall that each of its irreducible components is a smooth surface in Y5,1 (see Lemmas 2.35
and 2.39). Note that a Cartier divisor in a smooth fourfold is smooth along its intersection
with a smooth surface provided that their scheme intersection is a smooth curve. So, it
is enough to check that the intersections X 5,1

τ ∩RL and X 5,1
τ ∩Rϕ are smooth curves for

all τ 6= 0. But the divisors X 5,1
τ form a pencil, and X 5,1

0 (which by definition is equal to
the ramification divisor of π5,1) contains all these surfaces. Therefore,

X 5,1
τ ∩RL = X 5,1

∞ ∩RL and X 5,1
τ ∩Rϕ = X 5,1

∞ ∩Rϕ.

So, it is enough to show that X 5,1
∞ ∩ Rϕ and X 5,1

∞ ∩ RL are smooth curves.
But X 5,1

∞ = π−1
5,1(Q∞), while Rϕ and RL are the preimages of the 15 lines of the Cremona–

Richmond configuration CR. The quadric Q∞ intersects all these lines transversally and
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away from the intersection points of the lines by Remark 3.1, hence X 5,1
∞ ∩ RL is the

union of two disjoint lines, and X 5,1
∞ ∩Rϕ is the union of two disjoint smooth conics.

Since the map ρ5,1 : X 5,1
τ → Xτ is an isomorphism over P4 \ CR (because so is the

map Y5,1 → Y ), it follows that for all τ 6= 0 we have

Sing(X 5,1
τ ) = Sing(Xτ ) \ CR,

and in view of Lemma 3.12, Theorem 3.3, Remark 3.13, and Lemma 3.29, we obtain the
required description of singularities of X 5,1

τ for τ 6= 0.
Next, consider the case τ = 0. The map p : X 5,1

0 → S is a flat conic bundle with the
discriminant locus being the curve ∆0, i.e., the union of 10 lines on S. It follows that X 5,1

0

is smooth over the complement of the 15 intersection points of lines on S. Since all these
points are nodes of ∆0, Lemma 3.29 shows that the threefold X 5,1

0 has a singularity over
such a point P if and only if the conic (X 5,1

0 )P = p−1(P ) is a union of two distinct lines
(and then the singular point is a node located at the intersection point of these lines).
Since the 15 intersection points of lines on S form a single A5-orbit (see Theorem 3.10),
it is enough to check everything over one of them.

Take the intersection point P ∈ S such that ϕ(P ) = (0 : 1 : 1). We know from
diagram (3.26) that the conic (X 5,1

0 )P is isomorphic to the conic (X̄ 4,2
0 )ϕ(P ), hence by

Proposition 3.16 it is given by the matrix

(3.32) q0(0 : 1 : 1) =
1

2

 0 1 −1
1 0 0
−1 0 0

 .

Its rank equals 2, hence (X̄ 4,2
0 )ϕ(P ), and thus also (X 5,1

0 )P , is a union of two lines.

Moreover, the intersection point of the irreducible components of (X̄ 4,2
0 )ϕ(P ) is the

point (0 : 1 : 1), and using (2.23) we compute that

π̄4,2((0 : 1 : 1), (0 : 1 : 1)) = (2 : −1 : −1 : 2 : −1 : −1) ∈ Υ15.

By A5-equivariance of the map π5,1 and transitivity of A5-action on Υ15 (see Corollary A.4)

we conclude that π5,1(Sing(X 5,1
0 )) = Υ15. �

Corollary 3.33. For all τ 6= 0,∞ the morphism π5,1 : X 5,1
τ → X(τ2+1)/4 is birational and

small. Also, the morphism ρ5,1 : X 5,1
∞ →X∞ is birational and small.

Proof. Indeed, as we have seen in the proof of Proposition 3.30, for τ 6= 0 the non-trivial
fibers of X 5,1

τ → Xτ are 30 rational curves, one over each of the 30 intersection points
of Σ30 = CR ∩Q∞. Since the map π : Xτ → X(τ2+1)/4 is an isomorphism for τ 6= ∞ by
Lemma 3.12, the assertion follows. �

Remark 3.34. For τ = 0 the surface (3.31) is contained in the exceptional locus
of π5,1 : X 5,1

0 → X1/4, hence this morphism is not small, but is still birational.

3.6. Proofs of Theorems 1.14 and 1.15. For τ 6= 0 the map ρ5,1 : X 5,1
τ →Xτ is small

and birational by Corollary 3.33. The same argument works for ρ4,2 : X 4,2
τ →Xτ without

changes. Finally, smoothness of X 5,1
τ for non-special τ is proved in Proposition 3.30. The

maps ρ5,1 and π ◦ ρ5,1 have required equivariance by Remark 3.23 and Lemma 3.12. The
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same arguments prove equivariance of the maps ρ4,2 and π◦ρ4,2. This completes the proof
of Theorem 1.14.

Now let us prove Theorem 1.15. By Proposition 3.30 the total spaces of the conic

bundles p : X 5,1
τ → S are smooth for τ 6∈ D̂, so since rk Pic(S) = 5, to show that p is a

standard conic bundle for τ 6∈ D̂ it is enough to check that rk Pic(X 5,1
τ ) = 6 for these τ .

But since the map ρ5,1 : X 5,1
τ →Xτ is small, we have

Pic(X 5,1
τ ) ∼= Cl(Xτ ).

Thus the assertion of the theorem follows from Lemma 3.15. �

Remark 3.35. Assume the notation of Remark 2.24, and suppose that t 6∈ {1/4, 1/2,∞}.
One can check that the restrictions of each hyperplane Hijk ⊂ P4 to Xt splits as a union of
two smooth quadric surfaces in Hijk

∼= P3. For t = 1/4 these two quadric surfaces collide
into a smooth quadric with a non-reduced structure, and for t = 1/2 they degenerate
into unions of pairs of planes. Considering the preimages of these surfaces on Xτ , where
as usual t = (τ 2 + 1)/4, and using Remarks 2.24 and 2.46, one can describe the small
resolutions ρ4,2 and ρ5,1 of singularities of Xτ as blow ups of certain Weil divisors on Xτ .

4. Rationality

In this section we provide some applications of the results obtained earlier. Namely, we
check that all quartics Xt are unirational, give a new and uniform proof of irrationality of
S6-invariant quartics Xt for t 6∈ D∪{∞} (and also of the threefold X∞), and rationality
of Xt for t ∈ D.

4.1. Unirationality of S6-invariant quartics. We start with a short proof of unira-
tionality of the quartics Xt and the threefold X∞. The next fact is well known.

Lemma 4.1. Let V be an irreducible Verra threefold, i.e., an irreducible hypersurface of
bidegree (2, 2) in P2 × P2. Then V is unirational.

Proof. Let pi : V → P2, i = 1, 2, be the natural projections. Both pi are (possibly non-
flat) conic bundles. Let L ⊂ P2 be a general line, and put T = p−1

2 (L). Since V is
irreducible and L is general, the surface T is irreducible by Bertini’s theorem. Also,
the map p2 provides the surface T with a conic bundle structure over L ∼= P1, hence
T is rational. Note also that T = V ∩ (P2 × L) is a divisor of bidegree (2, 2) in P2 ×
P1, hence the projection p1 : T → P2 is dominant (actually, T is a rational 2-section of
p1). Since p1 : V → P2 is a conic bundle, the standard base change argument implies
unirationality of V . �

Combining Lemma 4.1 with Proposition 3.16, we obtain

Corollary 4.2. The quartics Xt, t 6=∞, and the threefold X∞, are unirational.

Remark 4.3. One can use the same approach to prove rationality of the Burkhardt quar-
tic X1/2 (this is a classical fact going back to [Tod36], see also Theorem 4.6 below). For this

consider the corresponding Verra threefold X̄ 4,2
1 ⊂ P2×P2 and let T = p−1

2 (P1P2) ⊂ X̄ 4,2
1

be the preimage of the line passing through two of the points (2.1), that is, the line v3 = 0.
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As before, T is a divisor of bidegree (2, 2) in P2 × P1. Using (3.18) and (3.19) we can
rewrite explicitly its equation q0(u)(v1, v2, 0) + q∞(u)(v1, v2, 0) = 0 as(

q0(u) + q∞(u)
)
(v1, v2, 0) =

=
2

3

(
u1v2 + ωu2v1 + ω2u3v1 + ωu3v2

)(
u1v2 + ω2u2v1 + ωu3v1 + ω2u3v2

)
,

where ω is a primitive cubic root of unity. Thus we see that T = T1 ∪ T2, where Ti
is a divisor of bidegree (1, 1). In particular, each Ti provides a rational section of the
conic bundle p1 : X̄ 4,2

1 → P2 and rationality of X̄ 4,2
1 follows. Since the threefold X̄ 4,2

1 is
birational to the quartic X1/2, the rationality of the latter follows as well.

4.2. Irrationality of non-special S6-invariant quartics. Beauville proved in [Bea13]
that the quartic Xt is irrational provided that t 6∈ D ∪ {∞} by using the S6-action on
the intermediate Jacobian of a suitable resolution of singularities of Xt. By [Bea13], the
intermediate Jacobian Jt of the blow up of the 30 singular points of Xt is five-dimensional,
and the action of S6 on Jt is faithful; on the other hand, if it is a product of Jacobains of
curves, it cannot have a faithful S6-action. Irrationality of the threefold X∞ was proved
using the same approach in [PS16, Proposition 6.3]. With the help of the conic bundle
structure on these varieties constructed in Theorem 1.15, we can give another proof of
their irrationality.

Theorem 4.4. If t 6∈ D∪{∞}, then Xt is irrational. Also, the variety X∞ is irrational.

Proof. By Theorem 1.14 it is enough to show that the threefold X 5,1
τ is irrational

for τ 6∈ Dτ . By Theorem 1.15 the map p : X 5,1
τ → S is a standard conic bundle with

the nodal discriminant curve ∆s contained in the linear system | − 2KS|. Here s = s(τ)

is given by the formula (1.16). The conic bundle p induces a double cover ∆̂s → ∆s that
is branched only over the nodes of the curve ∆s. Applying [Bea77, Proposition 2.8], we
see that the intermediate Jacobian of the threefold X 5,1

τ is isomorphic as a principally

polarized abelian variety to the Prym variety Prym(∆̂s,∆s). Now [Sho83, Main Theo-

rem] implies that Prym(∆̂s,∆s) is not a product of Jacobians of curves, hence X 5,1
τ is

irrational. �

Remark 4.5. The intermediate Jacobian of X 5,1
τ can be described fairly explicitly. For

instance, it was observed by Dimitri Markushevich that it is isogenous to the fifth power
of an elliptic curve (whose j-invariant depends on τ).

Note by the way, that there is another popular family of threefolds with five-dimensional
intermediate Jacobians, namely, smooth cubic threefolds. However, it was pointed out by
Beauville that the quartics Xt are not birational to smooth cubics. Indeed, if a quartic Xt

is birational to a smooth cubic threefold Y , then the intermediate Jacobian J(Y ) is
isomorphic to Jt, and thus there is a faithful S6-action on J(Y ) (note that Jt must
coincide with its Griffiths component in this case). Torelli theorem for smooth cubic
threefolds (see [Bea82, Proposition 6]) implies that there is a faithful S6-action on Y
itself, which is impossible, because the only cubic threefold with a faithful S6-action is
the Segre cubic that has ten singular points.

It would be interesting to find out if the quartics Xt with t 6∈ D are stably rational or
not.
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4.3. Rationality of special S6-invariant quartics. The result of Theorem 4.4 is
sharp: the threefolds X1/2, X1/4, X1/6, and X7/10 are rational. In fact, rationality of
the Burkhardt quartic X1/2 was proved by Todd in [Tod36] (see also Remark 4.3), ratio-
nality of the Igusa quartic X1/4 follows from the rationality of its projectively dual variety
(which is the Segre cubic), and rationality of the quartics X1/6 and X7/10 is also known,
see [Tod33, Tod35, CS16b]. However, using our results one can give a uniform proof of
rationality of all these threefolds; this proof does not use explicit rationality constructions.

Theorem 4.6. The quartics X1/2, X1/4, X1/6, and X7/10 are rational.

Proof. Suppose that τ ∈ D̂, so that t ∈ D and s ∈
{

0,±1/
√

125,±1/
√
−3
}

, where as
usual t = (τ 2 + 1)/4 and s = s(τ), see (3.25). By Theorem 1.14 it is enough to show
that X 5,1

τ is rational.
Consider the conic bundle p : X 5,1

τ → S. The singular locus of its discriminant ∆s

is a finite set of nodes, see Theorem 3.10. Actually, by Lemma 3.24 the set Sing(∆s)
consists of 15 points when t = 1/4 or t = 1/2, of 10 points when t = 1/6, and of 6 points
when t = 7/10. We also know from Proposition 3.30 that all singularities of X 5,1

τ are
nodes, and for every singular point Q of X 5,1

τ the fiber p−1(p(Q)) is a union of two lines,
with Q being their intersection point.

The conic bundle p is not standard because the threefold X 5,1
τ is singular, so we start

by transforming it to a standard one. Let ν : S̃ → S be the blow up of the quintic del
Pezzo surface S at Sing(∆s), and consider the base change p′ : X 5,1

τ ×S S̃ → S̃ of the conic
bundle p. Its discriminant curve is the preimage on S̃ of the discriminant curve of p. In
particular, it contains all exceptional curves of the blow up ν as irreducible components
of multiplicity 2, and the corank of the fibers of p′ over the points of each of these curves
equals 1. Modifying the conic bundle along these lines as in [Sar82, Lemma 1.14], we can
get rid of the corresponding components of the discriminant. In other words, we obtain a
small birational map

(4.7) X 5,1
τ ×S S̃ 99K X̃ 5,1

τ

over S̃, such that the threefold X̃ 5,1
τ comes with a flat conic bundle p̃ : X̃ 5,1

τ → S̃ whose

discriminant curve is the proper transform ∆̃s ⊂ S̃ of ∆s with respect to ν. In particular,

the curve ∆̃s is smooth (hence also X̃ 5,1
τ is smooth), and by Theorem 3.10 has ten

connected components when t = 1/4 or t = 1/2, five components when t = 1/6, and just

one component when t = 7/10. Moreover, every connected component of ∆̃s is rational.

Since ∆̃s is smooth, the conic bundle p̃ has only simple degenerations. In particular, it

induces an étale double covering over ∆̃s. Since every connected component ∆̃
(i)
s ⊂ ∆̃s is

smooth and rational, the double covering is trivial, hence the preimage p̃−1(∆̃
(i)
s ) consists

of two irreducible components

p̃−1
(
∆̃(i)
s

)
= Θ′i ∪Θ′′i ,

each being a P1-bundle over ∆̃
(i)
s . Choosing for each i one of them and contracting all

chosen components simultaneously over S̃ (see [Sar82, 1.17]), we obtain a commutative
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diagram

X̃ 5,1
τ

p̃
  

// X
5,1

τ

p̄
~~

S̃

Here the horizontal arrow is a birational morphism, and p̄ is an everywhere non-degenerate
conic bundle. Since S̃ is a rational surface, its Brauer group is trivial, hence this P1-bundle
is a projectivization of a vector bundle, hence birational to S̃ × P1, hence rational. This
means that X 5,1

τ is also rational. �

Remark 4.8. The birational transformation X 5,1
τ 99K X 5,1

τ ×S S̃ 99K X̃ 5,1
τ can be de-

scribed very explicitly, see Construction I in the proof of [CPS15, Theorem 4.2]. It is a
composition of the blow ups of all singular points Q ∈X 5,1

τ followed by the Atiyah flops in
the union of proper transforms of the two irreducible components of the conic p−1(p(Q)),
see Proposition 3.30.

The construction that we used in the proof of Theorem 4.6 has the following conse-
quence, which we will need in §5. Recall the notation of (1.17).

Corollary 4.9. For τ ∈ D̂ the relative divisor class group Cl(X 5,1
τ /S) ⊗ Q has the

following structure as a representation of the group A5:

τ 0 ±1 ± 1√
−3

± 3√
5

Cl(X 5,1
τ /S)⊗Q 1⊕ IndA5

A3,2
(1) 1⊕ IndA5

A3,2
(−1) 1⊕ IndA5

A4
(1) 1⊕ 1

Here IndA5
G stands for the induction functor from the subgroup G = A4 or G = A3,2

∼= S3

in A5, while 1 stands for the trivial representation, and −1 stands for the sign repre-
sentation of S3. The first summand 1 in each cell is generated by the canonical class
of X 5,1

τ .

Proof. The canonical class KX 5,1
τ

is invariant with respect to the group action, hence

generates a trivial subrepresentation in Cl(X 5,1
τ /S)⊗Q. Consider the quotient

Cl0(X 5,1
τ /S)⊗Q :=

(
Cl(X 5,1

τ /S)⊗Q
)
/QKX 5,1

τ
.

To describe it we use the notation introduced in the proof of Theorem 4.6. First, we have

Cl0(X 5,1
τ /S) ∼= Cl0((X 5,1

τ ×S S̃)/S̃).

Furthermore, since (4.7) is a small birational map, we have

Cl0((X 5,1
τ ×S S̃)/S̃) ∼= Cl0(X̃ 5,1

τ /S̃).

Finally, it is clear that Cl0(X̃ 5,1
τ /S̃)⊗Q is contained in an A5-equivariant exact sequence

0→
⊕

Q
[
∆̃

(i)
s(τ)

]
→
⊕

(Q [Θ′i]⊕Q [Θ′′i ])→ Cl0(X̃ 5,1
τ /S̃)⊗Q→ 0,

where we sum up over the set of irreducible components of ∆̃s(τ), and the first map takes

the class
[
∆̃

(i)
s(τ)

]
∈ Pic(S̃) to [Θ′i] + [Θ′′i ] ∈ Pic(X̃ 5,1

τ ). It follows that Cl0(X̃ 5,1
τ /S̃) ⊗ Q
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has a basis [Θ′i]− [Θ′′i ], and the group A5 permutes these basis vectors, possibly changing
their signs.

Recall that the group A5 acts transitively on the set of irreducible components of ∆̃s(τ)

by Theorem 3.10. Let G ⊂ A5 be the stabilizer of some irreducible component of ∆̃s(τ),

say, of ∆̃
(0)
s(τ). The action of G on the set {Θ′0,Θ′′0} defines a homomorphism υ : G→ {±1},

i.e., a one-dimensional representation of G, and we conclude that

Cl0(X̃ 5,1
τ /S̃)⊗Q ∼= IndA5

G (υ).

So, it remains to identify the possible stabilizers G for various τ , and the homomor-
phisms υ.

When τ = ±3/
√

5, the curve ∆̃s(τ) is irreducible, hence G is the whole group A5, and
since it has no non-trivial one-dimensional representations, we conclude that

Cl0(X̃ 5,1

±3/
√

5
/S̃)⊗Q ∼= IndA5

A5
(1) ∼= 1.

When τ = ±1/
√
−3, the curve ∆̃s(τ) has five components, G is the subgroup A4 of A5,

and since it has no non-trivial one-dimensional representations, we conclude that

Cl0(X̃ 5,1

±1/
√
−3
/S̃)⊗Q ∼= IndA5

A4
(1).

When τ = 0 or τ = ±1, the curve ∆̃s(τ) has ten components (corresponding to lines
on S) and G is the subgroup A3,2

∼= S3 of A5. It remains to show that it fixes the
components Θ′0 and Θ′′0 when τ = 0, and swaps them when τ = ±1.

The stabilizer A3,2 of a line L ⊂ S permutes three points of its intersection with other
lines on S. Each of these points, in its turn, is stabilized by a transposition in A3,2

∼= S3.
So, it is enough to check how these transpositions act on Θ′0 and Θ′′0.

Consider the point P = (0 : 1 : 1) as in the proof of Proposition 3.30. Then it is easy
to see that the subgroup of A5 that preserves both lines passing through P is generated
by the automorphism

g =

1 0 0
1 0 −1
1 −1 0


of order two of the plane, while the fiber p−1(P ) is given by (3.32) in the case τ = 0, and
by

q0(0 : 1 : 1) + q∞(0 : 1 : 1) =
1

3

 2 1 −2
1 2 −1
−2 −1 2


in the case τ = 1. Now verifying that g fixes the components of the conic p−1(P ) if τ = 0
and swaps the components if τ = 1 is straightforward.

The computation in the case τ = −1 is similar to that in the case τ = 1. �

The part of the above argument that identifies the relative class group of a conic bundle
in terms of the induced representation is completely general and can be proved for any
conic bundle with only simple degenerations, and for an arbitrary group acting on it.
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5. Representation structure of the class groups

The main result of this section is the description of the S6-action on the class groups
of the Coble fourfold and of the quartics Xt, and its applications to the equivariant
birational geometry of these varieties. We will be mostly interested in the quartics Xt

with t 6= 1/4,∞, because the quartic X1/4 has non-isolated singularities, and at the same
time its class group is not very intriguing by Lemma 3.6 (cf. Remark 5.23 below), while
the quartic X∞ is non-reduced; however, we will also perform the same computations for
the threefold X∞.

5.1. The result and its applications. We start by stating our main result and its
consequences. We will use the following notation for representations of the symmetric
groups. For each partition λ = (λ1, λ2, . . . , λr) of an integer n (i.e., a non-increasing
sequence of positive integers summing up to n) we denote by

R(λ) = R(λ1, λ2, . . . , λr)

the irreducible Q-representation of the group Sn as described in [FH91, §4.1]. For in-
stance, R(n) is the trivial representation, while R(1n) is the sign representation. Note
that the standard permutation representation is the direct sum R(n)⊕ R(n− 1, 1).

We denote by R(λ) � 1 and R(λ) � (−1) the representations of the group S6 × µ2,
which are isomorphic to R(λ) when restricted to S6 and on which the non-trivial element
of µ2 acts by 1 or −1, respectively.

Theorem 5.1. There are the following isomorphisms of S6 × µ2-representations:

Cl(Y )⊗Q ∼= Cl(X∞)⊗Q ∼= (R(6)� 1)⊕ (R(3, 3)� (−1)).

In particular, for the natural action of S6 there are isomorphisms of S6-representations

Cl(Y )⊗Q ∼= Cl(X∞)⊗Q ∼= R(6)⊕ R(3, 3),

while for the twisted action of S6 there are isomorphisms of S6-representations

Cl(Y )⊗Q ∼= Cl(X∞)⊗Q ∼= R(6)⊕ R(2, 2, 2).

Finally, there are the following isomorphisms of S6-representations:

Cl(Xt)⊗Q ∼= R(6)⊕ R(3, 3), for t 6∈ D ∪ {∞};

Cl
(
X 1

2

)
⊗Q ∼= R(6)⊕ R(3, 3)⊕ R(3, 13);

Cl
(
X 1

6

)
⊗Q ∼= R(6)⊕ R(3, 3)⊕ R(2, 2, 2);

Cl
(
X 7

10

)
⊗Q ∼= R(6)⊕ R(3, 3)⊕ R(16).

The proof of Theorem 5.1 takes the next subsection, and now we discuss its applications
to equivariant birational geometry.

Recall that an n-dimensional variety X with an action of a group G is G-rational if
there exists a G-equivariant birational map between X and Pn for some action of G
on Pn. Also recall that a G-equivariant morphism φ : X → S of normal varieties acted
on by a finite group G is called a G-Mori fiber space, if X has terminal singularities,
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one has rk Pic(X)G = rk Cl(X)G, the fibers of φ are connected and of positive dimen-
sion, the anticanonical divisor −KX is φ-ample, and the relative G-invariant Picard
rank rk Pic(X/S)G equals 1.

The first application of Theorem 5.1 is due to the following expectation, which is proved
in several particular cases, cf. [Mel04], [Shr08], [CPS16, Proof of Theorem 1.1].

Conjecture 5.2. Let X be either a nodal quartic threefold, or a nodal double covering of
a smooth three-dimensional quadric branched over its intersection with a quartic. Let G
be a finite subgroup in Aut(X) such that

rk Cl(X)G = 1.

If there is a G-equivariant birational map X 99K X ′, where X ′ → S ′ is a G-Mori fibre
space, then X ∼= X ′. In particular, X is not G-rational.

Of course, this applies to each of the S6-invariant quartics Xt with t 6= 1/4,∞, and
to the threefold X∞ as well. For each subgroup G ⊂ S6 the rank of the invariant class
group Cl(Xt)

G can be easily computed from the result of Theorem 5.1 by restricting the
representation and computing the multiplicity of the trivial summand. We used the GAP
package [GAP17] to perform this computation, see [Cod17] for the source code. To state
our result in a precise form we first introduce our notation for the subgroups of S6.

First of all, given a subgroup G ⊂ S6 we denote by G ⊂ S6 the image of G
under an outer automorphism of S6. We also use notation (1.17). Furthermore,
if G1 ⊂ Sn1 , . . . , Gr ⊂ Snr are subgroups and n1 + . . . + nr 6 6, then by G1 × . . . × Gr

we denote the corresponding subgroup in

Sn1 × . . .×Snr
∼= Sn1,...,nr ⊂ Sn1+...+nr ⊂ S6.

Next, we use the notation µd[c1, . . . , cr] for a cyclic subgroup of order d generated by a
permutation of cycle type [c1, . . . , cr]. We abbreviate µ5[5] to just µ5.

By V4 we denote the Klein four-group, i.e., the unique subgroup of order 4 in A4 ⊂ S4.
By V4,2 we denote a subgroup of S4,2 ⊂ S6 whose projection to the first factor S4 gives
an isomorphism with V4, while the projection to the second factor S2 is surjective.

By D2n we denote the dihedral group of order 2n. It is naturally embedded into the
group Sn, so for n 6 6 it is a subgroup of S6; note that D12 = S3,2.

There are four conjugacy classes of subgroups isomorphic to D8 in S6. They can be
described as follows. The first class contains subgroups of (the standard) S4 in S6;
according to the above conventions, we will refer to subgroups from this conjugacy class
simply as D8. There are three non-trivial homomorphisms

υ◦ : D8 → µ2, υ+ : D8 → µ2, υ× : D8 → µ2,

determined by their kernels

Ker(υ◦) = µ4[4], Ker(υ+) = V4, Ker(υ×) = S2,2.

Thinking of these as of subgroups of symmetries of a square, the first is generated by
rotations, the second by reflections with respect to the lines passing through the middle
points of its opposite sides, and the third by reflections with respect to the diagonals; this
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is the mnemonics for the notation ◦, +, and ×. We denote by D◦8, D+
8 , and D×8 the images

of the map

D8
(id,υ)−−−−→ S4 × µ2

∼= S4,2 ⊂ S6

for υ = υ◦, υ+, and υ×, respectively. Note that D◦8 = D8.
The intersection S5∩S5 of a standard and a non-standard subgroups S5 is a subgroup

of order 20 isomorphic to µ5 o µ4, and such groups form a unique conjugacy class of
subgroups of order 20 in S6. Also, the subgroups µ4 × µ2, µ3 × µ3, D10, D8 ×S2,
(µ3 × µ3) o µ2, (µ3 × µ3) o µ4, and S3,3 o µ2 of S6 are unique up to conjugation.

Finally, recall the definitions (1.6) of the natural and (1.8) of the twisted actions of S6

on the Coble fourfold Y and on the threefold X∞ ⊂ Y . Theorem 5.1 implies:

Corollary 5.3. The following table contains a complete list (ordered by cardinality) of
subgroups G ⊂ S6 such that rk Cl(X)G = 1, where X is either Xt, or X∞, or Y .

X, action of S6 G

Xt, t 6∈ D ∪ {∞};
X∞, natural action;
Y , natural action

S6, A6, S5, S5, S3,3 o µ2, A5, S4,2, S4,2, (µ3 × µ3) o µ4,

S3,3, S4, S4, A4,2, A4×S2, µ5 oµ4, S3 × µ3, D8×S2, A4,

S3,2, µ4 × µ2, V4 × µ2, D8, D×8 , S3, V4,2

X∞, twisted action;
Y , twisted action

S6, A6, S5, S3,3 o µ2, A5, S4,2, (µ3 × µ3) o µ4, S3,3, S4,
A4,2, A4 ×S2, S3 × µ3, S3,2, A4, S3, µ6[3, 2]

X1/2 S6, A6, S5, S5, S3,3 o µ2, A5, S4,2, S4,2, (µ3 × µ3) o µ4,

S3,3, S4, A4,2, µ5 o µ4, D8 ×S2

X1/6 S6, A6, S5, S3,3 o µ2, A5, S4,2, (µ3 × µ3) o µ4, S4, A4,2,
A4 ×S2, A4

X7/10 S6, S5, S5, S3,3 o µ2, S4,2, S4,2, S3,3, S4, S4, A4 ×S2,

µ5 oµ4, S3 × µ3, D8×S2, S3,2, µ4×µ2, D8, D×8 , V4×µ2,

S3, V4,2

If X is either X∞ or Y , and G is any subgroup of S6 × µ2 that contains the second
factor, then one also has rk Cl(X)G = 1.

In particular, Conjecture 5.2 suggests that the varieties listed in Corollary 5.3 are not
G-rational with respect to the corresponding groups.

Another interesting case of G-equivariant behavior arises when rk Cl(X)G = 2. The
following result is well known to experts.

Proposition 5.4 (cf. [Cor95], [HM13]). Let X be a terminal Fano variety (so that, in
particular, the canonical class KX is a Q-Cartier divisor). Let G be a finite subgroup
in Aut(X) such that rk Cl(X)G = 2 and rk Pic(X)G = 1. Then there exists a unique
G-equivariant diagram

(5.5)

X ′+
p+

~~

X+

f+   

ψ+oo ι // X−

f−~~

ψ− // X ′−
p−

  
Z+ X Z−
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Here X± are varieties with terminal singularities such that

rk Pic(X±)G = rk Cl(X±)G = 2, rk Pic(X±/X)G = 1,

the maps f± are small birational morphisms, the map ι is a non-trivial G-flop, the maps
ψ± are small and birational (and possibly are just isomorphisms), the varieties X ′± have
terminal singularities,

rk Pic(X ′±)G = rk Cl(X ′±)G = 2,

and each of the maps p±, is either a KX′±
-negative divisorial contraction onto a Fano

variety Z± with rk Cl(Z±)G = 1, or a G-Mori fibration.

The diagram (5.5) is a special case of a so-called G-Sarkisov link (that is a G-equivariant
version of a usual Sarkisov link, see e.g. [Cor95, Definition 3.4] or [Che05, Theorem 1.6.14]
for notation). One sometimes says that the link (5.5) is centered at X.

Theorem 5.1 allows us to write down a complete list of subgroups G ⊂ S6 for which
Proposition 5.4 can be used (as before, we obtained it with the help of the GAP pack-
age [GAP17], see [Cod17] for the source code).

Corollary 5.6. The following table contains a complete list (ordered by cardinality) of
subgroups G ⊂ S6 such that rk Cl(X)G = 2, where X is either Xt, or X∞, or Y .

X, action of S6 G

Xt, t 6∈ D ∪ {∞};
X∞, natural action;
Y , natural action

A5, S3,3, A4,2, A4 ×S2, S3×µ3, (µ3 × µ3) o µ2, S3,2, D10,
µ3×µ3, D8, D+

8 , µ2×µ2×µ2, S3, A3,2, µ6[6], µ6[3, 2], µ5,
µ4[4], µ4[4, 2], µ2[2, 2]× µ2[2], µ3[3], µ2[2, 2, 2]

X∞, twisted action;
Y , twisted action

S5, A5, S4,2, S3,3, A4,2, A4 ×S2, µ5 o µ4, S3 × µ3,
(µ3 × µ3) o µ2, D8×S2, D10, µ3×µ3, D8, D×8 , D+

8 , µ4×µ2,
µ2 × µ2 × µ2, A3,2, µ5, µ4[4, 2], µ2[2]× µ2[2], µ3[3]

X1/2 A5, S3,3, S4, A4,2, A4 × S2, A4 ×S2, S3 × µ3,

(µ3 × µ3) o µ2, S3,2, S3,2, A4, D10, D8, D8, D×8 , D+
8 , µ4×µ2,

µ2 × µ2 × µ2, V4 × µ2

X1/6 S5, S4,2, S3,3, S3,3, µ5 o µ4, S3 × µ3, S3 × µ3, D8 × µ2,
S3,2, D×8 , µ4 × µ2, S3, µ6[3, 2]

X7/10 A6, A5, S3,3, (µ3 × µ3) o µ4, A4,2, A4 ×S2, S3 × µ3,
S3,2, A4, D8, µ2 × µ2 × µ2, S3, µ6[6], µ6[3, 2], µ4[4],
µ2[2, 2]× µ2[2], µ2[2, 2, 2]

In particular, for each of these varieties there is a G-Sarkisov link (5.5) centered at X
with respect to the corresponding groups.

Example 5.7. If t 6∈ D ∪ {∞} and G = A5, the G-Sarkisov link (5.5) is obtained by
restricting the diagram (2.45):

X 5,1
τ

p

}}

π◦ρ5,1

''

ι // X 5,1
−τ

p

!!

π◦ρ5,1

ww
S Xt S
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Here t = (τ 2 +1)/4, ι is the restriction of the map ρ−1
5,1◦σ◦ρ5,1 to X 5,1

τ (it is a composition
of 30 Atiyah flops), and ψ± are the identity maps. The map ι can be also defined as the
map induced by an action of an odd permutation in the subgroup S5 ⊂ S6 containing A5.

Example 5.8. If G = S5, then the G-Sarkisov link (5.5) for X∞ comes from a restriction
of the commutative diagram (2.45) to X∞ (recall that X∞ is Aut(Y )-invariant).

5.2. Class group computation. In this section we prove Theorem 5.1. We start with
a description of the S5-action on the Picard group of the quintic del Pezzo surface.

Lemma 5.9. There is an isomorphism of S5-representations

Pic(S)⊗Q ∼= R(5)⊕ R(4, 1).

Proof. The surface S can be obtained as a blow up of P2 in four points, and this blow up
is S4-invariant. Therefore, one has

(Pic(S)⊗Q)|S4
∼= R(4)⊕ R(4)⊕ R(3, 1).

Here the first summand is the pullback of the line class, and the last two form the permu-
tation representation spanned by the classes of the exceptional divisors of the blow up.
Now the assertion easily follows, since

(5.10) R(5)|S4
∼= R(4), R(4, 1)|S4

∼= R(4)⊕ R(3, 1),

and moreover, by Pieri’s rule (see [FH91, Exercise 4.44]) the irreducible S5-
representations R(5) and R(4, 1) are the only ones that restrict to S4 as sums of R(4)’s
and R(3, 1)’s. �

Further on we will use a similar argument to describe an S6-representation from its
restriction to a non-standard subgroup S5. For this the following calculation is quite
useful.

Lemma 5.11. The following table contains all irreducible representations V of S6, their
images V under an outer automorphism of S6, and the restrictions of V and V to a
standard subgroup S5.

dimV V V V |S5 V |S5

1 R(6) R(5)

1 R(16) R(15)

5 R(5, 1) R(23) R(5)⊕ R(4, 1) R(22, 1)

5 R(2, 14) R(32) R(2, 13)⊕ R(15) R(3, 2)

9 R(4, 2) R(4, 1)⊕ R(3, 2)

9 R(22, 12) R(22, 1)⊕ R(2, 13)

10 R(4, 12) R(3, 13) R(4, 1)⊕ R(3, 12) R(3, 12)⊕ R(2, 13)

16 R(3, 2, 1) R(3, 2)⊕ R(3, 12)⊕ R(22, 1)
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Proof. The restrictions to S5 are computed by Pieri’s rule, so we only need to explain the
action of an outer automorphism. For this note that an outer automorphism acts on the
conjugacy classes of S6 by swapping the following cycle types

[2]↔ [2, 2, 2], [3]↔ [3, 3], [6]↔ [3, 2],

and fixing the other types. By using the character table of S6 (see for in-
stance [JL01, Example 19.17]) it is then straightforward to check that an outer auto-
morphism swaps

R(5, 1)↔ R(2, 2, 2), R(2, 14)↔ R(3, 3), R(4, 12)↔ R(3, 13),

and fixes the other irreducible representations. �

Now we are ready to prove the part of Theorem 5.1 concerning the Coble fourfold.

Proposition 5.12. The group Cl(Y ) is torsion free, and there is an isomorphism

Cl(Y )⊗Q ∼= (R(6)� 1)⊕ (R(3, 3)� (−1))

of representations of the group Aut(Y ) ∼= S6 × µ2.

Proof. Since Y5,1 → Y is a small S5-equivariant resolution, we have an S5-equivariant
isomorphism Cl(Y ) ∼= Pic(Y5,1) with respect to the twisted action of a non-standard
subgroup S5. Since Y5,1 is a P2-bundle over the quintic del Pezzo surface S, we have an
S5-equivariant direct sum decomposition

Pic(Y5,1) = ZH ⊕ p∗(Pic(S)).

Here the first summand is generated by the pullback of the hyperplane class of P4 under
the map π ◦ ρ5,1, and so is S5-invariant. This proves that Cl(Y ) is torsion free.

Furthermore, it follows from Lemma 5.9 that there is an isomorphism of S5-
representations

(Cl(Y )⊗Q)|S5
∼= R(5)⊕ R(5)⊕ R(4, 1).

Since the embedding of S5 ↪→ S6 is non-standard, it follows from Lemma 5.11 that

(Cl(Y )⊗Q)|S6
∼= R(6)⊕ R(2, 2, 2);

we emphasize the fact that this isomorphism holds for the twisted action of S6 on Y . The
first summand R(6) is generated by the class H, hence lifts to R(6)�1 as a representation
of S6×µ2. Since the quotient of Y by the Galois involution σ is P4 and its class group is
of rank 1, it follows that the action of µ2 on the second summand R(2, 2, 2) is non-trivial.
Hence the natural action of S6 on the second summand is obtained from R(2, 2, 2) by
the sign twist, i.e., the corresponding representation is R(3, 3) (recall that the sign twist
modifies an irreducible representation by a transposition of its Young diagram), and the
assertion of the proposition follows. �

Below we will also need to describe certain S5-representations from their restrictions
to A5. For this the following calculation is useful. Denote by R1, R′3, R′′3, R4, and R5 the
irreducible representations of the group A5 of dimensions 1, 3, 3, 4, and 5, respectively, see
for instance [FH91, Exercise 3.5].
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Lemma 5.13. The following table contains all irreducible representation of S5 and their
restrictions to A5.

R(λ) R(5) R(15) R(4, 1) R(2, 13) R(3, 2) R(22, 1) R(3, 12)

R(λ)|A5 R1 R4 R5 R′3 ⊕R′′3

Proof. It is enough to know that a restriction of an S5-representation R(λ) to A5 contains
the trivial subrepresentation R1 if and only if R(λ) is trivial or is the sign representation,
i.e., if λ = (5) or λ = (15). This follows from Frobenius duality, because

IndS5
A5

(R1) ∼= R(5)⊕ R(15).

With this in mind, there is only one way to represent the dimensions of R(λ)
as sums of dimensions of irreducible A5-representations. It remains to notice that
the S5-representation R(3, 12) is defined over Q, while both three-dimensional A5-
representations R′3 and R′′3 are not, so the restriction of R(3, 12) to A5 splits as R′3⊕R′′3. �

Now we are almost ready to attack the class groups of the quartics Xt. For each τ we
have a natural composition

(5.14) Cl(Y ) ∼= Cl(Y \ CR) ∼= Pic(Y \ CR)
res−−→

res−−→ Pic(Xτ \ CR) ↪→ Cl(Xτ \ CR) ∼= Cl(Xτ ).

Here res denotes the restriction map. The first and the last isomorphisms take place since
the Cremona–Richmond configuration CR = Sing(Y ) has codimension greater than 1
both in Y and Xτ , and the second isomorphism follows from smoothness of Y \ CR.

Lemma 5.15. For all τ 6= 0 the composition Cl(Y ) → Cl(Xτ ) of the maps in (5.14) is
an S6-equivariant embedding with respect to the natural action of S6. For τ = ∞ it is

an S6 × µ2-equivariant embedding. Moreover, for τ 6∈ D̂ it is an isomorphism.

Proof. All the maps in (5.14) are equivariant with respect to the natural action of S6 (or
of the whole group S6 × µ2 in case τ =∞), hence so is the composition, and it remains
to prove injectivity. For this we forget about the S6-action and consider the diagram

(5.16)

Pic(Y5,1)
res //

(ρ5,1)∗
��

Pic(X 5,1
τ )

(ρ5,1)∗
��

Cl(Y ) // Cl(Xτ )

which is easily seen to be commutative. The vertical arrows are isomorphisms, since the
birational maps ρ5,1 : Y5,1 → Y and ρ5,1 : X 5,1

τ →Xτ for τ 6= 0 are small by Theorems 1.9
and 1.14. So, it is enough to check that the morphism res is injective, which is obvious,
since Y5,1 is a P2-bundle over S and X 5,1

τ is a (flat) conic bundle inside Y5,1.

Moreover, for τ 6∈ D̂ the conic bundle is standard, hence the image of the top arrow
is a sublattice of index at most 2. Since we also know from [Bea13] or Theorem 4.4

that for τ 6∈ D̂ the threefold X 5,1
τ is not rational, we conclude that the conic bun-

dle p : X 5,1
τ → S has no rational sections, and thus res is actually an isomorphism. �
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Remark 5.17. Recall that by Lemma 3.12 for τ 6= 0,∞ one has an isomorphism Xτ
∼= Xt

for t = (τ 2 +1)/4. Thus Proposition 5.12 and Lemma 5.15 provide a description of Cl(Xt)
for all t 6∈ D ∪ {∞}.

It remains to analyze the class groups of the special quartics Xt.
We can think of the map (5.14) as of a map Cl(Y )→ Cl(Xt); this map is S6-

equivariant, where the action of S6 on Y is natural. We denote the cokernel of this
map by

ExCl(Xt) := Cl(Xt)/Cl(Y ),

and refer to this group as the excess class group of Xt. To prove Theorem 5.1 we need to
compute the latter group for t = 1/2, 1/6, and 7/10 as an S6-representation. For this we
need a couple of observations.

Lemma 5.18. For a standard subgroup S4 ⊂ S6 we have rk Cl(Xt)
S4 = 1 for any t 6=∞.

In particular, we have rk ExCl(Xt)
S4 = 0 for any t 6=∞.

Proof. We may assume that S4 preserves the homogeneous coordinates x5 and x6 on P5.
Denote pi := xi1 + . . .+ xi6. Consider the quotients P5/S4 and Xt/S4. Then

P5/S4
∼= P(1, 1, 1, 2, 3, 4),

where the weighted homogeneous coordinates of weights 1, 1, 1, 2, 3, and 4 correspond to
the S4-invariants x5, x6, p1, p2, p3, and p4, respectively. The quotient variety Xt/S4 is
given in P(1, 1, 1, 2, 3, 4) by the equations

p1 = p4 − tp2
2 = 0,

so that Xt/S4
∼= P(1, 1, 2, 3). Therefore, we have rk Cl(Xt)

S4 = rk Cl(Xt/S4) = 1, see
for instance [Ful84, 1.7.5]. �

Remark 5.19 (cf. [CPS16, Remark 2.11]). An argument similar to the proof of Lemma 5.18
was (incorrectly!) used in the proof of [CS14, Theorem 1.20] for the standard sub-
group A4,2

∼= S4 in S6 to deduce that rk Cl(X1/2)A6 = 1. The assertion about the A6-
invariant class group was later obtained in [CPS16, Corollary 2.10] by a different method.
After we complete the proof of Theorem 5.1, we can use it to find these ranks as well:
indeed, one has rk Cl(X1/2)A6 = rk Cl(X1/2)A4,2 = 1 by Corollary 5.3.

Lemma 5.20. For a non-standard subgroup S5 ⊂ S6 we have rk Cl(X1/6)S5 = 2. In
particular, we have rk ExCl(X1/6)S5 = 1.

Proof. By [CS16b, §6] the quartic X1/6 is S5-equivariantly isomorphic away from codi-

mension 2 to the blow up X̂1/6 of ten lines in P3, that form a so-called double-five config-

uration. Therefore we have Cl(X1/6) ∼= Cl(X̂1/6) as S5-representations. Furthermore, the

group S5 acts transitively on this configuration of lines, hence rk Cl(X̂1/6)S5 = 2. �

Now we are ready to describe the excess class groups for the special quartics.

Proposition 5.21. There are the following isomorphisms of S6-representations:

ExCl(X 1
2
)⊗Q ∼= R(3, 13), ExCl(X 1

6
)⊗Q ∼= R(2, 2, 2), ExCl(X 7

10
)⊗Q ∼= R(16).
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Proof. We replace the quartics X1/2, X1/6, and X7/10 by their partial resolutions of sin-

gularities X 5,1
1 , X 5,1

1/
√
−3

, and X 5,1

3/
√

5
, respectively. Similarly to the proof of Lemma 5.15,

we obtain isomorphisms of A5-representations

(5.22)
Cl(X 5,1

τ /S)⊗Q ∼=
(
Cl(Y 5,1/S)⊕

(
Cl(X 5,1

τ )/Cl(Y 5,1)
))
⊗Q ∼=

∼= R1 ⊕ (ExCl(Xt)⊗Q)|A5 ,

with the summand R1 on the right generated by the canonical class. Next we use the
computation of Corollary 4.9 to describe the left hand side of (5.22). Namely, by Corol-
lary 4.9 the left hand side is isomorphic to R1 ⊕ IndA5

G (υ) for a certain subgroup G ⊂ A5

and its one-dimensional representation υ. Canceling the R1 summands, we obtain an
isomorphism

(ExCl(Xt)⊗Q)|A5
∼= IndA5

G (υ).

It only remains to use the description of the subgroup G and its representation υ also
provided by Corollary 4.9.

In the case t = 1/2, so that τ = 1, it gives

(ExCl(X 1
2
)⊗Q)|A5

∼= IndA5
A3,2

(−1) ∼= R′3 ⊕R′′3 ⊕R4.

Therefore, by Lemma 5.13 we deduce that (ExCl(X1/2) ⊗ Q)|S5 is isomorphic ei-
ther to R(3, 12)⊕ R(4, 1) or to R(3, 12) ⊕ R(2, 13), hence by Lemma 5.11 we have ei-
ther ExCl(X1/2)⊗Q ∼= R(4, 12) or ExCl(X1/2)⊗Q ∼= R(3, 13). The first case is impossible
by Lemma 5.18, because by Pieri’s rule the restriction of the S6-representation R(4, 12)
to a standard subgroup S4 contains a trivial subrepresentation, hence the required result.

Similarly, in the case t = 1/6, so that τ = 1/
√
−3, we have

(ExCl(X 1
6
)⊗Q)|A5

∼= IndA5
A4

(1) ∼= R1 ⊕R4.

Therefore, by Lemma 5.13 we deduce that (ExCl(X1/6) ⊗ Q)|S5 is isomorphic to the
sum of one of the representations R(5) and R(15), and one of the representations R(4, 1)
and R(2, 13). On the other hand, (ExCl(X1/6)⊗Q)|S5 should contain R(5) by Lemma 5.20,
so it follows that (ExCl(X1/6) ⊗ Q)|S5 is either R(5) ⊕ R(4, 1), or R(5) ⊕ R(2, 13). By
Lemma 5.11 only the the first of them can be obtained as a restriction of a represen-
tation of S6 with respect to a non-standard embedding of S5, and the corresponding
representation of S6 is R(2, 2, 2). Thus, we have ExCl(X1/6)⊗Q ∼= R(2, 2, 2).

Finally, in the case t = 7/10, so that τ = 3/
√

5, we have

(ExCl(X7/10)⊗Q)|A5
∼= R1,

hence ExCl(X7/10) ⊗ Q is either R(6) or R(16). Again, the first case is impossible by
Lemma 5.18, hence the required result. �

Now we are ready to prove the main result of this section.

Proof of Theorem 5.1. The description of Cl(Y ) ⊗ Q is given by Proposition 5.12, and
the descriptions of Cl(X∞) ⊗ Q and Cl(Xt) ⊗ Q for t 6∈ D ∪ {∞} follow from a combi-
nation of Proposition 5.12 with Lemma 5.15. The last three isomorphisms follow from
Proposition 5.21 in view of the definition of the excess class group. �
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Remark 5.23. To study G-equivariant birational maps of the remaining S6-invariant quar-
tic X1/4 to G-Mori fibre spaces, one can replace X1/4 by its projective dual, which is the
Segre cubic Z. This may be simpler because Z has terminal singularities. The corre-
sponding problem for Z was partially solved in [Avi16, Theorem 1.3]. In particular, if G
is a standard subgroup A5 in S6, then rk Cl(Z)G = 1 by [Avi16, Proposition 3.1], and
we expect that Z, and thus also X1/4, is not G-rational. In this case the induced ac-
tion of G on Z is also given by a standard embedding A5

∼= G ↪→ Aut(Z) ∼= S6, see
e.g. [HMSV08, §2.2]. On the contrary, if G is a non-standard subgroup A5 in S6, then Z
is known to be G-rational, see [Pro10, 3.16].

Remark 5.24. One of the geometric interpretations of the non-trivial summands
of Cl(Xt)⊗Q that appear in Theorem 5.1 is as follows. Suppose that t 6= 1/4,∞, so

that the singularities of Xt are nodes by Theorem 3.3. Let ν : X̃t → Xt be the blow up

of all singular points of Xt, and let D1, . . . , Dr be the exceptional divisors of ν. Then X̃t

is smooth, and Di
∼= P1 × P1. Let M+

i and M−
i be the rulings from two different families

on Di. One can check that there is a natural perfect pairing between the vector subspace
in H4(X̃t,C) spanned by the one-cycles M+

i −M−
i and the space

(
Cl(Xt)/Pic(Xt)

)
⊗ C.

Note also that the structure of this subspace of H4(X̃t,C) as an S6-representation can
be independently deduced from [Sch85, Proposition 1.3] and [Bea13, Lemma 1].

Appendix A. Cremona–Richmond configuration

The Cremona–Richmond configuration is the configuration CR of 15 lines with 15 triple
intersection points in P4 formed by the singular locus of the Igusa quartic. By a small
abuse of terminology, we will sometimes say that the singular locus is the configuration
CR itself. We refer the reader to [Cre77], [Ric00], and [Dol04, §9] for basic properties.

Explicitly, the configuration CR can be described as follows. Consider P4 as the hyper-
plane given by equation (1.1) in P5 with the usual S6-action. For each pairs-splitting

{1, . . . , 6} = I1 t I2 t I3,

where |I1| = |I2| = |I3| = 2, let L(I1 | I2 | I3) be the line in P4 given by equations

xi = xj if {i, j} = Ip for some p ∈ {1, 2, 3}.
This gives 15 lines in P4; for instance, L(1,2 | 3,4 | 5,6) is the line given by equations

(A.1) x1 = x2, x3 = x4, x5 = x6,

and the other lines are obtained from this by the S6-action.
Similarly, for every two-element subset I ⊂ {1, . . . , 6} let PI be the point in P4 given

by equations
xi = xj if either i, j ∈ I or i, j ∈ Ī ,

where Ī is the complement of I in {1, . . . , 6}. This gives 15 points in P4; for instance,

(A.2) P1,2 = (2 : 2 : −1 : −1 : −1 : −1),

and the other points are obtained from this by the S6-action (so, this is the set Υ15

defined in §3.1).
It is easy to see that PI lies on L(I1 | I2 | I3) if and only if I = Ip for some p ∈ {1, 2, 3}, i.e.,

if I is one of the pairs in the pairs-splitting, or, equivalently, the pairs-splitting extends
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the pair I. In particular, there are three lines through each of the points (corresponding
to three pairs-splittings of Ī), and there are three points on each line (corresponding to
three pairs in a pairs-splitting). Moreover, the points PI are the only intersection points
of the lines L(I1 | I2 | I3). Because of this CR is often referred to as a (153)-configuration.

In this section we discuss some properties of CR. In particular, in Theorem A.7 we
show that CR is determined uniquely up to a projective transformation of P4 by its
combinatorial structure (under a mild non-degeneracy assumption), and that the Igusa
quartic is the only quartic whose singular locus contains CR.

We start by a discussion of combinatorics of CR.

Lemma A.3. The configuration CR is combinatorially self-dual: an outer automorphism
of S6 induces a bijection between the set of points PI and the set of lines L(I1 | I2 | I3) that
preserves the incidence correspondence.

Proof. There is a natural bijection between subsets of cardinality two in the set {1, . . . , 6},
and transpositions in the group S6. Similarly, there is a natural bijection between pairs-
splittings of the set {1, . . . , 6}, and elements of cycle type [2, 2, 2] in S6. Let us denote
the transposition corresponding to a subset I ⊂ {1, . . . , 6} by w(I), and the element of
cycle type [2, 2, 2] corresponding to a pairs-splitting (I1, I2, I3) of {1, . . . , 6} by w(I1, I2, I3).
The incidence relation of lines and points of CR can be reformulated in group-theoretic
terms: the line L(I1 | I2 | I3) is incident to the point PI if and only if the permutations w(I)
and w(I1, I2, I3) commute (or, which is the same, the composition w(I) ◦w(I1, I2, I3) has
cycle type [2, 2]).

Choose an outer automorphism α of the group S6. The automorphism α interchanges
transpositions with elements of cycle type [2, 2, 2]. Thus α defines a map from the set of
points of CR to the set of lines of CR, and the map from the set of lines of CR to the set
of points of CR. Moreover, this map preserves the incidence relation. �

Lemma A.3 implies the following result that we used in the main part of the paper.

Corollary A.4. Every standard subgroup A5 ⊂ S6 acts transitively on the set of lines
of CR, and every non-standard subgroup A5 ⊂ S6 acts transitively on the set of points
of CR.

Proof. The first assertion is evident from combinatorics, and the second assertion follows
from the first one in view of the bijection of Lemma A.3. �

The following description of CR is very useful. Choose a triples-splitting

{1, . . . , 6} = K0 tK1, |K0| = |K1| = 3.

For each bijection g : K0
∼−→ K1 let Γ(g) be the pairs-splitting formed by all

pairs {k0, g(k0)}, where k0 runs through K0 (and hence g(k0) runs through K1). The 6
lines and 9 points {

LΓ(g)

}
g∈Iso(K0,K1)

and {Pk0,k1}(k0,k1)∈K0×K1

form a subconfiguration CR′K0,K1
⊂ CR of the Cremona–Richmond configuration, see

Fig. 1. Because of its characteristic shape we call it a jail configuration.
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L(1,5 | 2,4 | 3,6)

P3,6

P1,5

P2,4

L(1,6 | 2,5 | 3,4)

P2,5

P3,4

P1,6

L(1,4 | 2,6 | 3,5)

P1,4

P2,6

P3,5

L(1,4 | 2,5 | 3,6)

L(1,5 | 2,6 | 3,4)

L(1,6 | 2,4 | 3,5)

Figure 1. The jail subconfiguration CR′{1,2,3},{4,5,6} in the Cremona–
Richmond configuration CR

The remaining 9 lines and 6 points{
L(k0,k1 |K0\k0 |K1\k1)

}
(k0,k1)∈K0×K1

and {PI}I⊂K0 or I⊂K1

form a complete bipartite graph, see Fig. 2; we call it a bipartite configuration.

P1,2 P4,5

P1,3 P4,6

P2,3 P5,6

Figure 2. The bipartite subconfiguration CR′′{1,2,3},{4,5,6} in the Cremona–
Richmond configuration CR

For any decomposition
CR = CR′K0,K1

∪ CR′′K0,K1

into a jail and a bipartite subconfigurations its components interact quite weakly: every
line L(k0,k1 |K0\k0 |K1\k1) from the bipartite component passes through a single point Pk0,k1

in the jail component. This gives a bijection between bipartite lines and jail points
(compatible with the natural bijection of both sets with K0 ×K1).

Lemma A.5. Let C be a configuration of 15 lines with 15 intersection points in P4

which is not contained in P3 and is combinatorially isomorphic to the Cremona–Richmond
configuration. If C = C′ ∪C′′ is a jail–bipartite decomposition then the jail component C′

spans a hyperplane, and the bipartite component C′′ spans P4.

Proof. The jail component C′ has the shape shown in Fig. 1. Two vertical lines do not
intersect, hence they span a hyperplane H ′ ⊂ P4. Three horizontal lines intersect each
of them, hence they are contained in H ′. The last vertical line intersects the horizontal
lines, hence it is also contained in H ′.

The bipartite component C′′ has the shape shown in Fig. 2. Assume it is contained in
a hyperplane H ′′ ⊂ P4. Then every line of the bipartite component is contained in H ′′.
Since every point of the jail component lies on a line of the bipartite component, it follows
that the jail component is also contained in H ′′. Thus C ⊂ H ′′, which contradicts the
assumptions of the lemma. �
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Remark A.6. The set {1, 2, 3, 4, 5, 6} has 10 distinct triples-splittings, giving rise to 10
distinct jail-bipartite decompositions of the Cremona–Richmond configuration. The 10
hyperplanes supporting the jail components of CR appeared in Remark 2.24.

Theorem A.7. Let C be a configuration of 15 lines with 15 intersection points in P4

which is not contained in P3 and is combinatorially isomorphic to the Cremona–Richmond
configuration. Then it is projectively isomorphic to the Cremona–Richmond configuration.

Proof. Choose a jail-bipartite decomposition C = C′ ∪ C′′. Choose five points P1, . . . , P5

in the bipartite component C′′ that are not contained in a hyperplane (this is possible
by Lemma A.5), and let H ′ be the hyperplane containing the jail component C′. Note
that Pi 6∈ H ′ for all i. Indeed, if Pi ∈ H ′ then every line of the bipartite component
passing through Pi would be contained in H ′ (since it also contains a point of the jail
component), hence the three points of C′′ that are connected to Pi by lines in C′′ will
be also contained in H ′. Applying the same argument to one of these points, we would
deduce that the whole bipartite component is contained in H ′, hence C ⊂ H ′, which
contradicts our assumptions.

Assume that the points P1, P3, and P5 are not connected to each other by lines in C′′;
that is, they are contained in one part of the bipartite component, and P2, P4 are contained
in the other. Since the points Pi do not lie on a hyperplane, they can be taken to points

(A.8)
P1 = (1 : 0 : 0 : 0 : 0), P3 = (0 : 0 : 1 : 0 : 0), P5 = (0 : 0 : 0 : 0 : 1),

P2 = (0 : 1 : 0 : 0 : 0), P4 = (0 : 0 : 0 : 1 : 0),

of P4 by a projective transformation. Since the hyperplane H ′ does not pass through the
points Pi, it can be simultaneously taken to the hyperplane defined by the equation

x1 − x2 + x3 − x4 + x5 = 0.

Now for each odd i and even j consider the line passing through Pi and Pj. By assumption
it belongs to the bipartite component C′′. The intersection points of these lines with H ′

are the following six points

(A.9)
P12 = (1 : 1 : 0 : 0 : 0), P32 = (0 : 1 : 1 : 0 : 0), P52 = (0 : 1 : 0 : 0 : 1),
P14 = (1 : 0 : 0 : 1 : 0), P34 = (0 : 0 : 1 : 1 : 0), P54 = (0 : 0 : 0 : 1 : 1).

It follows that Pij are points of the jail component C′. Consequently, the following six
lines belong to the jail component C′:

〈P12, P34〉 = {x1 − x2 = x3 − x4 = x5 = 0}, 〈P12, P54〉 = {x1 − x2 = x5 − x4 = x3 = 0},
〈P32, P14〉 = {x3 − x2 = x1 − x4 = x5 = 0}, 〈P32, P54〉 = {x3 − x2 = x5 − x4 = x1 = 0},
〈P52, P14〉 = {x5 − x2 = x1 − x4 = x3 = 0}, 〈P52, P34〉 = {x5 − x2 = x3 − x4 = x1 = 0},

and their three extra intersection points

(A.10) P1234 = (1 : 1 : 1 : 1 : 0), P1245 = (1 : 1 : 0 : 1 : 1), P2345 = (0 : 1 : 1 : 1 : 1)

also belong to C′. Finally, the last point P0 of the bipartite component is the point

(A.11) P0 = 〈P1, P2345〉 ∩ 〈P3, P1245〉 ∩ 〈P5, P1234〉 = (1 : 1 : 1 : 1 : 1).
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This proves that such configuration is unique up to a projective transformation. The
explicit transformation from P4 to P5 that takes the points (A.8), (A.9), (A.10), and (A.11)
to the points Pi,j that were defined in (A.2) is given by the matrix

1 1 −2 1 −2
−2 1 1 1 −2
−2 1 −2 1 1
1 −2 1 1 1
1 −2 1 −2 1
1 1 1 −2 1

 ;

in particular, the point P5 is mapped to the point P1,2 in (A.2). This completes the proof
of Theorem A.7. �

Remark A.12. Let C be a configuration combinatorially isomorphic to CR. Then one can
always project C isomorphically to P3. In particular, the assumption of Theorem A.7
requiring that the configuration is not contained in P3 is necessary.

Corollary A.13. Let C be a configuration of 15 lines with 15 intersection points in P4

which is not contained in P3 and is combinatorially isomorphic to the Cremona–Richmond
configuration. Suppose that X is a quartic threefold that contains C in its singular locus.
Then it is projectively isomorphic to the Igusa quartic.

Proof. By Theorem A.7 it is enough to show that the Igusa quartic X is the unique
quartic singular along C. Suppose that X ′ is another quartic with this property. Since X
is irreducible, the intersection Z = X ∩X ′ is two-dimensional, and degZ = 16. Let C′ be
one of the jail subconfigurations of C. Then C′ is contained in a unique two-dimensional
smooth quadric T ; this quadric is swept out by lines that meet three of the lines in C′.
The lines of C′ are singular both on X and X ′, so we conclude that T is contained in Z.
It remains to notice that C contains 10 jail subconfigurations, all of them giving rise
to different two-dimensional quadrics contained in Z. The degree of the union of these
quadrics is 20; this is greater than degZ, which gives a contradiction. �
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