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Abstract

A cyclotomic polynomial Φn(x) is said to be ternary if n = pqr with p, q
and r distinct odd prime factors. Ternary cyclotomic polynomials are the
simplest ones for which the behaviour of the coefficients is not completely
understood. Eli Leher showed in 2007 that neighboring ternary cyclotomic
coefficients differ by at most four. We show that, in fact, they differ by
at most one. Consequently, the set of coefficients occurring in a ternary
cyclotomic polynomial consists of consecutive integers.

As an application we reprove in a simpler way a result of Bachman
from 2004 on ternary cyclotomic polynomials with an optimally large set
of coefficients.

1 Introduction

The nth cyclotomic polynomial Φn(x) is defined by

Φn(x) =
∏

1≤j≤n
(j,n)=1

(x− ζj
n) =

∞∑
k=0

an(k)xk,

with ζn a nth primitive root of unity (one can take ζn = e2πi/n). It has degree
ϕ(n), with ϕ Euler’s totient function. We write

f(x) =
∞∑

k=0

ckx
k =

deg(f)∑
k=0

ckx
k,

and put C(f) = {ck : 0 ≤ k ≤ deg(f)} and C0(f) = {ck : k ≥ 0}. Note that
C0(f) = C(f) ∪ {0}. For notational convenience we will write C(n) instead of
C(Φn) and C0(n) instead of C0(Φn).

Definition 1 If C0(n) ⊆ {−1, 0, 1}, then Φn is said to be flat.
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In the 19th century it was noted that Φn has a strong tendency to be flat and
this intrigued various mathematicians enough to study the coefficients of Φn more
intensively. For some recent contributions see e.g. Bachman [3] and Kaplan [8].

Using Lemma 2 below it is not difficult to establish the classical fact that if
Φn is not flat, then n has at least three distinct odd prime factors. The simplest
case arises when n = pqr with 2 < p < q < r odd primes. In this case n is said
to be ternary and Φn is said to be a ternary cyclotomic polynomial. Given Φpqr

one of the basic problems is to determine the maximum (in absolute value) of its
coefficients. Put M(p) = max{|m| : m ∈ C(n), n = pqr, p < q < r primes }.
Here it is known [1] that M(p) ≤ 3p/4. In 1968 it was conjectured by Sister
Marion Beiter [4] (see also [5]) that M(p) ≤ (p + 1)/2. She proved it for p ≤ 5.
The first to show that Beiter’s conjecture is false seems to have been Eli Leher
[10, p. 70], who gave the counter-example a17·29·41(4801) = −10, showing that
M(17) ≥ 10 > 9 = (17 + 1)/2. The present authors [7] provided infinitely many
counter-examples for the case p = 17 and in fact for every p ≥ 11. Moreover,
they have shown that for every ε > 0 and p sufficiently large M(p) > (2

3
− ε)p.

Thus only for p = 7 the Beiter conjecture remains open.
In his PhD thesis on numerical semigroups Leher shows that in case n is

ternary one has |an(k)− an(k − 1)| ≤ 4 ([10, Theorem 57]) and remarks that he
does not know whether this bound is sharp. Here we show that it is not.

Theorem 1 Let n be ternary, that is n = pqr with 2 < p < q < r odd primes.
Then, for k ≥ 1, |an(k)− an(k − 1)| ≤ 1.

Corollary 1 If n is ternary, then C(n) = {a, a + 1, . . . , b − 1, b} with a and b
integers, that is C(n) consists of a range of consecutive integers.

For convenience we will say that f ∈ Z[x] has the jump one property if neighbor-
ing coefficients differ by at most one. Thus Theorem 1 says that a ternary Φn has
the jump one property. If C0(n) consists of a range of consecutive integers, we say
Φn is coefficient convex. Thus Corollary 1 says that a ternary Φn is coefficient
convex. Notice that if Φn is flat, then Φn is coefficient convex. In Section 6 we
consider the problem of determining those n for which Φn is coefficient convex.

Leher uses ideas from the theory of semigroups to prove his result. In Section
2 we discuss the connection between numerical semigroups and cyclotomic poly-
nomials, for further details we refer to Leher’s PhD thesis.

In Section 4 we prove Theorem 1. The proof does not use any semigroup
ideas, but rests on a recent lemma of Kaplan that is discussed in Section 2, along
with some examples.

In Section 5 we show how our main result makes detecting so-called optimal
ternary cyclotomic polynomials easier and demonstrate this by giving a reproof
of the main result in Bachman [2]. The proof crucially rests on the examples
considered in Section 3.1.

For a nice survey of basic properties of cyclotomic coefficients we refer to
Thangadurai [14].
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2 Binary cyclotomic polynomials and numerical

semigroups

A number m is said to be a natural combination of the integers a1, . . . , am if
there are non-zero integers k1, . . . , km such that n = k1a1 + · · ·+ kmam. Let A =
{a1, . . . , am} be a set of natural numbers and S = S(A) = S(a1, . . . , am) be the set
of all natural combinations of the ai’s. Then S is a semigroup (that is, it is closed
under addition). The semigroup S is numerical if its complement Z≥0\S is finite.
If S is numerical, then max{Z≥0\S} = F (S) is the Frobenius number of S. It is
not difficult to prove that S(a1, . . . , am) is numerical iff a1, . . . , am are relatively
prime. The Hilbert series of the numerical semigroup S is the formal power series
HG(x) =

∑
s∈S xs ∈ Z[[x]]. For a numerical semigroup S, (1 − x)HS(x) is a

polynomial of degree F (S) + 1. Leher writes PS(x) = (1 − x)HS(x) and calls
PS(x) the semigroup polynomial. It can be shown that PS(p,q)(x) = Φpq(x). This
leads to the following interpretation of the coefficients apq(k):

apq(k) =

{
1 if k ∈ S(p, q), k − 1 6∈ S(p, q);
−1 if k 6∈ S(p, q), k − 1 ∈ S(p, q);
0 otherwise.

Lemma 2 below gives an explicit evaluation of the binary coefficients apq(k). Leher
[10, Theorem 50] shows that an analogous evaluation holds for the coefficients of
PS(p,q)(x) in case p and q are relatively prime positive integers exceeding one.

The above material leads to some natural questions. For which numerical
semigroups S do we have that

∑
x∈S xs divides xm − 1 for some m ? Another

question is to determine all integers n for which

(1− x)
∑
s∈Sn

xs = Φn(x), (1)

for some set of integers Sn.

3 Kaplan’s lemma reconsidered

Our main tool will be the following recent result due to Kaplan [8], the proof of
which uses the identity

Φpqr(x) = (1 + xpq + x2pq + · · ·)(1 + x + · · ·+ xp−1 − xq − · · · − xq+p−1)Φpq(x
r).

Lemma 1 (Nathan Kaplan, 2007). Let 2 < p < q < r be primes and k ≥ 0 be
an integer. Put

bi =
{

apq(i) if ri ≤ k;
0 otherwise.

We have

apqr(k) =

p−1∑
m=0

(bf(m) − bf(m+q)), (2)

where f(m) is the unique integer such that f(m) ≡ r−1(k − m)(mod pq) and
0 ≤ f(m) < pq.
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This lemma reduces the computation of apqr(k) to that of apq(i) for various i.
These binary cyclotomic polynomial coefficients are computed in the following
lemma. For a proof see e.g. Lam and Leung [9] or Thangadurai [14].

Lemma 2 Let p < q be odd primes. Let ρ and σ be the (unique) non-negative
integers for which 1 + pq = (ρ + 1)p + (σ + 1)q. Let 0 ≤ m < pq. Then either
m = α1p + β1q or m = α1p + β1q − pq with 0 ≤ α1 ≤ q − 1 the unique integer
such that α1p ≡ m(mod q) and 0 ≤ β1 ≤ p − 1 the unique integer such that
β1q ≡ m(mod p). The cyclotomic coefficient apq(m) equals{

1 if m = α1p + β1q with 0 ≤ α1 ≤ ρ, 0 ≤ β1 ≤ σ;
−1 if m = α1p + β1q − pq with ρ + 1 ≤ α1 ≤ q − 1, σ + 1 ≤ β1 ≤ p− 1;
0 otherwise.

We say that [m]p = α1 is the p-part of m and [m]q = β1 is the q-part of m. It is
easy to see that

m =


[m]pp + [m]qq if [m]p ≤ ρ and [m]q ≤ σ;
[m]pp + [m]qq − pq if [m]p > ρ and [m]q > σ;
[m]pp + [m]qq − δmpq otherwise,

with δm ∈ {0, 1}. Using this observation we find that, for i < pq,

bi =

{
1 if [i]p ≤ ρ, [i]q ≤ σ and [i]pp + [i]qq ≤ k/r;
−1 if [i]p > ρ, [i]q > σ and [i]pp + [i]qq − pq ≤ k/r;
0 otherwise.

Thus in order to evaluate apqr(n) using Kaplan’s lemma, it is not necessary to
compute f(m) and f(m + q) (as we did in [7]), it suffices to compute [f(m)]p,
[f(m)]q, [f(m + q)]p and [f(m + q)]q (which is easier). Indeed, as [f(m)]p =
[f(m + q)]p, it suffices to compute [f(m)]p, [f(m)]q, and [f(m + q)]q.

For future reference we provide a version of Kaplan’s lemma in which the
computation of bi has been made explicit, and thus is selfcontained.

Lemma 3 Let 2 < p < q < r be primes and k ≥ 0 be an integer. We put
ρ = [(p− 1)(q − 1)]p and σ = [(p− 1)(q − 1)]q. Furthermore, we put

bi =

{
1 if [i]p ≤ ρ, [i]q ≤ σ and [i]pp + [i]qq ≤ k/r;
−1 if [i]p > ρ, [i]q > σ and [i]pp + [i]qq − pq ≤ k/r;
0 otherwise.

We have

apqr(k) =

p−1∑
m=0

(bf(m) − bf(m+q)), (3)

where f(m) is the unique integer such that f(m) ≡ r−1(k − m)(mod pq) and
0 ≤ f(m) < pq.

Note that if i and j have the same p-part, then bibj 6= −1, that is bi and bj cannot
be of opposite sign. From this it follows that |bf(m) − bf(m+q)| ≤ 1, and thus we
infer from Kaplan’s lemma that |apqr(k)| ≤ p. It is possbile to improve on this
argument and get a sharper bound for |apqr(k)|. We hope to return to this issue
in a future paper. Of course if i and j have the same q-part, then bibj 6= −1 also.
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3.1 Examples of computing coefficients with Kaplan’s lemma

In this section we carry out a sample computation using Kaplan’s lemma. For
more involved examples the reader is referred to [7].

We remark that the result that an(k) = (p + 1)/2 in Lemma 4 is due to
Herbert Möller [12]. The reproof we give is rather different. The foundation for
Möller’s result is due to Emma Lehmer [11], who already in 1936 had shown that
an(1

2
(p − 3)(qr + 1)) = (p − 1)/2 with p, q, r and n satisfying the conditions of

Lemma 4.

Lemma 4 Let p < q < r be primes satisfying

p > 3, q ≡ 2(mod p), r ≡ p− 1

2
(mod p), r ≡ q − 1

2
(mod q).

Put n = pqr and k = (p − 1)(qr + 1)/2. Then an(k − r) = −(p − 1)/2 and
an(k) = (p + 1)/2.

Proof. First it will be shown that an(k) = (p + 1)/2. Using that q ≡ 2(mod p),
we infer from 1+ pq = (ρ+1)p+(σ +1)q that σ = p−1

2
and (ρ+1)p = 1+(p−1

2
)q

(and hence ρ = (p−1)(q−2)/(2p)). On invoking the Chinese remainder theorem
on checks that

−1

r
≡ 2 ≡ −(

q − 2

p
)p + q(mod pq). (4)

Furthermore, writing f(0) as a linear combination of p and q we see that

f(0) ≡ k

r
≡ (

p− 1

2
)q +

p− 1

2r
≡ (

p− 1

2
)q + 1− p ≡ ρp(mod pq). (5)

From (4) and (5) we infer that, for 0 ≤ m ≤ (p − 1)/2, we have [f(m)]p =
ρ−m(q− 2)/p ≤ ρ and [f(m)]q = m ≤ σ. On noting that [f(m)]pp + [f(m)]qq =
ρp + 2m ≤ ρp + p− 1 = [k/r], we infer that apq(f(m)) = bf(m) = 1 in this range
(see also Table 1).

TABLE 1

m [f(m)]p [f(m)]q f(m) apq(f(m)) bf(m)

0 ρ 0 ρp 1 1
1 ρ− (q − 2)/p 1 ρp + 2 1 1
. . . . . . . . . . . . 1 1
j ρ− j(q − 2)/p j ρp + 2j 1 1

. . . . . . . . . . . . 1 1
(p− 1)/2 0 (p− 1)/2 (p− 1)q/2 1 1

Note that f(m) ≡ f(0) − m/r ≡ ρp + 2m(mod pq), from which one easily
infers that f(m) = ρp+2m for 0 ≤ m ≤ p− 1 (as ρp+2m ≤ ρp+2(p− 1) < pq).
In the range p+1

2
≤ m ≤ p− 1 we have f(m) ≥ ρp+ p+1 = (p− 1)q/2+2 > k/r,

and hence bf(m) = 0.
On noting that f(m+ q) ≡ f(m)− q/r ≡ f(m)+2q ≡ ρp+2m+2q(mod pq),

one easily finds, for 0 ≤ m ≤ p − 1, that f(m + q) = ρp + 2m + 2q > k/r and
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hence bf(m+q) = 0.
By Kaplan’s lemma one infers that

an(k) =

p−1∑
m=0

(bf(m) − bf(m+q)) =

(p−1)/2∑
m=0

1 =
p + 1

2
.

Next we show that an(k−r) = −(p−1)/2. Put k′ = k−r and f1(m) ≡ r−1(k−
r − m)(mod pq) with 0 ≤ f1(m) < pq. Furthermore we put b′′f1(m) = apq(f1(m))

if f1(m) ≤ k′/r and zero otherwise. By (5) we deduce that

f1(0) ≡ f(0)− 1 ≡ (q − 1)p + (
p− 1

2
)q(mod pq).

An easy calculation yields the correctness of Table 2.

TABLE 2

m [f1(m)]p [f1(m)]q f1(m) b′′f1(m)

0 q − 1 (p− 1)/2 (p− 1)q/2− p 0
1 q − 1− (q − 2)/p (p + 1)/2 (p− 1)q/2− p + 2 -1
. . . . . . . . . . . . -1
j q − 1− j(q − 2)/p (p− 1)/2 + j (p− 1)q/2− p + 2j -1

. . . . . . . . . . . . -1
(p− 1)/2 q − 1− ρ p− 1 (p− 1)q/2− 1 -1
(p + 1)/2 q − 1− ρ− (q − 2)/p 0 (p− 1)q/2 + 1 0

For (p + 1)/2 ≤ m ≤ p− 1 one finds that f1(m) > k′/r and hence b′′f1(m) = 0.

On noting that, for 0 ≤ m ≤ p− 1, f1(m + q) = (p−1
2

)q− p + 2m + 2q > k′/r, we
find that b′′f1(m+q) = 0 in this range. Kaplan’s lemma now gives

an(k − r) =

p−1∑
m=0

(b′′f1(m) − b′′f1(m+q)) = −
(p−1)/2∑

m=1

1 = −(p− 1)

2
,

completing the proof. 2

We recall from [7] the following result, which is implicit in Kaplan’s paper [8].

Lemma 5 Let 2 < p < q < r be primes and n ≥ 0 be an integer. Suppose that
apqr(n) = m. Write n = [n

r
]r + n0 with 0 ≤ n0 < r. Let t > pq be a prime

satisfying t ≡ −r(mod pq). Let 0 ≤ n1 < pq be the unique integer such that
n1 ≡ q + p− 1− n0(mod pq). Then

apqt

([n

r

]
t + n1

)
= −m.

Using the latter lemma one immediately gets from Lemma 4 the following one,
however with the condition r1 > q replaced by r1 > pq. On proceeding as in
the proof of Lemma 4, one gets the feeling of déjà vu. Indeed, it turns out that
on running through m = 0, . . . , p − 1, m = q, q + 1, . . . , q + p − 1, the f(m) in
the setup of Lemma 4 correspond to the f(m) for q + p− 1−m in the setup of
Lemma 6, the effect being that the corresponding ternary coefficients differ by a
minus sign. On doing this it turns out that the condition r1 > pq can be relaxed
to the condition r1 > q.
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Lemma 6 Let p < q < r be primes satisfying

p > 3, q ≡ 2(mod p), r1 ≡
p + 1

2
(mod p), r1 ≡

q + 1

2
(mod q).

Put n1 = pqr1 and k1 = (p − 1)(qr1 + 1)/2 + q. Then an1(k1 − r1) = (p − 1)/2
and an1(k1) = −(p + 1)/2.

Remark. Note that, in Lemma 4, r = (lpq − 1)/2 for some odd l ≥ 1 and that
r1 = (l1pq + 1)/2 for some odd l1 ≥ 1.

4 Proof of the jump one property

Having Kaplan’s lemma at our disposal we are ready to give a proof of the jump
one property.
Proof of Theorem 1. Let f ′(m) be the unique integer 0 ≤ f ′(m) < pq such that
f ′(m) ≡ r−1(k− 1−m)(mod pq). Let b′i be defined as bi, but with k replaced by
k − 1. Note that

bi − b′i =

{
b k

r
if r|k and i = k

r
;

0 otherwise.
(6)

If r|k, then f(0) = k/r. For j = 0, . . . , p− 2 we have f ′(j) = f(j + 1) and since
f(j + 1) 6= f(0), we infer using (6) that

γ1 :=

p−1∑
j=0

(
bf(j) − b′f ′(j)

)
= bf(0) − b′f ′(p−1).

Likewise we see that

γ2 :=

p−1∑
j=0

(
bf(j+q) − b′f ′(j+q)

)
= bf(q) − b′f ′(p−1+q).

By Kaplan’s lemma it then follows that

an(k)− an(k − 1) = γ1 − γ2 = bf(0) − bf(q) − b′f ′(p−1) + b′f ′(p−1+q). (7)

Denote f(0), f(q), f ′(p−1), f ′(p−1+q) by, respectively, α1, α2, α3, α4. Note that
modulo pq we have

α1 ≡
k

r
, α2 ≡

k − q

r
, α3 ≡

k − p

r
, α4 ≡

k − p− q

r
.

Denote bf(0), bf(q), b
′
f ′(p−1), b′f ′(p−1+q) by, respectively, β1, β2, β3 and β4. Thus we

can rewrite (7) as

an(k)− an(k − 1) = β1 − β2 − β3 + β4. (8)

Since α1 and α2 have equal p-part, β1 and β2 cannot be of opposite sign and
hence |β1 − β2| ≤ 1 and by a similar argument we find |β3 − β4| ≤ 1. It follows
that |an(k)− an(k − 1)| ≤ 2.
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Since α1 and α3 have the same q-part, β1 and β3 cannot be of opposite sign.
Likewise, β2 and β4 cannot be of opposite sign. Put β = (β1, β2, β3, β4). It follows
that if an(k)− an(k − 1) = 2, then

β = (1, 0, 0, 1) or β = (0,−1,−1, 0). (9)

Likewise we infer that if an(k)− an(k − 1) = −2, then

β = (−1, 0, 0,−1) or β = (0, 1, 1, 0). (10)

The proof is completed if we can show that none of these four possibilities for β
can occur.
-Excluding β = (1, 0, 0, 1): We have α1 = [α1]pp+[α1]qq.and α4 = [α4]pp+[α4]qq
with [α1]p ≤ ρ, [α1]q ≤ σ, [α4]p ≤ ρ, [α4]q ≤ σ, α1 ≤ k/r and α4 ≤ (k − 1)/r.
Since α2 has the same p-part as α1 and the same q-part as α4, we find that
α2 ≡ [α1]pp + [α4]qq(mod pq). Since [α1]pp + [α4]qq ≤ ρp + σq < pq, it follows
that α2 = [α1]pp+[α4]qq. Since by assumption β2 = 0, we must have α2 > k/r (if
α2 ≤ k/r, then we would have β2 = 1). Likewise we infer that α3 = [α4]pp+[α1]qq
and α3 > (k − 1)/r. It follows that α2 + α3 > (2k − 1)/r. On the other
hand, α2 + α3 = α1 + α4 ≤ (2k − 1)/r. This contradiction shows that the case
β = (1, 0, 0, 1) cannot occur.
-Excluding β = (0,−1,−1, 0): We have

α2 = [α2]pp + [α2]qq − pq, α3 = [α3]pp + [α3]qq − pq

with [α2]p > ρ, [α2]q > σ, [α3]p > ρ, [α4]q > σ, α2 ≤ k/r and α3 ≤ (k − 1)/r.
Since α1 has the same p-part as α2 and the same q-part as α3, we find that
α1 ≡ [α2]pp + [α3]qq − pq(mod pq). Since 0 ≤ [α2]pp + [α3]qq − pq < pq, we
infer that α1 = [α2]pp + [α3]qq − pq. Since by assumption β1 = 0, we must
have α1 > k/r (for otherwise we would have β1 = −1). Likewise we infer that
α4 = [α3]pp + [α2]qq − pq. On the one hand we have α2 + α3 ≤ (2k − 1)/r, on
the other hand we have α2 + α3 = α1 + α4 > (2k− 1)/r, a contradiction showing
that β = (0,−1,−1, 0) cannot occur.
-Excluding the two remaining cases: can be done by minor variations of the
above arguments and is left to the interested reader.

Thus the proof is completed. 2

Remark. The result of Leher that |an(k)−an(k−1)| ≤ 4 is of course an immediate
consequence of (7).

5 Coefficient optimal ternary polynomials

In this section we give an application of the jump one property.
The difference between the largest and the smallest coefficients of Φpqr is

known to be at most p [2, (1.5)]. We say that Φpqr is coefficient optimal if the
difference between the largest and smallest coefficient is exactly p. Bachman [2]
found two infinite families of coefficient optimal ternary polynomials Φpqr, with
C(pqr) = [−(p−1)/2, (p+1)/2] for one family and C(pqr) = [−(p+1)/2, (p−1)/2]
for the other family. Using the jump one property one immediately infers the
following result.
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Lemma 7 Let p < q < r be odd primes. If a, b ∈ C(pqr) and b − a = p, then
C(pqr) = {−a, a + 1, . . . , b− 1, b}.

Thus the jump one property might be helpful in studying families of coefficient
optimal ternary cyclotomic polynomials. We demonstrate this by showing how it
can be used to reprove the main result in Bachman (whose proof is very different).

Theorem 2 Let p, q, r, k, n be as in Lemma 4. Then Φn is coefficient optimal
and in particular

C(n) = {an(k − r), an(k − r + 1), . . . , an(k)} = [−(p− 1)/2, (p + 1)/2] ∩ Z. (11)

Let p, q, r1, k1, n1 be as in Lemma 6. Then Φn1 is coefficient optimal and in
particular

C(n1) = {an1(k1 − r1), . . . , an1(k1)} = [−(p + 1)/2, (p− 1)/2] ∩ Z. (12)

Proof. By Lemma 4 one has an(k − r) = −(p− 1)/2 and an(k) = (p + 1)/2. By
the jump one property it then follows that the second equality in (11) holds. By
Lemma 7 with b = (p + 1)/2 and a = −(p− 1)/2 it follows that the first equality
in (11) holds.

The proof of the remaining assertion (12) is completely similar, but makes
use of Lemma 6 instead of Lemma 4. 2

6 Coefficient convexity

Theorem 1 gives naturally rise to the notion of (strong) coefficient convexity.
In this section we consider the issue of coefficient convexity of cyclotomic(-like)
polynomials in somewhat greater detail, leaving the proofs for a future publication
[6].

Definition 2 We say that Φn is coefficient convex if C0(n) = In ∩ Z for some
interval In in the reals. We say it is strongly coefficient convex if C(n) = In ∩ Z
for some interval In in the reals.

A cyclotomic polynomial can be coefficient convex without being strongly co-
efficient convex, e.g. Φ2p (p being an odd prime) is coefficient convex but not
strongly coefficient convex. The latter cyclotomic polynomial also shows that
a cyclotomic polynomial can be flat without being strongly coefficient convex.
Moreover, Theorems 3 and 4 below are false if one replaces ‘coefficient convex’
by ‘strongly coefficient convex’.

Using Theorem 1 it is not difficult to establish the following result.

Theorem 3 Suppose that n has at most 3 prime factors, then Φn is coefficient
convex.

Numerical computations suggest that if Φn is ternary, then Φ2n is coefficient
convex. If this would be true, then in Theorem 3 one can replace ‘3 prime
factors’ by ‘3 distinct odd prime factors’. This is best possible as the following
examples show:
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n = 7735 = 5 · 7 · 13 · 17, C(n) = [−7, 5]− {−9}
n = 530689 = 17 · 19 · 31 · 53, C(n) = [−50, 52]− {−48, 47, 48, 49, 50, 51}.
(Here we write [−a, b] for the range of integers [−a, b] ∩ Z.)

We note that if n is ternary, then Φ2n in general does not have the jump one
property.

Lemma 8 If the ternary polynomial Φn is not flat, then Φ2n does not have the
jump one property.

Proof. Suppose that an(k) = m and |m| > 1. Then by Theorem 1 and the
identity Φ2n(x) = Φn(−x), we infer that

|a2n(k)− a2n(k − 1)| = |an(k) + an(k − 1)| ≥ 2|m| − 1 > 1,

completing the proof. 2

Put

Ψn(x) =
xn − 1

Φn(x)
=

∏
1≤j≤n
(j,n)>1

(x− ζj
n).

Write Ψn(x) =
∑n−ϕ(n)

k=0 cn(k)xk. The coefficients cn(k) are integers that turn out
to behave in a way quite similar to the cyclotomic coefficients an(k). Apparently
Moree [13] was the first to systematically study these coefficients, which he called
inverse cyclotomic polynomial coefficients. Here it is not difficult to prove the
following result.

Theorem 4 Suppose that n has at most 3 distinct odd prime factors, then Ψn is
coefficient convex.

If n has four or more distinct odd prime factors, then Ψn need not be coefficient
convex, since we have for example
n = 60095 = 5 · 7 · 17 · 101, C(Ψn) = [−12, 12]− {−11, 11}.
n = 207805 = 5 · 13 · 23 · 139, C(Ψn) = [−16, 16]− {−15,−13, 13, 15}.
n = 335257 = 13 · 17 · 37 · 41, C(Ψn) = [−40, 40]− {−39,−37,−36, 37, 39}.

As we have seen the polynomials Φn(x) and Ψn(x) are divisors of xn − 1 that
have the tendency to be coefficient convex. One can wonder to what extent other
divisors of xn − 1 have the same tendency. (Notice that any divisor of xn − 1
can be written as a product of cyclotomic polynomials.) This problem will be
considered in [6].
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