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ABSTRACT. This paper invents the notion of torified varieties: A torification of a scheme
is a decomposition of the scheme into split tori. A torified variety is a reduced scheme
of finite type overZ that admits a torification. Toric varieties, split Chevalley schemes
and flag varieties are examples of this type of scheme. Given a torified variety whose
torification is compatible with an affine open covering, we construct a gadget in the sense
of Connes-Consani and an object in the sense of Soulé and show that both are varieties over
F1 in the corresponding notion. Since toric varieties and split Chevalley schemes satisfy
the compatibility condition, we shed new light on all examples of varieties overF1 in the
literature so far. Furthermore, we compare Connes-Consani’s geometry, Soulé’s geometry
and Deitmar’s geometry, and we discuss to what extent Chevalley groups can be realized
as group objects overF1 in the given categories.
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INTRODUCTION

A study seminar onF1, which was held at the Max Planck Institute for Mathematics
in Bonn in fall 2008, led to several discussions about the possibilities and limitations of
the various notions of geometries overF1 that were produced in recent years. This paper
subsumes the most relevant thoughts of those discussions. It was possible to establish
a good part of varieties overF1 in the notion of Souĺe, which was further developed by
Connes and Consani. While the philosopher’s stone regardingF1-geometries is not found
yet, there will be many examples and remarks disclosing problems of the recent theories
and hinting at directions one might try to go.

The idea of constructing objects over a “field with one element” goes back to Tits in
[22], where the question about the interpretation of Weyl groups as “Chevalley groups
over F1” is posed. In recent years, a number of papers ([17], [21], [4], [5], [6], [2], [3],
[18], [19], . . . ) on the topic have appeared, dealing mostly with the problem of defining a
suitable notion of algebraic geometry over such an elusive object. Several non equivalent
approaches have been tried, for instance Durov (cf. [8]) and Shai-Haran (cf. [20]) enlarged
the category of schemes to yield the spectrum ofF1 in place ofSpec Z as final object,
Deitmar mimicked scheme theory using monoids (i.e. commutative semi-groups with1)
in the place of commutative rings (cf. [4, 5, 6]), and Soulé proposed in [21] that varieties
overF1 should be functors that admit a base extension toZ.

Souĺe gives a precise realization by considering functors from the category of flat rings
of finite type overZ to the category of finite sets together with an evaluation, i.e. a natural
transformation from this functor to the functor of homomorphisms from a fixed complex
algebra to the complexification of the given ring. Soulé showed that smooth toric varieties
admit a model overF1 in his notion. This approach was further developed by Connes
and Consani in [3] by exchanging flat finite rings by finite abelian groups and doing some
further refinements. They mention that Soulé’s method of establishing smooth toric vari-
eties overF1 still works and they demonstrate this in the case of the multiplicative group
scheme, affine space and projective space. However, their focus is on Chevalley schemes.
To be precise, Connes and Consani establish split Chevalley schemes as varieties overF12 .

In the present work, we generalize methods to show that all reduced schemes of finite
type overZ that admit a decomposition by algebraic tori, dubbedtorified varieties, have
a model overF1 in both Souĺe’s and Connes-Consani’s notion–provided they admit an
open affine cover compatible with the decomposition. This class of schemes includes toric
varieties and split Chevalley schemes, which covers all examples in the literature so far.
Grassmannians and flag varieties are torified varieties as well, but in general, they lack
the extra condition of having a compatible atlas, which is necessary to define the base
extension toZ in the given notions. However, the class of torified varieties could be a
leading example for the development of new notions of geometries overF1.

Furthermore, we connect Deitmar’s viewpoint ([4]) with the previous. Namely, we
construct an embedding of Deitmar’s category of schemes overF1 that base extend to
integral schemes of finite type overZ into the category of varieties overF1. We also
compare the two notions of varieties overF1, which seem to produce similar theories
except for one remarkable difference: Chevalley groups are more likely to be a variety
over F1 after Souĺe than they are after Connes-Consani (see Remark 6.1.2). We show,
however, thatSl(2) cannot be established as a group object in either notion.

The paper is organized as follows. In section 1, we introduce the notion oftorification
of a schemeX as a finite family of immersions{ϕi : Ti ↪→ X} such that everyTi is a
split torus overZ and every geometric point ofX factorizes through exactly one of such
immersions. We consider schemes with torification together with morphisms that respect
the torifications, calledtorified morphisms. We describe the zeta function of a torified
variety overF1 and provide a list of examples of torified varieties.
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In section 2, we recall the notion of Connes-Consani’s gadgets and varieties overF1,
and show how to associate a gadgetL(X,T ) to every torified varietyX endowed with a
torificationT . We prove in Theorem 2.10 that this gadget is actually a variety providing
anF1-model forX whenever the torification is compatible with an affine open cover. In
particular, this result extends the one by Connes and Consani by realizing split Chevalley
schemes overF1 (and not only overF12).

In section 3, we recall Soulé’s approach toF1 geometry. We show in Theorem 3.11 that
the previous result (Theorem 2.10), mutatis mutandis, also holds in this case.

In section 4, we recall the notion of Deitmar’s schemes overF1, and refine the equiva-
lence between the category of toric varieties and the category of schemes overF1 that base
extend to connected integral schemes of finite type overZ.

In section 5, we compare the three aforementioned notions of geometries over the field
with one element by establishing functors between them. Deitmar’s theory can be embed-
ded into both the theory of Soulé and the theory of Connes and Consani. There are further
several ways to go from Connes-Consani’s world to Soulé’s world and back, but it is not
clear if they compare one-to-one as we discuss in section 5.3. We summarize these results
in the diagram of Theorem 5.10.

We conclude the paper with remarks showing the boundaries of Soulé’s and Connes-
Consani’s geometries, mainly the impossibility of obtaining the group operation of Cheval-
ley schemes as a morphism overF1. Further we recollect some thoughts that might even-
tually lead to new approaches toF1 geometries in future works.

Acknowledgments:The authors would like to thank all people that participated in the
F1 study seminar and attended the various discussions, in particular Peter Arndt, Pierre-
Emmanuel Chaput, Bram Mesland and Fréd́eric Paugam for providing interesting lectures
at the seminar and participating on stimulating discussions. We also thank the Max-Planck
Institut für Mathematik in Bonn for support and hospitality and for providing excellent
working conditions.

1. TORIFIED VARIETIES

1.1. The category of torified schemes.In this section, we will establish the definition of
torified schemes and show some basic properties. IfX andS are schemes overZ, we will
denote byX(S) := Hom(S,X) the set ofS–points ofX. The underlying topological
space ofX will be denoted byXtop, its structure sheaf byOX , and the stalk at a point
x ∈ Xtop byOX,x.

Definition 1.1. Given a schemeX, adecompositionof X consists of a family{ϕi : Yi →
X}i∈I of immersions of nonempty schemesYi intoX such that for every geometric point
p = Spec Ω → X there exists a uniquei ∈ I and a unique mapp → Yi factorizing
p→ X, i.e. making the following diagram commutative:

p //

&&M
M

M X.

Yi
ϕi

77pppppp

In other words, for every algebraically closed fieldΩ the map
∐
ϕi(Ω) :

∐
Yi(Ω) →

X(Ω) is a bijection. If this is the case, we will write for shortX =
◦∐
Yi. This property

implies the following result:

Lemma 1.2. LetX =
◦∐
Yi be a decomposition of the schemeX, and letS be a scheme

overZ; then the map
∐
Yi(S) → X(S) is injective. Moreover, ifS = Spec k for a field

k, it is a bijection.

Proof. The result is immediate ifS is the empty scheme, so we will assume thatS is
nonempty. Letψ1 : S → Yi andψ2 : S → Yj be twoS–points such thatϕi ◦ψi = ϕj ◦ψj ,
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i.e. the diagram
Yi ϕi

))SSSSSS

S

ψi 55llllll

ψj
((RRRRRR X

Yj
ϕj

66llllll

commutes. If we consider a geometric pointp = Spec Ω → S of S, which exists sinceS
is nonempty, we have a commutative diagram

Yi
))RRRRRR

p //

..
n l i f c a _

//

O R U X Z ] _

S

66mmmmmm

((QQQQQQ X,

Yj

66llllll

where the dashed arrows are defined by composition. Thus, we found factorizations through
Yi andYj of the morphismp→ X; by the universal property of a decomposition we obtain
that these factorizations must be equal, and hencei = j. So, topologically we have that
the mapsϕtopi ◦ ψtop1 andϕtopi ◦ ψtop2 coincide, and sinceϕi is an immersion fori = 1, 2,
we haveψtop1 = ψtop2 .

On the algebraic side, we have two equal morphisms of sheaves:

O
ϕ#
i // // OYi

ψ#
1 //

ψ#
2

// OS ,

whereϕ#
i is surjective, and thusψ#

1 = ψ#
2 . Henceforth,ψ1 = ψ2, which proves the

desired injectivity.
Assume now thatS = Spec k for some fieldk, and letΩ some algebraically closed field

containingk, then we have a mapp = Spec Ω −→ q = Spec k. Consider a pointq → X
of X(k). By the decomposition property we obtain the commutative diagram

p
))RRRRRR

||x x
x

x
q

))RRRRRR

Yi // X.

As topological spaces,ptop andqtop are homeomorphic, since they both consist of a single
point, so the above diagram factorizes, at the topological level, through a mapqtop → Y topi .

On the algebraic level, we get the corresponding diagram

Ω

k

66nnnnn

0 // K // OX,x

66lllll
// OYi,y

ccGGGGGGG
// 0,

wherex andy stand, respectively, for the images ofptop = qtop in X andYi; andK
denotes the kernel of the map of the corresponding stalksOX,x → OYi,y.

Now, sinceOYi,y = OX,x/K, the mapOYi,y → Ω factorizes throughk if and only if
the composed mapK → k is identically zero. Since the mapK → Ω coincides with the
compositionK → OX,x → OYi,y → Ω and the mapk → Ω is injective, also the map
K → k must be equal to zero, and thusOYi,y → Ω factorizes throughk:

Ω

k

77pppppp

OX,x

66nnnnnn
// OYi,y.

bbDDDDDDDDD
kkW W W W W W W

This gives us the desired element in
∐
Yi(k), proving surjectivity whenk is a field. �

Corollary 1.3. If X =
◦∐
i∈IYi is a scheme of finite type overZ, then the setI is finite.
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Proof. Let k be any finite field, then we have

#(I) ≤ #

(∐
i∈I

Yi(k)

)
= #(X(k)) <∞. �

If X =
◦∐
i∈IYi is a decomposition ofX, we will consider the subset

Io := {i ∈ I| ϕi is an open immersion}.

Lemma 1.4. LetX =
◦∐
i∈IYi. The following properties hold true:

(1) The map
∐
i∈I Y

top
i −→ Xtop is a continuous bijection.

(2) The cardinality ofIo coincides with the number of irreducible components ofX.

Proof.
(1): This follows from the universal property of the decomposition, taking into account
that every point ofXtop is the image of some geometric pointSpec Ω → X.
(2): Open immersions are in one to one correspondence with the generic points ofX, so
the result follows from (1). �

Definition 1.5. A schemeX is torified if it has a decompositionX =
◦∐
i∈ITi, where for

eachi ∈ I we haveTi isomorphic toGdi
m (as algebraic groups) fordi ∈ N. In this case we

will say thatT = {ϕi : Ti ↪→ X} is a torification of X. A torified variety is a torified

scheme that is reduced and of finite type overZ. A torificationX =
◦∐
i∈ITi is affine

if there is an affine open cover{Uj} of X such that for eachj there is a subsetIj ⊆ I

satisfying thatUj =
◦∐
i∈IjTi.

We will denote by(X,T ) the schemeX with a fixed torificationT when needed, though
often we will denote(X,T ) simply byX when there is no risk of confusion.

Definition 1.6. A torified morphismΦ : (X,T ) −→ (Y, S) between torified schemesX

andY with torificationsT = {Ti
τi
↪→ X}i∈I andS = {Sj

σj
↪→ Y }j∈J , respectively, is a

triple Φ = (ϕ, ϕ̃, {ϕi}i∈I) where

• ϕ : X → Y is a morphism of schemes,
• ϕ̃ : I → J is a set map, and
• ϕi : Ti → Sϕ̃(i) are morphisms of algebraic groups such that for alli ∈ I the

diagram

X
ϕ // Y

Ti

τi

OO

ϕi // Sϕ̃(i)

σϕ̃(i)

OO

commutes.

Thecategory of torified schemesconsists of torified schemes together with torified mor-
phisms. The categories of torified varieties and affinely torified varieties are defined as full
subcategories of the category of torified schemes.

Lemma 1.7. LetX, Y be torified schemes overZ, then the cartesian productX × Y is
also torified.

Proof. If X =
◦∐
i∈ITi andY =

◦∐
j∈JSj are torifications ofX andY , then we have that

X × Y =
◦∐

(i,j)∈I×JTi × Sj is a torification ofX × Y . �
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Lemma 1.8. If X =
◦∐
i∈IXi is a decomposition ofX into torified schemesXi, thenX is

also torified.

Proof. If for eachXi we haveXi =
◦∐
j∈JiTj , then

◦∐
j∈

‘
i∈I Ji

Tj is a torification of
X. �

1.2. Zeta functions overF1. One expects a certain zeta functionζX of a geometric object
X overF1 that actually does not depend on the particular geometry, but is the “limitq goes
to 1” of the zeta functions of the base extensionsXFq = X ⊗F1 Fq. We recall the precise
notion of a zeta function overF1 and calculate it in the case thatX ⊗F1 Z is a torified
variety.

Assume that there is a polynomialN(T ) ∈ Z[T ] such thatN(q) = #XFq (Fq) when-
everq is a prime power. This polynomial is called thecounting function ofX. Using the
formal power series

Z(q, T ) := exp

∑
r≥1

N(qr)T r/r

 ,

we define thezeta function ofX as

ζX(s) := lim
q→1

Z(q, q−s)
(q − 1)N(1)

.

We have the following result.

Theorem 1.9(Souĺe). The functionζX(s) is a rational function with integral coefficients.
Moreover, ifN(x) = a0 + a1x+ · · ·+ adx

d, then we have

ζX(s) =
d∏
i=0

(s− i)ai .

Proposition 1.10. LetX =
◦∐
Ti be a torified variety. PutI(l) := {i ∈ I| dimTi = l}

andδl := #I(l). ThenX has a counting function, which is given by

N(q) =
dimX∑
l=0

δl(q − 1)l ∈ Z[q] .

In particular, the numbersδl are independent from the chosen torification ofX.

Proof. The form of the counting function follows from#Gl
m(Fq) = (q − 1)l and from

Lemma 1.2. The independence of theδl from the torification can be seen as follows. Let
T andS be two torifications ofX, and denote byNT (q) andNS(q) the corresponding
counting functions. For every finite fieldFq we have

NT (q) = #
(∐

Ti(Fq)
)

= # (X(Fq)) = #
(∐

Sj(Fq)
)

= NS(q),

soNT (q) andNS(q) coincide in an infinite number of values, and henceforth they must be
equal as polynomials. �

With this, we can calculate the zeta function for a modelX of a torified variety overF1.
Let the numbersδl be defined as in the proposition. Then

N(q) =
dimX∑
l=0

δl (q − 1)l =
dimX∑
l=0

(
dimX∑
k=l

(−1)k−l
(
k

l

))
δl q

l ,

from where we can compute the zeta function of a torified variety by applying Theorem
1.9. It is possible to recover all examples of zeta functions in [15] by this method since all
these examples concern torified varieties as explained in the following example section.
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1.3. Examples of torified varieties.

1.3.1. Tori and the multiplicative group.If X = Gd
m is a product of multiplicative groups,

it admits the obvious torification given by the identity mapGd
m → X.

1.3.2. The affine spacesAn. The affine line admits a torificationA1 = G0
mqG1

m, obtained
by choosing any point as the image ofG0

m and identifying its complement withG1
m.

By applying Lemma 1.7, and taking into account thatGr
m × Gs

m
∼= Gr+s

m we obtain a
torification of the affine spaces by

An = G0
m q nG1

m q · · · q
(
n

d

)
Gd
m q · · · qGn

m,

where byrGd
m we mean that we getr different copies of the torusGd

m.

1.3.3. Toric varieties.As a general reference for toric varieties consider [10] or [16]. We
introduce the notation for toric varieties that is frequently used in this paper. Let∆ be a
fan, i.e. a family of cones ordered by inclusion such that the faces of a cone in∆ are in
∆ and such that the intersection of two cones in∆ is a face of each of the cones (cones
are always assumed to be embedded inRn and to be strictly convex and rational). To a
coneτ ⊂ Rn of ∆, we associate the semi-groupAτ = τ∨ ∩ (Zn)∨, whereτ∨ ⊂ (Rn)∨ is
the dual cone ofτ and(Zn)∨ is the dual lattice toZn in the standard basis ofRn. We put
Uτ = Spec Z[Aτ ]. An inclusionτ ⊂ τ ′ defines an inclusion of semi-groupsAτ ′ ⊂ Aτ
and an open immersion of schemesUτ ↪→ Uτ ′ . Then the toric varietyX associated to∆
is the direct limit of the family{Uτ}τ∈∆ relative to the immersionsUτ ↪→ Uτ ′ . In the
following, we will always consider toric varietiesX together with a fixed fan∆.

A morphism∆ → ∆′ of fans of toric varietiesX andX ′, respectively, is map̃ψ be-
tween ordered sets together with a direct system of semi-group morphismsψτ : τ → ψ̃(τ)
(with respect to inclusion of cones) whose dual morphisms restrict toψ∨τ : Aψ̃(τ) → Aτ ,
whereτ ranges through∆. Taking the direct limit over the system of scheme morphisms
Spec Z[ψ∨τ ] : Uτ → Uψ̃(τ) yields a morphismψ : X → X ′ between toric varieties. A

triple (ψ, ψ̃, {ψτ}) like this is called a toric morphism. Thecategory of toric varieties
consists of toric varieties overZ together with toric morphisms.

LetX be a toric variety with fan∆. LetA×τ be the group of invertible elements ofAτ ,
then the algebra morphism

Z[Aτ ] −→ Z[A×τ ]

a 7−→
{
a if a ∈ A×τ ,
0 if a ∈ Aτ \A×τ

defines an immersion of the torusTτ = Spec Z[A×τ ] intoUτ ⊆ X, and we obtain the well-
known decomposition ofX into tori Tτ (cf. [7, §4, Prop. 2], [10,§3.1] or [16, Proposition
2,2,14]), that in our formulation reads as follows:

Proposition 1.11. The familyT∆ = {Tτ ↪→ X}τ∈∆ is a torification ofX.

Given a toric morphism(ψ, ψ̃, {ψτ}) : (X,∆) → (X ′,∆′), we obtain a torified mor-
phism(ϕ, ϕ̃, {ϕτ}) : (X,T∆) −→ (X ′, T∆′) as follows:

• ϕ = ψ : X → X ′,
• ϕ̃ = ψ̃ : ∆ → ∆′,
• since the mapψτ : Aψ̃(τ) → Aτ preserves units, it restricts to a mapA×

ψ̃(τ)
→ A×τ ,

and therefore it induces a homomorphism of toriϕτ := Spec Z[ψτ ] : Tτ →
Tψ̃(τ) = Tϕ̃(τ).
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Remark 1.12. The triple(ϕ, ϕ̃, {ϕτ}) : (X,T∆) −→ (X ′, T∆′) is indeed a torified mor-
phism: the diagram

X
ϕ // X ′

Tτ

OO

ϕτ
// Tϕ̃(τ)

OO

commutes because

X
ψ // X ′

Uτ

OO

Spec Z[ψτ ]
// Uϕ̃(τ)

OO

does.

Since{Uτ} is an affine open cover that is compatible with the torification that we have
constructed, we have the following result.

Proposition 1.13. The torifications associated to toric varieties are affine.

1.3.4. Grassmannians and their Schubert varieties.For a couple of positive integers0 ≤
k ≤ n, theGrassmann varietyGr(k, n) = Grk(An) is defined as the variety ofk–planes
in the affine spaceAn (cf. [12, Chapter 14]).

The Grassmann varieties admit a nice decomposition inSchubert cells(cf. [13, Chapter
1.§5] and [12, Chapter 14,§6]) indexed by the set of multi-indices

Ik,n := {i = (i1, i2, . . . , ik)| 1 ≤ i1 < i2 < · · · < ik ≤ n},

partially ordered by(i1, i2, . . . , ik) ≤ (j1, j2, . . . , jk) if and only if il ≤ jl for l =
1, . . . , k. To each elementi of Ik,n we can associate theSchubert varietyXi and the
Schubert cellCi. The Schubert varieties give a stratification of the Grassmannian, with
Xi ⊆ Xj if and only if i ≤ j, we haveGr(k, n) = Xim , whereim = (n− k + 1, . . . , n).
Moreover, we have the following result (see [13, Chapter 1.§5] for details):

Theorem 1.14(Schubert decomposition). Each Schubert cellCi is an affine space of di-

mensiondimCi =
∑k
t=1(it − t), and we have the cell decomposition

Xj =
◦∐
i≤j

Ci.

As an immediate consequence, applying Lemma 1.8 and the previous example, we ob-
tain a torification for all Schubert varieties, and in particular for the Grassmann varieties.

Example 1.15. Let us illustrate this example in the particular case of the Grassmannian
Gr(2, 4). This example is of particular interest in connection with the open problem of
realizingGr(2, 4) as a variety overF1, which was posed by Soulé in [21, section 5.4]. For
the setI2,4 we get, with its partial ordering

I2,4 =

(1, 4)
))TTTTTT

(1, 2) // (1, 3)

55jjjjjj

))TTTTTT (2, 4) // (3, 4)

(2, 3)

55jjjjjj

generating the corresponding Schubert cells

C1,2
∼= A0, C1,3

∼= A1, C1,4
∼= C2,3

∼= A2, C2,4
∼= A3, C3,4

∼= A4,
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that lead to the torification

Gr(2, 4) = C1,2 q C1,3 q C1,4 q C2,3 q C2,4 q C3,4 =

= A0 q A1 q 2A2 q A3 q A4 =
= 6G0

m q 12G1
m q 11G2

m q 5G3
m qG4

m.

It is worth noting that the above torification isnot compatible with the usual affine open
cover ofGr(2, 4), since the4–dimensional torus has a proper intersection with at least one
of the affine hyper-surfaces covering the Grassmannian. This shows that in general we
cannot expect the Grassmann varieties to be affinely torified.

1.3.5. Flag varieties.Let V be a linear bundle (over a point) of rankn. For eachm–tuple
(d1, . . . , dm) of positive integers, withd1 + · · · + dm = n, a flag of type (d1, . . . , dm)
consists of an increasing sequence of linear sub-bundles

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm

such thatrk(Vj/Vj−1) = dj for all j = 1, . . . ,m. The setX(d1, . . . , dm) of all flags
of type (d1, . . . , dm) is a scheme, known as theflag varietyof type (d1, . . . , dm). For
instance, the flag varietyX(d, n− d) coincides with the GrassmannianGr(d, n).

As in the case of the Grassmann varieties, flag varieties admit a decomposition in
Schubert cells, though their description is in general more complicated. The underlying
idea to this approach is the realization of the flag varietyX(d1, . . . , dm) as the quo-
tient GLn/P (d1, . . . , dm), whereP = P (d1, . . . , dm) is the standard parabolic sub-
group ofGLn consisting of block upper-triangular invertible matrices with blocks of sizes
d1, . . . , dm. The Schubert cells and varieties are then parametrized by the coset space
Sn/(Sd1 × Sd2 × · · · × Sdm) = W/WP . Each right coset moduloWP contains a unique
representativew such that we have

w(1) < w(2) < · · · < w(d1),

w(d1 + 1) < w(d1 + 2) < · · · < w(d1 + d2)
...

w(d1 + · · ·+ dm−1 + 1) < · · · < w(d1 + · · ·+ dm).

This defines the setWP of minimal representatives ofW/WP . The Schubert cells in
GLn/P are the orbitsCwP := (BwP )/P , whereB denotes again the Borel group con-
sisting of all the upper triangular matrices, and the Schubert varietiesXwP are defined
as the closures of the Schubert cells. A detailed description of this decomposition can be
found in [11, Section 10.2].

Exactly as it happened with the Grassmannians, Lemma 1.8 applied to the Schubert cell
decomposition provides a torification of the flag varieties and their Schubert subvarieties.

Example 1.16(Complete flag varieties). Consider the flag varietyX = X(1, . . . , 1), that
can be identified with the quotientGLn/B. In this case,P (1, . . . , 1) = B the group of
upper-triangular matrices, and we haveWP = {e} the trivial group, and thus Schubert cells
are parametrized by elements of the Weyl groupW = Sn. Associated to each permutation
w ∈ Sn we construct the complete flag

Fw := 0 ⊂ 〈ew(1)〉 ⊂ · · · ⊂ 〈ew(1), . . . , ew(k)〉 ⊂ · · · .

Schubert cells are given byCw = BFw, we can explicitly compute the dimension as
dimCw = l(w), the length of the permutationw, and we have the decomposition

X(1, . . . , 1) =
◦∐
w∈Sn

Al(w),
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that we can turn into a torification in the same way we did for the GrassmannianGr(2, 4).
As it happened for the Grassmann varieties, in general it is not clear whether the above
torification is affine.

1.3.6. Chevalley schemes.We establish an affine torification for split Chevalley schemes.
As general reference, see [9, Expose XXI and XXII] or the survey in [3, Section 4].

Let G be a split Chevalley scheme overZ with maximal split torusT . Let N be the
normalizer ofT inG andW = N(C)/T (C) be the Weyl group. LetB be a Borel subgroup
ofG that containsT and has unipotent radicalU . LetΦ be the set of roots and letΦ+ ⊂ Φ
be the set of positive roots corresponding toB. Let Xr denote the additive1-parameter
subgroup ofG defined byr ∈ Φ. PutΦw = {r ∈ Φ+ | w(r) < 0} and letUw be the
subgroup ofU that is generated by{Xr}r∈Φw . Choose a set of representatives{nw}w∈W
for W in N(Z). We restate the Bruhat decomposition ofG in the language of the present
paper.

Theorem 1.17(Bruhat decomposition).
The family of inclusions of subschemes{UwnwTU ↪→ G}w∈W is a decomposition ofG.

We refer to SGA3 ([9, Expose XXII, Thm. 5.7.4 and Rem. 5.7.5]) for a proof.

Proposition 1.18. LetG be a split Chevalley scheme. Then there exists an affine torifica-
tion S ofG.

Proof. Let r be the dimension ofT , let s be the dimension ofU and for everyw ∈ W ,
let sw be the dimension ofUw, which equals the cardinality ofΦw. Then, as a scheme,
UwnwTU is isomorphic toAsw × Gr

m × As for everyw ∈ W . Since affine space and
the multiplicative group scheme are torified, Lemma 1.7 implies thatUwnwTU is torified,
and Theorem 1.17 together with Lemma 1.8 implies thatG is torified. SinceG is an affine
scheme,G is affinely torified. �

Example 1.19. Let G = Sl(2). Let T be the diagonal torus,N its normalizer inG and
B the subgroup of upper triangular matrices. Lete =

(
1 0
0 1

)
andw =

(
0 1
−1 0

)
, then

{e, w} ⊂ N(Z) represents the Weyl groupW . In the notation of the proof of Theorem
1.18, we haver = s = se = 1 andsw = 0, and thus we have decompositions

N = Gm q Gm ⊂ G = Gm × A2 q Gm × A = 2Gm q 3G2
m q G3

m .

2. CONNES AND CONSANI’ S GEOMETRY

2.1. CC–gadgets and CC–varieties.Let us start this section by recalling some defini-
tions from [3].

Definition 2.1. A (Connes-Consani) gadgetover F1 (CC–gadget for short) is a triple
X = (X,XC, evX) where

• X : Fab → Sets is a functor from the category of finite abelian groups to the
category of sets,

• XC is a variety overC and
• evX : X =⇒ Hom(Spec C[−], XC) = XC(C[−]) is a natural transformation.

We say that a gadgetX is finite if X(D) is finite for all abelian groupsD, and that it is
gradedif X =

∐
l≥0X

(l) is a graded functor.
A morphism of CC–gadgetsϕ : (X,XC, evX) −→ (Y , YC, evY ) consists of a pair

(ϕ,ϕC) where

• ϕ : X =⇒ Y is a natural transformation and
• ϕC : XC −→ YC is a morphism overC
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such that for all finite abelian groupsD the diagram

X(D)
ϕ(D)

//

evX(D)

��

Y (D)

evY (D)

��
XC(C[D])

ϕC(C[D])
// YC(C[D])

commutes.
A morphism of gadgetsϕ is animmersionif for every finite abelian groupD the map

ϕ(D) is injective, andϕC is an immersion of schemes.

We will say that a CC–gadget is affine, projective, irreducible, et-cetera, ifXC is so.

Definition 2.2. Given a reduced schemeX of finite type overZ, we define theCC–gadget
G(X) associated toX by G(X) := (X,XC, evX), where

• X(D) := Hom(Spec Z[D], X) = X(Z[D]) for everyD,
• XC := X ⊗Z C and
• evX : X(Z[−]) =⇒ XC(C[−]) is given by extension of scalars.

A morphism of schemesϕ : X → Y induces a morphism of CC–gadgetsG(ϕ) : G(X) →
G(Y ) defined byG(ϕ) := (ϕ,ϕC), where

• ϕ = ϕ∗ is the pullback byϕ, i.e. for allf : Spec Z[D] → X we setϕ(f) := ϕ◦f .
• ϕC := ϕ⊗Z C is the complexification ofϕ.

A finite graded CC–gadgetX = (X,XC, evX) is anaffine variety overF1 in the sense
of Connes-Consani if there is a reduced affine schemeXZ of finite type overZ and an
immersioni : X → G(XZ) such that for all affine reduced schemesV of finite type
over Z and all morphisms of CC–gadgetsψ : X → G(V ), there is a unique morphism
ϕ : XZ → V of schemes such that the diagram

X
i //

ψ ""EE
EE

EE
EE

E G(XZ)

G(ϕ)

���
�
�

G(V )

commutes. IfX = (X,XC, evX) is a CC–variety overF1, we say thatXZ is theextension
of scalars ofX to Z, and we writeXZ =: X ⊗F1 Z. By Yoneda’s lemma,XZ is unique up
to unique isomorphism.

Note that we have substituted “variety overZ” of the original definition in [3] by “re-
duced scheme of finite type overZ”. It is however not an issue to abandon the restraint of
reducibility (in accordance with Soulé’s convention), also cf. Remark 5.8.

If we have a morphism of CC–gadgetsϕ = (ϕ,ϕC) : X → Y , andX andY are
varieties overF1, then the universal property ofY yields an immersioniY : Y → G(YZ).
Hence, we get a morphismiY ◦ ϕ : X → G(YZ). By the universal property ofX, we
obtain a morphismϕZ : XZ → YZ of schemes. We will writeϕZ =: ϕ⊗F1 Z, and say that
ϕZ is theextension of scalars ofϕ to Z.

We shall restrict in this work to the class of varieties overF1 whose functor represents
the counting function of the base extension toZ.

Definition 2.3. An affine varietyX = (X,XC, evX) over F1 is called anaffine CC-
variety if for every prime powerq and every abelian groupD of cardinalityq− 1, we have
#X(D) = #XZ(Fq).

We transfer Connes and Consani’s definition of a general variety overF1 (cf. [3, para.
3.4]) to this restricted class.
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Definition 2.4. Let X = (X,XC, evX) andU = (U,UC, evU ) be finite graded CC–
gadgets overF1. A graded morphismis a morphism(ϕ,ϕC) : U → X such thatϕ(D)
restricts to a mapϕ(l)(D) : U (l)(D) → X(l)(D) for everyl ≥ 0 and every finite abelian
groupD. A morphism(ϕ,ϕC) : U → X of finite graded CC–gadgets is called anopen
immersionif it is a graded immersion such thatϕC : UC → XC is an open immersion and
if

ϕ(U(D)) = {x ∈ X(D)| Im(evX(x)) ⊆ UC} .
If such an open immersion is fixed,U is called anopen CC–subgadgetof X.

An open affine cover ofX is a family{Ui}i∈I of open affine CC–subgadgets such that⋃
i∈I Ui(D) = X(D) and{Ui,C} is an open affine cover ofXC. A CC–varietyis a finite

graded CC–gadgetX that has an open affine cover by affine CC–varieties.
If U is an open CC–subgadget of a CC–varietyX that is a CC–variety itself, we callU

anopen CC–subvarietyof X. Let {Uj} be the family of all open CC–subvarieties ofX.
Theextension of scalars(or thebase extension) of X from F1 to Z is the direct limit over
the family{Uj,Z} relative to all canonical inclusions, and it is denoted byXZ = X ⊗F1 Z.

Note that the intersection of two open CC–subvarieties of a given CC–varietyX is again
a CC–subvariety. This implies that the functor ofX represents the counting function of
XZ. Further, we have a base extension toZ for morphisms between CC–varieties. More
precisely, Lemma 3.5 holds, mutatis mutandis, for CC–varieties.

2.2. Affinely torified varieties as CC–varieties. Let (X,T ) be a torified variety. We
define a CC–gadgetL(X,T ) := (X,XC, evX) overF1 consisting of the following data:

• The graded functorX = {X(l)}l≥0 defined by

X(l) : Fab −→ Sets

D 7−→
∐
i∈I(l)

Hom(Ai, D)

for everyl ≥ 0, whereI(l) = {i ∈ T | dimTi = l} andAi := Homalg−gr(Ti,Gm).
• The complex varietyXC := X ⊗Z C.
• For everyi ∈ I, the evaluation

evX(D) : Hom(Ai, D) ↪→ Hom(C[Ai],C[D]) ⊂ Hom(Spec C[D], XC).

The following is a well known result in the theory of algebraic groups (cf. [1, section
1.5] or [23, section 1.4]).

Proposition 2.5. Let G = SpecR and T = SpecS be affine algebraic groups. The
coordinate ringsR andS are Hopf algebras, and we have the equality

Homalg−gr(G,T ) = HomHopf (S,R).

In our particular situation ifR = Z[D] andS = Z[A] are group rings for some abelian
groupsA andD, with Hopf algebra structure given as above, since group-like elements in
the Hopf algebraZ[A] are precisely the elements ofA, we have

HomHopf (Z[A],Z[D]) = Hom(A,D),

and we obtain the following consequence:

Corollary 2.6. LetA be a free abelian group of rankd, Z[A] its group ring with the usual
Hopf algebra structure, andT = Spec Z[A] the torus ofA. Then the homomorphism

A −→ Homalg−gr(T,Gm)

mappinga ∈ A to the morphismϕa : T → Gm = Spec Z[t, t−1] defined byϕ#
a (t) = a,

is an isomorphism of algebraic groups.
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Using this, the CC–gadgetL(X,T ) := (X,XC, evX) can also be defined in an equiva-
lent way by

• X(D) :=
∐
i∈I Homalg−gr(G,Ti), whereG = Spec Z[D],

• XC := X ⊗Z C,
• for everyi ∈ I,

evX(D) : Hom(G,Ti) ↪→ Hom(G⊗Z C, Ti ⊗Z C) ⊆ Hom(G⊗Z C, XC).

Furthermore, it follows that for everyi ∈ I, we haveAi ' ZdimTi . Fixing these
isomorphisms yields

X(D) =
∐
i∈I

Hom(Ai, D) =
∐
i∈I

DdimTi .

Remark 2.7. We recover Connes-Consani’s construction for the CC–gadgets base extend-
ing to the multiplicative groupGm and affine spaceAn by the use of the obvious torifi-
cationGm = Gm for the multiplicative group andA1 = {0} q

(
A1 \ {0}

)
for the affine

line, respectively, the product torification for higher dimensional affine space (cf. para-
graphs 1.3.1 and 1.3.2). Indeed, letX be the multiplicative group or affine space andTi =
Spec Z[Ai] be a torus in the torification as described above. Letg ∈ Hom(Ai, D), then
evX(D)(g) ∈ Hom(Spec C[D], XC) is determined byψ : (Spec C[D]) (C) → XC(C).
For a character

χ ∈ Hom(D,C×) ' Hom(Spec C,Spec C[D]) = (Spec C[D])(C) ,

we haveψ(χ) := (τi ⊗Z C) ((χ(gj)j=1,...,dimTi) as in Connes-Consani’s description.

Proposition 2.8. LetΦ = (ϕ, ϕ̃, {ϕi}) : (X,T ) → (X ′, T ′) be a torified morphism. The
mappingL(Φ) : L(X,T ) → L(X ′, T ′) given byL(Φ) = (ϕ,ϕC), where

• for all i ∈ I and every finite abelian groupD, generating a group schemeG =
Spec Z[D], we set

ϕ(D) : Homalg−gr(G,Ti) −→ Homalg−gr(G,T ′ϕ̃(i))

ψ 7−→ ϕi ◦ ψ,

• ϕC := ϕ⊗Z C : XC → X ′
C,

is a morphism of gadgets

Proof. The pair(ϕ,ϕC) is indeed a morphism of CC–gadgets: the diagram

Hom(G,Ti)
ϕ(D)

//

evX(D)

��

Hom(G,T ′ϕ̃(i))

evX′ (D)

��
Hom(GC, XC)

ϕC
// Hom(GC, X

′
C)

commutes since

X // X ′

Ti

OO

// T ′ϕ̃(i)

OO

commutes. �

Remark 2.9.

(1) The CC–gadgetL(X,T ) := (X,XC, evX) is finite and graded.
(2) L(X,T ) depends in a strong way on the torification, as explained in the following.
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If S is a second torification ofX andL(X,S) = (X ′, X ′
C, ev

′
X), we know by Propo-

sition 1.10 that there is a bijection betweenI andI ′ that respects the grading, so we can
assumeI = I ′. It is also clear thatX ′

C = XC. An isomorphism of gadgetsϕ : L(X,S) →
L(X,T ) consists of a pair(ϕ,ϕC) whereϕ : X ′ ⇒ X is a natural transformation and
ϕC : XC → XC is a morphism of complex varieties such that for all finite abelian groups
D the following diagram commutes:

(2.1) X ′(D) =
∐
i∈I D

dimSi
ϕ(D)

//

ev′X(D)

��

∐
i∈I D

dimTi = X(D)

evX(D)

��
Hom(Spec(C[D]), XC)

ϕC(C[D]) // Hom(Spec(C[D]), XC).

The morphismϕ can only be an isomorphism ifX ′(D) → X(D) is a bijection for
every finite abelian groupD. In particular, considering the trivial groupD = {e} yields a
bijection

ϕ({e}) :
∐
i∈I
{e}dimSi −→

∐
i∈I
{e}dimTi ,

which is merely a bijectionψ : I → I. The trivial group homomorphismD → {e}
induces, by the naturality ofϕ, the commutative diagram

X ′(D)
ϕ(D)

//

��

X(D)

��
X ′({e}) ∼= I

ψ // I ∼= X({e})

and a cardinality argument shows thatψ must respect the grading and thatϕ(D) maps
DdimTi intoDdimSψ(i) . Consequently, commutativity of (2.1) implies that there are maps
Ti(C) → Sψ(i)(C) such that the diagrams

Ti(C)

τi

��

// Sψ(i)(C)

σψ(i)

��
XC(C)

ϕC // XC(C)

commute for alli.
For instance,

•
_ _ _ _�
�
�
�

�
�
�
�_ _ _ _

= A2 =

•
_ _ _ _�
�
�
�

�
�
�
�_ _ _ _

are two torifications of the affine planeA2 that give rise to CC–gadgets that by the above
reasoning cannot be isomorphic. This illustrates (2).

Theorem 2.10. Given an affinely torified variety(X,T ), the corresponding CC–gadget
L(X,T ) = (X,XC, evX) is a CC–variety overF1 such thatX ⊗F1 Z ∼= X. More
precisely, the base extension functor− ⊗F1 Z is a left inverse toL as a functor from the
category of affinely torified varieties to the category of CC–varieties.

Proof. Start assuming thatX is affine. LetG(X) be the gadget defined byX as in [3,
Example 2.2.1], and define the immersion

i : L(X,T ) −→ G(X)

as follows:
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(1) For every finite abelian groupD, the map

i(D) : X(D) =
∐
i∈I

DdimTi −→ Hom(Spec Z[D], X)

is defined in the same way as the evaluation mapevX , using the fact that this map
is obtained by extension of a scalars. In other words, we have the commutative
diagram

(2.2) X
evX //

i **UUUUUUUUU Hom(Spec C[−], XC).

Hom(Spec Z[−], X)
−⊗ZC

22eeeeeeee

It is clear thati(D) is injective for everyD.
(2) The morphism of varietiesiC : XC → XC is the identity.
(3) By the commutativity of (2.2), the diagrams

X(D)
i(D) //

evX

��

Hom(Spec Z(D], X)

−⊗ZC
��

Hom(Spec C[D], XC)
Id

// Hom(Spec C[D], XC)

commute for every finite abelian groupD.

To verify the universal property, letV be an affine reduced scheme of finite type overZ,
and (ϕ,ϕC) : L(X,T ) → G(V ) a morphism of gadgets. We need to find a morphism
ϕ : X → V of schemes such that the diagram

L(X,T ) i //

(ϕ,ϕC) $$IIIIIIIII
G(X)

G(ϕ)

��
G(V )

commutes. SinceϕC : XC → VC = V ⊗Z C is already given, it suffices to prove that there
is a morphismϕ : X → V such thatϕC = ϕ ⊗Z C, or in other words: we have to show
thatϕC is already defined overZ.

The mapϕC is defined overZ if ϕC|Y is defined overZ for every irreducible component
Y of X. To each irreducible component ofX corresponds a unique open torusTi ⊆ Y ,
which is the torus that contains the generic point ofY (see Lemma 1.4, (2)). SinceTi =
GdimTi
m is a CC–variety overF1 (cf. [3, Sect. 3.1]), the mapϕC|Ti is defined overZ,

and thusϕC is a rational function withϕ|Y : Y → V defined overZ. Consequently,

ϕ : X //___ V is a rational function defined overZ.
In order to show thatϕ is indeed a morphism, we have to show that for all affine open

Z ⊆ X andU ⊆ V such thatϕC : ZC → UC, and for allh ∈ OU (U), we have
ϕ#(h) ∈ OZ(Z).

We know thatϕ#(h) ∈ OZ
(
Z ∩

(⋃
i∈Io Ti

))
, whereIo = {i ∈ I| Ti is open inX}.

If we denote byIcl := I \ Io, there is someδ ∈ OY (Y ) such thatZ ∩
(⋃

i∈Icl Ti
)

is
contained in the vanishing set ofδ, and thusϕ#(h) ∈ OZ(Z)[δ−1].

But we also know thatϕ#
C (h) ∈ OZC(ZC) = OZ(Z)⊗Z C. Since

OZ(Z)[δ−1] ∩ (OZ(Z)⊗Z C) = OZ(Z),

where we can consider all sets as subsets of the function fieldF (ZC), we obtainϕ#(h) ∈
OZ(Z), proving the desired result. Note that Proposition 1.10 implies thatX represents
the counting function ofX.

For the general case, let{Ui} be the collection of all affine open subschemes ofX such
thatT restricts to a torificationTi of Ui. ThenXi = L(Ui, Ti) is an affine CC–variety, and
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by the definition of a general CC–variety,X is a CC–variety. Furthermore,{Xi} is the
family of all affine open subschemes ofL(X,T ), thusL(X,T )Z is defined as the direct
limit over the family of theXi,Z ' Ui, which is nothing else thanX itself.

Concerning functoriality, it is clear that for all torified morphismsf : (X,T ) →
(X ′, T ′) between torified varieties, the diagram

X
f //

∼
��

X ′

∼
��

L(X,T )Z
L(f) // L(X ′, T ′)Z

commutes. This establishes− ⊗F1 Z as a left inverse ofL restricted to affinely torified
varieties. �

Remark 2.11. In the proof of this theorem, we made only use of the highest degree term
X(dimX) of the functorX = {X(l)} in the proof thatGdimX

m is an affine CC-variety.
This has the following consequence: LetX be a reduced scheme of finite type overZ with
an open affine cover{Ui} and with an open subschemeT that is isomorphic toGdimX

m

such thatT ⊂ Ui for all i. DefineX(D) = Y i(D) = DdimX , andXC = X ⊗Z C and
Yi,C = Yi ⊗Z C for all i. Define the evaluationsevX andevi in the same way as forL.
Then the same proof as above shows that(X,XC, evX) is a variety overF1 (in the sense
of Connes and Consani, cf. [3, section 3.4]) covered by the affine varieties(Y i, Yi,C, evi)
overF1.

3. SOULÉ’ S GEOMETRY.

3.1. S–objects and S–varieties.In this section we recall some notions ofF1–geometry
introduced by Soulé in [21], reformulated as in [3, Section 2.2].

Definition 3.1. Let R the category of commutative rings which are finite and flat asZ–
modules. A(Souĺe) gadget(S–gadget for short) overF1 is a tripleX = (X,AX , eX)
consisting of

• a functorX : R → Sets,
• a complex algebraAX ,
• a natural transformationeX : X =⇒ Hom(AX ,−⊗Z C).

An S–gadgetX is finite if for all R ∈ R the setX(R) is finite. A morphismϕ : X → Y
of S–gadgets is a couple(ϕ,ϕ∗), whereϕ : X ⇒ Y is a natural transformation and
ϕ∗ : AY → AX is morphism of algebras such that

X(R)
ϕ(R)

//

eX(R)

��

Y (R)

eY (R)

��
Hom(AX , R⊗Z C)

ϕ∗(R⊗ZC) // Hom(AY , R⊗Z C)

commutes for allR ∈ R. If ϕ∗ is injective andϕ(R) is injective for allR ∈ R, we say
thatϕ is animmersion.

We can associate a gadgetT (V ) = (V ,OVC(VC), eV ) to any scheme of finite typeV
over Z, whereV (R) := Hom(SpecR, V ) is the functor of points,OVC(VC) the algebra
of global sections of the complexification ofV , andeV is the extension of scalars toC.
For a morphismf : U → V , we defineT (f) : T (U) → T (V ) as the pair(f, f#

C ) where

f(R) : U(R) → V (R) is the induced morphism on sets of points andf#
C : AV → AU is

the complexification of the morphism between global sections. It is immediate thatT (F )
is a morphism. ThusT is a functor from schemes of finite type overZ to S–gadgets.
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Definition 3.2. An affine (Souĺe) variety overF1 (affine S–variety for short) is a finite
S–gadgetX such that there is an affine schemeXZ of finite type overZ and an immersion
of gadgetsiX : X → T (XZ) satisfying the following universal property: For every affine
schemeV of finite type overZ and every morphism of S–gadgetsϕ : X → T (V ) there is
a unique morphism of schemesϕZ : XZ → V such thatϕ = T (ϕZ) ◦ iX .

We define the category of affine S–varieties as the full subcategory of S–gadgets whose
objects are affine S–varieties. The universal property defines the base extension functor
from affine S–varieties to affine schemes overZ. Namely, it sendsX toXZ and a morphism
ϕ : X → Y to (iY ◦ ϕ)Z : XZ → YZ (cf. Lemma 3.5 below).

By [21, Proposition 2], the functorR 7→ T (Spec(R)) is a fully faithful embedding of
the categoryRop into the category of affine S–varieties.

Definition 3.3. An (Souĺe) object overF1 (S–object) is a tripleX = (X,AX , eX) con-

sisting of

• acontravariantfunctorX : {Affine S–varieties} → Sets,

• a complex algebraAX ,
• a natural transformationeX : X =⇒ Hom(AX ,A(−)).

An S–object isfinite if X(T (SpecR)) is finite for allR ∈ R. A morphism of objects

ϕ : X → Y is given by a natural transformationϕ : X ⇒ Y and a morphism of algebras

ϕ∗ : AY → AX such that

X(V )
ϕ(V )

//

eX(V )

��

Y (V )

eY (V )

��
Hom(AX ,AV )

ϕ∗(V⊗ZC) // Hom(AY ,AV )

commutes for allV ∈ A. If ϕ∗ andϕ(V ) are injective for allV ∈ A, then we say thatϕ

is animmersion of objects.

We can associate an objectOb(S) = (S,OSC(SC)) to any schemeS of finite type over

Z via S(V ) := Hom(VZ, S) and evaluationeX(x) defined by the composition

OSC(SC) x∗ // OVC(VC) i∗ // AV .

Definition 3.4. A (Souĺe) variety overF1 (S–variety) is a finite objectX for which there
exists a schemeXZ of finite type overZ and an immersioni : X → Ob(XZ) such that
for every schemeV of finite type overZ and every morphism of objectsϕ : X → Ob(V ),
there is a unique morphism of schemesϕZ : XZ → Ob(V ) such thatϕ = Ob(ϕZ) ◦ i.

We define the category of S–varieties as the full subcategory of S–objects whose objects
are S–varieties. An S–gadget can be considered as an S–object in the following way. If
X = (X,AX , eX) is an S–gadget, then the associated S–object is(X,AX , e′X), where

for an affine S–variety A,
X(A) = Hom(A,X)

ande′X sendsϕ = (ϕ,ϕ∗) ∈ X(A) to ϕ∗ : AX → AA. This defines a fully faithful func-

tor from S–gadgets to S–objects. The essential image of the category of affine S–varieties
is the full subcategory of S–varieties whose objects base extend to an affine scheme over
Z (cf. [21, section 4.2, Prop. 3].

An immediate observation following from the definition of an S–variety is the follow-
ing.



18 JAVIER LÓPEZ PẼNA AND OLIVER LORSCHEID

Lemma 3.5. LetX be an S–variety andV a scheme of finite type overZ.

(1) The mapϕ 7→ ϕZ given by the universal property ofX defines a bijection

Hom(X,Ob(V )) −→ Hom(XZ, V ) .

(2) If ι : Y ↪→ Ob(V ) is an immersion of S–objects, thenϕ 7→ (ι ◦ ϕ)Z defines an
embedding

Hom(X,Y ) −→ Hom(XZ, V ) .

In particular, ifX andY are both S–varieties, thenHom(X,Y ) ↪→ Hom(XZ, YZ).

3.2. Smooth toric varieties as S–varieties.Souĺe describes in [21, section 5.1] an S–
objectS(X) associated to a toric varietyX. Note that this association works for arbitrary
toric varieties, though Soulé proves only for smooth toric varietiesX thatS(X) is an S–
variety. Further note that we are working with an different complex algebra than Soulé
does, but that results transfer by [21, Prop. 4]. Given a toric varietyX with fan ∆, we
define the S–objectS(X) in two steps.

In the first step, we define for every coneτ ∈ ∆ the S–gadgetXτ = (Xτ ,AXτ , eXτ )
as follows. LetAτ = τ∨ ∩ (Zn)∨ be as in paragraph 1.3.3. Letµ(R) be the roots of unity
of the ringR. For everyR ∈ R, putXτ (R) = Hom(Aτ , µ(R)0), the set of semi-group
homomorphisms fromAτ to the multiplicative semi-groupµ(R)0 = {0} ∪ µ(R). Put
AXτ = C[Aτ ] and let

eXτ (R) : Xτ (R) = Hom(Aτ , µ(R)0) −→ Hom(C[Aτ ], R⊗Z C)

be the natural map.
ForUτ = Spec Z[Aτ ] ⊂ X, we have a canonical morphism of S–gadgetsιτ : Xτ ↪→

T (Uτ ), which is an immersion since the complex algebras are the same and since for every
R ∈ R, we have

Xτ (R) = Hom(Aτ , µ(R)0) ⊂ Hom(Z[Aτ ], R) = Uτ (R) .

Consequently, the universal property of an affine S–varietyV with immersionιV : V →
T (VZ) implies that given a morphismϕ : V → Xτ of S–gadgets there is a unique mor-
phismϕZ such thatιτ ◦ ϕ = T (ϕZ) ◦ ιV . By Lemma 3.5, we obtain inclusions

Hom(V,Xτ ) ⊂ Hom(VZ, Uτ ) ⊂ Hom(VZ, X) .

In the second step, we define the S–objectS(X) = (X,AX , eX) as follows. For every

affine S–varietyV , put

X(V ) =
⋃
τ∈∆

Hom(V,Xτ ),

where the union is taken inHom(VZ, X). PutAX = OXC(XC), whereXC = X ⊗Z C,
and leteX(V ) : X(V ) ⊂ Hom(VZ, X) → Hom(AX ,AV ) be the natural map.

In a natural way,S extends to a functor from toric varieties to S–objects. Given a
toric morphismf : X → X ′ that is induced by a morphism of conesδ : ∆ → ∆′ (see
paragraph 1.3.3), then following the constructions of the first step yields morphisms of S–
gadgetsfτ : Xτ → X ′

δ(τ) for everyτ ∈ ∆. In the second step, taking the union over all
conesτ ∈ ∆ defines a morphismS(f) : S(X) → S(X ′).

As a consequence of [21, Thm. 1(i)] and [21, Prop. 4], we obtain the following result.

Theorem 3.6(Souĺe). LetX be a smooth toric variety. Then the S–objectS(X) is an
S–variety such thatX ' S(X)⊗F1 Z.

Remark 3.7. In particular, [21, Prop. 3] implies that the S–gadgetsXτ are affine S–
varieties withUτ ' Xτ ⊗F1 Z for all τ ∈ ∆,
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3.3. Affinely torified varieties as S–varieties. In this section, we define a functorS∼
from the category of affinely torified varieties to the category of S–objects, prove that
S∼ extendsS, which allows us to drop the superscript “∼”, and show that Soulé’s result
(Theorem 3.6) extends to this class of S–objects.

Let X be torified variety with an affine torificationT = {Ti ↪→ X}i∈I . PutAi =
Homalg−gr(Ti,Gm) for i ∈ I. Let {Uj}j∈J be themaximal torified atlas, i.e. the family

of all affine open subschemesUj of X such thatUj =
◦∐
i∈IjTi for a subsetIj of I. We

define an S–objectS∼(X,T ) in two steps.
In the first step, we define an S–gadgetX∼

j = (X∼
j ,A∼j , e∼j ) for everyj ∈ J as follows.

ForR ∈ R, putX∼
j (R) =

∐
i∈Ij Hom(Ai, µ(R)). PutA∼j = OUj,C(Uj,C) and let

e∼j (R) :
∐
j∈IJ

Hom(Ai, µ(R)) −→
∐
j∈IJ

Hom(C[Ai], R⊗ C) ↪→ Hom(A∼j , R⊗ C) ,

be the composition of the natural mapsHom(Ai, µ(R)) → Hom(C[Ai], R ⊗ C) with the
inclusion induced by the restriction maps

A∼j = OUj,C(Uj,C) −→ OUj,C(Ti,C) = C[Ai] .

For everyi ∈ I, there is a canonical morphism of S–gadgetsιj : X∼
j ↪→ T (Uj), which

is an immersion since the complex algebras are the same and since for everyR ∈ R, we
have

X∼
j (R) = Hom(Aj , µ(R)) ⊂ Hom(Z[Aj ], R) = U j(R) .

Consequently, we obtain inclusions

Hom(V,X∼
j ) ⊂ Hom(VZ, Uj) ⊂ Hom(VZ, X)

for every affine S–variety (cf. Lemma 3.5).
In the second step, we define the S–objectS∼(X,T ) = (X,AX , eX) as follows. For

every affine S–varietyV , put

X(V ) =
⋃
j∈J

Hom(V,X∼
j ) ,

where the union is taken inHom(VZ, X). PutAX = OXC(XC), and let

eX(V ) : X(V ) ⊂ Hom(VZ, X) → Hom(AX ,AV )

be the natural map.
Since a torified morphismf : X → X ′ maps the opens of the maximal torified atlas of

X to opens of the maximal torified atlas ofX ′, we can associate to every torified morphism
a morphism of S–objects by following through the construction ofS∼. This definesS∼ as
a functor from the category of affinely torified varieties to the category of S–objects.

Remark 3.8. A discussion similar to the one in Remark 2.9 shows that different affine
torifications of the same torified varietyX can lead to non-isomorphic S–objects. The two
torifications ofA2 given in Remark 2.9 provide an example.

We show thatS∼ extends indeed Soulé’s functorS. LetX be a toric variety with fan∆.
Let T∆ be the torification ofX as defined in section 1.3.3. We putS∼(X) = S∼(X,T∆).

Lemma 3.9. For everyτ ∈ ∆, there are isomorphisms

∐
σ⊂τ Hom(A×σ , µ(R))

α(R) // Hom(Aτ , µ(R)0)
β(R)

oo

that are functorial inR ∈ R.
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Proof. We construct the mapsα = α(R) andβ = β(R) as follows. Letϕ : A×σ → µ(R)
be an element ofHom(A×σ , µ(R)). SinceAτ ⊂ Aσ, we can defineψ = α(ϕ) by

ψ : Aτ −→ µ(R)0 .

a 7−→
{
ϕ(a) if a ∈ A×σ ∩Aτ
0 otherwise

Let ψ : Aτ → µ(R)0 be an element ofHom(Aτ , µ(R)0). We claim that there is a
smallest cone forψ, i.e. a smallest subconeσ of τ such thatψ extends to a morphism
ψ′ : Aσ → µ(R)0 of semi-groups. Indeed, assume thatψ extends toψ1 : Aτ1 → µ(R)0
andψ2 : Aτ2 → µ(R)0 for two conesτ1, τ2 ⊂ τ . Thenψ extends also to a morphism
from the semi-group generated byAτ1 andAτ2 . But this semi-group is nothing else than
Aτ1∩τ2 . This proves the claim.

If σ is the smallest cone forψ, then defineϕ = β(ψ) as the restriction ofψ′ : Aσ →
µ(R)0 toA×σ .

We show thatα andβ are mutually inverse. Letϕ : A×σ → µ(R) be an element of
Hom(A×σ , µ(R)) andψ = α(ϕ) : Aτ → µ(R)0. Thenσ is the smallest cone forψ since
for everyσ′ ( σ, the larger semi-groupAσ′ is still generated byAσ and consequently
A×σ ( A×σ′ , but we know that(ψ#

Z )−1(µ(B)) = A×σ . Thusβ(ψ) equalsϕ by definition of
ψ.

Let converselyψ : Aτ → µ(R)0 be an element ofHom(Aτ , µ(R)0) andϕ = β(ψ) ∈
Hom(A×σ , µ(R)), whereσ is the smallest cone forψ. It is clear by definition thatα(ϕ)
equalsψ restricted toA×σ ∩ Aτ . We have to show thatψ(Aσ \ A×σ ) = {0}, where we
extendedψ to ψ : Aσ → µ(R)0. If there is ana ∈ Aσ \ A×σ such thatψ#

Z (a) 6= 0, i.e.
ψ#

Z (a) ∈ µ(B), we derive a contradiction to the minimality ofσ as follows.
Choose a basis(λi)i∈N of Rn, whereN = {1, . . . , n} andn is the dimension ofX,

such thatσ = 〈λiR≥0〉i∈S for someS ⊂ N and 〈λiR〉i∈N\S is orthogonal toσ (here
“〈−〉” denotes the generated semi-group inRn). Let (λ∗i )i∈N be the dual basis of(λi)i∈N ,
thenσ∨ = 〈liR≥0〉i∈S + 〈liR〉i∈N\S . The set{σ′ ∈ ∆ | σ′ ⊂ σ} is the set of cones of the
formσJ = 〈λiR≥0〉i∈J , whereJ is a subset ofS. For everyi ∈ N , defineli as the smallest
multiple ofλ∗i such thatli ∈ Aσ. Thenσ∨J = 〈liR≥0〉i∈J + 〈liR〉i∈N\J for everyJ ⊂ S,
and the semi-groupLJ = 〈li〉i∈J + 〈liZ〉i∈N\J is of finite index inAσJ . This implies that
for the chosena ∈ Aσ \ A×σ , a positive multiplem · a is in LS , i.e.m · a =

∑
i∈S cili

for certain non-negative integersci. Since we assume thatψ#
Z (a) ∈ µ(B), we have that∑

i∈S ciψ
#
Z (li) = ψ#

Z (m·a) = ψ#
Z (a)m 6= 0 and thus alreadyψ#

Z (li) 6= 0 for somei ∈ S.

PutJ = S\{i}. Thenψ#
Z can be extended to a semi-group morphismψ̃#

Z : AσJ → µ(B)0,
which yields the desired contradiction to the minimality ofσ. This completes the proof that
α andβ are mutually inverse.

It is clear thatα(R) andβ(R) are functorial inR, i.e. that for every morphismf : R1 →
R2 in R, the diagram∐

σ⊂τ
Hom(A×σ , µ(R1))

f∗ //

α(R1)

��

∐
σ⊂τ

Hom(A×σ , µ(R2))

α(R2)

��
Hom(Aτ , µ(R1)0)

f∗ // Hom(Aτ , µ(R2)0)

commutes. �

Proposition 3.10. The functorsS andS∼ from the category of toric varieties to the cate-
gory of S–objects are isomorphic.

Proof. LetX be a toric variety with fan∆. Then the maximal torified atlas of(X,T∆) is
{Uτ}τ∈∆. We first show that for everyτ ∈ ∆, the corresponding S–gadgetsXτ andX∼

τ
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are isomorphic. We define maps

X∼
τ = (X∼,A∼X , e∼X)

ατ=(ατ ,ατ,C) // Xτ = (X,AX , eX) .
βτ=(β

τ
,βτ,C)

oo

as follows. For everyR ∈ R, defineατ (R) as the mapα(R) of the previous lemma.
Defineατ,C as the identity map ofA∼τ = OXτ,C = AC. Concerningβτ , defineβ

τ
(R)

as the mapβ(R) of the previous lemma for everyR ∈ R. Defineβτ,C like ατ,C as the
identity map. It is easily verified thatατ andβτ are indeed morphisms of S–gadgets. The
previous lemma implies thatατ andβτ are inverse to each other.

Since the second steps in the constructions ofS(X) andS∼(X) coincide, the families
{ατ}τ∈∆ and{βτ}τ∈∆ define mutually inverse morphismsαX : S∼(X) → S(X) and
βX : S(X) → S∼(X) of S–objects. It is straightforward to verify thatαX andβX are
functorial inX, i.e. that the diagram

S(X1)
S(f) //

βX1

��

S(X2)

βX2

��
S∼(X1)

S∼(f) // S∼(X2)

commutes for every toric morphismf : X1 → X2. Thus we established an isomorphism
of functors. �

The proposition justifies that we can writeS(X,T ) = S∼(X,T ) for an affinely torified
variety(X,T ).

Theorem 3.11. If (X,T ) is an affinely torified variety, thenS(X,T ) is an S–variety such
thatS(X,T )Z ' X. More precisely, the base extension functor−⊗F1 Z is a left inverse to
S as a functor from the category of affinely torified varieties to the category of S–varieties.

Proof. Define the morphism of S–objectsι = (ι, ιC) : S(X,T ) → T (X) as follows.

Write S(X,T ) = (X,AX , eX). For every affine S–varietyV , let ι(V ) : X(V ) ↪→
Hom(VZ, X) be the extension of scalars, which is an injective map (cf. Lemma 3.5). Let
ιC be the identity map ofAX = OXC(XC). It is clear thatι defines a morphism and that it
is an immersion of S–objects.

We raise in three steps the generality ofX. In the first step, letX beGn
m for ann ≥ 0.

Then there exists up to isomorphism only one torification ofGn
m, namelyT = {Gn

m →
Gn
m} given by the identity map. ThenT is the same as the torificationT∆ if we consider

Gn
m as toric variety with fan∆ = {0}. Proposition 3.10 states thatS(Gn

m, T ) ' S(Gn
m)

and Theorem 3.6 says thatS(Gn
m) is an S–variety such thatS(Gn

m)Z ' Gn
m.

In the second step, letX be affine with torificationT . In this case,X itself appears in
the maximal torified atlas{Ui}i∈I of X, sayX = U0. ThenS(X,T ) = (X,AX , eX)

has the following simple description. LetX0 = (X0,A0, e0) be the S–gadget defined by
U0. For every affine S–varietyV , we haveX(V ) = Hom(V,X0), we haveAX = A0 and

eX(V ) sends a morphismϕ = (ϕ,ϕ∗C) ∈ Hom(V,X0) toϕ∗C ∈ Hom(A0,AV ). From this
description it follows that we can apply [21, Prop. 3] to derive thatS(X,T ) is an S–variety
if and only if X0 is an affine S–variety, and if this is the case thenS(X,T )Z ' (X0)Z.
The same idea as used in the proof of Theorem 2.10 applies to this situation. Namely, let
V be an affine S–variety and let(ϕ,ϕ∗C) : X0 → V be a morphism of S–gadgets. Every
irreducible component ofX has a unique open subtorus isomorphic toGn

m for somen ≥ 0
in the torificationT . In the first step, we showed thatS(Gn

m) is an S–variety. Thus the
S–gadget(Gn

m)0 defined byGn
m is an affine S–variety. Using the universal property of

(Gn
m)0 defines a rational mapϕZ : X → VZ. For the same reasons as in the proof of
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Theorem 2.10 we see thatϕZ is indeed a morphism of schemes that verifies the universal
property of an affine S–variety forX.

In the third and last step, we let(X,T ) be a general affinely torified variety with max-
imal torified atlas{Ui}i∈I . ThenUi is affine andT restricts to a torificationTi of Ui for
everyi ∈ I. By the previous stepS(Ui, Ti) is an S–variety such thatS(Ui, Ti)Z ' Ui.
The family{S(Ui, Ti)}i∈I satisfies the conditions of [21, Prop. 5], and thusS(X,T ) is an
S–variety withS(X,T )Z '

⋃
i∈I Ui ' X.

Concerning functoriality, it is clear that for all torified morphismsf : (X,T ) →
(X ′, T ′) between affinely torified varieties, the diagram

X
f //

∼
��

X ′

∼
��

S(X,T )Z
S(f) // S(X ′, T ′)Z

commutes. This establishes−⊗F1 Z as a left inverse ofS. �

4. DEITMAR ’ S GEOMETRY

4.1. D–schemes.First let us recall the theory of schemes overF1 in Deitmar’s sense.
The main idea is to substitute commutative rings with1 (called rings in the latter) by
commutative semi-groups with1 (called monoids in the latter) and to mimic scheme theory
for monoids. It turns out that to a far extent, it is possible to yield a theory that looks
formally the same as usual algebraic geometry. Since definitions are lengthy, we only name
the notions we make use of and give the reference to the proper definition in Deitmar’s
paper [4].

There is the notion of prime ideals and the spectrumspecA of a monoidA ([4, section
1]), schemesX overF1 with underlying topological spaceX top and morphisms of schemes
([4, section 2.3]), the structure sheafOX and local monoidsOX,x for x ∈ X top ([4, sections
2.1–2.2]).

There is a base extension functor−⊗F1 Z that sendsspecA to Spec Z[A], whereZ[A]
is the semi-group ring ofA. The right-adjoint of− ⊗F1 Z is the forgetful functor from
rings to monoids ([4, Thm. 1.1]). Both functors extend to functors between schemes over
F1 andZ ([4, section 2.3]). We will often writeXZ forX⊗F1 Z. We denote byD–schemes
the category of schemes overF1 together with morphism of schemes in Deitmar’s sense.

A D–schemeX is connectedif it is connected as topological space, andX is integral
(resp.of finite typeresp.of exponent1) if for all affine opensspecA ofX, the ringZ[A] is
a integral domain (resp.Z[A] is of finite type (cf. [5, Lemma 2]) resp.1 is the only element
of finite multiplicative order inA).

4.2. Toric varieties as D–schemes.In [6, section 4], Deitmar describes a functorD that
associates to a toric varietyX with fan∆ the following scheme overF1. LetX be a toric
variety with fan∆. We use the notation from section 1.3.3. An inclusionτ ⊂ τ ′ of cones
gives an inclusion of monoidsAτ ′ ⊂ Aτ and thus we yield a directed system of affine
D–schemes{specAτ}τ∈∆. The D–schemeD(X) is defined as the limit over this system.

Let (ψ, ψ̃, {ψτ}) be a toric morphism. The directed system of morphismsψ∨τ : Aψ̃(τ) →
Aτ describes a morphismD(f) : D(X) → D(X ′) of D–schemes. This establishesD as a
functor.

Every monoidA has a unique maximal subgroup, namely the groupA× of invertible
elements, and a unique maximal ideal, namelym = A \A×. We define therank rk τ of a
coneτ as the rank ofA×τ and therank rkx of a pointx in X top as the rank ofO×

X,x. For
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every coneτ ∈ ∆, we have the canonical inclusionιτ : specAτ ↪→ D(X). We define

Ψ : ∆ −→ D(X)top ,
τ 7−→ ιτ (mτ )

wheremτ is the maximal ideal ofAτ .
The following is a refinement of Deitmar’s Theorem 4.1 in [6].

Theorem 4.1.

(1) The functorD induces an equivalence of categories

D :
{

toric varieties
} ∼−→

{
connected integral D–schemes
of finite type and of exponent 1

}
with−⊗F1 Z being its inverse.

(2) LetX be a toric variety with fan∆. ThenΨ : ∆ → D(X)top is a bijection such
that τ ⊂ τ ′ if and only ifΨ(τ ′) is contained in the closure ofΨ(τ). Furthermore,
Aτ ' OD(X),Ψ(τ) andrkΨ(τ) = rk τ for all τ ∈ ∆.

Proof. From the proof of [6, Thm. 4.1] it becomes clear thatY ⊗F1 Z is connected ifY is
an integral D–scheme of finite type that is connected and of exponent1. The rest of part 1
of the theorem follows from [6, section 4].

We proceed with part 2 of the theorem. First note that the assignment

Ψ1 : τ 7→ (Spec Z[τ∨] ↪→ X)

defines a bijection between∆ and the family of the affine opensU of X such that the
inclusionU ↪→ X is a toric morphism. Ifτ ⊂ τ ′ thenSpec Z[τ∨] ⊂ Spec Z[τ ′∨].

By the part 1 of the theorem, the functorD puts this family in one-to-one correspon-
dence with the affine opens ofD(X) and respects inclusions.

SinceOspecA,m = A if A is a monoid with maximal idealm = A \A× (cf. [4, section
1.2]), the assignment

x 7→ (specOD(X),x ↪→ D(X))

defines a bijection betweenD(X)top and the affine opens ofD(X). Note thatx is the image
of the maximal ideal ofOD(X),x under the canonical inclusionspecOD(X),x ↪→ D(X),
which describes the inverseΨ2 of the latter bijection. Ifx′ is contained in the closure of
x, then we have a inclusionspecOD(X),x → specOD(X),x′ . SinceΨ = Ψ2 ◦ D ◦Ψ1, we
established thatΨ is a bijection and thatτ ⊂ τ ′ if and only if Ψ(τ ′) is contained in the
closure ofΨ(τ).

By definition, the rank ofτ and the rank ofΨ(τ) equal the rank of the maximal
subgroups of the monoidsAτ andOD(X),Ψ(τ), respectively. The canonical inclusion
specAτ ↪→ D(X) induces the isomorphismOD(X),Ψ(τ) ' OspecAτ ,mτ ' Aτ , and con-
sequently we obtain equality of ranks. �

5. COMPARISON BETWEEN THE DIFFERENT GEOMETRIES OVERF1

In this section, we establish certain functors between the categories of D–schemes, S–
objects and CC–gadgets and investigate to what extent they commute with base extension
to Z and with the realizations of classes of varieties overF1 from the previous sections.
Finally, we put together the results of the paper in Theorem 5.10.

5.1. From D–schemes to CC–gadgets.In this section, we construct a functorFD→CC

from the category of integral D–schemes of finite type and exponent1 to the category of
CC–gadgets.

LetX be an integral D–scheme of finite type and exponent1. We define the CC–gadget
FD→CC(X) = (X,XC, evX) as follows. For a finite abelian groupD, we defineD0 to
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be the monoidD ∪ {0} that extends the multiplication ofD by 0 · a = 0 for everya ∈ D.
Put

X(D) = Hom(specD0, X) =
⋃

x∈X top

Hom(O×X,x, D) ,

where the latter equality is explained in the proof of Theorem 1 in [5]. PutXC = X⊗F1 C,
which is indeed a complex variety since every component ofX base extends to a toric
variety. Note that the immersionspecOX,x ↪→ X inducesSpec C[OX,x] ↪→ XC and
defineevX(D) as the composition of the natural maps⋃
x∈X top

Hom(O×X,x, D) −→
⋃

x∈X top

Hom(C[OX,x],C[D]) −→ Hom(Spec C[D], XC) .

Given a morphismf : X → X ′ between integral D–schemes of finite type and ex-
ponent1, we defineFD→CC(f) = (f, fC), wheref(D) = f∗ : Hom(specD0, X) →
Hom(specD0, X

′) andfC = f ⊗F1 C : XC → X ′
C. It is immediate thatFD→CC(f) is a

morphism of CC–gadgets.
Note that for a finite abelian groupD, the setX(D) is finite. Putting

X(l)(D) =
⋃

x∈X top

rk x=l

Hom(O×X,x, D)

defines a gradingX =
⋃
l≥0X

(l). Thus we can considerFD→CC(X) as a finite graded
CC–gadget.

Proposition 5.1. The functorsL andFD→CC ◦ D from the category of toric varieties to
the category of finite graded CC–varieties are isomorphic.

Proof. Let X be a toric variety with fan∆ and putY = D(X). Then we obtain the
finite graded CC–gadgetsL(X) = (X,XC, evX) andFD→CC(Y ) = (Y , YC, evY ). By
part 2 of Theorem 4.1, there is a bijectionΨ : ∆ → Y top such thatrk τ = rkΨ(τ) and
Aτ ' OY,Ψ(τ) for everyτ ∈ ∆. Thus we obtain for everyl ≥ 0 and every finite abelian
groupD a bijection

X(l)(D) =
⋃
τ∈∆

rk τ=l

Hom(A×τ , D) ∼−→
⋃

y∈Y top

rk y=l

Hom(O×
Y,y, D) = Y (l)(D) .

Further,YC = Y ⊗F1 C ' X ⊗Z C = XC. It is immediate that these isomorphisms com-
mute with the evaluation mapsevX andevY , and we thus yield the desired isomorphism
of CC–gadgetsϕX : L(X) → FD→CC(Y ).

It follows from the naturality of definitions that given a toric morphismf : X → X ′,
the diagram

L(X)
L(f) //

ϕX

��

L(X ′)

ϕX′

��
FD→CC(Y )

FD→CC(g) // FD→CC(Y ′)

commutes, whereY = D(X), Y ′ = D(Y ′) and g = D(f). Thus we established an
isomorphism of functors. �

This proposition together with Theorems 2.10 and 4.1 implies:

Corollary 5.2. If X is a connected integral D–scheme of finite type and exponent1, then
FD→CC(X) is a CC–variety andFD→CC(X)⊗F1 Z ' X ⊗F1 Z.
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5.2. From D–schemes to S–objects.In this section, we construct a functorFD→S from
the category of D–schemes of finite type to the category of S–objects. LetX be a D–
scheme of finite type. We proceed in two steps, similarly to section 3.2.

In the first step, we define for every pointx ∈ X top an S–gadgetXx = (Xx,Ax, ex)
as follows. For everyR ∈ R, we putXx(R) = Hom(OX,x, µ(R)0), the set of monoid
homomorphisms from the local monoidOX,x to the multiplicative monoidµ(R)0 = {0}∪
µ(R), we putAx = C[OX,x], the semi-group ring ofOX,x overC, and we define

ex(R) : Hom(OX,x, µ(R)0) −→ Hom(C[OX,x], R⊗Z C)

as the natural map.
In the second step, we define the objectFD→S(X) = (X,AX , eX) as follows. For

every affine S–varietyV , we put

X(V ) =
⋃

x∈X top

Hom(V,Xx) ,

where the union is taken inHom(VZ, XZ). We putAX = OXC(XC), whereXC is the
complexification ofXZ, and we define

eX(V ) :
⋃

x∈X top

Hom(V,Xx) −→ Hom(VC, XC) −→ Hom(AX ,AV )

as the composition of the natural maps.
Given a morphismf : X → X ′ between D–schemes of finite type, there is a natural

way to define a morphismFD→S(f) : FD→S(X) → FD→S(X ′) going through the steps
of the construction ofFD→S , similarly to the definition in section 3.2.

Proposition 5.3. The functorsS andFD→S ◦D from the category of toric varieties to the
category of S–objects are isomorphic.

Proof. Let X be a toric variety with fan∆ andY = D(X). We will construct an iso-
morphismϕX : S(X) → FD→S(Y ) by going through the steps of construction of the
objects.

In the first step, letτ ∈ ∆ andy = Ψ(τ), whereΨ : ∆ → Y top is the bijection from
Theorem 4.1. LetXτ andYy be the associated S–gadgets. By Theorem 4.1, part 2, we have
thatAτ ' OY,y and consequentlyXτ (R) = Hom(Aτ , µ(R)0) ' Hom(OY,y, µ(R)0) =
Y y(R) for all R ∈ R. Further,Aτ = C[Aτ ] ' C[OY,y] = Ay. It is immediate that
these isomorphisms commute with the evaluation mapseτ andey, and thus we yield an
isomorphism of S–gadgetsϕτ : Xτ → Yy.

In the second step, we note that forτ ′ ⊂ τ , the image of the inclusionAτ ↪→ Aτ ′ under
the functorD is the generalization mapOY,Ψ(τ) ↪→ OY,Ψ(τ ′). Thus the directed systems
{Aτ}τ∈∆ and{OY,y}y∈Y top are isomorphic and we have that for all affine S–varietiesV ,

X(V ) =
⋃
τ∈∆

Hom(V,Xτ ) '
⋃

y∈Y top

Hom(V, Yy) = Y (V ) .

Further,AX = OXC(XC) ' OYC(YC) = AY by Theorem 4.1, part 1. It is immediate that
these isomorphisms commute with the evaluation mapseX andeY , and we thus yield the
desired isomorphism of S–objectsϕX : (X) → FD→S(Y ).

By the analogy of the constructions ofS andFD→S , it is clear that given a toric mor-
phismf : X → X ′, the diagram

S(X)
S(f) //

ϕX

��

S(X ′)

ϕX′

��
FD→S(Y )

FD→S(g) // FD→S(Y ′)



26 JAVIER LÓPEZ PẼNA AND OLIVER LORSCHEID

commutes, whereY = D(X), Y ′ = D(Y ′) and g = D(f). Thus we established an
isomorphism of functors. �

This proposition together with Theorems 3.6 and 4.1 implies:

Corollary 5.4. If X is a connected integral D–scheme of finite type and exponent1, then
FD→S(X) is an S–variety andFD→S(X)⊗F1 Z ' X ⊗F1 Z.

5.3. From CC–varieties to S–objects.In this section, we construct a functorFCC→S

from the category of CC–varieties to the category of S–objects.
Let X = (X,X ′

C, evX) be a CC–variety and let{Xj}j∈J be the family of all open
affine CC–subvarietiesXj = (Xj , Xj,C, evj) of X. Note that a priori,X ′

C does not need
to be equal toXC = X ⊗F1 C. We define the S–objectFCC→S(X) in two steps.

In the first step, we define S–gadgetsF∼CC→S(Xj) = (X∼
j ,A∼j , e∼X) for everyj ∈ J

as follows. For everyR ∈ R, putX∼
j (R) = Xj(µ(R)). PutA∼j = OXj,C(Xj,C) and put

e∼j (R) : Xj(µ(R))
evj(µ(R))−→ Hom(A∼j ,C[µ(R)]) −→ Hom(A∼j , R⊗Z C) .

In the second step, we define the S–objectFCC→S(X) = (X,AX , eX) as follows. For

everyj ∈ J and everyR ∈ R, there is a morphismϕj(R) given as the composition of
canonical maps

X∼
j (R) = Xj(µ(R)) ⊂ Hom(Spec Z[µ(R)], Xj,Z) −→ Hom(Spec Z[µ(R)], Xj,Z) .

We do not know a priori whetherϕj(R) is an inclusion. But the same reason as in Lemma
3.5 shows that we have for every affine S–varietyV an (a priori not injective) map

ψj(V ) : Hom(V,F∼CC→S(Xj)) −→ Hom(VZ, Xj,Z) ⊂ Hom(VZ, XZ) .

DefineX(V ) =
⋃
j∈J Imψj(V ) ⊂ Hom(VZ, XZ) andAX = OXC(XC). Define

eX(V ) : X(V ) ⊂ Hom(VZ, XZ) −→ Hom(AX ,OVC(VC)) −→ Hom(AX ,AV )

as the composition of taking complex global sections of a morphismVZ → XZ and the
push forward along the mapιC : OVC(VC) ↪→ AV given by the universal property ofV .

Proposition 5.5. The functorsS andFCC→S ◦ L from the category of affinely torified
varieties to the category of S–objects are isomorphic.

Proof. Let (X,T ) be an affinely torified variety with maximal torified atlas{Uj}j∈J . Let
Tj be the restriction ofT to Uj , which is a torification ofUj . PutY = (Y , YC, evY ) =
L(X,T ). Then{Yj}j∈J with Yj = (Y j , Yj,C, evj) = L(Uj , Tj) is the family of all open
affine CC–subvarieties ofY since they are precisely those open CC–subgadgets whose
functors represent the right counting function. We show in two steps thatS(X,T ) '
FCC→S ◦ L(X,T ).

In the first step, we show thatXj = (Xj ,Aj , ej) as defined in section 3.3 is isomorphic
toF∼CC→S = (Y ∼j ,A∼j , e∼j ) for everyj ∈ J . For allR ∈ R, we have equalities

Xj(R) =
∐
j∈Tj

Hom(A×i , µ(R)) = Y j(µ(R)) = Y ∼j (R)

andAj = OUj,C(Uj,C) = A∼j . This defines the desired isomorphism.
In the second step, we show thatS(X,T ) = (X,AX , eX) is isomorphic to the S-object

FCC→S(Y ) = (Y ,AY , eY ). For all affine S–varietiesV , we have equalities

X(V ) =
⋃
j∈J

Hom(V,Xj) =
⋃
j∈J

Hom(V, Yj) = Y (V )

andAX = OXC(XC) = AY . This defines the desired isomorphism, which we denote by
ϕX,T : S(X,T ) → FCC→S ◦ L(X,T ).
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By similarity of definition it follows thatϕX,T is functorial in(X,T ), i.e. that for every
torified morphismf : (X,T ) → (X ′, T ′), the diagram

S(X,T )
S(f) //

ϕX,T

��

S(X ′, T ′)

ϕX′,T ′

��
FCC→S ◦ L(X,T )

FCC→S◦L(f) // FCC→S ◦ L(X ′, T ′)

commutes. Thus we established an isomorphism of functors. �

Remark 5.6. As consequence of Proposition 5.5 and Theorem 3.11, we see that for every
CC–varietyX in the essential image ofL, the S–objectFCC→S(X) is an S–variety such
thatFCC→S(X)Z ' XZ. It is, however, not clear if this holds true ifX is an arbitrary
CC–variety.

Namely, there are two problems. For simplicity, we assume thatX is an affine CC–
variety with canonical immersionι : X → G(XZ).

The first problem is the following. We haveXZ = SpecB for some ringB. Put
X∼ = F∼CC→S(X). Then there is a canonical morphismι∼ : X∼ → T (XZ), but it is not
clear if the map

ι∼(R) : X∼(R) = X(µ(R)) � � ι(µ(R)) // Hom(B,Z[(µ(R)]) // Hom(B,R)

is injective for allR ∈ R (hereX, X∼, ι andι∼ denote the usual functors and natural
transformations).

The second problem is verifying the universal property of an S–variety. This is, given a
schemeV of finite type overZ and a morphism of S–gadgetsϕ : X∼ → T (V ), we seek a
morphism of schemesϕZ : XZ → V such thatϕ = T (ϕZ)◦ ι∼. This would be implied by
the universal property forX if we could extend the functorFCC→S to a functorF ′CC→S

from CC–gadgets to S–objects such that

F ′CC→S

(
X

ι //

ψ ##FF
FF

F G(XZ)

G(ψZ)��
G(V )

)
=

(
X∼ ι∼//

ϕ $$HHH
HH

G(XZ)

T (ψZ)��
T (V )

)

for some morphismψ : X → G(VZ). The uniqueness ofψZ would follow from the
existence of a left inverse functor toF ′CC→S .

However, the definition ofFCC→S relies strongly on the defining property of a CC–
variety and we do not see whether there is a way to extendFCC→S to all CC–gadgets with
the desired property. We will discuss two attempts in this direction in the following two
paragraphs 5.3.1 and 5.3.2.

5.3.1. From CC–gadgets to S–objects.There is a natural definition for a functorF ′CC→S

from CC–gadgets to S–objects, which, however, does not meet the requirements of Remark
5.6.

Let X = (X,XC, evX) be a CC–gadget. We define the S–objectF ′CC→S(X) =
(X,AX , eX) as follows. IfV is an affine S–variety, whereVZ ' SpecB and(ι, ι∗C) : V →
T (VZ) is the canonical immersion, then putX(V ) = X(µ(B)). PutAX = OXC(XC) and

define forψ ∈ X(µ(B)),

eX(V )(ψ) : AX
evx(V )(ψ)# // C[µ(B)] // B ⊗Z C

ι∗C // AV .

If ϕ = (ϕ,ϕC) : X → X ′ is a morphism of CC–gadgets, define the morphism of S–

objectsF ′CC→S(ϕ) = (ϕ,ϕ#
C ) as follows. ForV as above, putϕ(V ) = ϕ(µ(B)) and let
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ϕ#
C be the morphism between global sections. One easily verifies that(ϕ,ϕ#

C ) is indeed a

morphism using that(ϕ,ϕC) is one.

Remark 5.7. One can show that for a torified variety(X,T ) that is affine and has maximal
torified atlas{Ui}i∈I with U0 = X, the S–gadgetsX0 (as defined in section 3.3) and
F∼CC→S ◦ L(X,T ) are isomorphic. Further, one can show that there is a natural inclusion
of functorsF ′CC→S ⇒ FCC→S , when restricted to the category of CC–varieties.

The most basic example ofX = Gm, however, shows thatF ′CC→S is not isomorphic
to FCC→S if restricted to the category of CC–varieties. ConsiderGm as a toric variety
with fan∆ = {0}. In the usual notation (cf. sections 1.3.3 and 3.2),A0 is an infinite cyclic
group andX0 = (X0,AX , eX) is an affine S–variety with(X0)Z ' Gm. Let Y andX

be the functors ofF ′CC→S ◦ L(X) andFCC→S ◦ L(X) ' S(X) (cf. Proposition 5.5),
respectively. Then

Y (X0) = Hom(A0, µ(Z[A0])) = Hom(A0, {±1}) = {±1} .

On the other hand,

X(X0) = Hom(X0, X0) ↪→ Hom(Gm,Gm) = Hom(Z[A0],Z[A0]) = {±am}m∈Z ,

where the inclusion is given by extension of scalars toZ (cf. Lemma 3.5). One sees that
Y (X0) ⊂ X(X0). We will show that this inclusion is proper.

Letm be an integer and letϕm : A0 → A0 mapa to am. We define a morphismψm =
(ψ

m
, ψm,C) : X0 → X0 as follows. ForR ∈ R, we haveX0(R) = Hom(A0, µ(R)). Put

ψ
m

(R) : Hom(A0, µ(R)) −→ Hom(A0, µ(R))
χ 7−→ χ ◦ ϕm

and letψm,C : C[A0] → C[A0] be theC-linear homomorphism that restricts toϕm. It
is clear thatψm is indeed a morphism of S–gadgets for everym ∈ Z and that(ψm)#Z :
Z[A0] → Z[A0] is the restriction ofψm,C to Z[A0]. Concerning our question, we see now
that(ψm)#Z (A0) 6⊂ µ(Z[A0]) = {±1} unlessm = 0.

Thus we have shown thatF ′CC→S does not extendFCC→S . From [21, Prop. 4] it fol-
lows thatF ′CC→S(Gm) cannot be an S–variety. Regarding the second problem of Remark
5.6, note that it holds neither true that for a schemeX of finite type overZ, the S–objects
F ′CC→S(G(X)) andOb(X) are isomorphic. Namely, their functorsX ′ andX, respec-

tively, differ. If V is an affine S–variety withVZ ' SpecB, then in general

X ′(V ) = Hom(Spec Z[µ(B)], X) 6= Hom(SpecB,X) = X(V ) .

5.3.2. From S–objects to CC–gadgets.There is also a natural way to define a functor
FS→CC from the category of S–objects to the category of CC–gadgets.

LetX = (X,AX , eX) be an S–object. Then we define the CC–gadgetFS→CC(X) =

(X,XC, evX) as follows. For a finite abelian groupD, putVD = T (Spec Z[D]), which
is an affine S–variety by [21, Prop. 2] and sinceZ[D] ∈ R. PutX(D) = X(VD). Let

NX be the nilradical ofAX . PutXC = Spec(AX/NX), which is a complex variety. The
evaluation map is defined as

evX : X(VD) −→ Hom(AX ,C[D]) = Hom(Spec C[D], XC) .

ψ 7−→ eX(D)(ψ)

Remark 5.8. There are several remarks in order concerning the “naturality” of definition.
Since we stay with the original definition of a CC–gadget in [3], we only allow complex va-
rieties, i.e. reduced schemes of finite type overC, in the definition of a CC–gadget. There-
fore, we have to divide out the nilradical. One can, however, extend Connes-Consani’s
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definition by allowing arbitrary schemes of finite type overC and simply defineXC as the
spectrum ofAX .

If X is an S–variety representing a scheme that is not affine, we yield a complex variety
XC which is affine. One could, however, exchange the complex algebra by a scheme of
finite type overC in the definitions of an S–gadget and an S–object, and try to recover
the results of Soulé’s paper [21]. Then one could simply define to take the same complex
scheme forFS→CC(X).

Remark 5.9. Unfortunately, the different nature of Soulé’s and Connes-Consani’s geome-
tries overF1 leads to a misbehavior ofFS→CC even if the suggested changes are made, as
can be seen in the example ofX = Gm.

In the same notation as in Remark 5.7, letA0 be the infinite cyclic group andX0

the affine S–variety associated toX. Let X be the functor ofS(X) and letX be the

functor of FS→CC ◦ S(X). For a finite abelian groupD and VD as above, we have
X(D) = X(VD) = Hom(VD, X0). Base extension fromF1 to Z defines the inclusion

Hom(VD, X0) ↪→ Hom(Z[A0],Z[D]) (cf. Lemma 3.5). Using thatµ(Z[D]) = Z[D]×

for finite abelian groups, one can show that conversely every morphismZ[A0] → Z[D]
defines a morphismVD → X0. Thus we see that

X(D) = Hom(A0, µ(Z[D])) = µ(Z[D]) = D q−D .

This differs from the CC–varietyL(Gm) = (Gm,Gm,C, evGm) sinceGm(D) = D, and
we see thatL andFS→CC ◦ S are not isomorphic. Furthermore, the counting function of
FS→CC(X) differs from the counting function ofL(Gm), soFS→CC(X) is not even a
candidate for a CC–variety representingGm that produces the right counting function.

In particular, one verifies now easily that neitherF ′CC→S ◦ FS→CC nor FS→CC ◦
F ′CC→S nor FS→CC ◦ FCC→S is isomorphic to the identity functor of the category of
S–objects or the category of CC–gadgets, respectively–even if the changes are considered
as suggested in the previous remark.

5.4. Putting pieces together.Finally, we subsume the results of this section in a diagram.

Theorem 5.10. The following diagram essentially commutes (arrows with label “i” are
the canonical inclusion as subcategories and the arrow with label “f ” is the forgetful
functor).

S–objectsSchemes overZ

Connected integral D–schemes
of finite type and exponent 1

Toric varieties

S–varieties
Affinely torified

varieties

CC–varieties

FD→CC

��

FD→S

��

∼D

OO
−⊗F1Z

��

i ��

f

��

S //

L

ssggggggggggggggg
i

��−⊗F1Zssgggggggggggggggggggg

−⊗F1Z
//

FCC→S

66
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Proof. We label the subdiagrams as follows.

��

!!

D
OO

−⊗F1Z��

��

��

//

rreeeeeeeeeeeeeeeeee
��rreeeeeeeeeeeeeeeeee

// 33

A B

C D
E

The functorsD and− ⊗F1 Z are mutually inverse by Theorem 4.1. Subdiagram A com-
mutes essentially by Proposition 5.1 and Corollary 5.2. Subdiagram B commutes essen-
tially by Proposition 5.3 and Corollary 5.4. Subdiagram C commutes essentially by Theo-
rem 2.10. Subdiagram D commutes essentially by Theorem 3.6. Subdiagram E commutes
essentially with the rest of the diagram by Theorem 5.5. �

6. CONCLUDING REMARKS

6.1. On Chevalley schemes overF1. Among other reasons, Tits’ suggestion of realizing
Chevalley schemes as group objects overF1 ([22, section 13]) was a main motivation in
looking for concepts of geometries that have a base extension functor toZ and that some-
how capture the aspects of usual geometry that can be “expressed by roots of unity”. We
discuss in various examples in how far Tits’ suggestion becomes realized by the different
concepts of Connes-Consani, Soulé and Deitmar, respectively.

To realize a Chevalley schemeG as a group object in one of the discussed notions
of geometries overF1 means that there is a CC–variety, an S–variety or a D–schemeX,
respectively, representingG and a multiplication mapm : X × X → X such thatXZ
together withmZ is an algebraic group isomorphic toG. In this case we say thatX
together withm is a group object overF1.

Proposition 6.1. The Chevalley schemesGn
m for n ≥ 0 can be realized as group objects

overF1 in all three notions of geometry overF1.

Proof. The crucial observation is that the multiplicationGn
m × Gn

m → Gn
m is a toric

morphism. With this, Theorem 2.10 implies thatL(Gn
m) together withL(m) is a group

object overF1. Theorem 3.11 implies thatS(Gn
m) together withS(m) is a group object

over F1. Theorem 4.1 implies thatD(Gn
m) together withD(m) is a group object over

F1. �

Proposition 6.2. The algebraic groupGn
a for n > 0 cannot be realized as group object in

any of the three notions of geometries overF1.

Proof. First, we consider Connes-Consani’s concept. Assume there was a group object
X = (X,XC, evX) with multiplicationm representingGn

a . We first want to exclude
the possibility that the image ofevX(D) : X(D) → Hom(Spec C[D],Gn

a) consists of
only one element for all finite abelian groupsD. If this was the case, then the image of
evX(D) would consist of the same pointx ∈ Gn

a(C) for all finite abelian groupsD by the
functoriality ofX. But then the compositionι ◦ ϕ of an automorphismϕ : X → X given
by a morphismXC → XC that leavesx fixed but is not defined overZ followed by the
canonical immersionι : X → G(Gn

a) would be a morphism of CC–gadgets that does not
base extend toZ.

Thus assume thatD is a group such that the image ofevX(D) has more than one
element. Then commutative diagram

X(D)×X(D)
m(D) //

evX(D)×evX(D)

��

X(D)

evX(D)

��
Gn
a(C[D])×Gn

a(C[D])
mC(C[D]) // Gn

a(C[D])



TORIFIED VARIETIES AND THEIR GEOMETRIES OVERF1 31

would establish the image ofevX(D) as a non-trivial finite subgroup of the torsion free
groupAn(C[D]) ' Cnd whered = #D, which does not exist. Thus we showed thatX
andm as assumed cannot exist.

A similar argument shows thatGn
a cannot be realized in Soulé’s geometry overF1.

Since, up to isomorphism, the only D–scheme representingAn is Y = D(Gn
a), the

existence of a multiplication ofY would imply by Theorem 4.1, that the multiplication of
Gn
a is a toric morphism, which is not the case. �

6.1.1. Chevalley groups as CC–varieties.In their paper [3], Connes and Consani show
that a split Chevalley schemeG overZ is “a variety overF12” ([3, Thm. 4.10]) and they
remark that the normalizerN of a maximal split torusT in G is a group object overF12 ,
but that the multiplication ofG is “more mysterious” (ibid. 25). The following example
shows that neither the multiplication ofG nor the multiplication ofN has to be defined
overF1.

LetG = Sl(2). LetT be the diagonal torus,N its normalizer inG andB the subgroup
of upper triangular matrices. We saw in Example 1.19 that we have torifications

N = 2Gm ⊂ G = 2Gm q 3G2
m q G3

m .

WriteS for the torification ofG and byS′ the restriction ofS toN . LetX = (X,XC, evX)
beL(G,S) and letY = (Y , YC, evY ) beL(N,S′). Then

Y (D) = 2D ⊂ X(D) = 2D q 3D2 q D3

for a finite abelian groupD. Note that a multiplication ofX restricts to a multiplication
of Y , and thus we only have to show the non-existence of a multiplication forY . Assume
there is a multiplicationm : Y × Y → Y , then for the trivial groupD = {0}, we can
identify Y ({0}) with W , andev({0}) : W → YC(C) = N(C) defines a section to

1 // T (C) // N(C) // W // 1 .

Moreover, the commutative diagram

W ×W
m({0}) //

evY ({0})×evY ({0})
��

W

evY ({0})
��

N(C)×N(C)
mC // N(C)

that we obtain from the definition of a morphism between CC–gadgets implies that the
sectionW → N(C) must be a group homomorphism. But this is not possible in the case
of Sl(2).

6.1.2. Chevalley groups as S–varieties.The situation in Soulé’s geometry behaves simi-
larly except for one remarkable difference. Since all ringsR ∈ R are by definition flat
over Z, their additive groups are torsionfree and the group morphismµ(Z) → µ(R) is
thus injective. This means thatµ(R) has a distinguished element of order2, namely, the
image of−1 ∈ µ(Z). This allows us to transfer the idea of Connes-Consani, which is to
consider Chevalley schemes overF12 (see previous remark and [3, section 4]), to show
that the normalizerN of a maximal split torusT in a split Chevalley schemeG is a group
object in Souĺe’s notion of a geometry overF1.

But there is no larger subgroup ofG thanN that can be realized as a group object in
Souĺe’s geometry since this would involve additive structure. The argument of Proposition
6.2 shows that this is not possible as it is not in the situation of Connes-Consani’s paper
(loc. cit.).

Remark 6.3. A possible way out of the dilemma could be to broaden the notion of a
morphism in Connes-Consani’s or Soulé’s geometry overF1. This could possibly be done
by a motivic theory overF1 as already motivated in [17].
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6.1.3. Chevalley groups as D–schemes.A Chevalley scheme can be realized in Deitmar’s
notion of a geometry overF1 if and only if the Chevalley scheme is a toric variety and the
multiplication is a toric morphism. This class of Chevalley schemes is precisely the class
of split tori.

6.2. Odds and ends.As we have noted in Remarks 2.9 and 3.8, different (affine) torifica-
tion can lead to non-isomorphic CC–gadgets or S–objects, respectively. One may put the
question: shall it be an essential feature of a geometry overF1 to obtain different forms of
a torified variety by choosing different torifications? There are two possible approaches to
avoid the ambiguity of a torification: weakening the notion of morphism to gain isomor-
phic CC–varieties by different choices of torifications or using the following notion. We

call a decompositionX =
◦∐
i∈IYi regular if for every i ∈ I there existsJi ⊆ I such

thatYi =
◦∐
j∈JiYj . In other words, the Zariski closure of each of the schemes in the de-

composition decomposes through the same decomposition. Whenever a torified varietyX
has a regular torification and any two regular torifications lead to isomorphic CC–varieties,
then one can declare the corresponding isomorphism class of CC–varieties as thecanonical
model ofX overF1. Note that split tori, affine spaces, projective space and flag varieties
have a unique isomorphism class of regular torifications. We do however not know whether
this is the case for all torified varieties.

A second matter is the problem of the realization of the GrassmannianGr(2, 4) overF1

as posed by Soulé ([21, Question 3]), which stays open. It is not clear at all to us what this
should be in Soulé’s geometry overF1. Concerning Connes-Consani’s notion, we present
in this paper the candidateL(Gr(2, 4), T ), whereT is a torification given by a Schubert
cell decomposition. Since, however,T is not an affine torification, this CC–gadget fails
to be a CC–variety. A possible solution could be searched in relaxing the notion of a
CC–variety in an appropriate way.

Note that the idea of establishing affinely torified varieties(X,T ) as varieties overF1

is quite flexible. We showed that it works in both Soulé’s definition and Connes-Consani’s
definition. It further works with the modifications recently suggested by Connes and Con-
sani in the end of their paper [3]: There is a natural extension of the functors from finite
abelian groups to monoids with distinguished elements0 and1 since the CC–gadgets of
torified varieties is defined in terms of homomorphism setsHom(Ai,−), where theAi are
free abelian groups. First note that it is not essential for our construction that we restrictX
to finite abelian groups, but we can allow arbitrary abelian groups. Secondly, every homo-
morphism from a group into a monoid factorizes through the group of invertible elements
of the monoid. Further, one might exchange the complex variety by a functor on rings
that yields a reduced scheme of finite type over any ring. Namely, the result [3, Thm. 5.1]
holds true for affinely torified varieties due to Lemma 1.2: there is a natural definition of
evaluationsevX,A : X ⇒ XA(A[−]) for every ringA andXA = X ⊗Z A. If A is a field
andM its multiplicative monoid, then

X(M)
evX,A(M)−→ XA(A[M ]) −→ XA(A)

is a bijection, where the latter morphism is induced by theA-linear mapA[M ] → A
identifyingM with A.
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[22] J. Tits.Sur les analogues algébriques des groupes semi-simples complexes. Colloque d’alg̀ebre suṕerieure,
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