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Uniruledness of orthogonal modular varieties

V. Gritsenko and K. Hulek

Abstract

A strongly reflective modular form with respect to an orthogonal
group of signature (2,n) determines a Lorentzian Kac-Moody alge-
bra. We find a new geometric application of such modular forms: we
prove that if the weight is larger than n then the corresponding modu-
lar variety is uniruled. We also construct new reflective modular forms
and thus provide new examples of uniruled moduli spaces of lattice po-
larised K3 surfaces. Finally we prove that the moduli space of Kummer
surfaces associated to (1, 21)-polarised abelian surfaces is uniruled.

1 Reflective modular forms

Let L be an even integral lattice with a quadratic form of signature (2,n)
and let -
D(L)={[Z] e P(L®C)|(2.2) =0, (2,Z) > 0}"

be the associated n-dimensional bounded symmetric Hermitian domain of
type IV (here 4+ denotes one of its two connected components). We denote
by OT(L) the index 2 subgroup of the integral orthogonal group O(L) pre-
serving D(L). For any v € L ® Q such that v? = (v,v) < 0 we define the
rational quadratic divisor

D, = Dy(L) = {[Z] € D(L) | (Z,v) = 0} = D(v})

where v7 is an even integral lattice of signature (2,n —1). If I' < O (L) is

of finite index we define the corresponding modular variety
Fr(I') = \D(L),

which is a quasi-projective variety of dimension n. The most important
subgroups of O" (L) are the stable orthogonal groups

~+ : = ~+

O (L)={9€0"(L) | glrv/r =1id}, SO (L)=8SO(L)NO (L)
where LV is the dual lattice of L. Modular varieties of orthogonal type ap-
pear in algebraic geometry. A prime example are moduli spaces of polarised
abelian surfaces and K3 surfaces or, more generally, the moduli spaces of
polarised holomorphic symplectic varieties (see [GHS2]-[GHS3]).



Let £ > 0 and x : I' = C* be a character or multiplier system (of finite
order) of I'. By My(T", x) we denote the space of modular forms of weight k
and character y with respect to I'.

Definition 1.1 A modular form F € My (T, x) is called reflective if

Supp(div F) C U @ (1)
reL/+1
7 is primitive
o€l or —op€l’

where o, : | — | — %r is the reflection with respect to r. We call I

strongly reflective if the multi plicity of any irreducible component of div F'
is equal to one.

This definition is motivated by the following result proved in [GHSI,
Corollary 2.13].

Proposition 1.2 Let sign(L) = (2,n) and n > 3. The union of the rational
quadratic divisors in (1) is equal to the ramification divisor Bdiv(nr) of the
modular projection

7t : D(L) — I'\D(L).

The most famous example of a strongly reflective modular form is the
Borcherds form ®15 € My2(O" (I1396), det) defined in [B]. It is known that

div @12 = U DT‘(II2,26)
TER_Q(IIQJG)/il

where R_(I1526) denotes the set of —2-vectors in the even unimodular
lattice 112,26'

Strongly reflective modular forms are very rare. They determine Lorentz-
ian Kac-Moody algebras (see [B], [GN1]). The following theorem proved in
2010 shows that the existence of a strongly reflective modular form of large
weight & > n implies that the corresponding modular variety has special
geometric properties.

Theorem 1.3 (see [G4]) Let sign(L) = (2,n) andn > 3. Let F}, € My (T, x)
be a strongly reflective modular form of weight k and character (of finite
order) x where ' < O (L) is of finite index. By k(X ) we denote the Kodaira
dimension of X. Then

#(I\D(L)) = —o0
if k >n, or k =n and F}, is not a cusp form. If k = n and F}, is a cusp form
then

#(I\D(L)) = 0,

where I'y, = ker(x - det) is a subgroup of I'.



Below we prove a stronger theorem which allows us to conclude that
the variety I'\D(L) is uniruled. As an application, using reflective modular
forms, we give new examples of uniruled moduli spaces in §3.

2 A sufficient criterion for unirulednesss of orthog-
onal modular varieties

Recall that a variety X is called uniruled if there exists a dominant rational
map Y x P! --s» X where Y is a variety with dimY = dim X — 1. If Y is
uniruled, then x(Y) = —oo. A well known conjecture says that the converse
also holds, but this is not known with the exception of dimension 3 (where
it follows from [Mi]). Using results of Boucksom, Demailly, Paun and Pe-
ternell [BDPP] the conjecture would follow from the abundance conjecture.
We shall use the numerical criterion for uniruledness due to Miyaoka and
Mori [MM] to formulate a criterion which allows us to prove uniruledness of
orthogonal modular varieties in many cases.

Theorem 2.1 Let D = D(L) be a connected component of the type IV
domain associated to a lattice L of signature (2,n) with n > 3 and let
I ¢ O*(L) be an arithmetic group. Let B = >, D, in D be the divisorial
part of the ramification locus of the quotient map D — T'\D (see (1) and
Proposition 1.2). Assume that a modular form F} with respect to I' of
weight k with a (finite order) character exists, such that

{F.=0}=> mD,

where the m, are non-negative integers. Let m = max{m,} (which must
be > 0 by Koecher’s principle). If k > m - n, then I"\D is uniruled (and
thus in particular has Kodaira dimension —oo) for every arithmetic group
I contating T.

Proof. 1t is clearly enough to prove the result for I' since every finite quotient
of a uniruled variety is uniruled itself.

We first recall that by [GHS1, Theorem 2.12] every quasi-reflection in
h € T has the property that h?> = +id and thus h acts as a reflection on
D. We choose a toroidal compactification X’ of the quotient X = I'\D for
which we can assume that the boundary contains no ramification divisor.
Such a compactification exists by [GHS1, Corollary 2.22] and the proof of
[GHS1, Corollary 2.29]. Let L be the (Q-)line bundle of modular forms of
weight 1. We denote the branch locus in X’ by B = 3" D, (here we use, by
abuse of notation, the same index set for the components as we do for the

ramification locus). Then over the regular part X/., of X' we have

1
Kx;, =nL—3B~D 2)
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where D =" D, is the boundary.
The assumption about the vanishing locus of the form Fj implies

1
kL= ;mﬂ); +§5QDQ, 8o > 0.

Note that the factor 1/2 in front of the term involving the D, comes from
the fact that the map D(L) — X is branched of order 2 along B. We rewrite
this as

1
kL = 5(mB + ;(mr — m)Dfn) + ;%Da
and use this to eliminate B from formula (2). The result is

k m—my m — g
—Kxs =(— —n)L D! D,.
Xty = (=) +er - T+Zaj o

reg 2 m

Next we choose a resolution X — X’. For the canonical bundle on X we
obtain

k m—my _, m
—K)?:(m—n)L—I—EmDT—I—;

— b
m Da + Z I 5E5

B
where the Ejz are the exceptional divisors and where we have used the no-
tation D.. and D, also for the strict transform of the corresponding divisors
on X',

We recall the following criterion of Mori and Miyaoka|[MM, Theorem 1]:
assume that a smooth projective variety Z contains an open subest U such
that through every point « € U there is a curve C' with Kz.C < 0. Then Z
is uniruled. We want to apply this to X where we choose U = Xreg- Recall
that a high multiple L& of L defines a map p on : X — PN whose image
is the Baily-Borel compactification XBB of X. The restriction of this map
to U is an isomorphism onto the image and the codimension of X85\ U in
XBB is at least 2 since the boundary of the Baily-Borel compactification is
1-dimensional and X is normal.

Let x € U. Intersecting with n — 1 general hyperplanes through = we
obtain a curve C' which misses both the boundary and the singular locus of
X. Hence we can also consider C' as a curve in X. We find that

k m—my__, m — 504
~Kz.C=| (- —n)L+§; o Dr—l—za: —*D, +§6:EBE5 C
Since C does not meet the boundary and the singular locus of X we have
D,.C = Ez.C' = 0. Moreover, since m > m, and D..(ngL)"~* > 0 we have
m=mep! C > 0. Finally, since k > m-n and L.(ngL)"~1 > 0 it follows that

2m

K5.C <0 and thus we can apply the criterion by Miyaoka and Mori. O



3 New examples of uniruled moduli spaces

3.1 The moduli space of Kummer surfaces associated to (1,21)-
polarised abelian surfaces.

The moduli space of (1,t¢)-polarised abelian surfaces is a Siegel modular
3-fold A; = T, \ Hy where Hy is the Siegel upper-half plane of genus 2
and I'; is the corresponding paramodular group which is isomorphic to the
integral symplectic group of the symplectic form with elementary divisors
(1,¢). The paramodular group I'; has the maximal extension I'} in Spy(R)
of order 2"® where v/(t) is the number of prime divisors of ¢ (see [GH1]). We
proved in [GH1, Theorem 1.5] that the modular variety A; = I'; \ Hy can
be considered as the moduli spaces of Kummer surfaces associated to (1,%)-
polarised abelian surfaces. The Kodaira dimension of the moduli space A
of (1,21)-polarised abelian surfaces is non-negative because the geometric
genus h*?(Asq) is positive for any smooth compactification of Ag; (see [G1]-
[G2]). We have a (4 : 1) covering Ao — A%;.

Theorem 3.1 The moduli space A3, of Kummer surfaces associated to
(1,21)-polarised abelian surfaces is uniruled.

Proof. The symplectic group of genus 2 can be considered as an orthogonal
group of signature (2,3) (see [G1] and [GH1]). In particular, one has

PA{£E} 2807 (L), Tj/{=Es} = 0% (Ly)/{+Es)

where Ly = 2U @ (—2t), U = I is the hyperbolic plane (i.e. the even
unimodular lattice of signature (1,1)), 2U = U @ U, (—2t) is the lattice of
rank 1 generated by an element of degree —2t, sign(L;) = (2, 3) and

00 0 01
00 0 10
Sie=10 0 =2t 0 O
01 0 0O
10 0 00

is the Gram matrix of the quadratic form on L; in the standard basis used
in [GH1]. Therefore the moduli spaces of (1,t)-polarised abelian surfaces
and associated Kummer surfaces are modular varieties of orthogonal type

A 2T\ Hy 2SO0 (L) \D(Ly), A =T\ Hy = OF (L) \ D(Ly).

In what follows we construct a reflective modular form with respect to
O™ (Ls1) and apply Theorem 2.1.

It was proved in [GN2, Main Theorem 2.2.3|, that L; with ¢ = 21 belongs
to a list of special lattices for which (meromorphic) reflective modular forms



exist. More exactly, according to this theorem there are three (meromorphic)
reflective forms for ¢t = 21. Now we construct a nearly holomorphic (reflec-
tive) Jacobi form &y 21 € Jpo21 of weight 0 and index 21 whose Borcherds
lifting is a holomorphic reflective modular form. We define this form as a
polynomial in standard Jacobi modular forms, namely we put

E
o1 = Aij (E4¢0,4 (—6E460 3054+ 10E110 3604 + Fa 20 4 — 5B126 3)

+ Es1E12¢0,3(00,3 — 4¢374)> — 2286195 360 4
+ ¢ 160,300,4 (95807 4 + 24005 285 4 + 21370 205 30,4 + 1165 3)

+ do1 (24¢o,2¢8]3 — 2708 500 300,4 + (—408067 285 5 — 62738 5) b5 4

— 88260205 305 4 + 30¢>8,4) — T5¢0,300,200 4

+ (766840305 5 + 2479665 3) B0 4+ (192060360 5 + 651365 365 2) 65 4
+ (24¢%,3¢é,2 + 96¢(5),3¢0,2)¢0,4 - 24¢8,3¢3,2 - 72q5573.

In this formula we use the following notation: Aq2(7) = n(7)** € S12(SLa(Z))
is the Ramanujan A-function, Fy; is the Jacobi-Eisenstein series of weight 4
and index ¢ (see [EZ]) and ¢o1, ¢0,2, ¢0,3, P04 are generators of the graded
ring of weak Jacobi forms of weight 0 with integral coefficients (see [G3,
Theorem 1.9])

k2
Jo. " = Zldo1, o2, P35 Po.4]-

The Jacobi forms ¢g 1, ¢0.2, ¢o3 are algebraically independent and 4¢¢ 4 =
$0,1%0,3 — 2(1)3,2. The full class of reflective Jacobi forms in [GN2] was ob-
tained using a recursive procedure in terms of Jacobi forms of smaller index.
Such formulae are very long to present here. We give in this paper a formula
for £p,21 in terms of the generators. Using explicit formulae for them written
in PARI (see [GN1]) we can easily calculate as many terms in the Fourier
expansion of {21 as we need. We have

fo21(7,2) = a1+ 24 + (427 +1687° + - )g
+(3rM 4322012 + - )g? + (42077 + 41520 4 - )P
+ (105718 2016717 4 - )g* 4 (2r2! + 16872 4 -- )¢ + O(¢%) (3)

where ¢ = €?™7 and r = €>™%. The Fourier coefficients in boldface represent
all Fourier coefficients a(n,)¢"r! in the Fourier expansion of &y 21 (7, 2) with
indices of negative hyperbolic norm 84n — 1% < 0.

The Borcherds lifting By, ,, (Z) of the Jacobi form &g 21 (see [GN1, The-
orem 2.1] and [GN2, §2.2]) is a holomorphic modular form of weight 12



and trivial character with respect to SO" (L21). We note that a Fourier
coefficient a(n, Dg"rt of o+ — in our situation we are in the case t = 21
— with negative hyperbolic norm —D = 4tn — [?> < 0 determines a divisor
Hp(l) with multiplicity a(n,l) of the Borcherds automorphic product B,
associated to £y, where

HD(Z):Wt({Z: <Z j}) GHQ‘TIT‘FZZ‘F&OZO}) CFt\Hg.

This divisor is reflective if and only if D = [?> — 4tn is a common divisor of
4t and 2[ (see [GN2, Lemma 2.2]). This means that the Borcherds product
Bg, ,, has three reflective divisors Hgs(0), 3H2g(14) and 2Ho1(21). Here
we give an orthogonal reformulation of this fact. For this we represent
the index (n,l) of the Fourier coefficient a(n,l) as vector (k, 4, 1) in the
dual hyperbolic lattice (Lgl))v of LEI) = U @ (—2t) (see [GN2, §2.2]). In
the homogeneous domain D(Lg;) the Fourier coefficient ¢! determines the
reflective divisors

D,, r€lLy, r=-2 div(r)=1, mult(D,)=1

where div(r) is the positive generator of the integral ideal (r, L21) C Z. The
two other Fourier coefficients determine the divisors

Du’ u€ L217 U2 = _27 le(U) = 27 mult(Du) =2 (2(]57“21),

D,, v € Ly, v?=-6, div(v)=3, mult(D,)=3 (3¢%r1).
The divisors D, (respectively D, and D,) form one orbit with respect
to SA(/)JF(Lgl). O(LY,/L91) is the 2-abelian group of order 4 (see [GH1]).

The reflection o, induces a non-trivial involution in the finite orthogo-
nal group O(LY,/Ls1) which is different from —id. Therefore O (Lg;) =

<O+(L21),av, —Es5). In fact Bg,,, (Z) is a modular form with respect to
the full orthogonal group O (Lg;). This is true because the modular form
Bey ,,(04(Z)) has the same divisor as B, ,,(Z). Therefore they are equal
up to a constant according to the Koecher principle.

Now we can apply Theorem 2.1. The modular form By, ,, of weight 12
with respect to I' = O"(Lg;) has three reflective divisors

diVr\D(Ly1) Beoor = mr(Dy) + 270 (D) + 370(Dy).

Since the weight 12 > 33 the modular variety O" (Lg1) \ D(La1) = T, \ Ha
is uniruled according to Theorem 2.1. ]

3.2 Uniruled moduli spaces of lattice polarised K3 surfaces.

Let S be a positive definite lattice. We put
L(S)=2U @ S(-1), sign(L(S)) = (2,2 +rank S) = (2,2 +n)



where S(—1) denotes the corresponding negative definite lattice of rank n.
In the applications of this paper S will be 4,, (n < 7), D,, (n < 8) and
FEg or direct sums of some of them. In what follows we denote by kL the
orthogonal sum of k copies of the lattice L and by L(m) the lattice L with
quadratic form multiplied by m.

If there exists a primitive embedding of L(.S) into the so-called K3 lattice

Lks = 3U @ 2Eg(—1) then the modular variety O+(L(S)) \ D(L(S)) is the
moduli space of lattice polarised K3-surfaces with transcendental lattice
T = L(S). The Picard lattice Pic(X) of a generic member X of this moduli
space is the hyperbolic lattice L(S)JL-KS. See [N], [Do] for more details. If
L(S) is 2-elementary, i.e. L(S)V/L(S) is a 2-elementary abelian group,
then many moduli spaces of lattice polarised K3 surfaces are unirational
or rational (see [Mal], [Ma2]). Here we mainly consider more complicated
discriminant groups. For 43, the discriminant group is the cyclic group
Cyz. In the examples of this subsection the discriminant group is equal to
Cm (3<m <8) and to CZ, C’g’, C’g.

Theorem 3.2 The modular variety M(S) = C~)+(L(S)) \ D(L(S)) of di-
mension 2 + rank S is uniruled for S equal to A, (2 < n <7), 243, 3A,,
2A2, D5, D7 and E6.

We construct strongly reflective modular forms for all L(S) in the theorem
using the quasi pullback of the Borcherds form ®15 (see §1). We refer the
reader to [BKPS], [GHS1]-[GHS3]| for details of the construction of quasi
pullback. The proof of the following result can be found in [GHS3, Theorem
8.2 and Corollary 8.12 ].

Theorem 3.3 Let L — Il5926 be a primitive nondegenerate sublattice of
signature (2,n), n > 3 and Dr, < Dy, s be the corresponding embedding
of the homogeneous domains. The set of —2-roots

R o(LY) ={r € Ily96 | ¥* = =2, (r,L) = 0}

in the orthogonal complement is finite. We put N(L‘) = #R_o(L*)/2.
Then the function

D19(2)

Q| =
HrGR-z(LL)/il(Z’ T)

~
€ Migy N1y (O (L), det),

DL

where in the product over r we fix a system of representatives in R_o(L*) /+1.
The modular form ®|;, vanishes only on rational quadratic divisors of type
Dy(L) where v € LY is the orthogonal projection to LV of a —2-root
r € I1596. Moreover ®|y, is a cusp form if R_o(L*) is not empty.



To apply Theorem 3.3 we need basic properties of the root lattices

Dn:{(xl”$n)EZn|fL'1++$nE2Z}’
An:{($1,...7$n+1)GZn+1‘$1_’_...+xn+1:0}.

It is known(see [CS, Ch. 4]) that A} /A, is the cyclic group of order n+1 and
D,/ / Dy, is isomorphic to the cyclic group of order 4 for odd n and to Cs x Co
for even n. The discriminant forms are generated by the following elements
having the minimal possible norm in the corresponding classes modulo A,
or Dy:

D) /Dy, = {0, en, (e1+ - +en)/2, (e1+ - +en_1—ey)/2 mod Dy},

1
AX/An:{si:nJrl( iyooyi, i—m—1,...,i—n—1), 1<i<n+1}.
n+1—1 )

If n < 7 then for any i we have ;25 < (ei,6i) = i(";;l;i) < 2. These

representations of the discriminant groups of A, and D,, show that for all
A- and D-lattices mentioned in Theorem 3.2 we have

Vae (SY/S)3aca: (a,a)<2. (4)

The same property is true for Fg, E7 and Eg. The discriminant group of Fjg
is the cyclic group of order 3. Each of the two non-zero classes of EY/Egs
contains a vector of square 4/3 (see [CS, Ch. 4, §8.3]).

We first construct a strongly reflective modular form with respect to
6+(2U @ A7(—1)). The even unimodular lattice 1326 is unique up to iso-
morphism, but it has 24 different models I 26 = 2U @& N(R)(—1) where
N(R)(—1) is a negative definite even unimodular Niemeier lattice with
root system R. If R is empty then N(()) is the Leech lattice. For exam-
ple for A; we can take N(2A4; @ 2D5). This gives us an embedding of
L(A7) =2U & A7(—1) in I3 96 = 2U & N(2A7 ®2D5)(—1) and a cusp form

|1 ar) € Se0(O" (L(A7)),det),  (|Ra(A7 & 2D5)| = 96).

®|1(4,) is strongly reflective. More pecisely we shall prove that the divisor
of @|L(A7) is similar to the divisor of ®12, namely

div(®lpa) = |J  Dr(L(A7). (5)
reL(A7)/£1
(r,r)=—2

According to Theorem 3.3 the divisors of ®|74,) are the rational quadratic
divisors D, where for v € L(A7)Y there exists u in the dual lattice of the
orthogonal complement of A7(—1) in the Niemeier lattice N(2A7®2D5)(—1)



such that v+ u € I3 26 and V42 =-2.Ifv =—-2thenu=0and visa
—2-root of both lattices 226 and L(A7). Therefore ®|(4,) vanishes along
this divisor. We assume that —2 < v? < 0. According to (4) there exists
h € AY(—1) such that v € h + L(A7) and v? = h%. Moreover v and h are
primitive in L(A7)Y. If not, then 2 € AY(—1) and (£, 2) > —(2)2 > 1,

m?’>m e -

But (1,1) < —I for any | € AY(—1). According to the Eichler criterion (see

[GHS4, Proposition 3.3]) there exists v € §6)+(L(A7)) such that v(v) = h.
Therefore y(D,) = Dy, It means that one can complete h € AY(—1) to aroot
in the Niemeier lattice N(2A7 @ 2D;5). This is not possible because all roots
of any Niemeier lattice N(R) are roots of the root lattice R. Thus property
(5) is proved. According to Theorem 2.1 the modular variety M(A7) is
uniruled. The same proof works for all the other lattices from Theorem 3.1.
The reason is that we only used the metric property (4). This finishes the
proof of Theorem 3.2.

Remark 1. One can formalize the quasi pullback consideration and to con-
struct more reflective modular forms using ®15 and other reflective modular
forms. See the forthcoming paper [GG].

Remark 2. We expect that one can find a similar construction for the
reflective modular form B, ,, using a vector of norm 12 in the Leech lattice
and the pullback of the Borcherds modular form ®;2 (see Remark 4.4 in
[GN1]).

3.3 Modular forms with the simplest possible divisor and uniruled
modular varieties.

The divisors of the modular forms used in §3.2 are generated by —2-
reflections (see (5)). It might happen that a modular group does not contain
—2-reflections but it contains —4- or —6-reflections. These divisors are sim-
pler in the sense of [G4] because the Mumford-Hirzebruch volume of such
modular divisors is smaller. Three series of strongly reflective modular forms
with the simplest divisor were constructed in [G4]. The longest series is the
modular tower D; — Dg. According to [G4, Theorem 3.2] the modular form

At2_m.p,, = Lift (3™ (1)0(7,21) - -0, Zm)) € Miz_(SO " (L(Dya)))
with 1 < m < 8 has the following divisor

div A1g—m,p,, = U Dy(L(Dny)) (6)
veEL(Dy,) /%1
vi=—4, div(v)=2

with some modification for m = 4. In this section we use the modular forms
with the simplest divisor for S = Dy = A1 & A1, Ay and Ds.

Theorem 3.4 The following modular varieties are uniruled

SM(D3) = SO (L(Ds)) \ D(L(Ds)),

10



M@2U(3) ® As(~1)) = 0" (2U(3) @ As(—1)) \ D(2U(3) @ Az(~1)),
SMT(L(241)) = T\ D(L(241)),

where I' = (§()+(L(2A1)),U,4) and o_4 is a reflection acting non trivially
on the discriminant group of L(2A;).

Proof. We note that D3 = As. Therefore SM(Ds3) is a double covering
of the variety M(As) considered in Theorem 3.2. The second variety is a
covering of M(Az) because (~)+(2U(3) @ As(—1)) is a congruence subgroup
of C~)+(2U @ Az(—1)). Therefore the claim of the theorem is stronger than

similar results of Theorem 3.2 for A, and Dsg.
In the case of D3 the ramification divisor of the modular projection

75, : DIL(Ds)) = SO (L(D3)) \ D(L(D3))

is equal to the divisor of Ag p, (see [G4, Lemma 2.1]). Thus the first modular
variety listed in the theorem is uniruled according to Theorem 2.1.
Consider the last case of the theorem. We note that

D2: <61+62761*62> 22141, O(Dg//DQ)gCé

The only non trivial element of O(DJ /Ds) is realized by the reflection og., .

All —4-vectors with divisor 2 form one SO (L(D2))-orbit according to the
Eichler criterion. Hence by (6) the form Ajg p, is strongly reflective with
respect to I'.

To prove uniruledness of the second modular variety we take the modular
form

. ~+
Ag a, = Lift(n* (7)9(1, 21)0(7, 22)9(7, 20 — 21)) € So(O " (L(Az))).
According to [G4, Theorem 4.2] we have

div Ag 4, = U Dy (L(A3)).
veL(Ag)/+1
v2=—6, div(v)=3

The modular form Ag 4, is anti-invariant with respect to reflections o, with
v? = —6, div(v) = 3. These reflections induce the non-trivial element of the
finite orthogonal discriminant group O(AY/A3) = Cy. Therefore we have
Ag 4, € So(OT(L(A2)), x2) where x2 is a character of order 2.

If v2 = —6 and div(v) = 3 then v/3 is a primitive vector of L(A3)" and
,5) = —%. Therefore v/3 is a —2 vector of the lattice

(

wle

L(A2)Y(3) = 2U(3) @ AY(—3) = 2U(3) ® Ay(—1).

11



We have O (L) = OT(LY) = O (LY(m)) and we can thus consider Ag 4,
as a modular form with respect to the last group. Since o, = 0(,3) €

6+(2U(3) @ Az(—1)) the modular form Ag 4, is strongly reflective with

respect to 0" (2U(3)® Aa(—1)). Therefore the second variety of the theorem
is also uniruled. O

Remark 1. S. Ma has informed us that he can in fact prove that the variety
SM™T(L(241)) is rational.

Remark 2. A modular form of type ®|rg) where S is a root lattice from
Theorem 3.2 is the automorphic discriminant of the moduli space of lattice
polarised K3 surfaces. It determines a Lorentzian Kac-Moody algebra and
gives an arithmetic version of mirror symmetry for K3 surfaces (see [GN3]
for more details). The strongly reflective modular forms from §3.3 have
similar interpretation for corresponding moduli spaces.
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