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SYMMETRIC MONOIDAL NONCOMMUTATIVE SPECTRA, STRONGLY
SELF-ABSORBING C∗-ALGEBRAS, AND BIVARIANT HOMOLOGY

SNIGDHAYAN MAHANTA

Abstract. Continuing our earlier work we construct symmetric monoidal ∞-categorical
models for separable C∗-algebras SC∗∞ and noncommutative spectra NSp using the framework
of Higher Algebra due to Lurie. We study localizations of SC∗∞ and colocalizations of NSp
with respect to any strongly self-absorbing C∗-algebra. We analyse the homotopy categories
of the localizations of SC∗∞ and characterize them by a universal property. We also describe
the colocalized subcategories of hNSp spanned by the stabilizations of C∗-algebras in the
purely infinite case. As a consequence we compute the noncommutative stable cohomotopy
of the ax + b-semigroup C∗-algebra arising from any number ring. We also introduce and
study the nonconnective version of Quillen’s nonunital K′-theory in the framework of stable
∞-categories. We perform computations in the case of stable and O∞-stable C∗-algebras.

Introduction

In [20] we constructed a stable presentable ∞-category of noncommutative spectra NSp.
It is an ideal framework to carry out stable homotopy theory of noncommutative spaces.
Thom constructed a triangulated category NSH and referred to it as the noncommtative stable
homotopy category [30] (see Remark 1.8). The author used the ∞-category NSp to prove
that NSH is a topological triangulated category as defined by Schwede [28]. Nevertheless, a
very important part of the homotopy theory package, viz., the symmetric monoidal structure
was left out of the discussion in [20]. In the present article we use Lurie’s Higher Algebra
[17] to construct a symmetric monoidal stable presentable ∞-category of noncommutative
spectra NSp (see Theorem 1.5).

Toms–Winter introduced a class of simple C∗-algebras called strongly self-absorbing C∗-
algebras [31], which play a pivotal role in Elliott’s Classification Program. Prominent ex-
amples of such C∗-algebras, which are also purely infinite, are Cuntz algebras O2, O∞, and
tensor products of UHF algebras of infinite type with O∞. In the sequel we construct smash-
ing localizations of the ∞-category of separable C∗-algebras SC∗∞ with respect to arbitrary
strongly self-absorbing C∗-algebras. We describe the homotopy categories of the localized
∞-categories (see Proposition 2.8) and derive several useful results. At the level of homotopy
categories we also obtain a univeral characterization in this setting (see Theorem 2.13).

It was noticed in [20] that the homotopy category of noncommutative spectra hNSp is not
an algebraic triangulated category and the question was raised whether it contains algebraic
triangulated subcategories, which would facilitate computations enormously. With an eye
towards such algebraization problems we colocalize the stable ∞-category NSp with respect
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to the stabilization of any strongly self-absorbing C∗-algebra. In the purely infinite case we
describe the homotopy category of the colocalized∞-category spanned by the stabilizations
of C∗-algebras (cf. Theorems 3.4, 3.8, and 3.10). Although these results do not settle the
algebraization problem, they demonstrate that certain colocalized subcategories are indeed
amenable to computation as they reduce to familiar bivariant homology theories. As a
consequence we prove that the canonical map from noncommutative stable cohomotopy to
topological K-theory is an isomorphism for O∞-stable C∗-algebras. Using the results of
[6, 16] this isomorphism enables us to complete the computation of noncommutative stable
cohomotopy (see Disambiguation 3.11) of ax+b-semigroup C∗-algebras arising from number
rings (see Theorem 3.12). The Z-stable situation, where Z is the Jiang–Su algebra, is the
most interesting case from the viewpoint of classification. This case is not considered in
detail in this article and it will be done elsewhere.

Algebraic K-theory does not (directly) make sense for topological spaces. The appropriate
theory in this context is Waldhausen’s A-theory [32], which is homotopy invariant but not
excisive. One needs a calculus of functors to analyse it. However, algebraic K-theory does
make sense for a noncommutative space. Indeed, one can view a noncommutative space
or a C∗-algebra (with unit for the time being) simply as a unital complex algebra and
study its algebraic K-theory. Now algebraic K-theory satisfies excision on the category of
C∗-algebras [29] but it is not homotopy invariant. Roughly speaking, a spectrum valued
functor F on k-algebras satisfies excision, where k is a field, if for every short exact sequence
0→ A→ B → C → 0 the induced diagram F (A)→ F (B)→ F (C) is a homotopy (co)fiber
sequence. Thus one needs algebraic K-theory to treat unital and nonunital algebras on
an equal footing (note that A is strictly nonunital unless the extension is trivial). Quillen
introduced a K′

0-theory for nonunital algebras in [23], whose higher (connective) version was
developed by the author in [22]. The author’s motivation in that article was categorification
of topological T-duality. The higher version of K′

0-theory was called KQ-theory by the author
in ibid. so that a conflict with G-theory (or K′-theory of pseudo-coherent modules) could be
avoided. In the final part of this article we define nonconnective KQ-theory and show that
for stable and O∞-stable C∗-algebras it agrees naturally with their nonconnective algebraic
as well as topological K-theory (see Theorem 4.15 for a more general result). From the
computational viewpoint the following picture emerges:

Theorem (Remark 4.17). For stable and O∞-stable separable C∗-algebras the four possible
invariants, viz., noncommutative stable cohomotopy, nonconnective KQ-theory, nonconnec-
tive algebraic K-theory, and topological K-theory are all naturally isomorphic.

At least the assertion in the O∞-stable case for all four invariants appears to be new (see
also [4, 19]). The results in this part rely on various properties of algebraic K-theory in the
setting of stable∞-categories established by Blumberg–Gepner–Tabuada [1]. We also obtain
an ∞-categorical version of an earlier result of the author on categorification of topological
T-duality [22] (see Theorem 4.12 and Remark 4.13). In this article we have decided to change
some terminology used previously (also by the author) in order to align ourselves with the
conventions in topology. For the benefit of the reader we record them here:

• NSHop = noncommutative stable homotopy category,
• (NSHf )op = homotopy category of noncommutative finite spectra,
• NSH(C, A) = noncommutative stable cohomotopy of A,
• NSH(A,C) = noncommutative stable homotopy of A.
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Notations and conventions: Throughout this article ⊗̂ will denote the maximal C∗-tensor
product. All C∗-algebras are assumed to be separable unless otherwise stated. For any ∞-
category C we denote by hC its homotopy category. A functor between ∞-categories will
implicitly mean an ∞-functor, i.e., a map of underlying simplicial sets.

Acknowledgements: The author would like to thank T. Nikolaus and W. Winter for
helpful discussions. The author is also grateful to S. Barlak for his feedback. Part of this
research was carried out during the author’s visit to Max Planck Institute for Mathematics,
Bonn, whose hospitality is gratefully acknowledged.

1. The symmetric monoidal structure and localizations of SC∗∞

Recall from [20] that there is an∞-category of noncommutative pointed spaces NS∗ as well
as a stable∞-category of noncommutative spectra NSp, which is obtained after a localization
of the stabilization of the∞-category NS∗. In this section we construct a symmetric monoidal
structure on NS∗ (resp. NSp) generalizing the smash product of pointed finite CW complexes
(resp. finite spectra).

Let Fin∗ denote the category, whose objects are pointed sets 〈n〉 = {∗, 1, · · · , n} with ∗
being the basepoint and whose morphisms are pointed maps. Let N(Fin∗) denote its nerve.
A symmetric monoidal ∞-category C⊗ is a coCartesian fibration of simplicial sets p : C⊗ →
N(Fin∗) with the property: for each n > 0 there is an equivalence C⊗

〈n〉 ' (C⊗
〈1〉)

n induced

by the maps {ρi : 〈n〉 → 〈1〉}16i6n. One should regard C := C⊗
〈1〉 as the ∞-category, which

is symmetric monoidal. It is customary to work with the underlying symmetric monoidal
category C, leaving out the rest of the structure as implicitly understood. A symmetric
monoidal ∞-category can also be regarded as a commutative monoid object in Cat∞, which
is the ∞-category of ∞-categories. For further details the readers may consult [17].

Proposition 1.1. The categories SC∗∞ and NS∗ := Ind(SC∗∞
op) are symmetric monoidal ∞-

categories. Moreover, the tensor product functor ⊗ : NS∗ × NS∗ → NS∗ preserves small
colimits in each variable separately and j : SC∗∞

op → NS∗ is symmetric monoidal.

Proof. It is well-known that the topological category SC∗ is symmetric monoidal under the
maximal C∗-tensor product ⊗̂. As a consequence its topological nerve SC∗∞ is a symmet-
ric monoidal ∞-category. The symmetric monoidal structure on SC∗∞ endows SC∗∞

op with
a symmetric monoidal structure ⊗ that is uniquely defined up to a contractible space of
choices (see Remark 2.4.2.7 of [17]). Since ⊗ commutes with finite colimits in SC∗∞

op and the
symmetric monoidal structure extends to the Ind-completion NS∗ := Ind(SC∗∞

op), all other
assertions follow from Corollary 6.3.1.13 of ibid.. �
Note that the∞-category NS∗ is pointed and it follows from Proposition 6.3.2.11 of [17] that
there is an equivalence NS∗ ⊗ S∗ ' NS∗.

Lemma 1.2. The stabilization Sp(NS∗) is a symmetric monoidal stable ∞-category and the
∞-functor Σ∞ : NS∗ → Sp(NS∗) is symmetric monoidal.

Proof. Thanks to the previous Lemma, one way to argue is via the identification of stable
∞-categories Sp(NS∗) ' NS∗ ⊗ Sp := FunR(NS∗

op, Sp) (see Example 6.3.1.22 of [17]; here
the tensor product is taken in the category PrL). Using the stabilization Σ∞ : S∗ → Sp of
pointed spaces, the stabilization of noncommutative pointed spaces can be regarded as

NS∗ ' NS∗ ⊗ S∗ → NS∗ ⊗ Sp ' Sp(NS∗).
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�
Recall from [20] that there is an∞-functor Πop : SC∗∞

op → NSp. This arises as a composition
of the following ∞-functors

SC∗∞
op j→ NS∗

Σ∞
→ Sp(NS∗)

LS→ S−1Sp(NS∗) =: NSp.

Here S is a strongly saturated collection generated by the image of the set of morphisms
S0 = {C(f) → ker(f) | f : A → B surjective in SC∗} in SC∗∞

op under Σ∞ ◦ j. In ibid. the
localization functor LS : Sp(NS∗) → S−1Sp(NS∗) was simply denoted by L. Let T be the
strongly saturated collection generated by j(S0) inside NS∗. Thus we obtain an accessible
localization LT : NS∗ → T−1NS∗ with respect to T .

Proposition 1.3. The localization functor LT : NS∗ → T−1NS∗ is a symmetric monoidal
∞-functor between symmetric monoidal ∞-categories.

Proof. By Proposition 2.2.1.9 and Example 2.2.1.7 of [17] (see also Lemma 3.4 of [12]) we
need to verify that for any LT -equivalence g : X → Y and any Z ∈ NS∗ the induced map
g ⊗ idZ : X ⊗ Z → Y ⊗ Z is also an LT -equivalence. Since T is by construction a strongly
saturated collection, the LT -equivalences precisely coincide with T (see Proposition 5.5.4.15
of [18]). Using the exactness of the maximal C∗-tensor product one can check the following:
if θ(f) : ker(f) → C(f) is the canonical map in SC∗∞ for any surjection f : A → B in
SC∗, then for any C ∈ SC∗ the map θ(f) ⊗ idC : ker(f)⊗̂C → C(f)⊗̂C is the same as
θ(f ⊗ idC) : ker(f ⊗ idC) → C(f ⊗ idC). Thus we have shown that for any θ(f)op ∈ j(S0)
and any C ∈ SC∗∞

op the map θ(f)op ⊗ idC ∈ j(S0) ⊂ T . Since ⊗ commutes with small
colimits in NS∗ the same holds for all Z ∈ NS∗ from Definition 5.5.4.5 part (2) of [18], i.e.,
for any g ∈ j(S0) and any Z ∈ NS∗ the map g ⊗ idZ ∈ T . The rest follows from the explicit
construction of the strongly saturated collection T from j(S0). �
Corollary 1.4. The stable∞-category T−1NS∗⊗Sp is symmetric monoidal and the canonical
∞-functor

NS∗ ' NS∗ ⊗ S∗
LT⊗id−→ T−1NS∗ ⊗ S∗

id⊗Σ∞
−→ T−1NS∗ ⊗ Sp

is symmetric monoidal.

Theorem 1.5. There is an equivalence of stable ∞-categories NSp ' T−1NS∗ ⊗ Sp.

Proof. The ∞-category T−1NS∗ is presentable and one has an equivalence Sp(T−1NS∗) '
T−1NS∗ ⊗ Sp (see Example 6.3.1.22 of [17]). Thus it suffices to show that Sp(T−1NS∗) '
S−1Sp(NS∗) =: NSp. Using Corollary 1.4.2.23 of ibid. one obtains the dotted ∞-functor F
(unique up to equivalence) making the following diagram commute

NS∗

LT

��

Sp(NS∗)
Ω∞

∗oo

F
���
�
�

T−1NS∗ Sp(T−1NS∗).
Ω∞

∗oo

Using the characterization of localization (see Proposition 5.2.7.12 of [18]) one concludes

that the there is a unique factorization Sp(NS∗)
LS→ S−1Sp(NS∗)

F→ Sp(T−1NS∗) making the
following diagram commute up to equivalence:
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Sp(NS∗)
LS //

F
��

S−1Sp(NS∗)

Fwwo o o o o o

Sp(T−1NS∗)

with F exact. Using the same characterization of localization one obtains below the dotted
∞-functor G (unique up to equivalence) making the following diagram commute:

NS∗
Σ∞

//

LT

��

Sp(NS∗)

LS

��

T−1NS∗
G //______ S−1Sp(NS∗).

It follows from Corollary 1.4.4.5 of [17] that up to equivalence there is again a unique exact
functor G : Sp(T−1NS∗)→ S−1Sp(NS∗) such that the following diagram commutes:

T−1NS∗
Σ∞

//

G
��

Sp(T−1NS∗)

Gwwn n n n n n

S−1Sp(NS∗).

The ∞-functors F and G are inverse equivalences of stable ∞-categories. �

Definition 1.6. The stable presentable symmetric monoidal∞-category of noncommutative
spectra is by definition

NSp := T−1NS∗ ⊗ Sp,

equipped with the symmetric monoidal stabilization functor Σ∞
T : NS∗

LT→ T−1NS∗
Σ∞
→ NSp.

Remark 1.7. Thanks to the identification S−1Sp(NS∗) ' T−1NS∗⊗Sp in the above Theorem
1.5, our new definition of NSp is backward compatible with the one in Definition 4.18 of [20].

Remark 1.8. Since hSC∗∞
op is the homotopy category of noncommutative pointed (compact

metrizable) spaces, it seems very natural to consider NSHop as its suspension stabilization.
Thus we propose to (re)define

NSHop = noncommutative stable homotopy category,

deviating from the terminology in [30, 20, 21]. Naturally we refer to its triangulated subcat-
egory (NSHf )op as the homotopy category of noncommutative finite spectra; see Definition
2.1 of [21], where NSHf was called the homotopy category of noncommutative finite spectra.

Corollary 1.9. The homotopy category of noncommutative spectra hNSp is a tensor trian-
gulated category, containing NSHop as a full tensor triangulated subcategory. It also contains
(NSHf )op as a full tensor triangulated subcategory.
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2. Localizations of SC∗∞

A separable unital C∗-algebra D (D 6= C) is called strongly self-absorbing if the there is
an isomorphism φ : D→ D⊗̂D that is approximately unitarily equivalent to idD ⊗ 1D [31].
In ibid. the authors introduced and conducted an elaborate study of strongly self-absorbing
C∗-algebras mainly with applications to the Elliott’s Classification Program in mind. We are
going to use these C∗-algebras to construct interesting (co)localizations of noncommutative
spaces and spectra.

Remark 2.1. In [9] the authors showed the for any strongly self-absorbing C∗-algebra D

the map idD ⊗ 1D is homotopic to an isomorphism φ : D → D⊗̂D. In ibid. the result
was asserted under the K1-injectivity condition, which later turned out to be redundant (see
Remark 3.3. of [33]).

Let C be a symmetric monoidal ∞-category with unit object 1. Then a map e : 1 → E
exhibits E as an idempotent object if idE ⊗ e : E ' E ⊗ 1 → E ⊗ E is an equivalence in C

(see, for instance, Definition 6.3.2.1 of [17]). We immediately observe

Lemma 2.2. Any strongly self-absorbing C∗-algebra D is an idempotent object in SC∗∞.
The same assertion holds for K.

Proof. For a strongly self-absorbing C∗-algebra D the canonical unital ∗-homomorphism
C→ D exhibits it as an idempotent object in SC∗∞ (see Remark 2.1). For K the map C→ K
sending 1 7→ e11 exhibits K as an idempotent object in SC∗∞. �

Remark 2.3. If E ∈ C is an idempotent object, then LE : C → C of the form LE(X) =
− ⊗ E is a localization. In [12] the authors called localizations LE : C → C of the form
LE(X) = − ⊗ E for some E ∈ C smashing localizations in keeping with the terminology
prevalent in stable homotopy theory. Any smashing localization LE : C → C is compatible
with the symmetric monoidal structure on C and, in fact, LEC inherits a symmetric monoidal
structure from C, such that LE : C → LEC becomes symmetric monoidal (see Proposition
2.2.1.9 and Proposition 6.3.2.7 of [17]). By abuse of notation we are sometimes going to drop
the object E from the smashing localization LE and denote it simply by L.

Example 2.4. Smashing localizations of the∞-category of separable C∗-algebras SC∗∞ pro-
duces interesting results. By definition SC∗∞ is opposite to the∞-category of noncommutative
pointed compact Hausdorff spaces. We present a few pertinent examples here.

(1) If L(A) = A ⊗ K, then we denote the smashing localization LSC∗∞ by SC∗∞[K−1]. It
is the ∞-category of C∗-stable C∗-algebras. For finite pointed CW complexes (X, x)
and (Y, y) the homotopy set hSC∗∞[K−1](L(C(X, x)), L(C(Y, y))) is the connective E-
theory group denoted by kk((Y, y), (X, x)) in [8] (see Remark 2.11 below).

(2) If L(A) = A ⊗ D, where D is a strongly self-absorbing C∗-algebra, then we denote
the smashing localization LSC∗∞ by SC∗∞[D−1]. We refer to it as the ∞-category
of D-stable C∗-algebras. From the perspective of Elliott’s Classification Program
the ∞-category SC∗∞[Z−1] would be the most interesting localization, where Z is the
Jiang–Su algebra. We call it the ∞-category of Z-stable C∗-algebras.

(3) If D = O∞ we call SC∗∞[O−1
∞ ] the ∞-category of strongly purely infinite C∗-algebras.

The suspension stable version of this category will be analysed in the next section.
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Proposition 2.5. Let us suppose that there is a unital embedding ιD : D→ D′ of strongly
self-absorbing C∗-algebras. Then D′ is an idempotent object in SC∗∞[D−1].

Proof. Consider the following commutative diagram in SC∗

D′
idD′⊗1D′ //

idD′⊗1D ##G
GG

GG
GG

GG
D′⊗̂D′

D′⊗̂D.
idD′⊗ιD

99sssssssss

Since D′ is strongly self-absorbing idD′ ⊗ 1D′ is homotopic to an isomorphism D′ → D′⊗̂D′.
It follows from Proposition 5.12 of [31] that idD′ ⊗ 1D is homotopic to an isomorphism
D′ → D′⊗̂D demonstrating that D′ is D-stable. It follows that idD′ ⊗ ιD is a homotopy
equivalence. Observe that the unit object in SC∗∞[D−1] is D. Thus the unital embedding
ιD : D→ D′ exhibits D′ as an idempotent object in SC∗∞[D−1]. �
Corollary 2.6. In the localized ∞-category SC∗∞[Z−1] every strongly self-absorbing C∗-
algebra is an idempotent object.

Proof. The assertion follows from the characterization of Z as the initial object in the ho-
motopy category of strongly self-absorbing C∗-algebras with unital ∗-homomorphisms (see
Corollary 3.2 of [33]). �
Remark 2.7. In view of the above Corollary one may construct SC∗∞[D−1] for any strongly
self-absorbing C∗-algebra D as a localization of SC∗∞[Z−1]. Thus isomorphisms in SC∗∞[Z−1]
contain the most refined information amongst all smashing localizations with respect to
strongly self-absorbing C∗-algebras.

For any A,B ∈ SC∗ we denote by [A,B] the homotopy classes of ∗-homomorphisms A→ B.

Proposition 2.8. For any A,B ∈ SC∗ and any strongly self absorbing C∗-algebra D there
is a natural isomorphism

hSC∗∞[D−1](L(A), L(B)) ∼= [A,B⊗̂D].

Proof. Let us first observe that there is an identification

hSC∗∞[D−1](L(A), L(B)) ∼= hSC∗∞(A⊗̂D, B⊗̂D).

There is an element θA = idA⊗1D ∈ SC∗(A,A⊗̂D) sending a 7→ a⊗1D. This induces a map

K : hSC∗∞(A⊗̂D, B⊗̂D)→ hSC∗∞(A,B⊗̂D)

by precomposing with [θA] (here [−] denotes the homotopy class). Using the fact that
idD ⊗ 1D : D → D⊗̂D is homotopic to an isomorphism γ : SC∗(D,D⊗̂D), we deduce that
the map idB ⊗ idD ⊗ 1D is homotopic to an isomorphism γB ∈ SC∗(B⊗̂D, B⊗̂D⊗̂D). Now
we define a map

L : hSC∗∞(A,B⊗̂D)→ hSC∗∞(A⊗̂D, B⊗̂D)

as follows: L([φ]) = [γ−1
B ◦ (φ ⊗ idD)]. Observe that K ◦ L([φ]) = [γ−1

B ◦ (φ ⊗ idD)] ◦ [θA] =
[γ−1

B ◦ (idB ⊗ idD ⊗ 1D) ◦ φ]. Since [idB ⊗ idD ⊗ 1D] = [γB] the composition K ◦ L = id :
hSC∗∞(A,B⊗̂D)→ hSC∗∞(A,B⊗̂D).
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Now L ◦ K([ψ]) = L([ψ ◦ θA]) = [γ−1
B ◦ ((ψ ◦ θA) ⊗ idD)]. Let τD : D → D denote the

tensor flip map, which is also homotopic to the identity. A verification on the simple tensors
demonstrates that [(idB ⊗ τD) ◦ ((ψ ◦ θA) ⊗ idD)] = [γB ◦ ψ]. It follows that L ◦ K = id :
hSC∗∞(A⊗̂D, B⊗̂D) → hSC∗∞(A⊗̂D, B⊗̂D). It remains to observe that hSC∗∞(A,B⊗̂D) ∼=
[A,B⊗̂D] (see [20]). �
Observe that the subset {sis∗j | i, j ∈ N} ⊂ O∞ generates a copy of the compact operators K
inside O∞. Let ι : K→ O∞ denote the canonical inclusion.

Proposition 2.9. In the C∗-stable ∞-category SC∗∞[K−1] the map ι : K→ O∞ exhibits O∞
as an idempotent object.

Proof. Consider the diagram O∞
θ→ O∞⊗̂K

φ→ O∞⊗̂O∞ in SC∗. The map θ sends a 7→ a⊗e11
and the map φ = idO∞⊗ι. The composite φ◦θ is homotopic to idO∞⊗1O∞ : O∞ → O∞⊗̂O∞,
whence it is an equivalence in SC∗∞. The map θ is an equivalence in SC∗∞[K−1]. It follows
that φ = idO∞ ⊗ ι is an equivalence in SC∗∞[K−1]. �
Corollary 2.10. The ∞-category SC∗∞[O−1

∞ ] can be obtained as a localization of SC∗∞[K−1].

Remark 2.11. It is well-known that hSC∗∞[K−1](A,B) ∼= [A,B⊗̂K]. Isomorphisms in
hSC∗∞[K−1] between C∗-algebras of the form C(X, x)⊗̂K, where (X, x) is a finite pointed
CW complex, can be detected in terms of connective kk-theory (see Theorem 2.4 of [8]).
The connective kk-theory should not be confused with Cuntz kk-theory for m-algebras (or
locally convex algebras).

Corollary 2.12. Consider the following problem: Given two finite pointed CW complexes
(X, x) and (Y, y) are the C∗-algebras C(X, x)⊗̂O∞ and C(Y, y)⊗̂O∞ homotopy equivalent? In
view of the above Remark 2.11 a sufficient criterion can be obtained in terms of connective
kk-theory. Homotopy equivalences of matrix bundles can also be detected by connective
E-theory [30].

Now we demonstrate that the homotopy category of the smashing localization hSC∗∞[D−1]
admits a universal characterization much like KK-theory. The localization ∞-functor LD :
SC∗∞ → SC∗∞[D−1] induces a canonical (ordinary) functor LD : SC∗ → hSC∗∞[D−1]. Recall that
a functor F : SC∗ → C (C an ordinary category) is called D-stable if F sends the morphism
A→ A⊗̂D mapping a 7→ a⊗ 1D to an isomorphism in C for all A ∈ SC∗.

Theorem 2.13. The functor LD : SC∗ → hSC∗∞[D−1] is the universal homotopy invariant
and D-stable functor on SC∗.

Proof. Let us first show that functor LD is homotopy invariant and D-stable. It is easy to
verify that it is homotopy invariant. It follows from the arguments in the proof of Proposition
2.8 that the map hSC∗∞[D−1](LD(A⊗̂D), LD(B)) → hSC∗∞[D−1](LD(A), LD(B)) induced by
A→ A⊗̂D is an isomorphism for all B ∈ SC∗. For any B ∈ SC∗ the map

hSC∗∞[D−1](LD(B), LD(A))→ hSC∗∞[D−1](LD(B), LD(A⊗̂D))

is equivalent to that map [B,A⊗̂D] → [B,A⊗̂D⊗̂D] once again by Proposition 2.8. This
map is induced by A⊗̂D → A⊗̂D⊗̂D sending a ⊗ d 7→ a ⊗ 1D ⊗ d. Since D is strongly
self-absorbing one easily sees [B,A⊗̂D] → [B,A⊗̂D⊗̂D] is an isomorphism. Since LD is
surjective on objects we conclude that LD is D-stable.
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Let Fi : hSC∗∞[D−1] → C with i = 1, 2 be two functors making the following diagram
commute

SC∗
LD //

F   A
AA

AA
AA

A hSC∗∞[D−1]

Fiyyt
t

t
t

t

C.

(1)

On objects they are both determined by D-stability Fi(A⊗̂D) ∼= F (A⊗̂D) ∼= F (A). Simi-
larly, on each morphism φ : A⊗̂D→ B⊗̂D the value of Fi(φ) is uniquely determined by the
following diagram:

Fi(A⊗̂D)
Fi(φ) // Fi(B⊗̂D)

F (A)
F (φ)

//

∼=

OO

F (B).

∼=

OO

For the existence note that for any homotopy invariant and D-stable functor F : SC∗ → C

there is a functor F : hSC∗∞[D−1] → C sending A⊗̂D to F (A⊗̂D) ∼= F (A) that makes the
above diagram (1) commute (up to a natural isomorphism). �

3. Coidempotent objects and colocalizations of NSp

Let us remind the readers that the ∞-functor Πop : SC∗∞
op → NSp arises as a composition

of the following ∞-functors

SC∗∞
op j→ NS∗

LT→ T−1NS∗
Σ∞
→ Sp(T−1NS∗) ' T−1NS∗ ⊗ Sp =: NSp.

For any separable C∗-algebra A one ought to regard Πop(A) as its suspension spectrum after
localization with respect to T . Hence we are going to reset Σ∞

T A := Πop(A). Owing to
the symmetric monoidal structure on NSp that we established earlier, one may consider the
endofunctor −⊗ Σ∞

T A : NSp→ NSp for any A ∈ SC∗∞
op.

Let C be a symmetric monoidal ∞-category with unit object 1. We say that a map
e : E → 1 exhibits E as a coidempotent object in C if the dual map eop : 1 → E exhibits E
as an idempotent object in Cop. Recall that the symmetric monoidal structure on C endows
Cop with a symmetric monoidal structure that is uniquely defined up to a contractible space
of choices.

Lemma 3.1. If D is a strongly self-absorbing C∗-algebra, then j(D) is a coidempotent
object in NS∗. The same assertion holds for K, i.e., j(K) is a coidempotent object in NS∗.

Proof. Let X stand for D or K. Since X is an idempotent object in SC∗∞, it becomes a
coidempotent object in SC∗∞

op. Consequently, j(X) becomes a coidempotent object in NS∗
(since j : SC∗∞

op → NS∗ is a fully faithful symmetric monoidal ∞-functor). �
Lemma 3.2. For any strongly self-absorbing C∗-algebra D, the stabilization Σ∞

T D is a
coidempotent object in NSp. The same assertion holds for K, i.e., Σ∞

T K is a coidempotent
object in NSp.

9



Proof. Since Σ∞ : NS∗ → Sp(NS∗) and LT : Sp(NS∗) ' NS∗⊗Sp→ T−1NS∗⊗Sp ' S−1Sp(NS∗)
are both symmetric monoidal ∞-functors, the assertion follows from the previous Lemma.

�

Recall that an ∞-functor R : C → C is called a colocalization if R : C → RC is the right
adjoint to the inclusion RC ⊂ C; in particular, the inclusion is the left adjoint to R and
hence preserves all small colimits.

Proposition 3.3. Let A be a strongly self-absorbing C∗-algebra or K. The ∞-functors
R1 : NS∗ → NS∗ and R2 : NSp → NSp given by R1(X) = X ⊗ j(A) and R2(X) = X ⊗ Σ∞

T A
are colocalization functors.

Proof. The assertions follow from the dual of Proposition 6.3.2.4 of [17]. �

3.1. Colocalizations and purely infinite strongly self absorbing C∗-algebras. The
list of known examples of strongly self-absorbing C∗-algebras is rather limited. The list
includes Cuntz algebras O2 and O∞, the Jiang–Su algebra Z, UHF algebras of infinite type,
and tensor products of O∞ with UHF algebras of infinite type. It follows from the results of
Kirchberg that strongly self-absorbing C∗-algebras are either stably finite or purely infinite.
In the purely infinite case Toms–Winter completely classified all strongly self-absorbing C∗-
algebras satisfying UCT (Corollary page 4022 [31]), viz., they are O2, O∞ and tensor products
of O∞ with UHF algebras of infinite type. We are particularly interested in the purely infinite
ones since ax + b-semigroup C∗-algebras of number rings are all purely infinite (Corollary
8.2.11 of [6]). Among the strongly self-absorbing purely infinite C∗-algebras O∞ plays a
distinguished role in the classification program. The C∗-algebra A⊗̂O∞ is purely infinite for
any A ∈ SC∗ [15]. Deviating slightly from the predictable pattern the colocalization of NSp
by the∞-functor RΣ∞

T D(−) = −⊗Σ∞
T D is denoted by NSp[D−1] (and not by NSp[(Σ∞

T D)−1]).
In what follows we are going to drop the object Σ∞

T D from the colocalization functor RΣ∞
T D

and denote it simply by R.
Thanks to Proposition 3.3 above one can study colocalizations of both NS∗ and NSp with

respect to a strongly self-absorbing C∗-algebra D or K. We are mostly interested in the (sus-
pension) stable situation. Let us call the full ∞-subcategory of NSp (or of its colocalization)
spanned by Σ∞

T A for all A ∈ SC∗∞ (or Σ∞
T A followed by the the colocalization functor) the

C∗-core. In the sequel we describe the homotopy category of the C∗-core of the colocalization
of NSp when D is a purely infinite strongly self-absorbing C∗-algebra. We leave out the cases
involving the stably finite ones for a future project.

Theorem 3.4. For any A,B ∈ SC∗ there is a natural isomorphism

hNSp[O−1
∞ ](R(Σ∞

T A), R(Σ
∞
T B)) ∼= E0(B,A).

Proof. By construction there is a natural identification

hNSp[O−1
∞ ](R(Σ∞

T A), R(Σ
∞
T B)) ∼= hNSp(Σ∞

T (A⊗̂O∞),Σ∞
T (B⊗̂O∞)),

where we used the fact that Σ∞
T : hSC∗∞

op → hNSp is symmetric monoidal (see Corollary 1.4).

Now consider the canonical composition of ∗-homomorphisms K ↪→ O∞
θ→ O∞⊗̂K. Here

θ : O∞ → O∞⊗̂K is the corner embedding a 7→ a⊗ e11. We ought to view this as a diagram
K← O∞ ← O∞⊗̂K in SC∗∞

op. Tensoring the diagram with A and applying Σ∞
T (−) leads to

10



the following diagram in hNSp

Σ∞
T (A⊗̂K)← Σ∞

T (A⊗̂O∞)
Θ← Σ∞

T (A⊗̂O∞⊗̂K).

Now we apply the functor hNSp(−,Σ∞
T (B⊗̂O∞)) to this diagram and use Theorem 4.25 of

[20] to obtain

hNSp(Σ∞
T (A⊗̂K),Σ∞

T (B⊗̂O∞))

��

∼= // NSHop(A⊗̂K, B⊗̂O∞)

��

hNSp(Σ∞
T (A⊗̂O∞),Σ∞

T (B⊗̂O∞))

Θ
��

∼= // NSHop(A⊗̂O∞, B⊗̂O∞)

��

hNSp(Σ∞
T (A⊗̂O∞⊗̂K),Σ∞

T (B⊗̂O∞))
∼= // NSHop(A⊗̂O∞⊗̂K, B⊗̂O∞).

Observe that for any E,F ∈ SC∗ there is a natural map NSH(E,F ) → E0(E,F ), which
becomes an isomorphism as soon as F is stable (see Theorem 4.1.1. of [30]). Thus we may
modify the above diagram as follows:

hNSp(Σ∞
T (A⊗̂K),Σ∞

T (B⊗̂O∞))

��

∼= // Eop
0 (A⊗̂K, B⊗̂O∞)

��

hNSp(Σ∞
T (A⊗̂O∞),Σ∞

T (B⊗̂O∞))

Θ
��

// Eop
0 (A⊗̂O∞, B⊗̂O∞)

��

hNSp(Σ∞
T (A⊗̂O∞⊗̂K),Σ∞

T (B⊗̂O∞))
∼= // Eop

0 (A⊗̂O∞⊗̂K, B⊗̂O∞).

Since the diagram K ↪→ O∞
θ→ O∞⊗̂K produces a E-equivalence, the right vertical composi-

tion is an isomorphism. It follows that the left vertical composition is also an isomorphism,
i.e., the natural map

Θ : hNSp(Σ∞
T (A⊗̂O∞),Σ∞

T (B⊗̂O∞))→ hNSp(Σ∞
T (A⊗̂O∞⊗̂K),Σ∞

T (B⊗̂O∞))

induced by θ : O∞ → O∞⊗̂K is split surjective.

Now consider the composition of ∗-homomorphisms O∞
θ→ O∞⊗̂K

κ→ O∞ with κ(a⊗ eij) =
sias

∗
j . Since κ ◦ θ is homotopic to an isomorphism in SC∗, the composition in the induced

diagram in hNSp (after tensoring with A and applying Σ∞
T (−))

Σ∞
T (A⊗̂O∞)← Σ∞

T (A⊗̂O∞⊗̂K)← Σ∞
T (A⊗̂O∞)

is an isomorphism in hNSp. Applying the functor hNSp(−,Σ∞
T (B⊗̂O∞)) we see that the

dotted composite

hNSp(Σ∞
T (A⊗̂O∞),Σ∞

T (B⊗̂O∞))
Θ //

,,XXXXXXXXXXXX
hNSp(Σ∞

T (A⊗̂O∞⊗̂K),Σ∞
T (B⊗̂O∞))

��

hNSp(Σ∞
T (A⊗̂O∞),Σ∞

T (B⊗̂O∞))

must be an isomorphism. It follows that Θ is split injective and consequently an isomorphism.
Now in the commutative diagram

11



hNSp(Σ∞
T (A⊗̂O∞),Σ∞

T (B⊗̂O∞))

Θ
��

// Eop
0 (A⊗̂O∞, B⊗̂O∞)

��

hNSp(Σ∞
T (A⊗̂O∞⊗̂K),Σ∞

T (B⊗̂O∞))
∼= // Eop

0 (A⊗̂O∞⊗̂K, B⊗̂O∞)

the right vertical arrow is an isomorphism due to the C∗-stability of E-theory, whence the
top horizontal arrow must also be an isomorphism. Finally, we observe that

Eop
0 (A⊗̂O∞, B⊗̂O∞) ∼= E0(B,A)

due to the O∞-stability of E-theory in both variables and all the identifications made thus
far were natural. �
Remark 3.5. The above Theorem demonstrates that the colocalized ∞-category NSp[O−1

∞ ]
produces an ∞-categorical model for an enlarged version of the opposite of bivariant E-
theory category. Of course, if the separable C∗-algebras in sight are nuclear, then one can
replace E-theory by KK-theory.

Remark 3.6. An inspection of the proof of Theorem 3.4 demonstrates that actually a
stronger result holds, viz.,

hNSp(Σ∞
T (A⊗̂O∞),Σ∞

T B) ∼= NSH(B,A⊗̂O∞) ∼= E0(B,A)

for any A,B ∈ SC∗.

Corollary 3.7. The nonconnective algebraic K-theory of O∞-stable separable C∗-algebras
factors through the essential image of Σ∞

T : hSC∗∞
op → hNSp[O−1

∞ ].

Proof. It was shown in [19] that the nonconnective algebraic K-theory of O∞-stable C∗-
algebras agrees naturally with their topological K-theory. The assertion now follows since
topological K-theory, which is naturally isomorphic to E-theory, has the desired property. �
Now let Q denote any UHF algebra of infinite type, so that O∞⊗̂Q is a purely infinite strongly
self-absorbing C∗-algebra.

Theorem 3.8. For any A,B ∈ SC∗ there is a natural isomorphism

hNSp[(O∞⊗̂Q)−1](R(Σ∞
T A), R(Σ

∞
T B)) ∼= E0(B⊗̂Q, A⊗̂Q).

Proof. As before we first observe that

hNSp[(O∞⊗̂Q)−1](R(Σ∞
T A), R(Σ

∞
T B)) ∼= hNSp(Σ∞

T (A⊗̂O∞⊗̂Q),Σ∞
T (B⊗̂O∞⊗̂Q)).

Arguing as in the previous Theorem one then proves that

hNSp(Σ∞
T (A⊗̂O∞⊗̂Q),Σ∞

T (B⊗̂O∞⊗̂Q)) ∼= E0(B⊗̂Q, A⊗̂Q).
�

Example 3.9. If Q is the universal UHF algebra, then the C∗-core of the colocalization of
NSp by the ∞-functor − ⊗ Σ∞

T (O∞⊗̂Q) produces an ∞-categorical model for the opposite
of rationalized bivariant E-theory category. Indeed, it is well known that tensoring with the
universal UHF algebra rationalizes E-theory, e.g., it follows from the Theorem in Section 3
of [9] that

Ei(O∞⊗̂Q, A⊗̂Q) ∼= Ei(A)⊗Z Q for i = 0, 1.
12



Now we show that the colocalization of NSp by −⊗̂Σ∞
T O2 annihilates its C∗-core.

Theorem 3.10. For any A,B ∈ SC∗ there is a natural isomorphism

hNSp[O−1
2 ](R(Σ∞

T A), R(Σ
∞
T B)) ∼= 0.

Proof. Once again we first observe that

hNSp[O−1
2 ](R(Σ∞

T A), R(Σ
∞
T B)) ∼= hNSp(Σ∞

T (A⊗̂O2),Σ
∞
T (B⊗̂O2)).

We also know from Theorem 4.25 of [20] that

hNSp(Σ∞
T (A⊗̂O2),Σ

∞
T (B⊗̂O2)) ∼= NSH(B⊗̂O2, A⊗̂O2).

Since O2 is properly infinite one can again find a diagram in SC∗

O2 → O2⊗̂K→ O2,

such that the composition is homotopic to an isomorphism (see Proposition 1.1.2 of [24]).
Tensoring the diagram with A we get another one

A⊗̂O2 → A⊗̂O2⊗̂K→ A⊗̂O2,

such that the composition is again homotopic to an isomorphism. Applying the homotopy
functor NSH(B⊗̂O2,−) to the above diagram we find that NSH(B⊗̂O2, A⊗̂O2) is a summand
of NSH(B⊗̂O2, A⊗̂O2⊗̂K) ∼= E0(B⊗̂O2, A⊗̂O2⊗̂K) ∼= E0(B⊗̂O2, A⊗̂O2). It suffices to show
that E0(B⊗̂O2, A⊗̂O2) vanishes. Since O2 is KK-contractible, so is B⊗̂O2 and hence it
satisfies UCT. Thus one may identify E0(B⊗̂O2, A⊗̂O2) ∼= KK0(B⊗̂O2, A⊗̂O2) and the group
KK0(B⊗̂O2, A⊗̂O2) evidently vanishes. �

3.2. Noncommutative stable cohomotopy of ax+b-semigroup C∗-algebras of num-
ber rings. Number rings are central objects of study in number theory. To any number ring
one can associate an ax + b-semigroup C∗-algebra that possesses very intriguing structure
[5]. It is an important task to ascertain (co)homological invariants of these C∗-algebras. We
begin with a disambiguation.

Disambiguation 3.11. In [20, 21] the author decided to call the groups NSH(C,−) (resp.
NSH(−,C)) the noncommutative stable homotopy (resp. noncommutative stable cohomo-
topy) groups. The terminology was motivated by the fact that NSH(C,−) is covariant and
NSH(−,C) is contravariant. However, it was observed in ibid. that NSH(C,−) generalizes
stable cohomotopy, whereas NSH(−,C) generalizes stable homotopy of finite pointed CW
complexes. In order to align the theory with the terminology familiar to topologists, we
rename as follows:

NSH(C,−) = noncommutative stable cohomotopy

NSH(−,C) = noncommutative stable homotopy

We also extend the terminology predictably to their graded versions.

Recently Li showed that for a countable integral domain R with vanishing Jacobson radical
(which is, in addition, not a field) the left regular ax+ b-semigroup C∗-algebra C∗

λ(RoR×)
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is O∞-stable, i.e., C∗
λ(R o R×)⊗̂O∞ ∼= C∗

λ(R o R×) (see Theorem 1.3 of [16]). Cuntz–
Echterhoff–Li computed the topological K-theory of such ax + b-semigroup C∗-algebras in
[6] as follows:

K∗(C
∗
λ(RoR×)) ∼= ⊕

[X]∈G\I
K∗(C

∗(GX)),(2)

where I is the set of fractional ideal of R, G = K oK×, and GX is the stabilizer of X under
the G-action on I. The orbit space G \ I can be identified with the ideal class group of K.

Theorem 3.12. The noncommutative stable cohomotopy of the left regular ax+b-semigroup
C∗-algebra of the ring of integers R of a number field K is 2-periodic and explicitly given by

NSH(C, C∗
λ(RoR×)) ∼= ⊕

[X]∈G\I
K0(C

∗(GX)).

and

NSH(C,ΣC∗
λ(RoR×)) ∼= ⊕

[X]∈G\I
K1(C

∗(GX)).

Proof. Since C∗
λ(R o R×) is O∞-stable, there is an identification of noncommutative stable

cohomotopy NSH(C, C∗
λ(RoR×)) ∼= NSH(C, C∗

λ(RoR×)⊗̂O∞). By Remark 3.6 we conclude
that NSH(C, C∗

λ(R o R×)⊗̂O∞) ∼= E0(C, C∗
λ(R o R×)). One may identify the E-theory of

C∗
λ(RoR×) naturally with its topological K-theory (of course, C∗

λ(RoR×) is itself nuclear).
The results now follow from Equation (2) (the second one after suspension). �

4. Nonconnective KQ-theory: higher and lower nonunital K′-theory

We work exclusively in the category of nonunital (not necessarily unital) k-algebras, de-
noted by Algk, where k is a field of characteristic zero as in [22]. The morphisms in Algk
are k-algebra homomorphisms. At certain places in the sequel we are admittedly sloppy re-
garding size issues; however, as is common in K-theory there will always be a small skeleton
that comes to our rescue.

4.1. Stable ∞-category valued noncommutative motives. For any k-algebra A let Ã
denote its k-unitization with underlying k-linear spaceA⊕k and multiplication (a, λ)(a′, λ′) =
(aa′ + λa′ + λ′a, λλ′). The category Mod(Ã) is an abelian category. In [22] we considered the
following differential graded category HPfdg(A): its objects are cochain complexes Y of right

Ã-modules such that Y is homotopy equivalent to complexes X satisfying

(1) X is homotopy equivalent to a strictly perfect complex,
(2) the canonical map X ⊗Ã A→ X is a homotopy equivalence.

A k-linear cochain complex worth of morphisms between two such objects is obtained in a
standard manner. We are going to consider an ∞-categorical variant of HPfdg-construction.
There is a differential graded nerve Ndg of a differential graded category (see Construction
1.3.1.6 of [17]). For a differential graded category C as a simplicial set Ndg(C) can be described
as follows:

• the 0-simplices are the objects of C,
• the 1-simplices are ∪X,Y ∈Ob(C){f ∈ C(X, Y )0 | df = 0}.
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In order to get an idea about the higher simplices let us note that the differential graded
nerve Ndg(C) (of a homologically graded differential graded category C) is obtained by ap-
plying the homotopy coherent nerve to a Kan complex enriched category constructed out of
C. The Kan complex enriched category is obtained by first applying the truncation τ>0 to
the mapping complexes in C and then applying the Dold–Kan construction.

Using the above construction we manufacture an∞-category C∞(Ã) out of the differential
graded category of cochain complexes of Mod(Ã), which turns out to be a stable ∞-category
(see Proposition 1.3.2.10 of ibid.). By construction the objects (or 0-simplices) of the differ-
ential graded nerve C∞(Ã) are complexes of right Ã-modules. Let us set HPf∞(A) to be the
stable ∞-subcategory of C∞(Ã) spanned by the objects of HPfdg(A).

Remark 4.1. There is an isomorphism of homotopy categories hHPf∞(A) ∼= h(HPfdg(A)) :=
H0(HPfdg(A)) (see Remark 1.3.1.11 of [17]).

Remark 4.2. In the world of algebra the convention is to consider cohomologically graded
complexes and in topology one considers typically homologically graded complexes. In [22]
the differential graded complexes were cohomologically graded as it built upon the formalism
of [14], whereas in [17] they are homologically graded. The passage between the two is not
too difficult (see, for instance, Definitions 3.1.6 and 3.3.1 of [11]).

Let Set∆ denote the category of simplicial sets with the Joyal model structure, whose fibrant
objects are precisely the ∞-categories. We may compose the construction A 7→ HPf∞(A)
with the homotopy coherent nerve construction N : Set∆ → Cat∞, where the Cat∞ is
∞-category of (small) ∞-categories. Let Catex∞ denote the ∞-category of (small) stable
∞-categories with exact functors.

Proposition 4.3. The association A 7→ HPf∞(A) produces an∞-functor N(Algk)→ Catex∞.

Proof. Clearly the construction A 7→ Ã is functorial. It sends any k-algebra homomorphism
to a unital k-algebra homomorphism. Sending Ã to the differential graded category of
cochain complexes of right Ã-modules is also functorial up to a natural isomorphism: Ã→ B̃
induces the map − ⊗Ã B̃ between the differential graded categories. Application of the
differential graded nerve is again functorial and lands inside Set∆ (see Proposition 1.3.1.20
of [17]). Now applying the homotopy coherent nerve construction we get an ∞-functor
N(Algk) → Cat∞. Thus we have demonstrated that the association A 7→ C∞(Ã) produces
an ∞-functor N(Algk)→ Cat∞.

Let us now verify that − ⊗Ã B̃ : C∞(Ã) → C∞(B̃) sends an object of HPf∞(A) to an

object in HPf∞(B). It is easy to see that − ⊗Ã B̃ sends strictly perfect complexes of right

Ã-modules to strictly perfect complexes of right B̃-modules. The functor also preserves
homotopy equivalences whence condition (1) above is preserved. We need to now check that
the canonical map Y ⊗Ã B̃ ⊗B̃ B → Y ⊗Ã B̃ is a homotopy equivalence. Since the functor

− ⊗Ã B̃ preserves homotopy equivalences, we may assume that Y is strictly perfect. Since

Y ⊗Ã B̃⊗B̃B
∼= Y ⊗ÃB it suffices to show that Y ⊗ÃB → Y ⊗Ã B̃ is a homotopy equivalence.

Tensoring the short exact sequence of Ã-modules 0 → B → B̃ → k → 0 with the strictly
perfect complex Y , we are reduced to showing Y ⊗Ã (Ã/A) ∼= Y ⊗Ã k is acyclic. Since
Y ∈ HPf∞(A) the canonical map Y ⊗Ã A → Y is a homotopy equivalence. It follows that
Y ⊗Ã k is acyclic. Consequently, we have an ∞-functor HPf∞ : N(Algk)→ Cat∞.
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By construction HPf∞(A) is a stable∞-category. Thus it suffices to show that the functor
−⊗Ã B̃ : HPf∞(A)→ HPf∞(B) is exact. The homotopy cofiber sequences in the differential
graded category HPfdg(A) are equivalent to short exact sequences, that are split exact in
each degree. They produce the cofiber sequences in the stable ∞-category HPf∞(A) whence
the assertion follows. �

Let us recall from [1] that a diagram A → B → C in Catex∞ is called exact if the se-
quence of stable presentable ∞-categories Ind(A) → Ind(B) → Ind(C) is exact, i.e., the
composite is trivial, the functor Ind(A) → Ind(B) is fully faithful, and the canonical map
Ind(B)/Ind(A)→ Ind(C) is an equivalence. Note that in ibid. the treatment is more general

as the notion of exactness is considered in Cat
ex(κ)
∞ for any regular cardinal κ, i.e., the ∞-

category of κ-cocomplete small stable ∞-categories and κ-small colimit preserving functors.

Lemma 4.4. For any short exact sequence A → B → C in Algk with A2 = A and B,C
unital, the diagram HPf∞(A)→ HPf∞(B)→ HPf∞(C) is exact in Catex∞.

Proof. It follows from Lemma 2.14 that the diagram HPfdg(A) → HPfdg(B) → HPfdg(C) is
an exact sequence of differential graded categories, i.e., H0(HPfdg(A)) → H0(HPfdg(B)) →
H0(HPfdg(C)) is exact, i.e., the composite is trivial, the functor H0(HPfdg(A))→ H0(HPfdg(B))
is fully faithful, and the canonical map H0(HPfdg(B))/H0(HPfdg(A)) → H0(HPfdg(C)) is
an equivalence after idempotent completion. Proposition 5.15 of [1] says that a diagram
A → B → C in Catex∞ is exact if and only if the sequence of triangulated categories
hA→ hB→ hC is exact, i.e., the composite is trivial, the functor hA→ hB is fully faithful,
and the canonical map hB/hA → hC is an equivalence after idempotent completion. The
assertion follows from Remark 4.1 above. �

In [22] the KQ-theory of A ∈ Algk was defined to be the (connective) algebraic K-theory of
the k-linear differential graded category HPfdg(A). Any differential graded category C has an
underlying ordinary category C′ with morphisms given by C′(X, Y ) = {f ∈ C(X, Y )0 | df =
0}. The underlying category of the differential graded category HPfdg(A) will be denoted by
HPf(A). There is a Waldhausen category structure on HPf(A). One way to see this is as
follows: The category of unbounded cochain complexes of Ã-modules Ch(Ã) admits a model
structure with cohomology isomorphisms as weak equivalences and degreewise epimorphisms
as fibrations (see Theorem 2.3.11 of [13]). A map i : X → Y in Ch(Ã) is a cofibration if it
is a degreewise split monomorphism with cofibrant cokernel (see Proposition 2.3.9 of ibid.).
The subcategory of perfect complexes Perf(Ã), which are the compact objects in Ch(Ã) [2],
is a complete Waldhausen subcategory of the model category Ch(Ã) in the sense of [10].
The category HPf(A) is the full subcategory of Perf(Ã) consisting of cochain complexes X
that are homotopy equivalent to strictly perfect complexes and satisfy X ⊗Ã A → X is a

homotopy equivalence. The strictly perfect complexes of Ã-modules are cofibrant in the
model category Ch(Ã) and the weak equivalences between such complexes are precisely the
homotopy equivalences. One can now verify that the Waldhausen category structure on
Perf(Ã) restricts to a Waldhausen category structure on HPf(A). Summarising, we have

Lemma 4.5. The category HPf(A) is a Waldhausen subcategory of the model category
Ch(Ã) and the canonical inclusion HPf(A) ↪→ Perf(Ã) is Waldhausen exact.
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Let Wald denote the category of small Waldhausen categories with Waldhausen exact
functors. One may apply the Waldhausen (connective) K-theory functor Kw : Wald → Sp

to HPf(A) to define its K-theory. In [22] we showed that KQi(A)
∼= πi(K

w(HPf(A))) (see
Lemma 2.12 of ibid.). Using the material from Section 7 of [1] we can define the connective
K-theory of the stable∞-category HPf∞(A). Let us denote this connective K-theory functor
of small stable ∞-categories by Kc : Catex∞ → Sp.

Lemma 4.6. There is a natural equivalence of spectra Kw(HPf(A))
∼→ Kc(HPf∞(A)).

Proof. Since in the previous Lemma we showed that HPf(A) is a Waldhausen subcategory of
a model category, the assertion follows from Corollary 7.12 of [1]. �
Remark 4.7. We obtain yet another description of KQ-theory, viz.,

KQi(A)
∼= πi(K

c(HPf∞(A))).

Using the delooping machinery of [26] one can define the nonconnective K-theory spectrum.
This task was carried out in Section 9 of [1] in the setting of stable ∞-categories. Let us
denote the nonconnective K-theory functor by Knc : Catex∞ → Sp.

Proposition 4.8. For any short exact sequence in 0 → A → B → C → 0 with A2 = A,
B,C unital, there is cofiber sequence in Sp

Knc(HPf∞(A))→ Knc(HPf∞(B))→ Knc(HPf∞(C)).

Proof. It follows from Lemma 4.4 that HPf∞(A)→ HPf∞(B)→ HPf∞(C) is exact in Catex∞.
The assertion now follows since nonconnective algebraic K-theory satisfies localization (see
Theorem 9.8 of [1]). �

In [1] the authors constructed the univeral localizing invariant Uloc : Catex∞ → Mloc

and proposed Mloc as a candidate for noncommutative motives in the setting of stable ∞-
categories (see Theorem 8.7 of ibid.). We set M∞(A) := Uloc ◦ HPf∞(A) : Algk →Mloc and
call it the stable ∞-category valued noncommutative motive of A. In fact, the ∞-category
Mloc is itself stable and the exact sequences in Catex∞ produce cofiber sequences in Mloc. It
follows from Lemma 4.4 that

Lemma 4.9. For any short exact sequence in 0 → A → B → C → 0 with A2 = A, B,C
unital, there is cofiber sequence in Mloc

M∞(A)→M∞(B)→M∞(C).

For any A ∈ Algk let Mn(A) denote the k-algebra of n × n-matrices over A. There is a
canonical corner embedding A→Mn(A) sending a 7→ a(e11).

Proposition 4.10. For any A ∈ Algk there is an equivalence M∞(A) ' M∞(Mn(A))
induced by the corner embedding A→Mn(A).

Proof. From Proposition 2.4 of [22] we deduce that HPfdg(A) ∼= HPfdg(Mn(A)) induced by
the corner embedding A → Mn(A). Consequently, HPf∞(A) ' HPf∞(Mn(A)) in Catex∞ (see
Proposition 4.3). The assertion follows since M∞(−) = Uloc ◦ HPf∞(−). �

Let C∗ denote the category of all C∗-algebras viewed as a subcategory of AlgC. It follows
from the Cohen–Hewitt factorization theorem that any A ∈ C∗ satisfies A2 = A. Summariz-
ing, we have the following:
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Theorem 4.11. Viewing C∗ as an ordinary category (not a topological category) there is
an ∞-functor N(C∗)→Mloc that satisfies:

(1) (matrix stability): M∞(A) 'M∞(Mn(A)) for all A, and
(2) (localization / excision): any short exact sequence 0 → A → B → C → 0 produces

the following cofiber sequence in Mloc

M∞(A)→M∞(B)→M∞(C).

Proof. Only (2) needs a proof because it has been strengthened (note that B and C are no

longer assumed to be unital). For any short exact sequence 0 → A → B
g→ C → 0 in C∗

we need to show that M∞(A) is the fiber of the induced map M∞(B)
g→ M∞(C). We can

form another short exact sequence 0→ A→ B̃
g̃→ C̃ → 0 with B̃, C̃ unital. Now there is a

diagram in Mloc

fib(g) //

��

M∞(B)
g //

��

M∞(C)

��
M∞(A) //

��

M∞(B̃)
g̃ //

��

M∞(C̃)

��
M∞(0) // M∞(C)

∼= //

XX

M∞(C).

XX

The bottom two rows and the two columns on the right are cofiber sequences. Since 0 →
B → B̃ → C → 0 and 0 → C → C̃ → C → 0 admit splittings C → B̃ and C → C̃ in C∗

respectively, the indicated splittings exist in the above diagram, i.e., the two columns on the
right are split cofiber sequences. The assertion now follows by a diagram chase. �

4.2. C∗-algebras and nonconnective KQ-theory. Since Mloc is a stable ∞-category
its homotopy category hMloc is triangulated. Consider the triangulated category valued
functor M = hM∞ : C∗ → hMloc furnished by the above Theorem 4.11. Let MK denote the
composite functor MK = M(−⊗̂K) : C∗ → hMloc. We may restrict this functor to separable
C∗-algebas MK : SC∗ → hMloc.

Theorem 4.12. The functor MK : SC∗ → hMloc factors uniquely through KK.

Proof. The functor M∞ satisfies localization / excision whence the functor M is a split exact.
Since −⊗̂K preserves split exact sequences, the functor MK is split exact. The functor M is
Mn-stable. Thus M

K is a C∗-stable (see Proposition 3.31 of [7]). Since the functor SC∗ → KK

is the universal C∗-stable and split exact functor the assertion follows. �
Remark 4.13. The above Theorem is the key to categorification of topological T-duality.
Intuitively, our result asserts that under favourable circumstances topological T-duality in-
duces equivalences of noncommutative motives associated to certain C∗-algebras. For the
details we refer the readers to (Example 4.1 of [22] and Section 5 of [19]).

Definition 4.14. We define the nonconnective KQ-theory or KQnc-theory groups as

KQnc
i (A) := πi(K

nc(HPf∞(A))) for all A ∈ Algk and i ∈ Z.
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Theorem 4.15. Let a C∗ algebra B be of the form A⊗̂C, where C = K or any properly
infinite C∗-algebra. Then there is a natural isomorphism KQnc

i (B) ∼= Knc
i (B) for all i ∈ Z,

where Knc
i (B) denotes the i-th nonconnective algebraic K-theory group of B.

Proof. Let us first address the case where C = K and to this end we set AK = A⊗̂K. From
Lemma 4.5 we have a canonical Waldhausen exact functor HPf(AK)→ Perf(ÃK). The com-

posite HPf(AK)→ Perf(ÃK)
φ→ Perf(C) is trivial, where φ = −⊗L

ÃK
C. It follows that there

is a canonical map of stable ∞-categories HPf∞(AK) → F (φ), where F (φ) is the fiber of

the map N(M(Perf(ÃK))
cf)

φ→ N(M(Perf(C))cf) (see Lemma 7.11 of [1] for the construction
of M(Perf(−)), which is a Waldhausen subcategory of a simplicial model category. Using
Lemma 4.6 and Theorem 3.7 of [22] we deduce that the map HPf∞(AK)→ F (φ) is a connec-

tive K-theory isomorphism, i.e., there is an equivalence Kc(HPf∞(AK))
∼→ Kc(F (φ)). The

connective K-theory spectrum of F (φ) can be identified with Kc(AK), i.e., the connective
algebraic K-theory spectrum of AK due to excision [29]. Note that the nonconnective alge-
braic K-theory spectrum of a stable ∞-category is defined in such a manner (see Section 9
of [1]) so that when applied to a C∗-algebra B it produces the expected result, viz.,

Knc(HPf∞(B)) ' colimn Ω
nKc(Σ(n)

κ HPf∞(B)) ' colimn Ω
nKc(ΣnB),

where ΣnB denotes the n-th Karoubi delooping of B (see, for instance, [27, 3]). Using
localization the nonconnective K-theory spectrum of F (φ) can be identified with Knc(AK)
[1], which proves the assertion for stable C∗-algebras.

If C is properly infinite then using Proposition 2.2 of [4] (see also [30]) one obtains a
commutative diagram in C∗

C
ι //

θ ""D
DD

DD
DD

DD
M2(C)

C⊗̂K,
κ

::uuuuuuuuu

(3)

where the top horizontal arrow ι : C → M2(C) is the corner embedding. Tensoring the
above diagram with a unital A and applying the functors KQnc(−) and Knc(−) along with
the natural transformation between them produces a commutative diagram

KQnc
m (A⊗̂C) //

��

KQnc
m (A⊗̂C⊗̂K) //

∼=
��

KQnc
m (M2(A⊗̂C))

��

Knc
m (A⊗̂C) // Knc

m (A⊗̂C⊗̂K) // Knc
m (M2(A⊗̂C)),

where the middle verticle arrow is an isomorphism (since A⊗̂C⊗̂K is stable). Observe
that both KQnc-theory and Knc-theory are matrix stable whence the top and the bottom
horizontal compositions are isomorphisms. The assertion in the unital case now follows by
a diagram chase. Finally using excision one can prove the general case. �

Remark 4.16. The argument above actually shows that there is a map of spectra that
induces the isomorphism at the level of homotopy groups, which are the KQnc-theory and
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Knc-theory groups in source and target respectively. The map of connective spectra can also
be delooped inductively by a Bass–Heller–Swan splitting argument [25].

Remark 4.17. Observe that O∞ is properly infinite whence the above Theorem 4.15 is
applicable to O∞-stable C∗-algebras. Since we already know that Knc-theory of a stable
or an O∞-stable C∗-algebra agrees naturally with its topological K-theory (see [29, 4, 19]),
we conclude that KQnc-theory is naturally isomorphic to topological K-theory for such a
C∗-algebra. From the computational viewpoint for such a C∗-algebra it turns out that

noncomm. stable cohomotopy ∼= KQnc-theory ∼= Knc-theory ∼= top. K-theory.

Let us also remark that topological K-theory is Bott 2-periodic and fairly easy to compute.
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