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Abstract. We prove localization and Zariski-Mayer-Vietoris for higher Gro-
thendieck-Witt groups, alias hermitian K-groups, of schemes admitting an
ample family of line-bundles. No assumption on the characteristic is needed,
and our schemes can be singular. Along the way, we prove additivity, fibration
and approximation theorems for the hermitian K-theory of exact categories
with weak equivalences and duality.
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1. Introduction

A classical invariant of a scheme X is its Grothendieck-Witt group GW0(X)
of symmetric bilinear spaces over X . According to Knebusch [Kne77, §4], this is
the abelian group generated by isometry classes [V , ϕ] of vector bundles V over
X equipped with a non-singular symmetric bilinear form ϕ : V ⊗OX

V → OX
modulo the relations [(V , ϕ) ⊥ (V ′, ϕ′)] = [V , ϕ] + [V ′, ϕ′] and [M, ϕ] = [H(N )]
for every metabolic space (M, ϕ) with Lagrangian subbundle N = N⊥ ⊂ M and
associated hyperbolic space H(N ). Grothendieck-Witt groups naturally occur in
A1-homotopy theory [Mor04] and are to oriented Chow groups what algebraic K-
theory is to ordinary Chow groups, see [BM00], [FS07], [Hor08].

Using a hermitian version of Quillen’s Q-construction, we have defined in [Sch08]
the higher Grothendieck-Witt groups GWi(X), i ∈ N, of a scheme X , generalizing
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the group GW0(X). The purpose of this article is to prove the following Mayer-
Vietoris principle for open covers.

1.1. Theorem. Let X = U ∪ V be a scheme with an ample family of line-bundles
(e.g., quasi-projective over an affine scheme, or regular separated noetherian) which
is covered by two open quasi-compact subschemes U, V ⊂ X. Then there is a long
exact sequence, i ∈ Z,

· · ·GWi+1(U∩V )→ GWi(X)→ GWi(U)⊕GWi(V )→ GWi(U∩V )→ GWi−1(X) · · ·

This is a special case of our theorem 10.13 which also includes versions of theorem
1.1 for skew-symmetric forms, for forms with coefficients in line-bundles other than
OX and for certain non-commutative schemes. Note that we don’t need the common
assumption 1

2 ∈ Γ(X,OX), and X can be singular!
Theorem 1.1 is a consequence of two theorems, “Localization” and “Zariski-

excision”. To explain the implication, let X be a scheme, L a line bundle on X ,
n ∈ Z an integer, and Z ⊂ X a closed subscheme with open complement U . With
this set of data, we associate in definition 8.2 a topological space GW n(X on Z, L)
which, for Z = X , n = 0 and L = OX , yields the Grothendieck-Witt space GW (X)
introduced in [Sch08] whose homotopy groups are the higher Grothendieck-Witt
groups GWi(X) in theorem 1.1, see corollary 8.5. The space GW n(X on Z, L) is
the Grothendieck-Witt space (as defined in 2.11) of an exact category with weak
equivalences and duality, namely, the exact category of bounded chain complexes
of vector bundles on X which are (cohomologically) supported in Z, equipped with
the set of quasi-isomorphisms as weak equivalences and duality E 7→ Hom(E,L[n]),
where L[n] denotes the complex which is L in degree −n. If Z = X , we write
GWn(X,L) for GW n(X on Z, L). The non-negative part of theorem 1.1 is a
consequence of the following two theorems (proved in theorems 9.2 and 9.3). They
are extended to negative Grothendieck-Witt groups in §10 (theorems 10.11 and
10.12).

1.2. Theorem (Localization). Let X be a scheme with an ample family of line-
bundles, let U ⊂ X be a quasi-compact open subscheme with closed complement
Z = X − U . Let L be a line bundle on X, and n ∈ Z an integer. Then there is a
homotopy fibration

GWn(X on Z, L) −→ GW n(X, L) −→ GW n(U, j∗L).

1.3. Theorem (Zariski excision). Let j : U ⊂ X be quasi-compact open subscheme
of a scheme X which has an ample family of line-bundles. Let Z ⊂ X be a closed
subset such that Z ⊂ U . Then restriction of vector-bundles induces a homotopy
equivalence for all n ∈ Z and all line bundles L on X

GWn(X on Z, L)
∼
−→ GWn(U on Z, j∗L).

Theorems 1.1 – 1.3 have well-known analogs in algebraic K-theory proved by
Thomason in [TT90] based on the work of Waldhausen [Wal85] and Grothendieck
et al. [SGA6]. In fact, our theorems 9.2, 10.11, 9.3, 10.12 and 10.13 – special cases
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of which are theorems 1.2, 1.3 and 1.1 – are generalizations of the corresponding the-
orems in Thomason’s work. More recently, Balmer [Bal01] and Hornbostel [Hor05]
proved results reminiscent of our theorems 1.1 – 1.3. Both need X to be regular noe-
therian and separated and they need 2 to be a unit in the ring of regular functions
on X . Balmer works with (triangular) Witt-groups instead of Grothendieck-Witt
groups, and Hornbostel works with Karoubi’s hermitian K-groups of rings extended
to regular separated schemes using Jouanolou’s device of replacing such a scheme
by an affine vector-bundle torsor.

Neither Balmer’s nor Hornbostel’s methods can be generalized to cover our the-
orems 1.2, 1.3 and 1.1. This is because the assumption 1

2 ∈ Γ(X,OX) is ubiquitous
in their work, the analog of theorem 1.1 for Balmer’s triangular Witt groups fails
to hold for singular quasi-projective schemes (see [Schb] for a counter example even
with 1

2 ∈ Γ(X,OX )), Hornbostel imposes homotopy invariance which doesn’t hold
for singular schemes, and his proof uses Karoubi’s fundamental theorem [Kar80]
which fails to hold for higher Grothendieck-Witt groups when 1

2 /∈ Γ(X,OX ) (see
[Scha] for a counter example). Instead, we generalize Thomason’s work [TT90].
His proofs of the K-theory analogs of theorems 1.2, 1.3 and 1.1 are based on a
fibration theorem of Waldhausen [Wal85, 1.6.4] and on “invariance of K-theory
under derived equivalences” [TT90, Theorem 1.9.8] which itself is a consequence
of Waldhausen’s approximation theorem [Wal85, 1.6.7]. We prove in theorem 4.2
the analog of Waldhausen’s fibration theorem for higher Grothendieck-Witt groups.
Its proof, however, is not a formal consequence of “additivity” (proved for higher
Grothendieck-Witt groups in §3), contrary to the K-theory situation. Our proof
relies on the author’s cone construction in [Sch08]. “Invariance under derived equiv-
alences” as well as the naive generalization of Waldhausen’s approximation theorem
fail to hold for higher Grothendieck-Witt groups when “2 is not a unit” (see [Scha]
for a counter example). We prove in theorems 5.1 and 5.11 versions of Waldhausen’s
approximation theorem for higher Grothendieck-Witt groups. Though not as gen-
eral as one might wish, they are enough to show theorems 1.2, 1.3 and 1.1 and their
generalizations in §9 and §10.

Prerequisites. The article can be read independently of [TT90] and [Wal85],
though, of course, much of our inspiration derives from these two papers. The
reader is advised to have some background in homotopy theory in the form of
[GJ99, I-IV] and in the theory of triangulated categories in the form of [Kel96],
[Nee92], [Nee96, §1-2]. Also, we will frequently use results from [Sch08].

Acknowledgments. Part of the results of this article were obtained and written
down while I was visiting I.H.E.S. in Paris and Max-Planck-Institut in Bonn. I
would like to express my gratitude for their hospitality.

2. The Grothendieck-Witt space

In this section we introduce the Grothendieck-Witt group and the Grothendieck-
Witt space of an exact category with weak equivalences and duality (Definitions
2.4 and 2.11), and we show in proposition 2.20 that the Grothendieck-Witt space
of an exact category with duality defined here is equivalent to the one defined in
[Sch08]. We start with recalling definitions from [Sch08]. Note that our terminology
(for “category with duality”, “duality preserving functor”) sometimes differs from
standard terminology as in [Sch85], [Knu91].
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2.1. Categories with duality, Ch and form functors. A category with duality
is a triple (C, ∗, η) with C a category, ∗ : Cop → C a functor, η : 1 → ∗∗ a natural
transformation, called double dual identification, such that 1A∗ = η∗A ◦ ηA∗ for all
objects A in C. If η is a natural isomorphism, we say that the duality is strong. In
case η is the identity (in which case ∗∗ = id), we call the duality strict.

A symmetric form in a category with duality (C, ∗, η) is a pair (X,ϕ) where
ϕ : X → X∗ is a morphism in C satisfying ϕ∗ηX = ϕ. A map of symmetric forms
(X,ϕ) → (Y, ψ) is a map f : X → Y in C such that ϕ = f ∗ ◦ ψ ◦ f . Composition
of such maps is composition in C. For a category with duality (C, ∗, η), we denote
by Ch the category of symmetric forms in C. It has objects the symmetric forms in
C and maps the maps between symmetric forms.

A form functor from a category with duality (A, ∗, α) to another such category
(B, ∗, β) is a pair (F, ϕ) with F : A → B a functor and ϕ : F∗ → ∗F a natural trans-
formation, called duality compatibility morphism, such that ϕ∗

AβFA = ϕA∗F (αA)
for every object A of A. There is an evident definition of composition of form func-
tors, see [Sch08, 3.2]. The category Fun(A,B) of functors A → B is a category with
duality, where the dual F ] of a functor F is ∗F∗, and double dual identification
ηF : F → F ]] at an object A of A is the map βF (A∗∗) ◦ F (αA) = F (αA)∗∗ ◦ βFA.
To give a form functor (F, ϕ) is the same as to give a symmetric form (F, ϕ̂) in the
category with duality Fun(A,B) in view of the formulas ϕA = F (αA)∗ ◦ ϕ̂A∗ and
ϕ̂A = ϕA∗ ◦F (αA). A natural transformation (F, ϕ) → (G,ψ) of form functors is a

map (F, ϕ̂)→ (G, ψ̂) of symmetric forms in Fun(A,B).
A duality preserving functor between categories with duality (A, ∗, α) and (B, ∗, β)

is a functor F : A → B which commutes with dualities and double dual identifi-
cations, that is, we have F∗ = ∗F and F (α) = βF . In this case, (F, id) is a form
functor. We will consider duality preserving functors F as form functors (F, id).
Note that our use of the phrase “duality preserving functor” may differ from its use
by other authors!

Recall that an exact category is an additive category E equipped with a family
of sequences of maps in E , called conflations (or admissible short exact sequences,
or simply exact sequences),

X
i
→ Y

p
→ Z

satisfying a list of axioms, see [Qui73], [Kel96, §4], [Sch08, 2.1]. The map i in
an exact sequence is called inflation (or admissible monomorphism) and may be
depicted as �, and the map p is called deflation (or admissible epimorphism) and
may be depicted as � in diagrams. Unless otherwise stated, all exact categories in
this article will be (essentially) small.

2.2. Exact categories with weak equivalences. An exact category with weak
equivalences is a pair (E , w) with E an exact category and w ⊂ MorE a set of
morphisms, called weak equivalences, which contains all identity morphisms, is
closed under isomorphisms, retracts, push-outs along inflations, pull-backs along
deflations, composition and the 2 out of three property for composition (if 2 of
the 3 maps among a, b, ab are in w then so is the third). A weak equivalence is
usually depicted as ∼→ in diagrams. A functor F : A → B between exact categories
with weak equivalences (A, w) and (B, w) is called exact if it sends conflations to
conflations and weak equivalences to weak equivalences.
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For an exact category with weak equivalences (E , w), we will write wE for the
subcategory of weak equivalences in E . Its objects are the objects of E and its maps
the maps in w. Also, we will regard an exact category E (without specifying weak
equivalences) as an exact category with weak equivalences (E , i) where i is the set
of isomorphisms in E .

2.3. Exact categories with weak equivalences and duality. An exact category
with weak equivalences and duality is a quadruple (E , w, ∗, η) with (E , w) an exact
category with weak equivalences and (E , ∗, η) a category with duality such that
∗ : (Eop, w) → (E , w) is an exact functor (in particular, ∗(w) ⊂ w) and η : id→ ∗∗
is a natural weak equivalence, that is, ηX ∈ w for all objects X in E . We may
simply say E or (E , w) is an exact category with weak equivalences and duality if
the remaining data are understood. Note that if E is an exact category with weak
equivalences and duality, the category wE of weak equivalences in E is a category
with duality.

A symmetric form (X,ϕ) in (E , w, ∗, η) is called non-singular if ϕ is a weak
equivalence. In this case, we call the pair (X,ϕ) a symmetric space in (E , w, ∗, η).
A form functor (F, ϕ) : (A, w, ∗, η) → (B, w, ∗, η) is called exact if F : (A, w) →
(B, w) is exact. It is called non-singular, if the duality compatibility morphism
ϕ : F∗ → ∗F is a natural weak equivalence.

An exact category with duality is an exact category with weak equivalences and
duality where the set of weak equivalences is the set of isomorphisms. In particular,
the double dual identification has to be a natural isomorphism.

2.4. Definition. The Grothendieck-Witt group

GW0(E , w, ∗, η)

of an exact category with weak equivalences and duality (E , w, ∗, η) is the free
abelian group generated by isomorphism classes [X,ϕ] of symmetric spaces (X,ϕ)
in (E , w, ∗, η), subject to the following relations

(a) [X,ϕ] + [Y, ψ] = [X ⊕ Y, ϕ⊕ ψ]
(b) if g : X → Y is a weak equivalence, then [Y, ψ] = [X, g∗ψg], and
(c) if (E•, ϕ•) is a symmetric space in the category of exact sequences in E ,

that is, a map

E• :

ϕ•o

��

E−1
// i //

ϕ−1o

��

E0
p // //

ϕ0o

��

E1

ϕ1o

��
E∗

• : E∗
1

//
p∗

// E∗
0

i∗
// // E∗

−1

of exact sequences with (ϕ−1, ϕ0, ϕ1) = (ϕ∗
1η, ϕ

∗
0η, ϕ

∗
−1η) a weak equiva-

lence, then

[E0, ϕ0] =
[
E−1 ⊕E1,

(
0 ϕ1

ϕ−1 0

)]
.

2.5. Remark. If in definition 2.4, the set of weak equivalences is the set of isomor-
phisms, then we recover the classical Grothendieck-Witt group of an exact category
with duality, see for instance [Sch08, 2.9]. In this case, relation (c) says that the
class [E0, ϕ0] of a metabolic space (E0, ϕ0) with Lagrangian i : E−1 � E0 is equiv-
alent in the Grothendieck-Witt group to the class of the hyperbolic space H(E−1)
of the Lagrangian E−1. In particular, if E is the category Vect(X) of vector bundles
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on X , ∗ is the duality functor E 7→ Hom(E,OX) and η is the usual canonical dou-
ble dual identification, the group GW0(E , i, ∗, η) is Knebusch’s Grothendieck-Witt
group GW0(X) of a scheme X , denoted L(X) in [Kne77].

2.6. Definition. The Witt group

W0(E , w, ∗, η)

of an exact category with weak equivalences and duality (E , w, ∗, η) is the free
abelian group generated by isomorphism classes [X,ϕ] of symmetric spaces (X,ϕ)
in (E , w, ∗, η), subject to the relations 2.4 (a), (b) and

(c’) if (E•, ϕ•) is a symmetric space in the category of exact sequences in
(E , w, ∗, η), then [E0, ϕ0] = 0.

The hermitian S•-construction of [SY96], [HS04, 1.5], which gives rise to the
Grothendieck-Witt space to be defined in 2.11, is the edgewise subdivision of Wald-
hausen’s S•-construction [Wal85]. We review the relevant definitions and start with
the edgewise subdivision of a simplicial object, see [Wal85, 1.9 Appendix], [Seg73,
Appendix 1].

2.7. Edgewise subdivision. Let ∆ be the category with objects [n] the totally
ordered sets [n] = {0 < 1 < ... < n}, n ∈ N, and morphisms the order preserving
maps. Let n be the totally ordered set

n = {n′ < (n− 1)′ < ... < 0′ < 0 < ... < n}.

It is (uniquely) isomorphic to [2n + 1]. The assignment T : [n] 7→ n defines a
functor ∆ → ∆ where a map θ : [n] → [m] goes to the map T (θ) : n → m :
p 7→ θ(p), p′ 7→ θ(p)′. For a simplicial object X•, the edge-wise subdivision Xe

• of
X• is the simplicial object X• ◦ T . The inclusion [n] ↪→ n : i 7→ i defines a map
Xe → X of simplicial objects. It is known [Seg73, Appendix 1] that for a simplicial
set X•, the topological realization of X• and of its edge-wise subdivision Xe

• are
homeomorphic. We need the following (well-known) variant.

2.8. Lemma. For any simplicial set X•, the map Xe
• → X• is a homotopy equiv-

alence.

Proof. Let X• be a simplicial set. For a small category C, write XC for the set
Hom(N∗C, X•) of simplicial maps from the nerve N∗C of C to X•. Note that Xe

is the simplicial set [n] 7→ Xn. We define bisimplicial sets Xe
•• and X•• by the

formulas Xe
m,n = Xm×[n] and Xm,n = X[m]×[n]. Consider the following diagram of

bisimplicial sets

Xe
0•

∼ //

o

��

Xe
••

��

Xe
•0

∼oo

��
X0•

∼ // X•• X•0
∼oo

in which the horizontal maps are the canonical inclusions of horizontally respec-
tively vertically constant bisimplicial sets, and the vertical maps are induced by
the inclusions [m] ⊂ m. Once we show that all arrows labeled

∼
→ are homotopy

equivalences, we are done, because the right vertical map can be identified with
Xe

• → X•.
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The left vertical map Xe
0• → X0• is a homotopy equivalence since it can be

identified with the map XI
• → X• which is evaluation at 0, where I = N∗0 ∼= N∗[1]

is the standard simplicial interval. In order to see that the upper right horizontal
map Xe

•0 → Xe
•• is a homotopy equivalence, it suffices to prove that for every

n, the map Xe
•0 → Xe

•n is a homotopy equivalence of simplicial sets. Since the
map [0] → [n] : 0 7→ 0 induces a retraction Xe

•n → Xe
•0, we have to show that

the composition Xe
•n → Xe

•0 → Xe
•n is homotopic to the identity. The (unique)

natural transformation from the constant functor [n] → [n] : i 7→ 0 to the identity
functor [n] → [n] defines a functor h : [1]× [n] → [n] such that the restrictions to
{i}× [n]→ [n], i = 0, 1 are the constant respectively the identity functor. We have
a map of simplicial sets

(1) Ie ×Xe
•n → Xe

•n

which in degree m sends the pair (ξ, f) ∈ Im ×Xm×[n] to the composition

N∗(m× [n])
(1,ξ)×1
−→ N∗(m× [1]× [n])

(1×h)
−→ N∗(m× [n])

f
−→ X•

Since the two points {0, 1} = {0, 1}e ⊂ Ie are path connected in Ie, the map (1)
defines the desired homotopy. The other horizontal homotopy equivalences in the
diagram are similar, and we omit the details. �

Now we recall Waldhausen’s S•-construction [Wal85, §1.3].

2.9. Waldhausen’s S•-construction. Let Ar[n] denote the category whose ob-
jects are the arrows of [n] = {0 < 1 < ... < n} and whose morphisms are the
commutative squares in [n]. For an exact category with weak equivalences (E , w),
Waldhausen defines SnE ⊂ Fun(Ar[n], E) as the full subcategory of the category
Fun(Ar[n], E) of functors

A : Ar[n]→ E : (p ≤ q) 7→ Ap,q

for which Ap,p = 0 and Ap,q � Ap,r � Aq,r is a conflation whenever p ≤ q ≤ r,
p, q, r ∈ [n]. The category SnE is an exact category with weak equivalences where a
sequence A→ B → C of functors Ar[n]→ E in SnE is exact if Ap,q � Bp,q � Cp,q
is exact in E , and a map A → B of functors in SnE is a weak equivalence if
Ap,q → Bp,q is a weak equivalence in E for all p ≤ q ∈ [n].

The cosimplicial category n 7→ Ar[n] makes the assignment n 7→ SnE into a
simplicial exact category with weak equivalences. According to [Wal85], [TT90],
the K-theory space K(E , w) of an exact category with weak equivalences (E , w) is
the space

K(E , w) = Ω|wS•E|.

2.10. The hermitian S•-construction. The category [n] has a unique structure
of a category with strict duality [n]op → [n] : i 7→ n−i. This induces a strict duality
on the category Ar[n] of arrows in [n]. For an exact category with weak equivalences
and duality (E , w, ∗, η), the category Fun(Ar[n], E) is therefore a category with
duality (see 2.1). This duality preserves the subcategory SnE ⊂ Fun(Ar[n], E), and
makes SnE into an exact category with weak equivalences and duality. It turns out
that the simplicial structure maps of n 7→ SnE are not compatible with dualities.
However, its edgewise subdivision

Se•E : n 7→ SenE = S2n+1E
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is a simplicial exact category with weak equivalences and duality; the simplicial
structure maps being duality preserving. Considering SenE as a full subcategory of
Fun(Ar(n), E), the dual A∗ of an object A : Ar(n)→ E satisfies (A∗)p,q = A∗

q′,p′ for

p ≤ q ∈ n where p′′ trickily denotes p. The double dual identification A → A∗∗ at
(p ≤ q) is ηAp,q

.

2.11. Definition. Let (E , w, ∗, η) be an exact category with weak equivalences and
duality. By 2.10, the assignment n 7→ SenE defines a simplicial exact category Se•E
with weak equivalences and duality. The subcategories of weak equivalences define
a simplicial category with duality n 7→ wSenE . Taking associated categories of
symmetric forms (see 2.1), we obtain a simplicial category (wSe•E)h.

The composition (wSe•E)h → wSe•E → wS•E of simplicial categories, in which
the first arrow is the forgetful functor (X,ϕ) 7→ X , and the second is the canonical
map Xe

• → X• of simplicial objects (see 2.7), yields a map of classifying spaces

(2) |(wSe•E)h| → |wS•E|

whose homotopy fibre (with respect to a zero object of E as base point of wS•E) is
defined to be the Grothendieck-Witt space

GW (E , w, ∗, η)

of (E , w, ∗, η). If (∗, η) are understood, we may simply write GW (E , w) instead of
GW (E , w, ∗, η). We define the higher Grothendieck-Witt groups of (E , w, ∗, η) as the
homotopy groups

GWi(E , w, ∗, η) = πiGW (E , w, ∗, η), i ≥ 1,

and show in proposition 3.8 below that π0GW (E , w, ∗, η) ∼= GW0(E , w, ∗, η), so that
our definition here extends that in 2.4.

2.12. Remark. Orthogonal sum makes the spaces (wSe•E)h and GW (E , w, ∗, η)
into commutative H-spaces. Since the commutative monoid of connected compo-
nents of these spaces are groups (see proposition 3.8 and remark 3.9 below), both
spaces are actually commutative H-groups.

2.13. Functoriality. A non-singular exact form functor (F, ϕ) : (A, w, ∗, η) →
(B, w, ∗, η) between exact categories with weak equivalences and duality induces
maps

(F, ϕ) : (wSe•A)h → (wSe•B)h : (A,α) 7→ (FA,ϕAF (α)), and

F : wS•A → wS•B : A 7→ FA

of simplicial categories compatible with composition of form functors. Taking ho-
motopy fibres of (wSe•)h → wS•, we obtain an induced map

GW (F, ϕ) : GW (A, w, ∗, η)→ GW (B, w, ∗, η)

of associated Grothendieck-Witt spaces. For the next lemma, recall that a natural
transformation of form functors (F, ϕ) → (G,ψ) is a map of associated symmetric
forms in Fun(A,B). It is a natural weak equivalence if FA → GA is a weak
equivalence for all objects A of A.
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2.14. Lemma. Let (F, ϕ)
∼
→ (G,ψ) be a natural weak equivalence of non-singular

exact form functors (A, w, ∗, η) → (B, w, ∗, η) between exact categories with weak
equivalences and duality. Then, on associated Grothendieck-Witt spaces, (F, ϕ) and
(G,ψ) induce homotopic maps GW (A, w, ∗, η) → GW (B, w, ∗, η).

Proof. The natural weak equivalence (F, ϕ)
∼
→ (G,ψ) induces natural transforma-

tions of functors (wSenA)h → (wSenB)h and wSnA → wSnB. These natural trans-
formations define functors [1] × (wSenA)h → (wSenB)h and [1] × wSnA → wSnB
whose restrictions to 0, 1 ∈ [1] are the two given functors. They are compatible
with the simplicial structure and induce, after topological realization, the homo-
topy between GW (F, ϕ) and GW (G,ψ). �

Next, we will associate to every exact category with weak equivalences (E , w) a
category with weak equivalences and duality (HE , w) such that the Grothendieck-
Witt space of (HE , w) is equivalent to the K-theory space of (E , w). In this sense,
Grothendieck-Witt theory is a generalization of algebraic K-theory.

2.15. Hyperbolic categories. Let C be a category. Its hyperbolic category is the
category with strict duality HC = (C × Cop, ∗) where (X,Y )∗ = (Y,X). For any
category with duality A there is a functor Ah → A : (X,ϕ) 7→ X that “forgets
the forms”. We define the functor (HC)h → C as the composition of the functor
(HC)h → HC and the projection HC = C × Cop → C onto the first factor.

2.16. Lemma. For any small category C, the functor (HC)h → C is a homotopy
equivalence.

Proof. The category (HC)h of symmetric forms in HC is isomorphic to the category
whose objects are maps f : X → Y in C and where a map from f to f ′ : X ′ → Y ′

is a pair of maps a : X → X ′, b : Y ′ → Y in C such that f = bf ′a. Composition is
composition in C of the a’s and b’s. The functor (HC)h → C in the lemma sends the
object f : X → Y to X and the map (a, b) to a. Write F for this functor, and let
A be an object of the target category C. We will show that the comma categories
(A ↓ F ) are contractible. By Quillen’s theorem A [Qui73, §1], this implies the
lemma.

The category (A ↓ F ) has objects sequences A
x
→ X

f
→ Y of maps in C. A

morphism from (x, f) to A
x′

→ X ′ f
′

→ Y ′ is a pair a : X → X ′, b : Y ′ → Y of maps
in C such that x′ = ax and f = bf ′a. In particular, the category (A ↓ F ) is non-
empty as (1A, 1A) is one of its objects. Let C0 ⊂ (A ↓ F ) be the full subcategory
of objects (x, f) with x = 1A. The inclusion has a right adjoint (A ↓ F ) → C0 :
(x, f) 7→ (1A, fx) with counit of adjunction (1A, fx) → (x, f) given by the pair
of maps x : A → X and 1 : Y → Y . It follows that the inclusion C0 ⊂ (A ↓ F )
is a homotopy equivalence. Since the category C0 has a terminal object, namely
(1A, 1A), the categories C0 and (A ↓ F ) are contractible. �

If (E , w) is an exact category with weak equivalences, we make HE into an
exact category with weak equivalences and (strict) duality by declaring a map
(a, b) : (X,Y ) → (X ′, Y ′) in HE to be a weak equivalence if a : X → X ′ and
b : Y ′ → Y are weak equivalences in E . Note that wHE = HwE as categories with
strict duality.
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2.17. Proposition. Let (E , w) be an exact category with weak equivalences, then
there is a natural homotopy equivalence

GW (HE , w) ' K(E , w).

Proof. Consider the commutative diagram of simplicial categories

(wSe•HE)h
= //

��

(HwSe•E)h

��

∼

''OOOOOOOOOOOO

wSe•HE =
//

o

��

wSe•E × (wSe•E)
op

o

��

p1
// wSe•E

o

��
wS•HE

= // wS•E × (wS•E)op
p1 // wS•E

where the upper vertical maps are the functors that “forget the forms”. The lower
vertical maps are induced by the inclusion [n] ↪→ n and are thus homotopy equiva-
lences, by lemma 2.8. The diagonal map is a homotopy equivalence by lemma 2.16.
By the “octahedron axiom” for homotopy fibres applied to the upper right triangle,
it follows that the homotopy fibre of the composition of the left vertical maps is
equivalent to the loop space of the fibre of p1 : wS•E × (wS•E)op → wS•E which is
the loop of the fibre of (wS•E)op → (point) which is K(E , w). �

2.18. Remark. Let (E , w, ∗, η) be an exact category with weak equivalences and
duality. The functor

F : (E , w, ∗, η)→ (HE , w) : X 7→ (X,X∗)

together with the duality compatibility morphism (1, ηX) : (X∗, X∗∗) → (X∗, X)
is called forgetful form functor. It is a non-singular exact form functor between
exact categories with weak equivalences and duality. The map (wSe•E)h → wS•E
defining the Grothendieck-Witt space factors as

(wSe•E)h
F
→ (wSe•HE)h

∼
→ wS•E ,

where the second map is the homotopy equivalence in the diagram of the proof of
proposition 2.17 (going right, diagonally and down). It follows that the Grothendieck-
Witt space GW (E , w, ∗, η) is naturally homotopy equivalent to the homotopy fibre
of

(wSe•E)h
F
→ (wSe•HE)h.

We finish the section with a comparison result between the definition of the
Grothendieck-Witt space of an exact category with duality (E , i, ∗, η) in terms of
the hermitian S•-construction and the definition given in [Sch08, Definition 4.6] in
terms of the hermitian Q-construction. We recall the relevant definitions.
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2.19. The hermitian Q-construction. Recall from [Qui73] that for an exact
category E its Q-construction is the category with objects the objects of E and
maps X → Y equivalence classes of diagrams

(3) X
p
� U

i
� Y

with p a deflation and i an inflation. The datum (U, i, p) is equivalent to (U ′, i′, p′)
if there is an isomorphism g : U → U ′ in E such that p = p′ ◦ g and i = i′ ◦ g. The
composition in QE of maps X → Y and Y → Z represented by the data (U, i, p)
and (V, j, q) is given by the datum (U ×Y V, pq̄, jī) where q̄ : U ×Y V → U and
ī : U ×Y V → V are the canonical projections to U and V , respectively.

For an exact category with duality (E , ∗, η), the hermitian Q-construction is
the category Qh(E , ∗, η) with objects the symmetric spaces (X,ϕ) in E . A map
(X,ϕ)→ (Y, ψ) is a mapX → Y in Quillen’sQ-construction, that is, an equivalence
class of diagrams (3), such that the square of maps p, i, p∗ϕ and i∗ψ is commutative
and bicartesian. Composition of maps is as in Quillen’s Q-construction. For more
details, we refer the reader to [Sch08, 4.2] and the references in [Sch08, Remark
4.3].

In [Sch08, Definition 4.6], we defined the Grothendieck-Witt space of (E , ∗, η) as
the homotopy fibre of the forgetful functor QhE → QE : (X,ϕ) 7→ X . The following
proposition reconciles this definition with the one given in 2.11. This allows us to
freely use the results proved in [Sch08].

2.20. Proposition. For an exact category with duality (E , ∗, η), there are natural
homotopy equivalence between |QhE| and |(iSe•E)h| and between the homotopy fibre
of the forgetful functor |QhE| → |QE| and the Grothendieck-Witt space as defined
in 2.11.

Proof. For the first homotopy equivalence, the proof is the same as in [Wal85, 1.9
Appendix]. In detail, let iQh•E be the simplicial category which in degree n is the
category iQhnE whose objects are sequences X0 → X1 → ... → Xn of maps in QhE
and a map in iQhnE is an isomorphism of such sequences. As n varies, iQhnE defines a
simplicial category where face and degeneracy maps are defined as in the usual nerve
construction. The nerve of iQh•E as a bisimplicial set is isomorphic to the nerve of
the simplicial category which in degree m are the sequences X0 → X1 → ...→ Xm

of isomorphisms in QhE and where maps are maps of sequences in QhE (which
are not necessarily isomorphisms). The latter simplicial category is degree-wise
equivalent to QhE (via the embedding of QhE as the constant sequences). Thus the
latter simplicial category (and therfore also iQh•E) is homotopy equivalent to QhE .

Every object (Ap,q)p≤q ∈ n in (SenE)h defines a string of maps

A0′,0 → A1′,1 → ...→ An′,n

in QhE . This defines a map (iSe•E)h → iQh•E of simplicial categories which is
degree-wise an equivalence. Therefore, this map defines a homotopy equivalence on
topological realizations.
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For the second homotopy equivalence, consider the commutative diagram of
topological spaces

|(iSe•E)h|

��

|(iSe•E)h|
1oo ∼ //

��

|iQh•E|

��

|QhE|
∼oo

��
|iS•E| |iSe•E|

∼oo ∼ // |iQ•E| |QE|
∼oo

in which the lower right two horizontal maps are defined in a similar way as their
hermitian analogs above them (see [Wal85, 1.9 Appendix]), the three right vertical

maps are “forgetful” functors and all maps labeled
∼
→ are homotopy equivalences.

It follows that the homotopy fibre of the first vertical map is equivalent to the
homotopy fibre of the last vertical map. �

3. Additivity theorems

Additivity theorems are fundamental in algebraic K-theory. They imply, for
instance, Waldhausen’s fibration theorem [Wal85, 1.6.4] which is the basis for the
K-theory version of theorem 1.2. In this section, we prove the analogs of additivity
for higher Grothendieck-Witt theory. In order to formulate them, we recall the
concept of “admissible short complexes” from [Sch08, §7].

3.1. Admissible short complexes and their homology. Let (E , w, ∗, η) be an
exact category with weak equivalences and duality. A short complex in E is a
complex

(4) A• : 0→ A1
d1→ A0

d0→ A−1 → 0, (d0 ◦ d1 = 0)

in E concentrated in degrees −1, 0, 1. It is admissible if d1 and d0 are inflation and
deflation, respectively, and the map A1 → ker(d0) (or equivalently coker(d1) →
A−1) is an inflation (deflation). A sequence A• → B• → C• of admissible short
complexes is exact if Ai → Bi → Ci is exact in E ; a map A• → B• is a weak
equivalence if Ai → Bi is a weak equivalence in E , i = −1, 0, 1. The dual of the
complex (4) is the (admissible short) complex

A∗
−1

d∗0→ A∗
0

d∗1→ A∗
1,

and the double dual identification ηA• : A• → (A•)
∗∗ is ηAi

in degree i = −1, 0, 1.
We denote by ( sCx(E), w, ∗, η) the exact category with weak equivalences and du-
ality of admissible short complexes in E .

If (A•, α•) is a symmetric form in sCx(E), we write H0(A•, α•) for its zeroth
homology symmetric form. Its underlying object is H0(A•) = ker(d0)/im (d1),
and it is equipped with the form ᾱ which is the unique symmetric form such that
ᾱ| ker(d0) = α| ker(d0). This makes H0 : sCx(E) → E into a non-singular exact form
functor for every exact category with weak equivalences and duality E . For more
details, we refer the reader to [Sch08, §7].

In the special case of an exact category with duality (where all weak equivalences
are isomorphisms), the following two theorems were proved in [Sch08, Theorems
7.1, 7.4]. The K-theory version is due to Waldhausen in [Wal85, Theorem 1.4.2
and proposition 1.3.2], in view of the equivalence Se1E → sCx(E) : A 7→ (A1′0′ →
A1′1 → A01) of exact categories with weak equivalences and duality.
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3.2. Theorem (Additivity for short complexes). Let (E , w, ∗, η) be an exact cate-
gory with weak equivalences and duality. Then the non-singular exact form functor
H0 : sCx(E) → E together with the exact functor ev1 : sCx(E) → E : A• 7→ A1

induce homotopy equivalences (H0, ev1) :

(wSe• sCxE)h
∼
−→ (wSe•E)h × wS•E

GW ( sCxE , w, ∗, η)
∼
−→ GW (E , w, ∗, η) ×K(E , w).

For the next theorem, recall that a form functor (A, ∗, η) → (B∗, η) between
categories with duality is nothing else than a symmetric form (F, ϕ) in the category
with duality of functors (Fun(A,B), ], η), see 2.1.

3.3. Theorem (Additivity for functors). Let (A, w, ∗, η) and (B, w, ∗, η) be exact
categories with weak equivalences and duality. Given a non-singular exact form
functor (F•, ϕ•) : (A, w, ∗, η)→ sCx(B, w, ∗, η), that is, a commutative diagram of
exact functors Fi : (A, w)→ (B, w)

F• :

ϕ•o

��

F1
// d1 //

ϕ1o

��

F0
d0 // //

ϕ0o

��

F−1

ϕ−1o

��

F ]• : F ]−1
//
d

]
0

// F ]0
d

]
1

// // F ]1

with d0d1 = 0, F1 � ker d0 an inflation, and (ϕ1, ϕ0, ϕ−1) = (ϕ]−1η, ϕ
]
0η, ϕ

]
1η).

Then the two non-singular exact form functors

(5) (F0, ϕ0) and H0(F•, ϕ•) ⊥
(
F1 ⊕ F−1,

(
0 ϕ−1

ϕ1 0

))

induce homotopic maps on Grothendieck-Witt spaces

GW (A, w, ∗, η) → GW (B, w, ∗, η).

We will reduce the proofs of the additivity theorems 3.2 and 3.3 to the case
of exact categories with dualities dealt with in [Sch08, §7]. This will be done
with the help of the simplicial resolution lemma 3.7 below. For that, we need to
replace an exact category with weak equivalences and duality (where the double
dual identification is a natural weak equivalence) by one with a strong duality
(where the double dual identification is a natural isomorphism) without changing
its hermitian K-theory. This will be done in the strictification lemma 3.4 below.

We introduce notation for lemma 3.4. Let ExWeDu be the category of small
exact categories with weak equivalences and duality; and non-singular exact form
functors as maps. Recall that a category with duality (A, ∗, η) has a strict duality
if η = id (and in particular, ∗∗ = id). Let ExWeDustr be the category of small
exact categories with weak equivalences and strict duality; and duality preserving
functors as maps. Write lax : ExWeDustr ⊂ ExWeDu for the natural inclusion.
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3.4. Lemma (Strictification lemma). There is a (strictification) functor

str : ExWeDu→ ExWeDustr : (A, w, ∗, η) 7→ (Astr
w , w, ], id)

and natural transformations (Σ, σ) : id → lax ◦ str and (Λ, λ) : lax ◦ str → id such
that the compositions (Σ, σ) ◦ (Λ, λ) and (Λ, λ) ◦ (Σ, σ) are weakly equivalent to
the identity form functor. In particular, for any exact category with weak equiv-
alences and duality (A, w, ∗, α), we have a homotopy equivalence of Grothendieck-
Witt spaces

GW (Σ, σ) : GW (A, w, ∗, α)
∼
−→ GW (Astr

w , w, ], id).

Proof. The construction of the strictification functor is as follows. Let (A, w, ∗, α)
be an exact category with weak equivalences and duality. The objects of Astr

w are

triples (A,B, f) with A, B objects of A and f : A
∼
→ B∗ a weak equivalence in A. A

morphism from (A0, B0, f0) to (A1, B1, f1) is a pair (a, b) of morphisms a : A0 → A1

and b : B1 → B0 in A such that f1a = b∗f0. Composition is composition of the a’s
and b’s in A. A map (a, b) is a weak equivalence if a and b are weak equivalences in
A. A sequence (A0, B0, f0)→ (A1, B1, f1)→ (A2, B2, f2) is exact if A0 → A1 → A2

and B2 → B1 → B0 are exact in A. The duality ] : (Astrw )op → Astrw is defined
by (A,B, f : A → B∗)] = (B,A, f∗αB) on objects, and by (a, b)] = (b, a) on
morphisms. The double dual identification is the identity natural transformation.
The category thus constructed Astrw = (Astrw , w, ], id) is an exact category with
weak equivalences and strict duality. We may write Astr, or Astrw for (Astrw , w, ], id)
if the remaining data are understood. If (F, ϕ) : (A,w, ∗, α)→ (B, v, ∗, β) is a non-
singular exact form functor, its image under the strictification functor is the functor
F str : Astrw → Bstrv given by F str : (A,B, f) 7→ (FA, FB, ϕBF (f)) on objects, and
by (a, b) 7→ (Fa, Fb) on morphisms. One checks that F str preserves composition
and commutes with dualities.

The natural transformations (Σ, σ) : id→ lax ◦ str and (Λ, λ) : lax ◦ str→ id are
defined as follows. The functor Σ : A → Astrw sends an object A to (A,A∗, αA) and
a morphism a to (a, a∗). The duality compatibility morphism σ : Σ(A∗)→ Σ(A)] is
the map (1, αA) : (A∗, A∗∗, αA∗)→ (A∗, A, 1). The functor Λ : Astr → A sends the
object (A,B, f) to A and a morphism (a, b) to a, and is equipped with the duality
compatibility morphism λ : Λ[(A,B, f)]]→ [Λ(A,B, f)]∗ the map f∗αB : B → A∗.

The composition (Σ, σ)◦(Λ, λ) is the functor sending (A,B, f) to (A,A∗, αA), and
the morphism (a, b) to (a, a∗). It is equipped with the duality compatibility mor-
phism (f∗αB , f) : (B,B∗, αB) → (A∗, A, 1). There is a natural weak equivalence

of form functors (Σ, σ) ◦ (Λ, λ)
∼
→ id given by the map (1, f∗αB) : (A,A∗, αA) →

(A,B, f). Regarding the other composition, we have (Λ, λ) ◦ (Σ, σ) = id.
By lemma 2.14, the form functor (Σ, σ) : A → Astr

w induces a homotopy equiva-
lence of Grothendieck-Witt spaces with homotopy inverse (Λ, λ). �

3.5. Remark. Here is a slight generalization of lemma 3.4. If v is another set
of weak equivalences for (A, ∗, α) such that w ⊂ v, then (Astr

w , v, ], id) is also an
exact category with weak equivalences and strict duality. The form functors (Λ, λ) :
(Astr

w , v) → (A, v) and (Σ, σ) : (A, v) → (Astr
w , v) are still exact and non-singular

with compositions that are naturally weakly equivalent to the identity functors. In
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particular, we have a homotopy equivalence

GW (Σ, σ) : GW (A, v, ∗, α)
∼
−→ GW (Astr

w , v, ], id).

The next lemma will sometimes allow us to replace an exact category with weak
equivalences and duality by a simplicial exact category with duality (where weak
equivalences and double dual identification are isomorphisms).

3.6. Notation for lemma 3.7. Let (E , w, ∗, η) be an exact category with weak
equivalences and duality, and let D be an arbitrary (small) category. Recall from
2.1 that the category Fun(C, E) of functors D → E is a category with duality.
It is an exact category with weak equivalences and duality if we declare maps
F → G (sequences F−1 → F0 → F1) of functors D → E to be a weak equivalence
(conflation) if F (A) → G(A) is a weak equivalence (F−1(A) → F0(A) → F1(A) is
a conflation) in E for all objects A of D. We write Funw(D, E) ⊂ Fun(D, E) for
the full subcategory of those functors F : D → C for which the image F (d) of all
maps d of D are weak equivalences in E : F (d) ∈ wE . The category Funw(D, E)
inherits from Fun(D, E) the structure of an exact category with weak equivalences
and duality. In particular, for n ∈ N and (E , w, ∗, η) an exact category with weak
equivalences and strong duality, the category Funw(n, E) is an exact category with
weak equivalences and strong duality. It has objects strings of weak equivalences
and maps commutative diagrams in E . Varying n, the categories Funw(n, E) define
a simplicial exact category with weak equivalences and strong duality. Recall that
the symbol i stands for the set of isomorphisms in a category.

3.7. Lemma (Simplicial resolution lemma). Let (E , w, ∗, η) be an exact category
with weak equivalences and strong duality. Then there are homotopy equivalences

(wSe•E)h ' |n 7→ (iSe• Funw(n, E))h|,

GW (E , w) ' |n 7→ GW (Funw(n, E), i)|

which are functorial for exact form functors (F, ϕ) for which ϕ is an isomorphism.

Proof. We start with some general remarks. Let C be a category, and recall that i
stands for the set of isomorphisms in C. Since C = Funi([0], C), inclusion of degree-
zero simplices yields a map of simplicial categories C → (n 7→ Funi([n], C)) which is
degree-wise an equivalence of categories, and thus induces a homotopy equivalence
after topological realization. Using the equality of bisimplicial sets

p, q 7→ Np Funi([q], C) = NqiFun([p], C),

where N• stands for the nerve of a category, we obtain a homotopy equivalence
|C|

∼
→ |n 7→ iFun([n], C)|. Since the topological realizations of p 7→ iFun([p], C) and

of p 7→ iFun([p]op, C) are isomorphic, we have a homotopy equivalence

(6) C
∼
→ |n 7→ iFun([n]op, C)|.

The homotopy equivalence is natural in the category C.
Let (C, ∗, η) be a category with strong duality. There is an equivalence of cate-

gories iFun([n]op, Ch)→ (iFun(n, C))h which sends an object

(Xn, ϕn)
fn
→ (Xn−1, ϕn−1)

fn−1
→ · · ·

f1
→ (X0, ϕ0)
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of the left hand category to the object

Xn
fn
→ Xn−1

fn−1
→ · · ·

f1
→ X0

ϕ0
→ X∗

0

f∗
1→ X∗

1

f∗
2→ · · ·

f∗
n→ X∗

n

equipped with the form (ηXn
, ..., ηX0 , 1, ..., 1). A map (gn, ..., g0) (which is an iso-

morphism compatible with forms) is sent to the map (gn, ..., g0, (g
∗
0)−1, ..., (g∗n)

−1).
The equivalence is functorial in [n] ∈ ∆ and thus induces a homotopy equivalence
after topological realization. Together with (6), we obtain a homotopy equivalence
of topological spaces

(7) |Ch|
∼
−→ |n 7→ (iFun(n, C))h|

which is natural for categories with strong duality (C, ∗, η) and form functors (F, ϕ)
between them for which ϕ is an isomorphism.

For an exact category with weak equivalences and strong duality (E , w, ∗, η), we
apply the general homotopy equivalence (7) to the form functor wSepE → wSepHE
induced by the forgetful form functor E → HE (see remark 2.18). Varying p, we
obtain a map of homotopy equivalences after topological realization

(wSe•E)h
∼ //

��

|n 7→ (iSe• Funw(n, E))h|

��
(wSe•HE)h

∼ // |n 7→ (iSe•HFunw(n, E))h|.

The top row gives the first homotopy equivalence of the lemma. By remark 2.18, the
left vertical homotopy fibre of the diagram is GW (E , w, ∗, η). In view of Bousfield-
Friedlander’s theorem [BF78, B4], [GJ99, Theorem IV 4.9], the homotopy fibre
of the right vertical map is the simplicial realization of the degree-wise homotopy
fibres. By remark 2.18, this is

|n 7→ GW (Funw(n, E), i, ∗, η)|.

�

Before proving the additivity theorems, we give a first application of the sim-
plicial resolution lemma and show that π0GW (E , w, ∗, η) is the Grothendieck-Witt
group as defined in 2.4.

3.8. Proposition (Presentation of GW0). Let (E , w, ∗, η) be an exact category with
weak equivalences and duality. There is a natural isomorphism

GW0(E , w, ∗, η) ∼= π0GW (E , w, ∗, η).

Proof. In view of relation 2.4 (b) and lemma 2.14, weakly equivalent non-singular

exact form functors (F, ϕ)
∼
−→ (G,ψ) induce the same map on GW0 and on π0GW .

Therefore, we can replace (E , w) by its strictification (E str
w , w) from lemma 3.7 which

has a strong (in fact strict) duality. So we can assume the duality on (E , w) to
be strong which will allow us to use the simplicial resolution lemma 3.7. For a
bisimplicial set X••, there is a co-equalizer diagram

(8) π0 |X1•|
d1 //

d0

// π0 |X0•| // π0 |X••|.
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This is well known and follows from an examination of the usual skeletal filtration
of |X••| = |n 7→ Xn,n| = |n 7→ Xn•| – which the reader can find in [GJ99, Diagram
IV.1 (1.6)], for instance – using the fact that the functor π0 : ∆op Sets → Sets
preserves push-out diagrams as it is left adjoint to the inclusion functor Sets →
∆op Sets. By the simplicial resolution lemma 3.7 and the fact (proven in [Sch08,
Proposition 4.14] together with proposition 2.20) that the proposition holds when
the set of weak equivalences is the set of isomorphisms, we deduce that π0GW (E , w)
is the co-equalizer of the diagram

GW0


Funw(1, E)


 d1 //

d0

// GW0


Funw(0, E)




of Grothendieck-Witt groups of exact categories with duality. It suffices therefore to
display GW0(E , w, ∗, η) as the co-equalizer of the same diagram. Evaluation at the
object 0′ of 0 defines a non-singular exact form functor F : (Funw(0, E), i)→ (E , w)
which sends the object f : X0′ → X0 to F (f) = X0′ and has duality compatibility
morphism F (f∗) → F (f)∗ the map f∗ : X∗

0 → X∗
0′ . The form functor induces a

map GW0(Funw(0, E), i) → GW0(E , w) which equalizes d0 and d1 in view of the
relation 2.4 (b). We therefore obtain a map from the co-equalizer of the diagram
to GW0(E , w). To construct its inverse, consider the map from the free abelian
group generated by isomorphism classes [X,ϕ] of symmetric spaces in (E , w) to
GW0(Funw(0, E), i) sending (X,ϕ) to ϕ : X → X∗ equipped with the non-singular
form (ηX , 1). This map is surjective and factors through relations 2.4 (a) and (c).
The map induces a surjective map to the co-equalizer which factors through relation
2.4 (b) and thus induces a surjective map from GW0(E , w, ∗, η) to the co-equalizer.
Since composition with the map from the co-equalizer to GW0(E , w, ∗, η) is the
identity, the claim follows. �

3.9. Remark. Using the co-equalizer diagram (8), one can show directly the iso-
morphism π0|(wSe•E)h|

∼= W0(E , w, ∗, η) without the need of the simplicial resolu-
tion lemma.

Proof of theorem 3.2. In view of the strictification lemma 3.4 we can assume the
duality on E to be strong. By the simplicial resolution lemma 3.7 the proof reduces
further to the case of an exact category with duality (in which all weak equivalences
are isomorphisms). This case was proved in [Sch08, theorems 7.4, 7.10] in view of
proposition 2.20. �

3.10. Proof of theorem 3.3. Theorem 3.3 is a formal consequence of theorem 3.2.
Let (E , w, ∗, η) be an exact category with weak equivalences and duality. Con-
sider the form functors sCx(E) → HE : E• 7→ (E1, E

∗
−1) and HE → sCx(E) :

(E1, E−1) 7→ (E1 → E1 ⊕ E∗
−1 → E∗

−1) with duality compatibility morphisms

(1, η) : (E∗
−1, E

∗∗
1 ) → (E∗

−1, E1) and (η,
(

0 1
η 0

)
, 1) : (E−1 → E−1 ⊕ E

∗
1 → E∗

1 ) →
(E∗∗

−1 → E∗
1 ⊕ E∗∗

−1 → E∗
1 ). Together with the form functor H0 : sCx(E) → E

and the duality preserving functor E → sCx(E) : E 7→ (0 → E → 0) they define
non-singular exact form functors

E ×HE → sCx(E)→ E ×HE

whose composition is weakly equivalent to the identity functor. By the additiv-
ity theorem for short complexes (theorem 3.2), the second form functor induces a
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homotopy equivalence in hermitian K-theory. It follows that the two form func-
tors induce inverse homotopy equivalences on Grothendieck-Witt spaces and on
hermitian S• constructions. Therefore, the compositions

A
(F•,ϕ•)
−→ sCx(B)

ev0−→ B and A
(F•,ϕ•)
−→ sCx(B)→ B ×HB → sCx(B)

ev0−→ B

induce homotopic maps in hermitian K-theory. These compositions are (weakly
equivalent to) the maps in (5). �

3.11. Remark. Iterated application of theorem 3.3 implies homotopy equivalences

(wSe•S
e
nE)h

∼
−→





(wSe•E)h ×
k∏

p=1

wS•E , n = 2k + 1

k∏

p=1

wS•E , n = 2k.

This allows us to identify (wSe•S
e
•E)h with the Bar construction of the H-group

wS•E acting on (wSe•E)h and leads to a homotopy fibration

(wSe•E)h → (wSe•S
e
•E)h → wS•S•E

in which the first map is “inclusion of degree zero simplices” and the second map
is the “forgetful map” (E,ϕ) 7→ E followed by the canonical homotopy equivalence
Xe

• → X•. In particular, the iterated hermitian S•-construction (wSe•S
e
•E)h is

not a delooping of (wSe•E)h contrary to the K-theory situation, compare [Wal85,
proposition 1.5.3 and remark thereafter].

3.12. Remark. Define the Witt-theory space W (E , w, ∗, η) as the colimit of the top
row in the sequence of homotopy fibrations

GW (E , w) // (wSe•E)h //

��

(wSe•S
e
•E)h //

��

(wSe•S
e
•S

e
•E)h //

��

· · ·

wS•E wS•S•E wS•S•S•E

Since the spaces in the second row get higher and higher connected, we see that
π0W (E , w, ∗, η) = W0(E , w, ∗, η) and π1W (E , i, ∗, η) = Wform(E , ∗, η), where the
group Wform(E , ∗, η) is the Witt-group of formations in (E , ∗, η), that is, the cok-
ernel of the hyperbolic map K0(E) → GWform(E) : [X ] 7→ [HX,X,X∗] to the
Grothendieck-Witt group of formations GWform(E) defined in [Sch08, 4.11].

If E is a Z[ 12 ]-linear category and “complicial”, we show in [Scha] that the
Grothendieck-Witt spaceW (E , w, ∗, η) is the infinite loop space associated with (the
(−1)-connected cover of) Ranicki’s L-theory spectrum, and its homotopy groups

πiW (E , w, ∗, η) = W−i(w−1E , ∗, η), i ≥ 0,

are Balmer’s Witt groupsW−i(w−1E , ∗, η) of the triangulated category with duality
(w−1E , ∗, η). At this point, I don’t know how to calculate πnW (E , i, ∗, η), n ≥ 2,
for (complicial) (E , w, ∗, η) when E is not Z[ 12 ]-linear.
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4. Change of weak equivalences and Cofinality

In this section we prove in theorems 4.2 and 4.10 the higher Grothendieck-Witt
theory analogs of Waldhausen’s fibration theorem [Wal85, 1.6.4] and of Thomason’s
cofinality theorem [TT90, 1.10.1].

Waldhausen’s K-theory version of theorem 4.2 below needs a “cylinder functor”.
The purpose of the next definition is to define the higher Grothendieck-Witt theory
analog. We first fix some notation. For an exact category with weak equivalences
(E , w), write Ew ⊂ E for the full subcategory of w-acyclic objects, that is, those
objects E of E for which the unique map 0→ E is a weak equivalence. The category
Ew is closed under extensions in E , and thus inherits an exact structure from E such
that the inclusion Ew ⊂ E is fully exact.

4.1. Definition. Let (E , w, ∗, η) be an exact category with weak equivalences and
duality. A symmetric cone on (E , w, ∗, η) is given by the following data:

(a) exact functors P : E → Ew, and C : E → Ew,
(b) a natural deflation pE : PE � E and a natural inflation iE : E � CE,
(c) a natural map γE : P (E∗) → (CE)∗ such that i∗EγE = pE∗ for all objects

E of E .

It is convenient to define γ̄E : C(E∗) → (PE)∗ by γ̄E = P (ηE)∗ ◦ γ∗E∗ ◦ ηC(E∗).
Then p∗E = γ̄E ◦ iE∗ , and γE = C(ηE)∗ ◦ γ̄∗E∗ ◦ ηP (E∗). In other words, the sequence
P → id → C defines an exact form functor from E to the category of sequences
E−1 � E0 � E1 in E with duality compatibility map (γ, 1, γ̄).

For examples of symmetric cones, see 7.5.

The proof of the next theorem will occupy most of this section.

4.2. Theorem (Change of weak equivalences). Let (E , w, ∗, η) be an exact category
with weak equivalences and duality which has a symmetric cone. Let v be another
set of weak equivalences in E containing w and which is closed under the duality.
Then the duality (∗, η) on E makes (Ev , w), (Ev , v), (E , v) into exact categories with
weak equivalences and duality such that the commutative square of duality preserving
inclusions

(Ev , w) //

��

(Ev , v)

��
(E , w) // (E , v)

induces a homotopy cartesian square of associated Grothendieck-Witt spaces. More-
over, the upper right corner has contractible Grothendieck-Witt space.

4.3. Remark. A square of homotopy commutative H-groups (such as Grothen-
dieck-Witt spaces) is homotopy cartesian if and only if the map between, say,
horizontal homotopy fibres is a homotopy equivalence, and the map of abelian
groups between horizontal cokernels of π0’s is a monomorphism.

4.4. Remark. In theorem 4.2, the map GW0(E , w, ∗, η) → GW0(E , v, ∗, η) is not
surjective, in general, contrary to the K-theory situation in [Wal85, Fibration the-
orem 1.6.4].
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We will reduce the proof of theorem 4.2 to idempotent complete exact categories
with weak equivalences and duality. We recall the relevant definitions.

4.5. Idempotent completion. Recall that the idempotent completion Ẽ of an
exact category E has objects pairs (A, p) with p = p2 : A → A an idempotent in
E . A map (A, p) → (B, q) is a map f : A → B in E such that f = fp = qf .

Composition is composition of maps in E . The idempotent completion Ẽ has a
canonical structure of an exact category such that the inclusion E ⊂ Ẽ : A 7→ (A, 1)
is fully exact (see [TT90, Theorem A.9.1], where “idempotent completion” is called
“Karoubianisation”). Any duality (∗, η) on E extends to a duality (A, p)∗ = (A∗, p∗)

on Ẽ with double dual identification ηA ◦ p : (A, p) → (A, p)∗∗. If (E , w, ∗, η) is

an exact category with duality, call a map in the idempotent completion Ẽ weak
equivalence if it is a retract of a weak equivalence in E . Then (Ẽ , w, ∗, η) is an
exact category with weak equivalences and duality. Note that the natural inclusion

Ẽw ⊂ (Ẽ)w is an equivalence of categories if (E , w, ∗, η) has a (symmetric) cone.

This is because for an object X in (Ẽ)w, the weak equivalence 0 → X in Ẽ is, by
definition, a retract of a weak equivalence f : Y → Z in E , and, by functoriality,
also a retract of 0 → C(f), where C(f) is the push-out of iY : Y → CY along f .

Since C(f) is in Ew, the object X is (isomorphic to an object) in Ẽw.

4.6. Lemma. Let (E , w, ∗, η) be an exact category with weak equivalences and strong
duality which has a symmetric cone. Then the commutative diagram of exact cate-
gories with duality

(Ew , i) //

��

(Ẽw, i)

��
(E , i) // (Ẽ , i)

induces a homotopy cartesian square of Grothendieck-Witt spaces.

Proof. By the cofinality theorem in [Sch08, 5.5], the horizontal homotopy fibres of
associated Grothendieck-Witt spaces are contractible. Therefore, it suffices to show
that the map GW0(Ẽw)/GW0(Ew) → GW0(Ẽ)/GW0(E) between the cokernels of
horizontal π0’s is injective. For an exact category with duality A, the quotient
GW0(Ã)/GW0(A) is the abelian monoid of isometry classes of symmetric spaces in

Ã modulo the submonoid of symmetric spaces in A [Sch08, 5.2]. In particular, a

symmetric space in Ã yields the zero class in GW0(Ã)/GW0(A) if and only if it is
stably in A.

Let (A,α) be a symmetric space in Ẽw whose class in GW0(Ẽ)/GW0(E) is zero.
Then there are symmetric spaces (X,ϕ) and (Y, ψ) in E and an isometry (A,α) ⊥

(Y, ψ) ∼= (X,ϕ). In particular, there is an exact sequence 0 → A → X
f
→ Y → 0

in Ẽ . The push-out C(f) of f along the E-inflation X � CX is in E . In the exact

sequence 0 → A → CX → C(f) → 0, we have A and CX in Ẽw, so that C(f) is

also in Ẽw, hence C(f) ∈ Ẽw ∩ E = Ew. Choose Ā ∈ Ẽw such that A ⊕ Ā ∈ Ew.
Then Ā⊕CX is in Ew as it is an extension of A⊕ Ā and C(f), both being in Ew.
It follows that the symmetric spaces (A,α) ⊕ H(Ā ⊕ CX) and H(Ā ⊕ CX) lie in
Ew, where HE = (E ⊕ E∗,

(
0 1
η 0

)
) is the hyperbolic space associated with E. This

implies that (A,α) is trivial in GW0(Ẽ
w)/GW0(E

w). �
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For an exact category with weak equivalences and duality (E , w, ∗, η), the cate-
gory MorE = Fun([1], E) of morphisms in E is an exact category with weak equiva-
lences and duality such that the fully exact inclusion E ⊂ MorE : E 7→ idE , induced
by the unique map [1] → [0], is duality preserving. The inclusion factors through
the fully exact subcategory Morw E = Funw([1], E) ⊂ MorE of weak equivalences
in E and defines a duality preserving functor

I : E → Morw E .

Note that (Morw E)w = Morw(Ew) = Mor(Ew).
The following proposition is the key to proving Theorem 4.2.

4.7. Proposition. Let (E , w, ∗, η) be an exact category with weak equivalences and
strong duality. Assume that (E , w, ∗, η) has a symmetric cone. Then the commuta-
tive diagram

(9) Ew //

��

MorwE
w

��
E

I // MorwE

of duality preserving inclusions of exact categories with duality (all weak equiv-
alences being isomorphisms) induces a homotopy cartesian square of associated
Grothendieck-Witt spaces.

The proof uses the cone category construction of [Sch08, §9]. We recall the
relevant definitions and facts.

4.8. Cone exact categories. Let A ⊂ U be a duality preserving fully exact in-
clusion of idempotent complete exact categories with duality (∗, η). In [Sch08, §9],
we constructed a duality preserving fully exact inclusion Γ : U ⊂ C(U ,A) of exact
categories with duality, depending functorially on the pair A ⊂ U , such that the
duality preserving commutative square

(10) A
Γ //

��

C(A,A)

��
U

Γ // C(U ,A)

of exact categories with duality induces a homotopy cartesian square of associated
Grothendieck-Witt spaces, and the upper right corner C(A,A) (also written as
C(A)) has contractible Grothendieck-Witt space [Sch08, theorem 9.9].

We recall the definition of the cone category C(U ,A), details can be found in
[Sch08, §9.1-9.3]. One first constructs a category C0(U ,A), a localization of which
is C(U ,A). Objects of C0(U ,A) are commutative diagrams in U

(11) U0
// ∼ //

��

U1
// ∼ //

��

U2
// ∼ //

��

U3
// ∼ //

��

· · ·

U0 U1∼oooo U2∼oooo U3∼oooo · · ·
∼oooo

such that the maps Ui
∼

� Ui+1 and U i+1 ∼

� U i, i ∈ N are inflations with cokernel in
A and deflations with kernel in A, respectively. Moreover, there has to be an integer



22 MARCO SCHLICHTING

d such that for every i ≥ j, the map Uj → U i+d is an inflation with cokernel inA and
the map Ui+d → U j is a deflation with kernel in A. If the maps in diagram (11) are
understood, we may abbreviate the diagram as (U• → U•). Maps in C0(U ,A) are
natural transformations of diagrams. A sequence of diagrams in C0(U ,A) is exact
if at each Ui, U

j spot it is an exact sequence in U . The dual of the diagram (11) is
obtained by applying the duality to the diagram: (U• → U•)∗ = ((U•)∗ → (U•)

∗).
For each diagram (11), forgetting the upper left corner U0 gives us a new object

(U• → U•)[1] = (U•+1 → U•) and a canonical map (U• → U•) → (U•+1 → U•).

Similarly, forgetting the lower left corner U 0 defines a new object (U• → U•)[1] =
(U• → U•+1) and a canonical map (U• → U•+1) → (U• → U•). Finally, the
category C(U ,A) is the localization of C0(U ,A) with respect to the two types of
canonical maps just defined. A sequence in C(U ,A) is a conflation if and only if
it is isomorphic in C(U ,A) to the image under the localization functor C0(U ,A)→
C(U ,A) of a conflation in C0(U ,A).

There is a fully exact duality preserving inclusion Γ : U ⊂ C(U ,A) which sends
an object U of U to the constant diagram

U // = //

id

��

U // = //

id

��

U // = //

id

��

U // = //

id

��

· · ·

U U
=oooo U

=oooo U
=oooo · · ·

=oooo

Proof of proposition 4.7. By Lemma 4.6, we can (and will) assume E to be idem-
potent complete. Then all categories in diagram (9) are idempotent complete.

We will write C(E , w) and C(Ew) instead of the categories C(E , Ew) and C(Ew, Ew)
of 4.8, and we will write (F, ϕ) ∼ (G,ψ) if the two non-singular exact form functors
(F, ϕ), (G,ψ) induce homotopic maps on Grothendieck-Witt spaces. The strategy
of proof is as follows. We will extend diagram (9) to a commutative diagram of
exact categories with duality and non-singular exact form functors

(12) Ew //

��

MorwE
w

��

// C(Ew)

��

// C(MorwE
w)

��
E

I // MorwE
(F,ϕ)

// C(E , w)
C(I)

// C(MorwE , w)

where the right hand square is obtained from (9) by functoriality of the cone cate-
gory construction in 4.8. We will show:

(†) (GW applied to) the compositions (F, ϕ) ◦ (I, id) and (C(I), id) ◦ (F, ϕ)
are homotopic to the constant diagram inclusions (Γ, id) of 4.8 in such a
way that the homotopies restricted to Ew and Morw E

w have images in the
Grothendieck-Witt spaces of C(Ew) and C(Morw Ew), respectively.

Assuming (†), the outer diagram of the left two squares and the outer diagram of
the right two squares induce homotopy cartesian diagrams of Grothendieck-Witt
spaces, by [Sch08, theorem 9.9]. By remark 4.3, this implies the claim of proposition
4.7.
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To construct diagram (12), we will define the non-singular exact form functor
(F, ϕ) : MorwE → C(E , w) as the composition of a non-singular exact form func-
tor (F0, ϕ) : Morw E → C0(E , w) and the localization functor C0(E , w) → C(E , w)
such that its restriction to MorEw has image in C0(Ew). Recall that (E , w, ∗, η)
is assumed to have a symmetric cone (see definition 4.1), where i : id � C and
p : P � id denote the natural inflation and deflation which are part of the struc-
ture of a symmetric cone. The functor (F, ϕ) (or rather (F0, ϕ)) sends an object
g : X → Y of Morw E to the object F (g) given by the diagram
(13)

X // //

g

��

X ⊕ PY

( g pi 0 )
��

// // X ⊕ PY ⊕ CX
„

g p 0
i 0 1
0 1 0

«

��

// // X ⊕ PY ⊕ CX ⊕ PY

��

// // · · ·

Y Y ⊕ CXoooo Y ⊕ CX ⊕ PYoooo Y ⊕ CX ⊕ PY ⊕ CXoooo · · ·oooo

of C0(E , w). In the notation (U• → U•) of 4.8 corresponding to diagram (11), the
object F (g) is given by

Un = X ⊕ PY ⊕ CX ⊕ PY ⊕ CX ⊕ · · · (n+ 1 summands),

Un = Y ⊕ CX ⊕ PY ⊕ CX ⊕ PY ⊕ · · · (n+ 1 summands).

The maps Un → Un+1 and Un+1 → Un are the canonical inclusions into the first
n + 1 summands and the canonical projections onto the first n + 1 factors. The
maps Un → Un are given by the matrix

(urs)0≤r,s≤n =




g p 0 0 0 ···
i 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 1
... 0

. . .




with urs = 0 unless r = s = 0 or |r − s| = 1, and u0,0 = g, u0,1 = pY , u1,0 = iX ,
ur,r+1 = 1, ur+1,r = 1 for r ≥ 1. The construction of diagram (13) is functorial
in g, so that F : Morw E → C(E , w) is indeed a functor. The duality compatibility
map ϕg : F (g∗) → (Fg)∗ for g : X → Y is the identity on X∗ and Y ∗, it is γX on
the summands P (X∗) and γ̄Y on C(Y ∗). It is clear that F sends the subcategory
Morw Ew to the full subcategory C(Ew) of C(E , w). This defines diagram (12).

We are left with proving (†). Since U0 = X is the initial object of diagram
(13), it defines a map j = jg : X = U0 → F (g), where U0 (and X) is considered
an object of C(E , w) via the constant diagram embedding Γ : E → C(E , w). The
map j : X → F (g) is an inflation in C(E , w) with cokernel in C(Ew) because
j : X → (U• → U•+1) is an inflation in C0(E , w) with cokernel in C0(Ew). Varying
g, the map jg defines a natural transformation j : Γ→ F . Similarly, U 0 is the final
object of diagram (13) and thus defines a (functorial) map q = qg : F (g)→ U0 = Y
with kernel in C(Ew). We have g = qj.

Let ϕ̂ : F → F ] = ∗F∗ be the symmetric form on the functor F associated
with the duality compatibility map ϕ (see 2.1). The form ϕ̂ : F → F ] fits into a
commutative diagram in C0(E , w)

(14) X
jg //

ηX

��

F (g)

ϕ̂g

��

qg // Y

ηY

��
X∗∗

q∗g∗
// F (g∗)∗

j∗g∗
// Y ∗∗.
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Write (FI, ϕFI ) for the composition (F, ϕ)◦(I, id) of form functors. The natural
transformation j above makes the canonical inclusion (Γ, id) : E → C(E , w) into an
admissible subfunctor j : Γ ⊂ FI of FI . Commutativity of diagram (14) for
g = idX implies that η = j]ϕ̂FIj, that is, j defines a map (Γ, η) → (FI, ϕ̂FI ) of
symmetric spaces associated with the form functors (Γ, id) and (FI, ϕFI ). Since
the maps id and ϕFI are isomorphisms, the symmetric space (FI, ϕ̂FI ) decomposes
in Fun(E , C(E , w)) as (Γ, η) ⊥ (A, ϕ̂A) with (A, ϕ̂A) the orthogonal complement of
(Γ, η) in (FI, ϕ̂FI ). As mentioned above, the cokernel of j : X → FI(X) = F (1X)
is in C(Ew). Therefore, the form functor (A,ϕA) factors through the category
C(Ew) (whose hermitian K-theory space is contractible [Sch08, corollary 9.8]), so
that (A,ϕA) ∼ 0. Hence, (FI, ϕFI ) ∼= (Γ, id) ⊥ (A,ϕA) ∼ (Γ, id). By construction,
the homotopy restricted to Ew has image in the Grothendieck-Witt space of C(Ew).
This shows the first half of the claim (†).

For the second half, write (IF, ϕIF ) and (IF0, ϕIF0) for the compositions of
form functors (C(I), id) ◦ (F, ϕ) and (C(I), id) ◦ (F0, ϕ), and note that (IF, ϕIF ) is
just the composition of (IF0, ϕIF0) with the localization functor C0(Morw E , w) →
C(Morw E , w). There is an obvious isomorphism of exact categories with duality
Morw C0(E , w) ∼= C0(Morw E , w) such that the composition IF0 sends the object
(g : X → Y ) ∈ Morw E to idF (g) : F (g) → F (g), and the duality compatibility
morphism ϕIF0 becomes (ϕg , ϕg) : idF (g∗) → idF (g)∗ . Consider the functorial
bicartesian square

(X
j
→ F (g))

(j,1)
//

(1,q)

��

(F (g)
1
→ F (g))

(1,q)

��

(X
g
→ Y )

(j,1)
// (F (g)

q
→ Y )

in Morw C0(E , w). The total complex of the square (considered as a bicomplex) is
a conflation in Morw C0(E , w) = C0(Morw, w). It is therefore also a conflation in
C(Morw, w), hence the square is also bicartesian in C(Morw, w). In C(Morw, w), the
horizontal maps in the square are inflations with cokernel in C(Morw E

w) since
(j, 1) is isomorphic to the C0(Morw, w)-inflation (j, 1)[1] which has cokernel in
C0(Morw Ew). Similarly, the vertical maps in the square are deflations in C(Morw, w)
with kernel in C(Morw E

w) since (1, q) is isomorphic to the C0(Morw, w)-deflation
(1, q)[1] with kernel in C0(Morw Ew).

Commutativity of diagram (14) implies that the form ϕ̂IF0 on the upper right
corner IF0 of the square extends to a form on the whole bicartesian square such
that its restriction to the lower left corner is the constant diagram inclusion (Γ, η) :
Morw E → C0(Morw E , w). It follows that ker(1, q) ⊂ IF is a totally isotropic

subfunctor of (IF, ϕIF ) with induced form on (X
g
→ Y ) = ker(1, q)⊥/ ker(1, q)

isometric to the constant diagram inclusion (Γ, id) : Morw E → C(Morw E , w).
By the additivity theorem [Sch08, theorem 7.1] (or its generalization in theo-
rem 3.3), the form functors (Γ, id) ⊥ H ker(1, q) and (IF, ϕIF ) induce homotopic
maps on Grothendieck-Witt spaces. Since H ker(1, q) has image in C(Morw Ew)
whose Grothendieck-Witt space is contractible, we have (IF, ϕIF ) ∼ (Γ, id) ⊥
H ker(1, q) ∼ (Γ, id). The homotopies restricted to Morw Ew have image in the
Grothendieck-Witt space of C(Morw Ew). This is clear for the second homotopy,
and for the first, it follows from the proof of additivity in 3.10. �
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Next, we prove a variant of the Change-of-weak-equivalence theorem.

4.9. Proposition. Let (E , w, ∗, η) be an exact category with weak equivalences and
strong duality which has a symmetric cone. Then the following commutative di-
agram of exact categories with weak equivalences and duality induces a homotopy
cartesian square of Grothendieck-Witt spaces with contractible upper right corner

(15) (Ew, i) //

��

(Ew, w)

��
(E , i) // (E , w).

Proof. From lemma 2.14 it is clear that GW (Ew, w) is contractible since 0→ id is
a natural weak equivalence in (Ew, w). Consider the commutative diagram of (sim-
plicial) exact categories with dualities (all weak equivalences being isomorphisms)

Ew //

��

Funw(0, Ew)

��

//

n 7→ Funw(n, Ew)




��

E // Funw(0, E) //

n 7→ Funw(n, E)




in which the left hand square can be identified with the square of proposition 4.7
and induces therefore a homotopy cartesian square of Grothendieck-Witt spaces.
On Grothendieck-Witt spaces, the right vertical map can be identified with the
map (Ew, w) → (E , w) in view of the simplicial resolution lemma 3.7. The right
hand square is the inclusion of degree zero simplices. The proof of proposition 4.9
is thus reduced to showing that the right hand square of the diagram induces a
homotopy cartesian square of Grothendieck-Witt spaces.

Let Fun1
w(n, E) ⊂ Funw(n, E) be the full subcategory of those functors A : n→ E

for which Ap → Aq is an inflation, and Aq′ → Ap′ is a deflation, 0 ≤ p 5 q ≤ n. It
inherits the structure of an exact category with duality from Funw(n, E). Further,
let Fun0

w(n, E) be the category which is equivalent to Fun1
w(n, E) but where an

object is an object A of Fun1
w(n, E) together with a choice of subquotients Ap,q =

Aq/Ap = coker(Ap
∼
� Aq) ∈ Ew and induced maps Ap,q → Ap,q, and together

with a choice of kernels Aq′ ,p′ = ker(Aq′
∼
� Ap′) ∈ Ew for 0 ≤ p ≤ q ≤ n. The

category Fun0
w(n, E) is an exact category with duality such that the forgetful functor

Fun0
w(n, E) → Fun1

w(n, E) is an equivalence of exact categories with duality. We
have an exact functor Fun0

w(n, E)→ SnEw : A 7→ (Ap,q)0≤p≤q≤n. By the additivity
theorem [Sch08, theorem 7.1] (or 3.3), this functor induces a map which is part of
a split homotopy fibration

GW (Funw(0, E))→ GW (Fun0
w(n, E))→ K(SnE

w).
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The same argument applies to (Ew , w) instead of (E , w) so that, varying n, we
obtain a map of homotopy fibrations after topological realization

GW Funw(0, Ew)

��

// |n 7→ GW Fun0
w(n, Ew)|

��

// |n 7→ K(SnEw)|

GW Funw(0, E) // |n 7→ GW Fun0
w(n, E)| // |n 7→ K(SnEw)|

which shows that the left square is homotopy cartesian.
Since Fun0

w → Fun1
w is an equivalence of exact categories with duality, the propo-

sition follows once we show that the inclusion I : Fun1
w(n,A) ⊂ Funw(n,A) induces

a homotopy equivalence on Grothendieck-Witt spaces for A = E , Ew. We illustrate
the argument for A = E and n = 1. The general case is mutatis mutandis the same.

We define two functors F,G : Funw(1, E) → Fun1
w(1, E). The functor F sends

E1′
∼
→ E0′

∼
→ E0

∼
→ E1 to E1′ ⊕ PE0′

∼
� E0′

∼
→ E0

∼
� E1 ⊕ CE0, the functor

G sends the same object to PE0′

∼
� 0

∼
→ 0

∼
� CE0. Both functors F and G

are equipped with canonical duality compatibility morphisms, induced by γ and
γ̄ from definition 4.1, such that F and G are non-singular exact form functors.
By the additivity theorem, we have IF ∼ id ⊥ IG and FI ∼ id ⊥ GI , so that
GW (F )−GW (G) defines an inverse of GW (I), up to homotopy. �

Proof of theorem 4.2. By lemma 2.14, GW (Ew , w) is contractible. Let A = E str
w

be the strictification of E from lemma 3.4, and recall that it has a strong duality.
Consider the commutative diagram of exact categories with weak equivalences and
duality

(Aw, i) //

��

(Aw , w)

��
(Av , i) //

��

(Av , w) //

��

(Av , v)

��
(A, i) // (A, w) // (A, v).

By the strictification lemma 3.4 and lemma 2.14, the square in theorem 4.2 is
equivalent to the lower right square in the diagram. By proposition 4.9, the upper
square and the outer diagram of the left two squares are homotopy cartesian in
hermitian K-theory. Since the left vertical maps are surjective on GW0 (because
A = Estr

w ), it follows that the lower left square is homotopy cartesian in hermitian
K-theory, by remark 4.3. Again, by proposition 4.9, the outer diagram of the two
lower squares induces a homotopy cartesian square of Grothendieck-Witt spaces.
Together with the facts that the lower left square is homotopy cartesian in hermitian
K-theory and that the lower left vertical map is surjective on GW0, this implies
that the lower right square induces a homotopy cartesian square of Grothendieck-
Witt spaces.

�

4.10. Theorem (Cofinality). Let (E , w, ∗, η) be an exact category with weak equiv-
alences and duality which has a symmetric cone. Let A ⊂ K0(E , w) be a subgroup
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closed under the duality action on K0(E , w), and let EA ⊂ E be the full subcate-
gory of those objects whose class in K0(E , w) belongs to A. Then the category EA
inherits the structure of an exact category with weak equivalences and duality from
(E , w, ∗, η), and the induced map on Grothendieck Witt spaces

GW (EA, w, ∗, η) −→ GW (E , w, ∗, η)

is an isomorphism on πi, i ≥ 1, and a monomorphism on π0.

Proof. Let U = Estr
w , and consider the the diagram of exact categories with weak

equivalences and duality

(UwA , i) // (UA, i)

��

// (UA, w)

��
(Uw , i) // (U , i) // (U , w).

On Grothendieck-Witt spaces, the right vertical map can be identified (up to ho-
motopy) with the map in the theorem, by lemmas 3.4 and 2.14. The rows are
homotopy fibrations, by proposition 4.9, and the right horizontal maps are surjec-
tive on GW0 (as U = Estr

w ). It follows that the right square induces a homotopy
cartesian square of Grothendieck-Witt spaces. Since UA ⊂ U is a cofinal inclusion of
exact categories with duality, the cofinality theorem of [Sch08, corollary 5.5] shows
that the homotopy fibre of the Grothendieck-Witt spaces of the middle vertical map
is contractible. As the right square is homotopy cartesian in hermitian K-theory,
the same is true for the right vertical map. �

5. Approximation, Change of exact structure and Resolution

In this section we prove in theorems 5.1 and 5.11 variants of Waldhausen’s ap-
proximation theorem [Wal85, Theorem 1.6.7] which hold for higher Grothendieck-
Witt groups. We explain two immediate consequences, one concerning the condi-
tions under which a change of exact structure has no effect on Grothendieck-Witt
groups (lemma 5.3, compare [TT90, Theorem 1.9.2]) and the other concerning an
analog of Quillen’s resolution theorem (lemma 5.6, compare [Qui73, §4 Corollary
1]).

5.1. Theorem (Approximation I). Let (F, ϕ) : A → B be a non-singular exact
form functor between exact categories with weak equivalences and duality. Assume
the following.

(a) Every map in A can be written as the composition of an inflation followed
by a weak equivalence.

(b) A map in A is a weak equivalence iff its image in B is a weak equivalence.
(c) For every map f : FA → E in B, there is a map a : A → B in A and a

weak equivalence g : FB ∼→ E in B such that f = g ◦ Fa:

FA
∀f

//___

Fa

��

E

∃ FB

∼

;;x
x

x
x

x

(d) The duality compatibility morphism ϕA : F (A∗) → F (A)∗ is an isomor-
phism for every A in A.
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(e) For every map f : FA → FB in B, there is an exact functor L : A → A,
a natural weak equivalence λ : L ∼→ idA and a map a : LA → B in A such
that Fa = f ◦ FλA:

∃ FLA
∼ //

Fa

55FA
∀f

//___ FB.

(f) For every map a : A → B in A such that Fa = 0 in B, there is an exact
functor L : A → A and a natural weak equivalence λ : L ∼→ idA such that
a ◦ λA = 0 in A:

∃ LA
∼ //

0

66A
∀a // B, Fa = 0.

Then (F, ϕ) induces homotopy equivalences

(wSe•A)h
∼
−→ (wSe•B)h and GW (A, w, ∗, η)

∼
−→ GW (B, w, ∗, η).

Proof. For the purpose of the proof, we call lattice a pair (L, λ) with L : A → A
an exact functor and λ : L ∼→ idA a natural weak equivalence. Lattices form an
associative monoid under composition

(L2, λ2) ◦ (L1, λ1) := (L2L1, λ2 ◦ L2(λ1)).

Since λ2◦L2(λ1) = λ1◦λ2,L1 (as λ2 is a natural transformation), lattices behave like
a multiplicative set in a commutative ring. More precisely, composition of lattices
allows us to generalize properties (e) and (f) to finite families of maps:

(e’) for any finite set of maps fi : FAi → FBi in B, i = 1, ..., n, there are a
lattice (L, λ) and maps ai : LAi → Bi such that Fai = fi◦FλAi

, i = 1, ..., n,
and

(f’) for any finite set of maps ai : Ai → Bi in A such that Fai = 0 in B,
i = 1, ..., n, there is a lattice (L, λ) such that aiλAi

= 0 in A, i = 1, ..., n.

We will refer to (e’) and (f’) as “clearing denominators”, in analogy with the lo-
calization of a commutative ring with respect to a multiplicative subset. “Clearing
denominators” together with (b) and (d) implies that we can lift non-degenerate
symmetric forms from B to A in the following sense:

(†) For any non-degenerate symmetric form (FA, α) ∈ (wB)h on the image FA
of an object A of A, there is a lattice (L, λ) and a non-degenerate symmetric
form (LA, β) ∈ (wA)h on LA such that F (λA) is a map of symmetric spaces
F (λA) : F (LA, β) ∼→ (FA, α).

The proof is the same as the classical proof which shows that a non-degenerate
symmetric form over the fraction field of a Dedekind domain can be lifted to a
(usual) lattice in the ring. In detail, the map ϕ−1

A α : FA → F (A∗) lifts to a map
a1 : L1A → A∗ such that ϕAFa1 = αFλ1,A for some lattice (L1, λ1). The map
a : λ∗1,Aa1 : L1A → (L1A)∗ is a weak equivalence but not necessarily symmetric.
However, the difference δ = a−a∗ηL1A satisfies Fδ = 0, so that there is a second lat-
tice (L2, λ2) such that δλ2,L1A = 0. Then β = λ∗2,L1A

aλ2,L1A : L2L1A→ (L2L1A)∗

is a non-degenerate symmetric form on LA with (L, λ) = (L2, λ2) ◦ (L1, λ1), and
F (λA) defines a map of symmetric spaces F (LA, β) = (FLA,ϕLAFβ) ∼→ (FA, α).
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Apart from “clearing denominators”, the proof of the first homotopy equivalence
in the theorem proceeds now as the proof of [Sch06, theorem 10] which was based
on the proof of [Wal85, theorem 1.6.7]. We first note that under the assumptions
of the theorem, the non-singular exact form functors Sn(F, ϕ) : SnA → SnB also
satisfy (a) - (f), n ∈ N. For (a) - (c), this is in [Wal85, lemma 1.6.6] (using the
fact that in the presence of (a), the map a : A → B in (c) can be replaced by an
inflation), (d) extends by functoriality, and the extension of (e), (f) to Sn easily
follows by induction on n by successively clearing denominators.

In order to show that (wSe•A)h → (wSe•B)h is a homotopy equivalence, it suffices
to prove that (wSenA)h → (wSenB)h is a homotopy equivalence for every n ∈ N,
which, by the argument of the previous paragraph, only needs to be checked for
n = 0, that is, it is sufficient to prove that

F : (wA)h → (wB)h

is a homotopy equivalence. The last claim will follow from Quillen’s theorem A
once we show that for every object X = (X,ψ) of (wB)h, the comma category
(F ↓ X) is non-empty and contractible.

By (a) with A = 0, there is an object B of A and a weak equivalence FB ∼→ X ,
hence a map (FB,ψ|FB) → (X,ψ) in (wB)h. By (†) above, there is a symmetric
space (C, γ) in A and a map F (C, γ)→ (FB,ψ|FB) in (wB)h. Hence, the category
(F ↓ X) is non-empty.

In order to show that (F ↓ X) is contractible it suffices to show that every functor
P → (F ↓ X) from a finite poset P to the comma category (F ↓ X) is homotopic
to a constant map (see for instance [Sch06, Lemma 14]). Such a functor is given
by a triple (A,α, f) where A is a functor A : P → wA : i 7→ Ai, (i ≤ j) 7→ aj,i
together with a collection α of non-degenerate symmetric forms αi : Ai → A∗

i

in A, i ∈ P , such that αi = αj|Ai
whenever i ≤ j in P , and f is a collection

of compatible maps of symmetric spaces fi : F (Ai, αi) → (X,ψ) in (wB)h such
that fi = fjFaj,i whenever i ≤ j ∈ P . It is convenient to consider f as a map
F (A,α) → (X,ψ) of functors P → (wB)h, where objects in (wB)h (or in A, B,
(wA)h) such as (X,ψ) are interpreted as constant P-diagrams. By [Sch06, Lemma
13], there is a map b : B → A of functors P → wA such that bi : Bi → Ai is a
weak equivalence, i ∈ P , and the P-diagram B : P → A has a colimit in A such
that F (B) → F (colimP B) represents the colimit of F (B) in B (the diagram B
is a cofibrant replacement of A in a suitable cofibration structure on the category
of functors P → A, see [Sch06, Appendix A.2], cofibrant objects have colimits,
and F , being an exact functor, preserves cofibrant objects and their colimits). By
(c), the natural map F (colimP B) = colimP F (B) → X induced by b ◦ f factors

as F (colimP B) → F (C)
c
→ X where the first map is in the image of F and

the second map is a weak equivalence in B. Let g : B → C be the composition
B → colimP B → C which, by (b), is a weak equivalence since b, f , and c are. The
null-homotopy to be constructed can be read off the following diagram

(16) L′LB, β

β=α|L′LB=γ|L′LB

λ′
// LB

λ //

Lg

��

B
b //

g

��

A,α

f

��
�

�

�

LC, γ
λ // C

c //___ X,ψ
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of which we have constructed the right hand square, so far. In the diagram, a
dashed arrow A 99K X stands for an arrow FA → X in B, and solid arrows are
arrows in A. By (†), there is a lattice (L, λ) and a non-degenerate symmetric
form (LC, γ) ∈ (wA)h such that FλC : F (LC, γ) → (FC,ψ|FC) defines a map in
(wB)h. The restrictions of γ and αi to LBi may not coincide, but their images
under F coincide since in B, both are (up to composition with the isomorphism
ϕBi

) the restriction of ψ to FLBi. Clearing denominators, we can find a lattice
(L′, λ′) such that γ|L′LBi

= αi|L′LBi
=: βi for all i ∈ P simultaneously. The

outer part of the diagram involving (L′LB, β), (A,α), (LC, γ), (X,ψ) and the
maps between them, defines a homotopy between (A,α, f) and the constant functor
(LC, γ, cFλ) : P → (F ↓ X) via the functor (L′LB, β, fF (bλλ′)) : P → (F ↓ X).
This finishes the proof of the first homotopy equivalence in the theorem.

The same proof (forgetting forms), or [Wal85, 1.6.7], implies that wS•A → wS•B
is a homotopy equivalence. Therefore, the map GW (A, w, ∗, η) → GW (B, w, ∗, η)
is also a homotopy equivalence. �

5.2. Change of exact structure. Let (A, w, ∗, η) be an additive category with
weak equivalences and duality, and assume that A can be equipped with two exact
structures

�
1 and

�
2 one smaller than the other,

�
1 ⊂

�
2, so that the identity

functor (A,
�

1) → (A,
�

2) is exact. Assume furthermore that the duality functor
∗ : Aop → A is exact for both exact structures

�
2 and

�
2, so that the identity

defines a duality preserving exact functor

(17) (A,
�

1, w, ∗, η)→ (A,
�

2, w, ∗, η).

The following is an immediate consequence of theorem 5.1.

5.3. Lemma. In the situation of 5.2, if every map in A can be written as the com-
position of an inflation in

�
1 followed by a weak equivalence, then the map (17) in-

duces an equivalence of hermitian S•-constructions and of associated Grothendieck-
Witt spaces. �

The purpose of the next lemma (lemma 5.5 below) is to simplify some of the
hypothesis of theorem 5.1 provided the exact categories with weak equivalences in
the theorem are “categories of complexes”.

5.4. Definition. We call an exact category with weak equivalences (C, w) a cat-
egory of complexes (with underlying additive category C0) if C ⊂ Ch C0 is a full
additive subcategory of the category Ch C0 of chain complexes C0 such that

(a) C is closed under degree-wise split extensions in Ch C0,
(b) degree-wise split exact sequences are exact in C,
(c) with a complex A in C its usual cone CA (that is, the cone on the identity

map of A) and all its shifts A[i], i ∈ Z are in C, and
(d) the set of weak equivalences w contains at least all usual homotopy equiv-

alences between complexes in C.

5.5. Lemma. Let (A, w) and (B, w) be categories of complexes with associated ad-
ditive categories A0 and B0, and let F : (A, w) → (B, w) be an exact functor which
is the induced functor on chain complexes of an additive functor A0 → B0. Then
condition 5.1(a) holds and condition 5.1 (c) is implied by conditions 5.1 (b), (e)
and the following condition.
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(c’) For every object E of B there is an object A of A and a weak equivalence

FA
∼
−→ E.

Proof. Every map f : A→ B in A can be written as the composition

A //

“

f
i

”

// B ⊕ CA
( 1 0 )

∼
// B,

where i : A � CA is the canonical inclusion of A into its cone CA. This shows
that condition 5.1 (a) holds.

To prove condition 5.1 (c) assuming conditions 5.1 (b), (e) and (c’) are satisfied,
let f : FA → E be a map in B with A in A. By (c’), there is a weak equivalence
s : F (B′) → E in B with B′ in A. Let M be the pull-back of f : FA → E along
the degree-wise split surjection (s, p) : F (B′)⊕ PE → E where p : PE → E is the
canonical degree-wise split surjection from the contractible complex PE = CE[−1]
to E, so that we have a homotopy commutative diagram

M //

��

F (A)

f

��
F (B′) ∼

s // E.

Since F (B′) ⊕ PE → E is a deflation and a weak equivalence, its pull-back, the
map M → FA, is a deflation and a weak equivalence, too. By condition (c’), there
is a weak equivalence F (A′) → M with A′ in A, and by condition 5.1 (e) we can
assume the compositions F (A′) → FA and F (A′) → F (B′) to be the images Fα
and Fβ of maps α : A′ → A and β : A′ → B in A. The resulting square involving
F (A′), F (B′), FA and E homotopy commutes, and the map α : A′ → A is a weak
equivalence, by 5.1 (b). Replacing B′ with B′ ⊕ CA′, we obtain a commutative
diagram

F (A′) // Fα

∼
//

“

Fβ
Fi

”

��

F (A)

f

��
F (B′)⊕ F (CA′)

( s g )
// E,

where i : A′ � CA′ is the canonical inclusion of A′ into its cone, g : F (CA′) =
CF (A′)→ E a map such that g ◦ Fi is the null-homotopic map f ◦ Fα− s ◦ Fβ :
F (A′) → E. Let B be the push-out of α : A′ → A along the degree-wise split
inclusion A′ � B′ ⊕ CA′ and call a : A → B and b : B′ ⊕ CA′ → B the induced
maps. Since α : A′ → A is a weak equivalence, so is b. The functor F preserves
push-outs along inflations so that we obtain an induced map t : F (B)→ E which is
a weak equivalence since F (b) and (s, g) are. By construction, we have t ◦ Fa = f .

�

Next, we prove an analog of Quillen’s resolution theorem [Qui73, §4].

5.6. Lemma (Resolution). Let (B, w, ∗, η) be an exact category with weak equiva-
lences and duality such that (B, w) is a category of complexes. Let A ⊂ B be a full
subcategory closed under the duality, degree-wise split extensions and under taking
cones and shifts in B. Restricting (w, ∗, η) to A makes A into an exact category
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with weak equivalences and duality. Assume that the following resolution condition
holds:

For every object E of B, there is an object A of A and a weak equivalence

A
∼
−→ E.

Then the duality preserving inclusion A ⊂ B induces homotopy equivalences

(wSe•A)h
∼
−→ (wSe•B)h and GW (A, w, ∗, η)

∼
−→ GW (B, w, ∗, η).

5.7. Proof. This follows from theorem 5.1 in view of lemma 5.5 and the fact that
conditions 5.1 (e) and (g) trivially hold since A ⊂ B is fully faithful, and condition
(d) holds since A → B is duality preserving. �

We finish the section with theorem 5.11 below. It is a variant of theorem 5.1
when conditions 5.1 (e) and (f) can not be achieved in a functorial way but the
form functor is a localization by a calculus of right fractions.

5.8. Definition. Call a functor F : A → B between small categories a localiza-
tion by a calculus of right fractions if the following three conditions hold (compare
theorem 5.1 (e), (f)).

(a) The functor F : A → B is essentially surjective.
(b) For every map f : F (A)→ F (B) between the images of objects A, B of A,

there are maps s : A′ → A and g : A′ → B in A with F (s) an isomorphism
in B and f ◦ F (s) = F (g).

(c) For any two maps a, b : A→ B in A such that F (a) = F (b) there is a map
s : A′ → A such that F (s) is an isomorphism in B and as = bs.

5.9. Remark. A functor F : A → B between small categories is a localization by
a calculus of right fractions if and only if the set Σ of maps f in A such that F (f)
is an isomorphism in B satisfies a calculus of right fractions (the dual of [GZ67,
§I.2.2]) and the induced functor A[Σ−1]→ B is an equivalence of categories.

5.10. Context for theorem 5.11. Consider an additive functor A → B between
additive categories. It induces an exact functor F : ChbA → Chb B between the
associated exact categories of bounded chain complexes where we call a sequence
of chain complexes exact if it is degree-wise split exact. We assume that F is part
of an exact form functor

(F, ϕ) : (ChbA, w, ∗, η)→ (Chb B, w, ∗, η)

between exact categories with weak equivalences and duality such that the duality
compatibility map F∗ → ∗F is a natural isomorphism.

5.11. Theorem (Approximation II). If in the situation 5.10 above, a map in ChbA
is a weak equivalence iff its image in Chb B is a weak equivalence, and if the functor
A → B is a localization by a calculus of right fractions, then (F, ϕ) induces homotopy
equivalences

(18)
(wSe• ChbA)h

∼
−→ (wSe• Chb B)h and

GW (ChbA, w, ∗, η)
∼
−→ GW (Chb B, w, ∗, η).
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The proof of theorem 5.11 is a consequence of the following two lemmas.

5.12. Lemma. Let F : A → B be a localization by a calculus of right fractions.
Then the following holds.

(a) For every integer n ≥ 0, the induced functor Fun([n],A) → Fun([n],B) on
diagram categories is a localization by a calculus of right fractions.

(b) If (F, ϕ) : (A, ∗, η) → (B, ∗, η) is a form functor between categories with
duality such that the duality compatibility map ϕ : F∗ → ∗F is a natural
isomorphism, then the induced functor Ah → Bh on associated categories
of symmetric forms is a localization by a calculus of right fractions.

(c) If F is an additive functor between additive categories, then the induced

functors ChbA → Chb B and SnA → SnB are localizations by a calculus of
right fractions.

Proof. The proof is an exercise in clearing denominators, and we omit the details.
�

5.13. Lemma. Let F : A → B be a functor between small categories A and B
which is a localization by a calculus of right fractions. Then F induces a homotopy
equivalence on classifying spaces

|A|
∼
−→ |B|.

Proof. For a category C, and a subcategory wC, recall that the category Funw([n], C)
is the full subcategory of the category Fun([n], C) of functors [n] → C which have
image in wC. Maps are natural transformations of functors [n] → C. There are
homotopy equivalences of topological realizations of simplicial categories (a variant
of which already appeared in the proof of lemma 3.7)

(19) |C|
∼
→ |n 7→ Funw([n], C)| ' |n 7→ w Fun([n], C)|

which is functorial in the pair (C, wC). In the first map, the category C is considered
as a constant simplicial category, and the functor C → Funw([n], C) sends an object
C ∈ C to the string consisting of only identity maps on C. This functor is a
homotopy equivalence with inverse the functor Funw([n], C) → C which sends a
string of maps C0 → · · · → Cn to C0. The composition of the two functors is the
identity in one direction, and in the other, it is homotopic to the identity, where

the homotopy is given by the natural transformation from C0
1
→ C0

1
→ · · ·C0 to

C0 → C1 → · · ·Cn induced by the structure maps of the last string. Therefore,
the first map in (19) is a homotopy equivalence. The second map in (19) is in
fact a homeomorphism as it is the realization in two different orders of the same
bisimplicial set.

In order to prove the lemma, let σA ⊂ A be the subcategory of A whose maps
are the maps which are sent to isomorphisms in B. By the natural homotopy
equivalences in (19), the map |A| → |B| in the lemma is equivalent to the map
|n 7→ σ Fun([n],A)| → |n 7→ iFun([n],B)| which is the realization of a map of
simplicial categories, so that it suffices to show that for each integer n ≥ 0, the
functor σ Fun([n],A) → iFun([n],B) is a homotopy equivalence. By lemma 5.12
(a), this functor is a localization by a calculus of fractions, so that we are reduced
to proving that G : σA → iB is a homotopy equivalence whenever A → B is
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a localization by a calculus of right fractions. In this case, the comma category
(G ↓ B) is left filtering for every object B of B, hence contractible. By theorem A
of Quillen, the functor σA → iB is a homotopy equivalence. �

5.14. Proof of theorem 5.11. We only prove the first homotopy equivalence in the
theorem, the second homotopy equivalence follows from this and the homotopy
equivalence wS• ChbA → wS• Chb B which is proved in the same way (forgetting
forms).

A map of simplicial categories which is degree-wise a homotopy equivalence in-
duces a homotopy equivalence after topological realization. Therefore, it suffices to
show that for every n ≥ 0, the form functor (F, ϕ) induces a homotopy equivalence

(20) (wSen ChbA)h −→ (wSen Chb B)h.

By lemma 5.12 (c) and in view of the isomorphism Sn Chb E = Chb SnE of exact
categories applied to E = A,B, we are reduced to showing that the map (20) is

a homotopy equivalence for n = 0. The functor ChbA → Chb B is a localization
by a calculus of right fractions, by 5.12 (c). The assumption that ChbA → Chb B
preserves and detects weak equivalences, implies that, on subcategories of weak
equivalences, the functor wChbA → wChb B is also a localization by a calculus of
right fractions. By 5.12 (b), the induced functor on categories of symmetric forms

(ChbA)h → (Chb B)h, which is the map (20) in degree n = 0, is a localization by a
calculus of right fractions and therefore a homotopy equivalence, by lemma 5.13.

�

6. From exact categories to chain complexes

The purpose of this section is to prove proposition 6.5 which allows us the replace
the Grothendieck-Witt space of an exact category with duality by the Grothendieck-
Witt space of the associated category of bounded chain complexes.

6.1. Chain complexes and dualities. Let (E , ∗, η) be an exact category with
duality, that is, an exact category with weak equivalences and duality where all
weak equivalences are isomorphisms. Let Chb(E) be the category of bounded chain
complexes

(E, d) : · · · → En−1
dn−1
→ En

dn→ En+1 → · · · , dndn−1 = 0,

in E . A sequence of chain complexes (E ′, d) → (E, d) → (E′′, d) is exact if it is
degree-wise exact in E , that is, if the sequence E ′

n � En � E′′
n is exact for all

n. Call a chain complex (E, d) in E strictly acyclic if every differential dn is the
composition En � im dn � En+1 of a deflation followed by an inflation, and the
sequences im dn−1 � En � im dn are exact in E . A chain complex is called acyclic
if it is homotopy equivalent to a strictly acyclic chain complex. A map of chain
complexes is a quasi-isomorphism if its cone is acyclic. Write quis for the set of
quasi-isomorphisms, then the triple

(Chb(E), quis)

is an exact category with weak equivalences.
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For n ∈ Z, the duality (∗, η) induces a (naive) duality (∗n, ηn) on Chb E which
on objects (E, d) and on chain maps f : (E, d)→ (E ′, d) is given by the formulas

(E∗n

)i = (E−i−n)∗, (f∗n

)i = (f−i−n)
∗,

(d∗
n

)i = (d−i−1−n)∗, (ηnE)i = (−1)
n(n−1)

2 ηEi
.

With these definitions, we have an exact category with weak equivalences and
duality

(Chb(E), quis, ∗n, ηn).

If n = 0 we may simply write (∗, η) for (∗0, η0).

6.2. Remark. The functor T : Chb E → Chb E given by the formula

(TE)i = Ei+1, T (f)i = fi+1, (dTE)i = di+1

defines a duality preserving isomorphism of exact categories with duality

T : (Chb E , ∗n, ηn) ∼= (Chb E , ∗n+2,−ηn+2).

6.3. Remark. There is another (more natural) sign choice for defining induced

dualities (]n, cann) on Chb E coming from the internal hom of chain complexes,
compare 7.4. They are given by the formulas

(E]
n

)i = (E−i−n)∗, (f ]
n

)i = (f−i−n)∗,

(d]
n

)i = (−1)i+1(d−i−1−n)∗, (cannE)i = (−1)i(i+n)ηEi
.

The identity functor on Chb E together with the duality compatibility isomorphism
εnE : E∗n

→ E]
n

which in degree i is

(εnE)i = (−1)
i(i+1)

2 idE∗
−i−n

: (E∗n

)i → (E]
n

)i

defines an isomorphism of exact categories with duality

(id, εn) : (Chb E , ∗n, ηn)
∼=
−→ (Chb E , ]n, cann).

For the purpose of proving proposition 6.5 below, the duality (∗, η) is convenient.
For most other purposes, the duality (], can) is more natural. It is the latter duality,
which we will use from §8 on. In any case, both give rise to isomorphic exact
categories with duality and thus have isomorphic Grothendieck-Witt spaces.

6.4. Exercise. Show that the exact categories with weak equivalences and duality
(Chb E , ∗n, ηn) and (Chb E , ]n, cann) have symmetric cones in the sense of definition
4.1 (hint: see 7.5).

For an exact category with duality (E , ∗, η), inclusion as complexes concentrated
in degree 0, defines a duality preserving exact functor

(21) (E , i, ∗, η)→ (Chb E , quis, ∗, η).

The following proposition generalizes [TT90, Theorem 1.11.7], see also remark 6.8.
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6.5. Proposition. For an exact category with duality (E , ∗, η), the functor (21)
induces a homotopy equivalence of Grothendieck-Witt spaces

GW (E , ∗, η)
∼
−→ GW (Chb E , quis, ∗, η).

We will reduce the proof of the proposition to “semi-idempotent complete” exact
categories. This has the advantage that for such categories, every acyclic complex
is strictly acyclic. Here are the relevant definitions and facts.

6.6. Semi-idempotent completions. Call an exact category E semi-idempotent
complete if any map p : A→ B which has a section s : B → A, pi = 1, is a deflation
in E . A semi-idempotent complete exact category has the following property: any
map B → C for which there is a map A→ B such that the composition A→ C is
a deflation, is itself a deflation. This is because a semi-idempotent complete exact
category satisfies Thomason’s axiom [TT90, A.5.1] so that the standard embedding
of E into the category of left exact functors Eop → 〈ab〉 into the category of abelian
groups is closed under kernels of surjections [TT90, Theorem A.7.1 and Proposition
A.7.16 (b)]. For a semi-idempotent complete exact category, every acyclic complex
is strictly acyclic.

The semi-idempotent completion of an exact category E is the full subcategory

Ẽsemi ⊂ Ẽ of the idempotent completion Ẽ of E of those objects which are stably in

E . Clearly, Ẽsemi is semi-idempotent complete, and the map K0(E) → K0(Ẽ
semi)

is an isomorphism. If (E , ∗, η) is an exact category with duality, then (Ẽsemi, ∗, η)

is an exact category with duality such that the fully exact inclusion E ⊂ Ẽsemi is
duality preserving. If (A, w, ∗, η) is an exact category with weak equivalences and

duality, then (Ãsemi, w, ∗, η) inherits the structure of an exact category with weak

equivalence and duality from (Ã, w, ∗, η), see 4.5, so that the inclusion A ⊂ Ãsemi

is duality preserving.

6.7. Lemma. Let (A, w, ∗, η) be an exact category with weak equivalences and strong

duality, then the inclusion A ⊂ Ãsemi induces a homotopy equivalence of Grothen-
dieck-Witt spaces

GW (A, w, ∗, η)→ GW (Ãsemi , w, ∗, η).

Proof. For an exact category with duality (E , ∗, η), the map GWi(E)→ GWi(Ẽsemi)
is an isomorphism for i ≥ 1 and it is injective for i = 0, by cofinality proved in

[Sch08]. The map GW0(E)→ GW0(Ẽsemi) is also surjective, hence an isomorphism,

since for every symmetric space (X,ϕ) in Ẽsemi, we can find an A in E such that
X⊕A is in E , and thus, [X,ϕ] = [(X,ϕ) ⊥ HA]− [HA] is in the image of the map.
Therefore, lemma 6.7 holds when w is the set of isomorphisms. The lemma now

follows from this case and the simplicial resolution lemma 3.7 since Funw(n, Ãsemi)
is the semi-idempotent completion of Funw(n,A) (for a string Xn′ → · · · → Xn

of weak equivalences in Ãsemi, there is an object A of A such that Xi ⊕ A is in

A for all i ∈ n, so that (Xn′ → · · · → Xn) ⊕ (A
1
→ · · ·

1
→ A) is a string of weak

equivalences in A). �
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Proof of proposition 6.5. In view of lemma 6.7, we can assume E to be semi-
idempotent complete, so that acyclic complexes are strictly acyclic. Moreover,
by the strictification lemma 3.4, we can assume E to have a strict duality, since an
exact category with duality is equivalent to its strictification. Let Acb E ⊂ Chb E
be the full subcategory of acyclic chain complexes. It inherits the structure of an
exact category with weak equivalences and strict duality from Chb E . Consider the
commutative diagram of exact categories with weak equivalences and strict duality

0 //

��

(Acb E , i)

��

// (Acb E , quis)

��
(E , i) // (Chb E , i) // (Chb E , quis).

We will show that

(a) the left square induces a homotopy cartesian square of Grothendieck-Witt
spaces, and that

(b) the map GW0(E , i)→ GW0(Chb E , quis) is surjective.

By proposition 4.9, the right hand square induces a homotopy cartesian square of
Grothendieck-Witt spaces, so that by (a) the same is true for the outer square.
Together with (b), this implies the proposition.

We prove (a). For n ≥ 0, let Chb[−n,n]E ⊂ ChbE and Acb[−n,n]E ⊂ AcbE be

the full subcategories of those chain complexes which are concentrated in degrees
[−n, n]. They inherit a structure of exact categories with duality. Note that the
inclusion Acb[−n,n]E ⊂ Chb[−n,n]E is 0 ⊂ E for n = 0. The natural inclusions induce

a commutative diagram of exact categories with duality

(22) 0 //

��

Acb[−n,n]E //

��

Acb[−n−1,n+1]E

��

E // Chb[−n,n]E // Chb[−n−1,n+1]E .

We will show that the right-hand square induces a homotopy cartesian square of
Grothendieck-Witt spaces. Then, by induction, the outer square induces a homo-
topy cartesian square, too. Taking the colimit over n of the Grothendieck-Witt
spaces of the outer squares yields the desired homotopy cartesian square, since the
Grothendieck-Witt space functor GW commutes with filtered colimits.

Consider the following non-singular exact form functors between exact categories
with duality (equipped with the obvious duality compatibility maps):
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HE ×Acb[−n,n]E
s
→ Acb[−n−1,n+1]E :

(A,B), C 7→ A
(1 0)
−→ A⊕ C−n → C−n+1 → · · · → Cn−1 → Cn ⊕B∗ (0 1)

−→ B∗

Chb[−n−1,n+1]E
ρ
→ HE × Chb[−n,n]E :

C 7→ (C−n−1, (Cn+1)
∗), C−n → · · · → Cn

HE ×Acb[−n,n]E → HE × Chb[−n,n]E :

(A,B), C 7→ (A,B), A⊕ C−n → C−n+1 → · · · → Cn−1 → Cn ⊕B∗.

These functors, together with the natural inclusions, fit into a commutative diagram
of exact categories with duality

Acb[−n,n]E //

( 0
1 )

((PPPPPPPPPPPP

��

Chb[−n,n]E

( 0
1 )

vvmmmmmmmmmmmm

��

HE ×Acb[−n,n]E //

s
vvnnnnnnnnnnnn

HE × Chb[−n,n]E

Acb[−n−1,n+1]E // Chb[−n−1,n+1]E .

ρ

hhQQQQQQQQQQQQ

The upper square induces a homotopy cartesian square of Grothendieck-Witt spaces.
By additivity (theorem 3.3 or [Sch08, 7.1]), the diagonal maps s and ρ in the lower
square induce homotopy equivalences of Grothendieck-Witt spaces (details below).
Therefore, the outer square induces a homotopy cartesian square as well. To see
that the functors s and ρ induce homotopy equivalences, consider the following
functors of categories with duality

Acb[−n−1,n+1]E
r
→ HE ×Acb[−n,n]E : C 7→ (C−n−1, (Cn+1)

∗),

C−n/C−n−1 → C−n+1 → · · · → Cn−1 → ker(Cn → Cn+1)

HE × Chb[−n,n]E
σ
→ Chb[−n−1,n+1]E : (A,B), C 7→

A
0
→ C−n → C−n+1 → · · · → Cn−1 → Cn

0
→ B∗.

We have ρσ = id. The identity functor id on Chb[−n−1,n+1] has a totally isotropic

subfunctor G ⊂ id given by

G
��

��

0 //

��

· · · // 0 //

��

Cn+1

1

��
id C−n−1

// · · · // Cn // Cn+1.

By additivity [Sch08, 7.1], the identity functor id and σρ = G⊥/G ⊕ HG induce
homotopic maps on Grothendieck-Witt spaces, thus ρ induces a homotopy equiva-
lence. Similarly, we have rs = id, and the identity functor id on Acb[−n−1,n+1]E has
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a totally isotropic subfunctor F ⊂ id given by

F
��

��

C−n−1
1 //

1

��

C−n−1

��

��

// 0

��

// · · · // 0

��
id C−n−1

// // C−n
// C−n+1

// · · · // // Cn+1.

Again, by additivity [Sch08], the identity functor id on Acb[−n−1,n+1]E and sr =

F⊥/F ⊕HF induce homotopic maps on Grothendieck-Witt spaces. It follows that
s induces a homotopy equivalence. This finishes the prove of (a).

We are left with proving (b). We will show that

(c) a symmetric space (A,α), where A is supported in [−n, n], n ≥ 1, equals

[A,α] = [B, β] + [H(C)] in the Grothendieck-Witt group GW0(Chb E , quis),
where B is supported in [−n+ 1, n− 1].

By induction, [A,α] is then a sum of hyperbolic objects plus a symmetric space
supported in degree 0. Since the latter two kinds of symmetric spaces are obviously
in the image of GW0(E , i) → GW0(Chb E , quis), this proves (b). To show (c), let
n ≥ 1 and let (A,α) be a symmetric space supported in [−n, n]. Since the cone of α
is acyclic (hence strictly acyclic, by semi-idempotent completeness of E), the map(
d−n
α−n

)
: A−n → A−n+1 ⊕ A

∗
n is an inflation. Define a complex Ã, also supported

in [−n, n], by

A−n

“

d−n
α−n

”

� A−n+1 ⊕A
∗
n

( d 0 )
−→ A−n+2

d
→ · · ·

d
→ An−2

( d0 )
−→ An−1 ⊕An

( dn−1 1 )
� An.

The complex Ã is equipped with a non-singular symmetric form α̃ which is αi in
degree i except in degrees i = −n+1, n−1 where it is αi⊕1. We have a symmetric
space in the category of admissible short complexes in Chb E

A∗
n[n− 1] � Ã � An[−n+ 1]

with form (1, α̃, η), where for an object E of E , we denote by E[i] the complex which

is E in degree −i and 0 elsewhere. The maps A∗
n � Ã−n+1 = A−n+1 ⊕ A

∗
n and

An−1⊕An = Ãn−1 → An are the canonical inclusions and projections, respectively.
Since (A,α) is the zero-th homology of this admissible short complex equipped with

its form, we have [Ã, α̃] = [A,α] + [H(An[−n+ 1])] in GW0(Chb E , quis). There is

another symmetric space in the category of admissible short complexes in Chb E

CA−n[n− 1] � Ã � CAn[n]

with non-singular from (α−n, α̃, αn), where for an object E of E , we write CE[i]

for the complex E
1
→ E placed in degrees i and i− 1. The maps CA−n[n− 1] � Ã

and Ã � CAn[n] are the unique maps which are the identity in degree −n and n,
respectively. Since CA−n[n−1] and CAn[n] are acyclic, the form on the admissible
short complex is non-singular and its zero-th homology, which is concentrated in
degrees [−n+ 1, n− 1], has the same class in GW0(Chb E , quis) as (Ã, α̃). �

6.8. Remark. We can equip (Chb E , quis, ∗, η) with two exact structures, the one
defined in 6.1, and the degree-wise split exact structure. By lemma 5.3, the two
yield homotopy equivalent Grothendieck-Witt spaces.
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7. DG-Algebras on ringed spaces and dualities

In this section we recall basic definitions and facts about differential graded
algebras and modules over them. Besides fixing terminology, the main point here
is the construction of the canonical symmetric cone in 7.5, and the interpretation
of certain form functors as symmetric forms in dg bimodule categories, see 7.7.

7.1. DG κ-modules. Let κ be a commutative ring. Unless otherwise indicated,
modules will always mean left module, tensor product ⊗ will be tensor product
⊗κ over κ, and homomorphism sets Hom(M,N) between κ-modules means set
of κ-linear homomorphisms, and is itself a κ-module. Recall that a differential
graded κ-module M is a graded κ-module

⊕
n∈Z

Mn together with a κ-linear map
d : Mn → Mn+1, n ∈ Z, called differential of M , satisfying d ◦ d = 0. In other
words, M is a chain complex of κ-modules. A map of dg κ-modules is a map
of graded κ-modules commuting with the differentials. For two dg κ-modules M ,
N , the tensor product dg κ-module M ⊗N and the homomorphism dg κ-module
[M,N ] are defined by the usual formulas

(M ⊗N)n =
⊕

i+jMi ⊗Nj d(x⊗ y) = dx⊗ y + (−1)|x|x⊗ dy

[M,N ]n =
∏
j−i=nHom(Mi, Nj) d(f) = dN ◦ f − (−1)|f |f ◦ dM .

7.2. DGAs and modules over them. A differential graded κ-algebra (dga) is
a dg κ-module A equipped with dg κ-module maps · : A ⊗ A → A and κ → A,
called multiplication and unit, making the usual associativity and unit diagrams
commute [Mac71, diagrams (1), (2), p. 166]. In other words, A is an associative
graded κ-algebra with multiplication satisfying d(a · b) = (da) · b+ (−1)|a|a · (db).
For dg algebras A and B, we denote by A -Mod-B the category of left A and
right B-modules. Its objects are the dg κ-modules M equipped with dg κ-maps
A⊗M →M and M ⊗B →M , called multiplication, both of which are associative
and unital, and furthermore, (am)b = a(mb) for all a ∈ A, m ∈ M and b ∈ B. We
also denote by A -Mod = A -Mod-κ, Mod -A = κ -Mod-A, A -Bimod = A -Mod-A
the categories of dg left A-modules, right A-modules, and of dg A-bimodules.

Let A, B, C be dg algebras. Recall that for a right B module M and left B-
module N , tensor product M ⊗B N over of M and N over B is the dg κ-module
which is the co-equalizer

M ⊗B ⊗N
1⊗µ

//

µ⊗1
// M ⊗N // M ⊗B N

in the category of dg κ-modules, where µ stands for the multiplicationsM⊗B →M
and B⊗N → N . For two dg right C-modules M and N , the dg κ-module [M,N ]C
of right C-module morphisms is the equalizer in the category of dg κ-modules

[M,N ]C // [M,N ]
[µ,1]

//

[1,µ]◦(?⊗1C )
// [M ⊗ C,N ],

where (? ⊗ 1C) : [M,N ] → [M ⊗ C,N ⊗ C] is the dg κ-module map f 7→ f ⊗ 1C
defined by (f⊗1C)(x⊗c) = f(x)⊗c for x ∈M and c ∈ C. Similarly, one can define
the dg κ-module of left C-module morphisms C [M,N ] for two dg left C-modules.
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Tensor product ⊗B and right C-module morphisms [ , ]C define functors

⊗B : A -Mod-B ×B -Mod-C −→ A -Mod-C : M,N 7→M ⊗B N

[ , ]C : (B -Mod-C)op ×A -Mod-C −→ A -Mod-B : M,N 7→ [M,N ]C .

7.3. DGAs with involution. For a dg κ-module M , we denote by M op the op-
posite dg κ-module which, as a dg κ-module, is simply M itself. To avoid confusion
we may sometimes write xop, yop, etc, for the elements in Mop corresponding to
x, y ∈ M , so that d(xop) = (dx)op, for instance, denotes an equation in M op as
opposed to in M . For a dg κ-algebra A, its opposite dga Aop has underlying dg
κ-module the opposite module of A and multiplication xopyop = (−1)|x||y|(yx)op.
A dg algebra with involution is a dg κ-algebra A together with an isomorphism
A → Aop : a 7→ ā of dgas satisfying ¯̄a = a for all a ∈ A. The base commutative
ring κ is always considered as a dga with trivial involution κ→ κop : x 7→ x.

Let A,B be dgas with involution. For a left A, right B-module M ∈ A -Mod-B
its opposite module Mop is a left Bop and right Aop-module which we consider as
a left B and right A-module via the isomorphisms A → Aop, B → Bop, that is,
mop · a = (−1)|a||m|(ā ·m)op, b ·mop = (−1)|b||m|(m · b̄)op for a ∈ A, b ∈ B, m ∈M .
For dgas with involution A, B, C and M ∈ A -Mod-B, N ∈ B -Mod-C, the com-
mutativity isomorphism of the tensor product defines an A -Mod-C-isomorphism

c : M ⊗B N
∼=
−→ (Nop ⊗B M

op)op : x⊗ y 7→ (−1)|x||y|(yop ⊗ xop)op.

This can be iterated to obtain for rings with involution A, B, C, D and M ∈
A -Mod-B, N ∈ B -Mod-C, P ∈ C -Mod-D an isomorphism c3 in A -Mod-D de-
fined by

(M ⊗B N ⊗C P )
c3−→ (P op ⊗C Nop ⊗B Mop)op

x⊗ y ⊗ z 7→ (−1)|x||y|+|x||z|+|y||z|(zop ⊗ yop ⊗ xop)op.

7.4. DG-modules and dualities. Let A be a dga with involution, and let I
be an A-bimodule equipped with an A bimodule isomorphism i : I → Iop such
that iop ◦ i = id, for instance A itself with i(x) = x̄. We call the pair (I, i) a
duality coefficient for the category A -Mod of dg A-modules, as it defines a duality
](I,i) : (A -Mod)op → A -Mod by

M ](I,i) = [Mop, I ]A.

The canonical double dual identification can(I,i),M : M → M ](I,i)](I,i) is the left
A-module map given by the formula

can(I,i),M (x)(fop) = (−1)|x||f |i(f(xop))

for f ∈ [Mop, I ]A and x ∈ M . It is a straight forward to check the identity

can](I,i),M can(I,i),M] = 1M] , so that the triple (A -Mod, ](I,i), can(I,i)) is a category

with duality. In this paper, for the duality ](I,i), the double dual identification will
always be the natural map can(I,i), so that we will write

(A -Mod, ](I,i))

for the category with duality (A -Mod, ](I,i), can (I, i)), the double dual identifica-
tion being can(I,i). If i : I → Iop is understood, we may write ]I instead of ](I,i).
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To give a symmetric form ϕ : M → [M op, I ]A in (A -Mod, ]I ) is the same as to
give an A-bimodule map ϕ̂ : M ⊗M op → I such that the diagram

M ⊗Mop
ϕ̂ //

c

��

I

i

��
(M ⊗Mop)op

ϕ̂op

// Iop

commutes. The bijection is given by the identity ϕ̂(x ⊗ yop) = ϕ(x)(yop).

7.5. The canonical symmetric cone. Let C = κ · 1C ⊕ κ · ε be the dg κ-module
whose underlying κ-module is free of rank 2 with basis 1C and ε in degrees 0
and −1, respectively, and differential dε = 1C . In fact, C is a commutative dga
with unit 1C and unique multiplication. Let A be a dga and M a (left) dg A-
module. We write C : A -Mod → A -Mod for the functor M 7→ M ⊗ C, and iM
for the natural inclusion M → CM = M ⊗ C : x 7→ x ⊗ 1C . Similarly, we write
P : A -Mod→ A -Mod for the functorM⊗[Cop, κ] and pM for the natural surjection
PM = M ⊗ [Cop, κ]→M : m⊗ g 7→ m · g(1opC ). If A is a dga with involution, and
(I, i) a duality coefficient for A -Mod, we define a natural transformation

γM : [Mop, I ]A ⊗ [Cop, κ] −→ [(M ⊗ C)op, I ]A

by the formula γM (f ⊗ g)((x ⊗ a)op) = (−1)|a||x|f(xop) · g(aop). One checks the

equality i]IM ◦ γM = pM]I .
Therefore, an exact category with weak equivalences and duality (E , w, ∗, η)

which admits a fully faithful and duality preserving embedding into (A -Mod, ]I)
has a symmetric cone in the sense of 4.1 provided the functors C and P restrict to
exact endofunctors of E , the natural maps iM and pM are inflation and deflation,
and the objects CM and PM are w-acyclic for all M ∈ E .

7.6. Symmetric forms in bimodule categories and their tensor product.

Let A and B be dgas with involution, and let (I, i), (J, j) be duality coefficients for
A -Mod and B -Mod, respectively. A symmetric form in A -Mod-B, with respect to
the duality coefficients (I, i) and (J, j), is a pair (M,ϕ) where M ∈ A -Mod-B is a
left A and right B-module, and ϕ : M ⊗B J ⊗B Mop → I is an A-bimodule map
making the diagram of A-bimodule maps

(23) M ⊗B J ⊗B Mop
ϕ //

c3◦(1⊗j⊗1)

��

I

i

��
(M ⊗B J ⊗B Mop)op

ϕop
// Iop

commute. Isometries and orthogonal sums of symmetric forms in A -Mod-B are
defined in the obvious way.

Tensor product of symmetric forms is defined as follows. Let A, B, C be dg
algebras with involution, and let (I, i), (J, j), (K, k) be duality coefficients for
A -Mod, B -Mod and C -Mod, respectively. Further, let M ∈ A -Mod-B and N ∈
B -Mod-C be equipped with symmetric forms given by the A- and B-bimodule
maps ϕ : M ⊗B J ⊗B Mop → I and ψ : N ⊗C K ⊗C Nop → J (making diagram
(23) and its analog for ψ commute). The tensor product

(M,ϕ) ⊗B (N,ψ)



THE MAYER-VIETORIS PRINCIPLE FOR GROTHENDIECK-WITT GROUPS 43

of the symmetric forms (M,ϕ) and (N,ψ) has M ⊗B N as underlying left A and
right C-module, and is equipped with the symmetric form which is the A-bimodule
map

(M ⊗B N)⊗C K ⊗C (M ⊗B N)op
c
→ M ⊗B N ⊗C K ⊗C Nop ⊗B Mop

ψ
→ M ⊗B J ⊗B Mop ϕ

→ I.

7.7. Form functors as tensor product with symmetric forms. Let A and B
be dgas with involution, and let (I, i), (J, j) be duality coefficients for A -Mod and
B -Mod, respectively. We want to think of (certain) form functors (B -Mod, ]J )→
(A -Mod, ]I) as tensor product with symmetric forms in A -Mod-B. For that, let
(M,ϕ) be a symmetric form in A -Mod-B. It defines a form functor

(M,ϕ)⊗B? : (B -Mod, ]J )
(F,Φ)
−→ (A -Mod, ]I),

where F (P ) = M ⊗B P and the duality compatibility map is the left A-module
homomorphism

M ⊗B [P op, J ]B
ΦP−→ [(M ⊗B P )op, I ]A

defined by

Φ(x ⊗ f)((y ⊗ t)op) = (−1)|y||t|ϕ(x ⊗ f(top)⊗ yop)

for x, y ∈M , f ∈ [P op, J ]B , and t ∈ P .

7.8. Basic properties of (M,ϕ)⊗B?. Let A, B, C be dg algebras with involution,
and let (I, i), (J, j), (K, k) be duality coefficients for A -Mod, B -Mod and C -Mod,
respectively. Further, let (M,ϕ), (M ′, ϕ′) be symmetric forms in A -Mod-B and
(N,ψ) a symmetric form in B -Mod-C. Form functors induced by tensor product
with symmetric forms have the following elementary properties.

(a) Tensor product (A, µI)⊗A? with the symmetric form

µI : A⊗A I ⊗A A
op → I : a⊗ t⊗ b 7→ a · t · b̄

on the A-bimodule A induces the identity form functor on (A, ]I ).
(b) An isometry (M,ϕ) ∼= (M ′, ϕ′) between symmetric forms in A -Mod-B

defines an isometry of associated form functors

(M,ϕ)⊗B? ∼= (M ′, ϕ′)⊗B? : (B -Mod, ]J)→ (A -Mod, ]I).

(c) Orthogonal sum (M,ϕ) ⊥ (M ′, ϕ′) of symmetric forms in A -Mod-B corre-
sponds to orthogonal sum of associated form functors:

(M,ϕ)⊗B? ⊥ (M ′, ϕ′)⊗B? ∼= [(M,ϕ) ⊥ (M ′, ϕ′)]⊗B?

(d) Tensor product of symmetric forms corresponds to composition of associated
form functors:

[(M,ϕ) ⊗B (N,ψ)]⊗C? ∼= [(M,ϕ)⊗B?] ◦ [(N,ψ)⊗C?]

These properties follow directly from the definitions, and we omit the details.
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7.9. Tensor product of dgas with involution. For two dgas A, V , the tensor
product dg κ-module AV = A⊗κ V is a dga with multiplication (a⊗ v) · (b⊗w) =
(−1)|b||v|(a · b)⊗ (v · w). If A, V are dgas with involution, then the tensor product
dga AV is a dga with involution AV → (AV )op : a⊗v 7→ (ā⊗ v̄)op. Furthermore, if
(I, i) and (U, u) are duality coefficients for A -Mod and V -Mod, then IU = I⊗U is
an AV -bimodule with left multiplication (a⊗v)·(t⊗x) = (−1)|v||t|a·t⊗v·x and right
multiplication (t⊗x) · (a⊗ v) = (−1)|a||x|t ·a⊗x · v, for a ∈ A, v ∈ V , t ∈ I , x ∈ U ,
and the AV -bimodule map iu = i⊗ u : I ⊗U → (I ⊗U)op : t⊗ x 7→ (i(t)⊗ u(x))op

makes the pair (IU, iu) into a duality coefficient for AV -Mod.
If B is another dga with involution, and (J, j) is a duality coefficient for B -Mod,

then, with the same formulas as in 7.6, 7.7, any symmetric from (M,ϕ) in A -Mod-B
with respect to the duality coefficients (I, i) and (J, j) defines a form functor

(M,ϕ)⊗B? : (BV -Mod, ](JU,ju))→ (AV -Mod, ](IU,iu))

satisfying the properties in 7.8.

7.10. Extension to ringed spaces. Let (X,OX) be a ringed space with OX a
sheaf of commutative rings on a topological space X . Replacing in 7.1 - 7.9 the
ground ring κ with the sheaf of commutative rings OX , all definitions and properties
from 7.1 - 7.9 extend to modules over differential graded sheaves of OX -algebras.
Definitions are extended by applying the definitions of 7.1 - 7.9 to sections over open
subsets of X . For instance, let A be a sheaf of dg OX -algebras with involution, (I, i)
a duality coefficient for A -Mod, and P a sheaf of left dg A-modules. The canonical
double dual identification can : P → [[P op, I ]opA , I ]A is defined by sending a section
x ∈ P (U), U ⊂ X , to the map of sheaves of dg modules can(x) : ([P op, I ]opA )|U → I|U
defined on V ⊂ U by can(x)(fop) = (−1)|x||f |i(f(xop|V )) for f ∈ [P op, I ]A(V ).

8. Higher Grothendieck-Witt groups of schemes

LetX be a scheme, AX be a quasi-coherent sheaf of OX -algebras with involution,
L a line bundle onX , Z ⊂ X a closed subscheme and n ∈ Z an integer. The purpose
of this section is to introduce the Grothendieck-Witt space GW n(AX on Z, L) of
symmetric spaces over AX with coefficients in the n-th shifted line bundle L[n]
and support in Z. We work in this generality in order to be able to extent the
localization and excision theorems of §9 to negative degrees.

Recall that, unless otherwise indicated, “module” will always mean “ left mod-
ule”. In what follows, we will denote by ⊗ the tensor product ⊗OX

of OX -modules.

8.1. Vector bundles and strictly perfect complexes. Let AX be a quasi-
coherent sheaf of OX -algebras with involution. The category of quasi-coherent
left AX -modules (dg-modules concentrated in degree 0) is a fully exact abelian
subcategory of the abelian category of left AX -modules. We denote by

Vect(AX)

the full subcategory of AX vector bundles, that is, of those quasi-coherent left
AX -modules F for which F (U) is a finitely generated projective AX(U)-module
for every affine U ⊂ X . As usual, the last condition only needs to be checked for
those U running through a choice of an affine open cover of X . The category of
AX vector bundles inherits the notion of exact sequences from the category of all
(quasi-coherent) AX -modules. Note that AX vector bundles need not be locally
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free, since AX,x may not be commutative nor a local ring for x ∈ X . In case
AX = OX , the category Vect(X) is the usual exact category of vector-bundles on
X .

A strictly perfect complex of AX -modules is a dg left AX -module M such that
Mn = 0 for all but finitely many n ∈ Z andMn is an AX vector bundle for all n ∈ Z.
Denote by sPerf(AX ) the category of strictly perfect complexes of AX -modules, in
oder words, the category of bounded chain complexes of AX vector bundles.

Let L be a line bundle on X . Then AXL[n] = AX ⊗ L[n] is a dg AX -bimodule
via the multiplication defined on sections by a(x⊗ l)b = (−1)|b||l|axb⊗ l for a, b, x ∈
AX and l ∈ L[n]. We equip AXL[n] with a dg AX -bimodule isomorphism i :
AXL[n]→ (AXL[n])op : a⊗ l 7→ ā⊗ l satisfying iop ◦ i = 1, so that (AXL[n], i) is a
duality coefficient for AX -Mod. If ε ∈ {+1,−1}, then (AXL[n], εi) is also a duality
coefficient for AX -Mod. In the notation of 7.9, the duality coefficient (AXL[n], εi)
is the tensor product of the duality coefficient (AX , µ) for AX -Mod and the duality
coefficient (L[n], ε) for OX -Mod.

For a strictly perfect complex of AX -modules M , the left dg AX -module

M ]nεL = [Mop,AXL[n] ]AX

is also strictly perfect, the functor M 7→M ]nεL is exact and preserves quasi-isomor-
phisms. Moreover, the double dual identification can(AXL[n],εi) defined in 7.4 is an
isomorphism. Therefore, the triple

(sPerf(AX), quis, ]nεL)

defines an exact category with weak equivalences and duality, the double dual
identification being understood as can(AXL[n],εi). If n = 0 (or ε = 1, or L =
OX), we may omit the label corresponding to n (or ε, or L, respectively), so that
(AX -Mod, ]n) means (AX -Mod, ]n1,OX

), for instance. By restriction of structure,
we have an exact category with duality

(Vect(AX ), ]εL).

Let Z ⊂ X be a closed subscheme with open complement U = X − Z. A
strictly perfect complex M of AX -modules has cohomological support in Z if the
restriction M|U of M to U is acyclic. We write sPerf(AX on Z) for the category of
strictly perfect complexes of AX -modules which have cohomological support in Z.
By restriction of structure, we have exact categories with weak equivalences and
duality

(24) ( sPerf(AX on Z), quis, ]nεL, ).

8.2. Definition. Let X be a scheme, AX be a quasi-coherent sheaf of OX -algebras
with involution, L a line bundle on X , Z ⊂ X a closed subscheme, n ∈ Z an integer,
and ε ∈ {+1,−1}. The Grothendieck-Witt space

εGW
n(AX on Z, L)

of ε-symmetric spaces over AX with coefficients in the n-th shifted line bundle
L[n] and (cohomological) support in Z is the Grothendieck-Witt space of the ex-
act category with weak equivalences and duality (24). If Z = X (or ε = 1, or
L = OX , or n = 0), we may omit the label corresponding to Z (ε, L, n, respec-
tively). For instance, the space GW (AX , L) denotes the Grothendieck-Witt space

1GW
0(AX on X, L).
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8.3. Remark. By 7.5, the exact category with weak equivalences and duality (24)
has a symmetric cone in the sense of 4.1.

In the following proposition, we write µ : OX ⊗OX → OX for the multiplication
in OX .

8.4. Proposition. Tensor product with the (−1)-symmetric space (OX [1], µ) in-
duces an equivalence of exact categories with weak equivalences and duality

( sPerf(AX on Z), quis, ]nεL, ) ∼= ( sPerf(AX on Z), quis, ]n+2
−εL, ).

In particular, we have homotopy equivalences of Grothendieck-Witt spaces

(OX [1], µ)⊗? : εGW
n(AX on Z, L) ' −εGW

n+2(AX on Z, L) and

(OX [2], µ)⊗? : εGW
n(AX on Z, L) ' εGW

n+4(AX on Z, L).

Proof. The pair (OX [1], µ) defines a symmetric space in OX -Mod with respect
to the duality coefficient (OX [2],−1). Tensor product (OX [1], µ)⊗OX

? defines a
form functor (AX -Mod, ]nεL) → (AX -Mod, ]n+2

−εL) as explained in 7.7 – 7.10. Since
(OX [1], µ) ⊗OX

(OX [−1],−µ) and (OX [−1],−µ) ⊗OX
(OX [1], µ) are isometric to

(OX , µ) which induces the identity form functor, the equivalence of categories with
duality and the first homotopy equivalence follow. The second map of spaces is a
homotopy equivalence with inverse given by the tensor product with the symmetric
space (OX [−2], µ). �

8.5. Corollary. For n ∈ Z, there are functorial homotopy equivalences

GW 4n(AX , L) ' GW (Vect(AX), ]L, canL), and

GW 4n+2(AX , L) ' GW (Vect(AX), ]L,− canL).

where the Grothendieck-Witt spaces on the right hand side are the ones associated
with the exact categories with duality (Vect(AX ), ]L,± canL) as defined in [Sch08,
4.6].

Proof. The homotopy equivalences follow from proposition 6.5, remark 6.3, and
proposition 8.4. �

9. Localization and Zariski-excision in positive degrees

9.1. Schemes with an ample family of line bundles. A schemeX has an ample
family of line bundles if there is a finite set L1, ..., Ln of line bundles with global
sections si ∈ Γ(X,Li) such that the non-vanishing loci Xsi

= {x ∈ X | si(x) 6= 0}
form an open affine cover of X , see [TT90, Definition 2.1], [SGA6, II 2.2.4].

Recall that if f ∈ Γ(X,L) is a global section of a line bundle L on a scheme
X , then the open inclusion Xf ⊂ X is an affine map (as can be seen by choosing
an open affine cover of X trivializing the line bundle L). As a special case, Xf is
affine whenever X is affine. Thus, for the affine cover above X =

⋃
Xsi

, all finite
intersections of the Xsi

’s are affine. In particular, a scheme with an ample family
of line bundles is quasi-compact (as a finite union of affine, hence quasi-compact,
subschemes) and it is quasi-separated. Recall that the latter means that the in-
tersection of any two quasi-compact open subsets is quasi-compact (a condition
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which only needs to be checked for the pair-wise intersections Ui ∩Uj of a cover of
X =

⋃
i Ui by quasi-compact open subsets Ui; in our case, we can take Ui = Xsi

).
For a scheme X with an ample family of line bundles, there is a set Li, i ∈ I ,

of line bundles on X with global sections si ∈ Γ(X,Li) such that the open subsets
Xsi

, i ∈ I , form an open affine basis for the topology of X [TT90, 2.1.1 (b)].

For examples of schemes with an ample family of line bundles, see [TT90, 2.1.2].
Any quasi-compact open or closed subscheme of a scheme with an ample family of
line bundles has itself an ample family of line bundles. Any scheme quasi-projective
over an affine scheme, and any separated regular noetherian scheme has an ample
family of line bundles.

The main purpose of this section is to prove the following two theorems.

9.2. Theorem (Localization). Let X be a scheme with an ample family of line-
bundles, let Z ⊂ X be a closed subscheme with quasi-compact open complement
j : U ⊂ X, and let L a line bundle on X. Let AX be a quasi-coherent sheaf of
OX -algebras with involution. Then for every n ∈ Z there is a homotopy fibration
of Grothendieck-Witt spaces

GWn(AX on Z, L) −→ GW n(AX , L) −→ GW n(AU , j
∗L).

9.3. Theorem (Zariski-excision). Let X be a scheme with an ample family of line-
bundles, let Z ⊂ X be a closed subscheme with quasi-compact open complement, let
L be a line bundle on X and let AX be a quasi-coherent sheaf of OX -algebras with
involution. Then for every n ∈ Z and every quasi-compact open subscheme j : V ⊂
X containing Z, restriction of vector-bundles induces a homotopy equivalence

GWn(AX on Z, L)
∼
−→ GWn(AV on Z, j∗L).

The proofs of theorems 9.2 and 9.3 will occupy the rest of this section. First, we
introduce some terminology. For an open subscheme U ⊂ X , call a map M → N
of left dg AX -modules a U -isomorphism (U -quasi-isomorphism) if its restriction
M|U → N|U to U is an isomorphism (quasi-isomorphism). A left dg AX -module M
is called U -acyclic if its restriction M|U to U is acyclic.

9.4. Notation. In 9.5, 9.6, 9.7 below, we consider the following objects:

(a) a scheme X which is quasi-compact and quasi-separated,
(b) a finite set of line bundles Li, i = 1, ..., n together with global sections

si ∈ Γ(X,Li),
(c) the union U =

⋃n
i=1Xsi

of the non-vanishing loci Xsi
of the si’s, denoting

j : U ⊂ X the corresponding open immersion, and
(d) a quasi-coherent sheaf of OX -algebras AX .

9.5. Truncated Koszul complexes. In the situation of 9.4, the global sections
si define maps si : OX → Li of line-bundles whose OX -duals are denoted by
s−1
i : L−1

i → OX . We consider the maps s−1
i as (cohomologically graded) chain-

complexes with OX placed in degree 0. For an l-tuple n = (n1, ..., nl) of negative
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integers, the Koszul complex

(25)

l⊗

i=1

(Lni

i

sni

→ OX)

is acyclic overU , since the map sni = (s−1
i )⊗|ni| : Lni

i → OX is anXsi
-isomorphism,

so that the Koszul complex (25) is acyclic (even contractible) over each Xsi
. Let

K(sn) denote the bounded complex whose non-zero part (which we place in degrees
−l+ 1, ..., 0) is the Koszul complex (25) in degrees ≤ −1. The last differential d−1

of the Koszul complex defines a map

K(sn) =

[
l⊗

i=1

(Lni

i

sni

→ OX)

]

≤−1

[−1]
ε
−→ OX

of strictly perfect complexes of OX -modules which is a U -quasi-isomorphism since
its cone, the Koszul complex, is U -acyclic. For a left dg AX -module M , we write
εM for the tensor product map εM = 1M ⊗ ε : M ⊗K(sn)→M ⊗OX ∼= M .

The following lemma is a consequence of the well-known techniques of extending
a section of a quasi-coherent sheaf from an open subset cut out by a divisor to
the scheme itself [EGAI, Théorème 9.3.1]. It is implicit in the proof of [TT90,
Proposition 5.4.2].

9.6. Lemma. In the situation 9.4, let M be a complex of quasi-coherent left AX -
modules and let A be a strictly perfect complex of AX -modules. Then the following
holds.

(a) For every map f : j∗A → j∗M of left dg AU -modules between the re-
strictions of A and M to U , there is an l-tuple of negative integers n =
(n1, ..., nl), and a map f̃ : A⊗K(sn)→M of left dg AX -modules such that

f ◦ j∗(εA) = j∗(f̃).
(b) For every map f : A→M of left dg AX -modules such that j∗(f) = 0, there

is an l-tuple of negative integers n = (n1, ..., nl) such that f ◦ εA = 0.

Proof. For any complex of OX -modules K, to give a map A ⊗ K → M of chain
complexes of AX -modules is the same as to give a map K → AX

[A,M ] of chain
complexes of OX -modules, by adjointness of the tensor product A⊗? : OX -Mod→
AX -Mod and the left AX -module map functor AX

[A, ] : AX -Mod → OX -Mod.
Note that if A is strictly perfect, the complex AX

[A,M ] is a complex of quasi-
coherent OX -modules and the natural map AX

[A, j∗j
∗M ] → j∗j

∗
AX

[A,M ] is an
isomorphism. The adjunction allows us to reduce the proof of the lemma to AX =
OX and A = OX (concentrated in degree 0).

Every map OX → M of chain complexes of OX -modules factors through the
subcomplex Z0M ⊂M of M which is the complex ker(d0 : M0 →M1) concentrated
in degree 0. By adjunction, every map OX → j∗j

∗M factors as OX → j∗Z0j
∗M =

j∗j
∗Z0M → j∗j

∗M . This allows us to further reduce the proof to M a complex
with Mi = 0, i 6= 0. In this case, the proof for l = 1 is classical, see [EGAI,
Théorème 9.3.1], [TT90, Lemma 5.4.1], so that the lemma is proved in case l = 1.

Before we treat the case l > 1 (and AX = OX ; A = OX , M concentrated in
degree 0), we prove the following.
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(†) For every map A → G of complexes of quasi-coherent OX -modules with A
strictly perfect and j∗G contractible, there is an l-tuple of negative integers
(n1, ..., nl) and a commutative diagram of complexes of OX -modules

A
1A⊗ι //

((PPPPPPPPPPPPPPPPP A⊗
[ ⊗l

i (L
ni

i

sni

→ OX)
]

��
G,

where ι is the canonical embedding of OX (concentrated in degree 0) into
the Koszul complex.

It suffices to prove (†) for l = 1, since the general case is a repeated application
of the case l = 1. For the proof of (†) with l = 1, we can assume A = OX , as
above. The composition OX → G → j∗j

∗G has contractible target and therefore
factors through the cone (OX → OX ) of OX . By the case l = 1 of the lemma

(proved above), there is an n < 0 such that the composition (Ln → Ln)
sn

→ (OX →

OX) → j∗j
∗G lifts to G. The two maps (0 → Ln)

sn

→ (0 → OX) → G and
(0 → Ln) → (Ln → Ln) → G may not be the same, but their compositions with
G→ j∗j

∗G are, so that, again by case l = 1 of the lemma, precomposing both maps

with Ln+t s
t

→ Ln makes the two maps with target G equal. Replacing n with n+ t,
we can assume that the two maps (0→ Ln)→ G above coincide. Then we obtain

a map from the push-out (Ln
sn

→ OX) of (Ln → Ln) ← (0 → Ln)
sn

→ (0 → OX ) to
G. This proves (†) for l = 1, hence for all l.

For part (a) of the general case of lemma 9.6 (and AX = OX ; A = OX , M
concentrated in degree 0), we apply (†) to the map of chain-complexes of OX -
modules (0 → OX) → (M → j∗j

∗M), and obtain a factorization of that map

through the Koszul complex
⊗

i(L
ni

i

sni

→ OX) for some l-tuple of negative integers
(n1, ..., nl). The canonical map from the stupid truncation in degrees ≤ −1 (shifted
by 1 degree) to its degree 0 part

K(sn) =
[⊗l

i=1(L
ni

i

sni

→ OX )
]
≤−1

[−1]

��

d−1 // OX

��
M = [M → j∗j

∗M ]≤−1[−1]
d−1 // j∗j

∗M

yields (a). The general case of part (b) is a repeated application of the case l = 1.
�

For an exact category with weak equivalences (C, w), we write D(C, w) for its
derived category, that is, the category C[w−1] obtained from C by formally inverting
the arrows in w. If (C, w) is a category of complexes in the sense of definition 5.4,
its derived category D(C, w) is a triangulated category. In this case, it can also
be obtained as the localization by a calculus of fractions of the homotopy category
K(C) of C which is the factor category of C modulo the ideal of maps which are
homotopic to zero.
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9.7. Lemma. In the situation 9.4, let A ⊂ sPerf(AX) be a full subcategory of the
category of strictly perfect AX -modules such that the inclusion A ⊂ sPerf(AX) is
closed under degree-wise split extensions, usual shifts and cones. Assume further-
more that for all A ∈ A, k ≤ 0 and i = 1, ...n, we have A⊗ Lki ∈ A.

Then for every U -quasi-isomorphism M → A of complexes of quasi-coherent
AX -modules with A ∈ A, there is a U -quasi-isomorphism B → M of complexes of
AX -modules with B ∈ A:

B
∃

U−quis
// M

∀

U−quis
// A.

In particular, the inclusion A ⊂ sPerf(AX ) induces a fully faithful triangle functor

D(A, U - quis) ⊂ D( sPerf(AX), U - quis).

Proof. We first prove the following statement.

(†) Let s ∈ Γ(X,L) be a global section of a line-bundle L such that Xs is
affine. Then for every Xs-quasi-isomorphism N → E of complexes of quasi-
coherent AX -modules with E strictly perfect on X , there is an Xs-quasi-
isomorphism E ⊗ L−k → N for some integer k > 0.

Write j : Xs ⊂ X for the open inclusion. Since Xs is affine, we have an equiv-
alence of categories between quasi-coherent AXs

-modules and AX(Xs)-modules
under which the map j∗N → j∗E becomes a quasi-isomorphism of complexes of
AX(Xs)-modules with j∗E a bounded complex of projectives. Such a map always
has a section up to homotopy f : j∗E → j∗N which is then a quasi-isomorphism.
By 9.6 with l = 1, there is a map of complexes f̃ : E⊗Lk → N such that j∗f̃ = f ·sk,
for some k < 0. In particular, f̃ is a U -quasi-isomorphism.

Now we prove the lemma by induction on n. For n = 1, this is (†). Let U0 =⋃n−1
i=1 Xsi

. By our induction hypothesis, there is a U0-quasi-isomorphism B0 →M
with B0 ∈ A. Let M0 and A0 be the cones of the maps B0 → M and B0 → A,
that is, the push-out of these maps along the canonical (degree-wise split) injection
of B0 into its cone CB0. We obtain a commutative (in fact bicartesian) diagram
involving M , M0, A and A0 with M →M0 and A→ A0 degree-wise split injective.
Factor the map A→ A0 as in the diagram

M // //

��

M1
// //

��

M0

��
A // // A⊕ PA0

// // A0

with A ⊕ PA0 → A0 degree-wise split surjective and PA0 = CA0[−1] ∈ ChbA
contractible. Then M → M0 factors through the pull-back M1 of M0 → A0 along
the surjection A⊕ PA0 → A. The map M → M1 is degree-wise split injective (as
M →M0 is), and has cokernel the contractible complex PA0. It follows that M →
M1 is a homotopy equivalence, and we can choose a homotopy inverse M1 → M .
By construction, A0 and M0 are acyclic over U0 and A0 ∈ A. Moreover, the map
M0 → A0 is an Xsn

-quasi-isomorphism. By (†), there is an Xsn
-quasi-isomorphism

A0 ⊗ L
−k →M0 for some k > 0. The complex A0 ⊗ L

−k is U0-acyclic since A0 is,



THE MAYER-VIETORIS PRINCIPLE FOR GROTHENDIECK-WITT GROUPS 51

so that the map A0 ⊗ L−k → M0 is in fact a U -quasi-isomorphism. Let B be the
pull-back of A0 ⊗ L−k → M0 along the surjection M1 → M0. The resulting map
B →M1 is a U -quasi-isomorphism. Moreover B is an object of A since B is also the
pull-back of A0⊗L−k → A0 along the (degree-wise split) surjection A⊕PA0 → A0.
Composing the map B → M1 with the homotopy inverse M1 → M of M → M1

yields the desired U -quasi-isomorphism B →M . �

9.8. The derived category of quasi-coherent AX-modules. Recall that a
Grothendieck abelian category is an abelian category A in which all set-indexed
direct sums exist, filtered colimits are exact, and A has a set of generators. We
remind the reader that a set I of objects of A generates the abelian category A if
for every object E ∈ A, there is a surjection

⊕
Ai � E from a set indexed direct

sum of (possibly repeated) objects Ai ∈ I to E.
If X is a scheme with an ample family of line-bundles, and AX a quasi-coherent

OX -algebra, then the category Qcoh(AX ) of quasi-coherent AX -modules is an
abelian category with generating set the set AX ⊗ Lki , i = 1, ..., n, k ≤ 0, where
L1, ..., Ln is a set of line bundles on X with global sections si ∈ Γ(X,Li) such that
the non-vanishing loci Xsi

are affine and cover X .
For a Grothendieck abelian category A, write D(A) for the unbounded derived

category of A, that is, the triangulated category D(ChA, quis). This category
has small homomorphism sets, by [Wei94, remark 10.4.5]. Coproducts of com-
plexes are also coproducts in DA, so that the triangulated category DA has all set-
indexed coproducts. This applies in particular to the unbounded derived category
DQcoh(AX) of quasi-coherentAX modules. If Z ⊂ X is a closed subset with quasi-
compact open complement U = X − Z, we write DZ Qcoh(AX ) ⊂ DQcoh(AX )
for the full triangulated subcategory of those complexes E of quasi-coherent AX -
modules whose restriction E|U to U are acyclic.

9.9. Lemma. Let A be a Grothendieck abelian category with generating set of ob-
jects I. Then, an object E of the triangulated category DA is zero iff every map
A[j]→ E in DA is the zero map for A ∈ I and j ∈ Z.

Proof. Let E be an object of the derived category DA of A such that every map
A[j]→ E in DA is the zero map for A ∈ I and j ∈ Z. We can choose a surjection⊕

J Aj � ker(d0) in A with Aj objects in the generating set I . The inclusion of
complexes ker(d0) → E yields a map of complexes

⊕
J Aj → ker(dk) → E which

induces a surjective map
⊕

J Aj � ker(d0) � H0E on cohomology. Since every
map

⊕
J Aj → E is zero in DA, the induced surjective map

⊕
J Aj � H0E is

the zero map, hence H0E = 0. The same argument applied to E[k] instead of to
E shows that HkE = 0 for all k ∈ Z, so that E is quasi-isomorphic to the zero
complex. �

Next, we recall the concept of compactly generated triangulated categories due
to Neeman [Nee92] in the form of [Nee96].

9.10. Compactly generated triangulated categories. Let T be a triangu-
lated category in which (all set-indexed) coproducts exists. An object A of T
is called compact [Nee96, Definition 1.6] if the natural map

⊕
j∈J Hom(A,Mj) →

Hom(A,
⊕

j∈JMj) is an isomorphism for any set Mj , j ∈ J , of objects in T . The
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full subcategory T c ⊂ T of compact objects is closed under shifts and cones and
thus is a triangulated subcategory.

A triangulated category T is compactly generated [Nee96, Definition 1.7] if T
contains all set-indexed direct sums, and if there is a set I of compact objects in
T such that an object M of T is the zero object iff all maps A → M are the zero
map for A ∈ I .

A set I of compact objects in a compactly generated triangulated category T is
called a generating set [Nee96, Definition 1.7] if I is closed under shifts and if an
object M of T is the zero object iff all maps A→M are the zero map for A ∈ I .

The following theorem is due to Neeman [Nee96, Theorem 2.1].

9.11. Theorem (Neeman).

(a) Let T be a compactly generated triangulated with generating set of objects
I. Then the full triangulated subcategory T c of compact objects in T is the
smallest idempotent complete triangulated subcategory of T containing I.

(b) Let R be a compactly generated triangulated category, S ⊂ Rc a set of
compact objects closed under taking shifts. Let S ⊂ R be the smallest full
triangulated subcategory closed under formation of coproducts in R which
contains S. Then S and R/S are compactly generated triangulated cate-
gories with generating set S and the image of Rc in R/S. Moreover, the
functor Rc/Sc → R/S induces an equivalence between the idempotent com-
pletion of Rc/Sc and the category of compact objects in R/S.

(c) Let S → R be a triangle functor between compactly generated triangulated
categories which preserves coproduct and compact objects. Then S → R is
an equivalence iff the functor Sc → Rc on compact objects is an equivalence.

The following two propositions are essentially due to Thomason [TT90]. We
include the proofs here because only the commutative situation is considered in
[TT90], and we need the explicite versions below.

For an exact category E , writeDb(E) for the triangulated categoryD(Chb E , quis).
Recall that a fully faithful functor A → B of additive categories is called cofinal if
every object of B is a direct factor of an object of A.

9.12. Proposition. Let X be a quasi-compact and quasi-separated scheme which
is the union X =

⋃n
i=1Xsi

of open affine non-vanishing loci Xsi
of global sections

si ∈ Γ(X,Li) of line-bundles Li, i = 1, ..., n. Let AX be a quasi-coherent OX -
algebra. Then the triangulated category DQcoh(AX ) is compactly generated by the
set of objects AX ⊗ Lki [j] for k ≤ 0, i = 1, ..., n and j ∈ Z.

Moreover, the inclusion Vect(AX ) ⊂ Qcoh(AX) induces a fully faithful triangle
functor Db Vect(AX) ⊂ DQcoh(AX) which identifies, up to equivalence, the cate-
gory Db Vect(AX ) with the full triangulated subcategory DcQcoh(AX) of compact
objects in DQcoh(AX ).

Proof. In the triangulated category DQcoh(AX ), every strictly perfect complex of
AX modules is a compact object. To see this, note that for an AX vector bundle A
and a set Mj , j ∈ J , of quasi-coherent AX -modules the canonical map of sheaves
of homomorphisms

⊕
j HomAX

(A,Mj) → HomAX
(A,

⊕
jMj) is an isomorphism

since this can be checked on an affine open cover of X where the statement is

clear. Taking global sections, we obtain an isomorphism
⊕

j HomAX
(A,Mj)

∼=
→
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HomAX
(A,

⊕
Mj). This isomorphism extends to an isomorphism of homomor-

phism sets of complexes of AX -modules for A a strictly perfect complex and M an
arbitrary complex of quasi-coherent AX -modules. For such complexes, the isomor-
phism induces an isomorphism

(26)
⊕

j

HomKQcoh(AX )(A,Mj)
∼=
→ HomKQcoh(AX )(A,

⊕

j

Mj)

of homomorphism sets in the homotopy category KQcoh(AX ) of chain complexes
of quasi-coherent AX -modules. It follows from lemma 9.7 with U = X and A =
sPerf(AX) that maps in DQcoh(AX ) from a strictly perfect complex A to an
arbitrary complexM of quasi-coherentAX -modules can be computed as the filtered
colimit

colim
B

∼
→A

HomKQcoh(AX )(B,M)
∼=
−→ HomDQcoh(AX)(A,M)

of homomorphism sets in KQcoh(AX ) where the indexing category is the left fil-

tering category of homotopy classes of quasi-isomorphisms B
∼
→ A of strictly per-

fect complexes with target A. Taking the colimit over this filtering category of
the isomorphism (26) yields the isomorphism which proves that A is compact in
DQcoh(AX ).

Since the set AX ⊗ Lki , i = 1, ..., n, k ≤ 0 is a set of generators for the
Grothendieck abelian category Qcoh(AX ) all of which are compact in the derived
category DQcoh(AX), lemma 9.9 shows that DQcoh(AX ) is a compactly gener-
ated triangulated category with generating set AX ⊗ Lki [j], i = 1, ..., n, k ≤ 0,
j ∈ Z.

The inclusion Vect(AX ) ⊂ Qcoh(AX) of vector bundles into all quasi-coherent
AX -modules induces a triangle functor Db Vect(AX) → DQcoh(AX ) which is
fully faithful, by the existence of an ample family of line bundles and the crite-
rion in [Kel96, 12.1]. Since the exact category Vect(AX ) is idempotent complete,
its bounded derived category Db Vect(AX ) is also idempotent complete [BS01,
Theorem 2.8]. By Neeman’s theorem 9.11 (a), the inclusion Db Vect(AX ) →
DcQcoh(AX ) is an equivalence. �

9.13. Reminder on Rj∗. Let X be a scheme with an ample family of line bundles,
and let j : U ↪→ X be an open immersion from a quasi-compact open subset U toX .
We recall one possible construction of the right-derived functor Rj∗ : DQcoh(U)→
DQcoh(X) of j∗ : Qcoh(U) → Qcoh(X). For that, choose a finite cover U =
{U0, ..., Un} of U such that the inclusion of all finite intersections Ui0 ∩ ...∩Uik ⊂ X
into X are affine maps, i0, ..., ik ∈ {0, ..., n}. For instance, we can take as U an
open cover of U by a finite number of non-vanishing loci Xsi

associated with a
set of line bundles Li on X and global sections si ∈ Γ(X,Li), i = 0, ..., n. For a
k + 1-tuple i = (i0, ..., ik), set Ui = Ui0 ∩ ... ∩ Uik and write write ji : Ui ⊂ U for
the corresponding open immersion.

For a quasi-coherentAU module F , consider the sheafified Čech complex Č(U , F )
associated with this covering. In degree k it is the quasi-coherent AX -module

Č(U , F )k =
⊕

i

ji,∗j
∗
i F

where the indexing set is taken over all k + 1-tuples i = (i0, ..., ik) with 0 ≤ i0 <
· · · < ik ≤ n. The differential dk : Č(U , F )k → Č(U , F )k+1 for the component
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i = (i0, ..., ik+1) is given by the formula

(dk(x))i =

k+1∑

l=0

(−1)l ji,∗j
∗
i x(i0,...,̂il,...,ik+1)

.

Note that the complex Č(U , F ) is concentrated in degrees 0, ..., n.
The units of adjunction F → ji∗j

∗
i F define a map F → Č(U , F )0 =

⊕n
i=0 ji∗j

∗
i F

into the degree zero part of the Čech complex with d0(F ) = 0, and thus a map of
complexes of quasi-coherent AX -modules F → Č(U , F ). This map is a quasi-
isomorphism for any quasi-coherent AX -module F as can be checked by restricting
the map to the open subsets Ui of the cover of U . Since, by assumption, for every
k + 1-tuple, i = (i0, ..., ik), the open inclusion j ◦ ji : Ui ⊂ X is an affine map, the
functor

j∗Č(U ) : Qcoh(AX)→ Ch Qcoh(AX) : F 7→ j∗Č(U , F )

is exact. Taking total complexes, this functor extends to a functor on all complexes

j∗ Tot Č(U ) : Ch Qcoh(AX )→ ChQcoh(AX) : F 7→ j∗ Tot Č(U , F ) = Tot j∗Č(U , F )

which preserves quasi-isomorphisms as it is exact and sends acyclics to acyclics.
This functor is equipped with a natural quasi-isomorphism

(27) F
∼
−→ Tot Č(U , F ).

Therefore, it represents the right derived functor Rj∗ of j∗, that is,

Rj∗ = j∗ Tot Č(U ) : DQcoh(AU )→ DQcoh(AX).

9.14. Lemma. Let X be a scheme with an ample family of line bundles, j : U ⊂ X
a quasi-compact open subscheme, Z ⊂ X a closed subset with quasi-compact open
complement X − Z such that Z ⊂ U , then we have an equivalence of triangulated
categories

j∗ : DZ Qcoh(AX )
'
−→ DZ Qcoh(AU )

with inverse the functor Rj∗.

Proof. We first check that Rj∗ preserves cohomological support. Denote by jU :
U − Z ⊂ U , jX : X − Z ⊂ X and jZ : U − Z ⊂ X − Z the corresponding open
immersions, and note that the canonical map j∗Xj∗M → jZ∗j

∗
UM is an isomorphism

for every quasi-coherent AU -module M . By the existence of an ample family of line
bundles on X , we can choose a finite open cover U = {U0, ..., Un} of U such that
all inclusions Ui0 ∩ ...∩Uik ⊂ X are affine maps. For a complex F of quasi-coherent
AU -modules, we have

j∗XRj∗F = j∗Xj∗ Tot Č(U , F ) = jZ∗j
∗
U Tot Č(U , F ) = jZ∗ Tot Č(U − Z, j∗UF )

where U −Z is the cover {U0−Z, ..., Un−Z} of U−Z. As pull-backs of affine maps,
all inclusions (Ui0 − Z) ∩ ... ∩ (Uik − Z) ⊂ X − Z are also affine maps, so that the
functor jZ∗ Tot Č(U − Z) represents RjZ∗, and we obtain a natural isomorphism
of functors

j∗X ◦Rj∗
∼=
−→ RjZ∗ ◦ j

∗
U .

In particular, Rj∗ sends DZ Qcoh(AU ) into DZ Qcoh(AX).
For the proof of the lemma, note that the composition j∗Rj∗ = j∗j∗ Tot Č(U ) =

Tot Č(U ) is naturally quasi-isomorphic to the identity functor via the map (27).
Furthermore, the unit of adjunction F → Rj∗ ◦ j∗(F ), which is adjoint to the
map (27) applied to j∗F , is a quasi-isomorphism for F ∈ DZ Qcoh(AX ) since both



THE MAYER-VIETORIS PRINCIPLE FOR GROTHENDIECK-WITT GROUPS 55

complexes have cohomological support in Z, so that we can check this property by
restricting the map to U , where it is the quasi-isomorphism (27). �

9.15. Proposition. Let X be a scheme with an ample family of line-bundles. Let
Z ⊂ X be a closed subscheme with quasi-compact open complement X − Z. Let
j : U ⊂ X be a quasi-compact open subscheme. Let AX be a quasi-coherent sheaf
of OX -algebras. Then the following hold.

(a) Restriction of vector bundles induces a fully faithful triangle functor

j∗ : D sPerf(AX on Z,U - quis) ↪→ D sPerf(AU on Z ∩ U,U - quis).

(b) The triangulated category DZ Qcoh(AX ) is compactly generated and the tri-
angle functor D sPerf(AX on Z, quis) → DZ Qcoh(AX ) induces an equiv-
alence of D sPerf(AX on Z, quis) with the full triangulated subcategory of
compact objects in DZ Qcoh(AX).

(c) If Z ⊂ U , then restriction of vector bundles induces an equivalence of tri-
angulated categories

j∗ : D sPerf(AX on Z, quis)
'
→ D sPerf(AU on Z, quis).

(d) The triangle functor in (a) is cofinal.

Proof. The functor in (a) is clearly conservative. It is full by the following argument.
Let A and B be strictly perfect complexes of AX -modules with support in Z,
and let j∗A ∼← E → j∗B be a diagram in sPerf(AU on U ∩ Z) representing a
map f : j∗A → j∗B in Dc(AU on Z ∩ U,U - quis) where E ∼→ j∗A is a U -quasi-
isomorphism. Let M be the pull-back of j∗E → j∗j

∗A and the U -isomorphism
A → j∗j

∗A. The induced maps M → j∗E and M → A are U -isomorphism and
U -quasi-isomorphism, respectively. By lemma 9.7 with A = sPerf(AX on Z), there
is a A0 ∈ A and a U -quasi-isomorphism A0 → M . By lemma 9.6, there is a map
A0⊗K(sn)→ B such that the two maps A0⊗K(sn)→ A0 →M → j∗E → j∗j

∗B
and A0 ⊗K(sn)→ B → j∗j

∗B coincide. If follows that the map f : j∗A→ j∗B is
the image of the map in Dc(AX on Z,U - quis) which is represented by the diagram

A
∼
← A0 ⊗K(sn) → B. Therefore, the functor in (a) is full. Any conservative and

full triangle functor is faithful, hence the triangle functor in (a) is fully faithful.
It follows from proposition 9.12 and Neeman’s theorem 9.11 (a) that the functor

in (a) is cofinal for Z = X since in this case both categories contain as a cofinal
subcategory the triangulated category generated by AX ⊗L where L runs through
the line bundles on X . This shows part (d) when Z = X .

In order to prove (b), write R for the compactly generated triangulated cate-
gory DQcoh(AX ) with category of compact objects Rc = D sPerf(AX , quis), see
9.12. Let S ⊂ R be the full triangulated subcategory closed under the formation
of coproducts in R which is generated by the set S = sPerf(AX on Z, quis) ⊂ Rc

of compact objects. By part (d) for Z = X proved above and proposition 9.12, we
have a cofinal inclusion Rc/Sc → DcQcoh(AU ). By Neeman’s theorem 9.11 (b)
and (c), this implies that the functor R/S → DQcoh(AU ) is an equivalence. In
particular S is the kernel category of the functor DQcoh(AX )→ DQcoh(AU ), so
that S = DZ Qcoh(AU ) is compactly generated by D sPerf(AX on Z, quis). Since
D sPerf(AX , quis) = Dc Qcoh(AX) is idempotent complete, its epaisse subcategory
D sPerf(AX on Z, quis) is also idempotent complete, so that we have the identifi-
cation D sPerf(AX on Z, quis) = Dc

Z Qcoh(AX ), by Neeman’s theorem 9.11 (a).
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In view of (b), the map in (c) is the restriction to compact objects of the equiv-
alence of lemma 9.14. It is therefore also an equivalence.

For the proof of (d), we simplify notation by writing Dc(AX on Z,w) for the
triangulated category D sPerf(AX on Z,w). Let V = U ∪ (X − Z) and consider
the commutative diagram of triangulated categories

Dc(AX on Z, V - quis) //

��

Dc(AX , V - quis) //

��

Dc(AX , X − Z - quis)

��
Dc(AV on Z ∩ U, V - quis) // Dc(AV , V - quis) // Dc(AV , X − Z - quis)

in which all vertical functors are fully faithful, by (a), and the middle and the right
vertical functors are cofinal since all four categories have as cofinal subcategory the
triangulated category generated by AX ⊗L, where L runs through the line-bundles
on X , by proposition 9.12. Therefore, the right two vertical functors are equiva-
lences after idempotent completion. Since the two left triangulated categories are
the “kernel categories” of the two right horizontal functors, and this property is pre-
served under idempotent completion, the left vertical functor is also an equivalence
after idempotent completion. Thus, the left vertical functor is cofinal.

The functor Dc(AX on Z,U - quis) ↪→ Dc(AU on Z ∩ U,U - quis) in (a) can be
identified with the left vertical functor in the diagram since U -quasi-isomorphisms
are V -quasi-isomorphisms for complexes of AX -modules cohomologically supported
in Z, and since the functor Dc(AV on Z ∩U, V - quis)→ Dc(AU on Z ∩U,U - quis)
is an equivalence, by (b). �

9.16. Corollary. Let X be a scheme which has an ample family of line-bundles,
let Z ⊂ X be a closed subset with quasi-compact open complement X − Z, and
let j : U ⊂ X be a quasi-compact open subscheme. Let M be a quasi-coherent
AX -module such that j∗M is strictly perfect on U and has cohomological support
in Z ∩ U . If the class [j∗M ] ∈ K0(AU on Z ∩ U) is in the image of the map
K0(AX on Z)→ K0(AU on Z ∩ U), then there is a U -quasi-isomorphism

A
∃

U−quis
// M

with A a strictly perfect complex of AX -modules which has cohomological support
in Z.

Proof. We start with a standard fact about K0 of triangulated categories. Let
T0 ⊂ T1 be a (fully faithful and) cofinal functor between triangulated categories.
Then an object T of T1 is isomorphic to an object of T0 if and only if its class
[T ] ∈ K0(T1) is in the image of K0(T0) → K0(T1). This is because the cokernel of
K0(T0)→ K0(T1) can be identified with the quotient monoid of the abelian monoid
of isomorphism classes of objects in T1 under direct sum modulo the submonoid of
isomorphism classes of objects in T0, so that an object of T1 defines the zero class
in the cokernel if and only if it is stably in T0. But for triangulated categories, an
object is stably in T0 iff it is isomorphic to an object in T0.

For the proof of the corollary, we apply this argument to the inclusion in propo-
sition 9.15 (a) which is cofinal, by 9.15 (d). We see that j∗M is isomorphic in
Dc(AU on Z ∩ U,U - quis) to an object j∗B, where B is a perfect complex of AX -
modules with cohomological support in Z. It follows that there is a zig-zag of
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U -quasi-isomorphisms j∗M
∼
← F

∼
→ j∗B. Let P be the pull-back of j∗F → j∗j

∗B
along the U -isomorphism B → j∗j

∗B. Then P → j∗F is a U -isomorphism, and
it follows that P → B is a U -quasi-isomorphism. By lemma 9.7 with A the sub-
category of those strictly perfect complexes which are cohomologically supported
in Z, there is a U -quasi-isomorphism B′ → P with B′ strictly perfect and coho-
mologically supported in Z. Since X has an ample family of line-bundles and U
is quasi-compact, we can choose line-bundles Li and global sections si ∈ Γ(X,Li),
i = 1, ..., l such that the set of non-vanishing loci Xsi

, i = 1, ..., l is an affine open
cover of U . By Lemma 9.6, we can find an l-tuple of negative integers n such that
the composition of U -quasi-isomorphisms A = B′ ⊗K(s) → B′ → j∗j

∗M lifts to
M . �

9.17. Proposition. Let X be a scheme which has an ample family of line bundles,
let Z ⊂ X be a closed subscheme with quasi-compact open complement, and let
j : U ⊂ X be a quasi-compact open subscheme. Let AX be a quasi-coherent OX -
algebra with involution. Then for any line-bundle L on X and any integer n ∈ Z,
restriction of AX vector bundles to U defines non-singular exact form functors

( sPerf(AX on Z), U - quis, ]nL )

−→ ( sPerf(AU on U ∩ Z), U - quis, ]nj∗L )

which induce isomorphisms on higher Grothendieck-Witt groups GWi for i ≥ 1 and
a monomorphism for GW0.

If, moreover, we have Z ⊂ U , then the form functors induce isomorphisms for
all higher Grothendieck-Witt groups GWi, i ≥ 0.

Proof. Let sPerfK0(AU on U ∩ Z) ⊂ sPerf(AU on U ∩ Z) be the full subcategory
of those strictly perfect complexes of AU -modules with cohomological support in
U ∩ Z which have class in the image of K0(AX on Z) → K0(AU on Z ∩ U). By
cofinality 4.10, the duality preserving inclusion

(28) sPerfK0(AU on U ∩ Z)→ sPerf(AU on U ∩ Z)

of exact categories with weak equivalences the U -quasi-isomorphisms and duality
]nj∗L induces maps on higher Grothendieck-Witt groups GWi which are isomor-
phisms for i ≥ 1 and a monomorphism for i = 0. Restriction of vector-bundles
defines a non-singular exact form functor

(29) ( sPerf(AX on Z), U - quis )→ ( sPerfK0(AU on U ∩ Z), U - quis )

which induces a homotopy equivalence of Grothendieck-Witt spaces by theorem 5.1,
where 5.1 (c) follows from corollary 9.16 and lemma 5.5; 5.1 (e) and (f) are proved
in lemma 9.6; the remaining hypothesis of theorem 5.1 being trivially satisfied.

If Z ⊂ U , then K0(AX on Z) = K0(AU on Z ∩ U), by proposition 9.15 (c), so
that (28) is the identity inclusion, and the map (29), which induces a homotopy
equivalence of Grothendieck-Witt spaces, is the map in the proposition. �

Proof of theorem 9.2. By the “change-of-weak-equivalence theorem” 4.2, the se-
quence

( sPerf(AX on Z), quis, ]nL )→ ( sPerf(AX), quis, ]nL )→ ( sPerf(AX ), U - quis, ]nL )
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induces a homotopy fibration of Grothendieck-Witt spaces. By proposition 9.17,
the form functor

( sPerf(AX), U - quis, ]nL )→ ( sPerf(AU ), quis, ]nj∗L )

induces isomorphisms on GWi for i ≥ 1 and a monomorphism for i = 0. �

Proof of theorem 9.3. The theorem is a special case of proposition 9.17. �

10. Extension to negative Grothendieck-Witt groups

For an open subscheme U ⊂ X , the restriction map GW0(X)→ GW0(U) is not
surjective, in general, not even if X is regular. The purpose of this section is to
extend the long exact sequence associated with the homotopy fibration of theorem
9.2 to negative degrees. Theorems 9.2 and 9.3 will be extended to a fibration and
a weak equivalence of non-connective spectra.

10.1. Cone and suspension of AX . The cone ring is the ring C of infinite ma-
trices (ai,j)i,j∈N with coefficients ai,j in Z for which each row and each column has
only finitely many non-zero entries. Transposition of matrices t(ai,j) = (aj,i) makes
C into a ring with involution. As a Z-module C is torsion free, hence flat.

The suspension ring S is the factor ring of C by the two sided ideal M∞ ⊂ C
of those matrices which have only finitely many non-zero entries. Transposition
also makes S into a ring with involution such that the quotient map C � S is a
map of rings with involution. For another description of the suspension ring S,
consider the matrices en ∈ C, n ∈ N, with entries (en)i,j = 1 for i = j ≥ n and
zero otherwise. They are symmetric idempotents, i.e., ten = en = e2n, and they
form a multiplicative subset of C which satisfies the Øre condition, that is, the
multiplicative subset satisfies the axioms for a calculus of fractions. One checks
that the quotient map C � S identifies the suspension ring S with the localization
of the cone ring C with respect to the elements en ∈ C, n ∈ N. In particular, the
suspension ring S is also a flat Z-module.

Let X be a quasi-compact and quasi-separated scheme. For a quasi-coherent
sheaf AX of OX -algebras, write CAX and SAX for the quasi-coherent sheaves of
OX -algebras associated with the presheaves C ⊗Z AX and S ⊗Z AX . On quasi-
compact open subsets U ⊂ X , we have (CAX )(U) = C ⊗Z AX (U) and SAX =
S ⊗Z AX(U), by flatness of C and S. If AX is a sheaf of algebras with involutions,
then the involutions on C and on S make CAX and SAX into sheaves of OX -
algebras with involution.

Let ε = 1 − e1 ∈ C be the symmetric idempotent with entries 1 at (0, 0) and
zero otherwise. The image Cε of the right multiplication map ×ε : C → C is a
finitely generated projective left C-module. It is equipped with a symmetric form
ϕ : Cε ⊗Z (Cε)op → C : x ⊗ yop 7→ x · ty. The idempotent ε makes (Cε, ϕ) into
a direct factor of the unit symmetric form (C, µ), see 7.8 7.8. Therefore, tensor
product (Cε, ϕ)⊗Z? defines a non-singular exact form functor

ι : (sPerf(AX), ]nL)→ (sPerf(CAX ), ]nL) : V 7→ Cε⊗Z V.

Since S is a flat C-algebra, the quotient map C → S induces an exact functor
ρ : CAX -Mod→ SAX -Mod : M 7→ S⊗CM on categories of modules which sends
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vector bundles to vector bundles. The two functors ι and ρ yield a sequence of
non-singular exact form functors

(30) (sPerf(AX ), ]nL)
ι
−→ (sPerf(CAX ), ]nL)

ρ
−→ (sPerf(SAX ), ]nL).

The functors satisfy ρ◦ ι = 0 because S⊗C Cε = im (×ε : S → S) = 0 as 0 = ε ∈ S.
The following theorem will allow us to extend the results of §9 to negative

Grothendieck-Witt groups.

10.2. Theorem. Let X be a scheme with an ample family of line-bundles, let Z ⊂
X be a closed subset with quasi-compact open complement X −Z, and let AX be a
quasi-coherent OX -algebra with involution. Then for any line bundle L on X, and
any integer n ∈ Z, the sequence (30) induces a homotopy fibration of Grothendieck-
Witt spaces with contractible total space

GWn(AX on Z,L)→ GW n(CAX on Z,L)→ GW n(SAX on Z,L).

The proof of theorem 10.2 will occupy sections 10.3 to 10.9.

10.3. Lemma. The functor ι in (30) is fully faithful.

Proof. The image εC of the left multiplication map ε× : C → C is a right C-module.
We have a Z-bimodule isomorphism η : Z→ εC ⊗C Cε : 1 7→ ε⊗C ε = 1⊗ ε = ε⊗ 1
and a C-bimodule map µ : Cε ⊗Z εC → C : Aε ⊗ εB 7→ AεB such that the
compositions

Cε ∼= Cε⊗Z Z
id⊗η
−→ Cε⊗Z εC ⊗C Cε

µ⊗id
−→ C ⊗C Cε ∼= Cε and

εC ∼= Z⊗Z εC
η⊗id
−→ εC ⊗C Cε⊗Z εC

id⊗µ
−→ εC ⊗C C ∼= εC

are the identity maps. It follows that η and µ define unit and counit of an adjunction
between the functors AX -Mod→ CAX -Mod : M 7→ Cε⊗Z M and CAX -Mod→
AX -Mod : N 7→ εC ⊗C N . Since the unit η is an isomorphism, the first functor is
fully faithful. In particular, ι is fully faithful. �

10.4. Proposition. The sequence of triangulated categories

Db Vect(AX )
ι
−→ Db Vect(CAX )

ρ
−→ Db Vect(SAX )

is exact up to direct factors.

Proof. The multiplication map µ : Cε ⊗Z εC → C factors through M∞ ⊂ C and
induces an isomorphism µ : Cε⊗ZεC →M∞ (it is a filtered colimit of isomorphisms
of finitely generated free Z-modules). The exact functors

Qcoh(AX )
ι
−→ Qcoh(CAX )

ρ
−→ Qcoh(SAX )

have exact right adjoints κ : Qcoh(CAX ) → Qcoh(AX ) : M 7→ εC ⊗C M and
σ : Qcoh(SAX )→ Qcoh(CAX ) : N 7→ N such that for a left CAX -module M the
adjuntion maps ικ→ id and id→ σρ are part of a functorial exact sequence

(31) 0→ ικM →M → σρM → 0

which is the tensor product (over C) ofM with the exact sequence of flat C-modules
0→M∞ → C → S → 0. It follows that the sequence of triangulated categories

DQcoh(AX)
ι
−→ DQcoh(CAX)

ρ
−→ DQcoh(SAX)
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is exact as κ and ρ induce right adjoint functors on derived categories, and (31)
induces a functorial distinguished triangle for every object of DQcoh(CAX ). By
proposition 9.12, these triangulated categories are compactly generated. Since ι and
ρ preserve compact objects, the associated sequence of compact objects – which is
the sequence in proposition 10.4 – is exact up to factors 9.11. �

Let sPerfS(CAX ) ⊂ sPerf(CAX ) be the full subcategory of those complexes
V for which S ⊗C V is acyclic. This subcategory is closed under the involution
]nL, so that sPerfS(CAX ) inherits the structure of an exact category with weak
equivalences and duality from sPerf(CAX ). Since ρι = 0, ι induces a non-singular
exact form functor ι : sPerf(AX )→ sPerfS(CAX ).

10.5. Proposition. For any line bundle L on X, and any n ∈ Z, the functor ι
induces a homotopy equivalence

GWn(sPerf(AX), quis, L)
∼
−→ GWn(sPerfS(CAX ), quis, L).

Proof. The proof is a consequence of theorem 5.1 (or of lemma 5.6). Since ι is fully
faithful, conditions (e) and (f) are satisfied. Since ι induces a fully faithful functor
on derived categories, by proposition 10.4, condition (b) is also satisfied. The only
non-trivial condition to check is (c). By lemma 5.5, we only need to show that for
everyM ∈ sPerfS(CAX ) there is an A ∈ sPerf(AX ) and a quasi-isomorphism Cε⊗Z

A→M . Let M be a strictly perfect complex of CAX modules with S⊗CM acyclic.
By proposition 10.4, there is a zigzag of quasi-isomorphisms Cε ⊗Z B ← N → M
in sPerfS(CAX ) with B ∈ sPerf(AX ). Since N ∈ sPerfS(CAX ), proposition 10.4
implies that the counit of adjunction Cε⊗Z εC ⊗C N → N is a quasi-isomorphism.
We apply lemma 9.7 with CAX in place of AX and U = X , A = sPerf(AX ) to the
quasi-isomorphism εC ⊗C N → εC ⊗C Cε⊗Z B ∼= B, and obtain a strictly perfect
complex A of AX -modules and a quasi-isomorphism A → εC ⊗C N . Finally, the
composition Cε ⊗Z A → Cε ⊗Z εC ⊗C N = M∞ ⊗C N → N → M is a quasi-
isomorphism.

�

For a quasi-coherent OX -algebra AX , call an AX -module M quasi-free if it is
isomorphic to a finite direct sum

⊕
iAX⊗Li of AX -modules of the form AX⊗Li for

some line bundles Li on X . Note that a quasi-free AX -module is a vector bundle.

10.6. Lemma. Let X be a quasi-compact and quasi-separated scheme, and let AX
be a quasi-coherent sheaf of OX -algebras. Let A,M be quasi-coherent CAX -modules
with A quasi-free. Then the following hold.

(a) For every map f : ρA → ρM of SAX -modules, there are maps s : B → A
and g : B →M of CAX -modules with B quasi-free such that f ◦ρ(s) = ρ(g)
and ρ(s) an isomorphism.

(b) For any two maps f, g : A → M of CAX -modules such that ρ(f) = ρ(g)
there is a map s : B → A of of quasi-free CAX -modules such that f◦s = g◦s
and ρ(s) is an isomorphism.
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Proof. The proof reduces to A = CAX ⊗L with L a line-bundle on X . For such an
A, the map HomCAX

(A,M)→ HomSAX
(ρS, ρM) can be identified with the map

on global sections Γ(X,M ⊗L−1)→ Γ(X,S⊗CM ⊗L−1) = S⊗C Γ(X,M ⊗L−1).
This map is surjective since C → S is, proving (a). The map is also a localization
by a calculus of fractions with respect to the set of elements en ∈ C, n ∈ N, of 10.1.
This shows that (b) also holds. �

10.7. Lemma. Let X be a quasi-compact and quasi-separated scheme, L a line
bundle on X, and let AX be a quasi-coherent sheaf of OX -algebras with involution.
Then for every n ∈ Z, the Grothendieck-Witt space

GWn(CAX , L)

is contractible.

Proof (compare [Kar70]). We will define a C-bimodule M , which is finitely gener-
ated projective as left C-module, together with a symmetric form ϕ : M⊗CMop →
C in C -Bimod whose adjoint M → [M op, C]C is an isomorphism. Furthermore,
we will construct an isometry (C, µ) ⊥ (M,ϕ) ∼= (M,ϕ) of symmetric forms
in C -Bimod. Therefore, tensor product (M,ϕ)⊗C? defines a non-singular ex-
act form functor (F, ϕ) : (sPerf(CAX ), quis, ]nL) → (sPerf(CAX ), quis, ]nL) which
satisfies id ⊥ (F, ϕ) ∼= (F, ϕ), so that on higher Grothendieck-Witt groups we
have GW n

i (id) + GW n
i (F, ϕ) = GW n

i (F, ϕ) which implies GW n
i (id) = 0, that is,

GWn
i (CAX , L) = 0, hence GW n(CAX , L) is contractible.

To construct (M,ϕ) and the bimodule isometry (C, µ) ⊥ (M,ϕ) ∼= (M,ϕ) we

choose a bijection σ : N
∼=
→ N×N : n 7→ (σ1(n), σ2(n)) and define a homomorphism

of rings with involutions

σ : C → C : a 7→ σ(a) with σ(a)ij =





aσ1(i),σ1(j) if σ2(i) = σ2(j)

0 otherwise.

The C-bimodule M is C as a left module, and has right multiplication defined by
M × C → M : (x, a) 7→ x · I(a). The symmetric form ϕ is the C-bimodule map
M ⊗C Mop → C : x ⊗ yop 7→ x · ty. Since, as a left C-module, (M,ϕ) is just the
unit symmetric form (C, µ) (see 7.8 7.8), the adjoint M → [M op, C]C of ϕ is an
isomorphism.

In order to define the bimodule isometry (C, µ) ⊥ (M,ϕ) ∼= (M,ϕ), consider the
elements γ, δ ∈ C defined by

γij =





1 if σ(j) = (i, 0)

0 otherwise,

and δij =





1 if σ(j) = σ(i) + (0, 1)

0 otherwise.

The homomorphism I and the elements γ, δ ∈ C are related by the following iden-
tities

δ · tγ = 0, γ · tγ = δ · tδ = 1, tγ · γ + tδ · δ = 1,

a · γ = γ · I(a), I(a) · δ = δ · I(a)
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for all a ∈ C. Therefore, the map C⊕M →M : (a, x) 7→ a ·γ+x ·δ is a C-bimodule
isomorphism with inverse the map M → C ⊕M : x 7→ (x · tγ, x · tδ). It preserves
forms because (aγ + xδ) · t(bγ + yδ) = a · tb+ x · ty. �

Write sPerf0(AX ) ⊂ sPerf(AX ) for the full subcategory of those strictly perfect
complexes of AX -modules which are degree-wise quasi-free. Note that this category
is closed under the duality ]nL. We equip the category sPerf0(AX ) with the degree-
wise split exact structure. Together with the set of quasi-isomorphisms of complexes
of AX vector bundles, it becomes a category of complexes in the sense of Definition
5.4.

10.8. Lemma. Let X be a scheme with an ample family of line bundles. The
inclusion of quasi-free modules into the category of vector bundles induces a (fully
faithful) cofinal triangle functor

D( sPerf0(AX ), quis) ⊂ D( sPerf(AX ), quis).

Moreover, for every strictly perfect complex M of AX -modules with class [M ] in the
image of the map K0( sPerf0(AX ), quis) → K0( sPerf(AX ), quis) there is a quasi-
isomorphism A → M of complexes of AX -modules with A a bounded complex of
quasi-free modules.

Proof. The triangle functor in the lemma is fully faithful, by lemma 9.7 with
U = X and A = sPerf0(AX ). It is cofinal, by Neeman’s theorem 9.11 (a) and
proposition 9.12. Let sPerfK0(AX) ⊂ sPerf(AX ) be the full subcategory of those
strictly perfect complexes of AX -modules M whose class [M ] is in the image
of the map K0( sPerf0(AX ), quis) → K0( sPerf(AX ), quis). Then the inclusion

( sPerf0(AX ), quis) ⊂ (sPerfK0(AX ), quis) of exact categories with weak equiva-
lences induces an equivalence of derived categories, so that another application of
lemma 9.7 with U = X and A = sPerf0(AX ) finishes the proof of the claim. �

Proof of theorem 10.2. By theorem 9.2, we only need to treat the case Z = X . In
this case, the total spaces are contractible, by lemma 10.7.

Let sPerfK0(SAX) ⊂ sPerf(SAX ) be the full subcategory of those strictly per-
fect complexes of SAX -modules E whose class [E] is zero in the Grothendieck
group K0(sPerf(SAX ), quis) of SAX -vector bundles. Furthermore, call a map f
of strictly perfect complexes of CAX -modules an S-quasi-isomorphism if ρ(f) is a
quasi-isomorphism of complexes of SAX -modules. The set of S-quasi-isomorphisms
is denoted by S - quis. Consider the commutative diagram of exact categories with
weak equivalences and duality ]nL induced by inclusions and the map of rings with
involution C → S

(sPerf0(CAX ), quis) //

��

(sPerf0(CAX ), S - quis)
ρ //

��

(sPerf0(SAX), quis)

��
(sPerf(CAX ), quis) // (sPerf(CAX ), S - quis)

ρ // (sPerfK0(SAX), quis).

Note that K0 of all categories with weak equivalences in the diagram is 0. For the
two left hand categories, this follows from lemma 10.7 and lemma 10.8, since for
cofinal triangle functors T 0 ⊂ T , the map K0(T 0) → K0(T ) is injective. Since
the left horizontal maps are surjective on K0, the middle two categories with weak
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equivalences have trivial Grothendieck group K0. For the upper right corner, van-
ishing of K0 follows moreover from the fact that its K0 is generated by classes of
complexes concentrated in degree 0 and the fact that every quasi-free SAX -module
is the image of a quasi-free CAX -module, so that the upper horizontal map is sur-
jective on K0. Therefore, the right vertical and the lower right horizontal functors,
which – a priori – have images in sPerf(SAX ), have indeed image in sPerfK0(SAX).
We will show that the upper right horizontal and middle and right vertical functors
induce equivalences of Grothendieck-Witt spaces (for any duality ]nL), so that the
lower right horizontal functor will induce an equivalence, too.

The upper right horizontal functor is a localization by a calculus of right frac-
tions, by lemma 10.6 and 5.12 (c). Therefore, theorem 5.11 shows that it induces a
homotopy equivalence of Grothendieck-Witt spaces. For the right vertical functor,
the resolution lemma 5.6 (which we can apply because of lemma 10.8) shows that it
induces an equivalence of Grothendieck-Witt spaces. Similarly, by lemma 10.8, for
every strictly perfect complex of CAX -modules M , there is a bounded complex A of
quasi-free CAX -modules and a quasi-isomorphism A → M . A quasi-isomorphism
of complexes of CAX -modules is, a fortiori, an S-quasi-isomorphism, so that the
resolution lemma applies to show that the middle vertical functor induces an equiv-
alence of Grothendieck-Witt spaces. Summarizing, we have shown that the lower
right horizontal functor induces an equivalence of Grothendieck-Witt spaces.

By the “change of weak equivalence theorem” (theorem 4.2), the sequence of
exact categories with weak equivalences and duality ]nL

( sPerfS(CAX ), quis )→ ( sPerf(CAX ), quis )→ ( sPerf(CAX ), S - quis )

induces a homotopy fibration of Grothendieck-Witt spaces. Using proposition 10.5
we can replace the left hand term with ( sPerf(AX ), quis ). Using the equivalence of
Grothendieck-Witt spaces of the lower right horizontal functor above and cofinality
(theorem 4.10) applied to the inclusion of exact categories with weak equivalences
and duality ( sPerfK0(SAX ), quis ) ⊂ ( sPerf(SAX), quis ), we can replace the right
hand term in the sequence by ( sPerf(SAX ), quis ). �

Since the total space in the fibration of theorem 10.2 is contractible, we obtain
a homotopy equivalence of spaces

(32) GW n(AX on Z,L)
'
−→ Ω GW n(SAX on Z,L).

10.9. Definition. Let X be a scheme with an ample family of line-bundles, AX
be a quasi-coherent sheaf of OX -algebras with involution, L a line bundle on X ,
Z ⊂ X a closed subscheme with quasi-compact open complement X−Z and n ∈ Z

an integer. The Grothendieck-Witt spectrum

GWn(AX on Z, L)

of symmetric spaces over AX with coefficients in the n-th shifted line bundle L[n]
and support in Z is the sequence

GWn(SkAX on Z, L), k ∈ N,

of Grothendieck-Witt spaces together with the bonding maps given by the homo-
topy equivalence (32). As usual, if Z = X , n = 0, AX = OX or L = OX , we omit
the label corresponding to Z, n, A, or L, respectively.
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By construction, we have

πiGW
n(AX on Z, L) =





GWn
i (AX on Z, L) for i ≥ 0

GWn
0 (S−iAX on Z, L) for i ≤ 0.

10.10. Remark. By proposition 8.4, there are natural homotopy equivalences of
spectra GWn(AX on Z, L) ' GW n+4(AX on Z, L).

Finally, we are in position to prove the main theorems of this article.

10.11. Theorem (Localization). Let X be a scheme with an ample family of line-
bundles, let Z ⊂ X be a closed subscheme with quasi-compact open complement
j : U ⊂ X, and let L a line bundle on X. Let AX be a quasi-coherent sheaf of
OX -algebras with involution. Then for every n ∈ Z, the following sequence is a
homotopy fibration of Grothendieck-Witt spectra

GWn(AX on Z, L) −→ GW n(AX , L) −→ GW n(AU , j
∗L).

Proof. This is because the sequences

GWn(SiAX on Z, L) −→ GW n(SiAX , L) −→ GW n(SiAU , j
∗L)

are homotopy fibrations for i ∈ N, by theorem 9.2. �

10.12. Theorem (Zariski-excision). Let X be a scheme with an ample family of
line-bundles, let Z ⊂ X be a closed subscheme with quasi-compact open complement,
let L be a line bundle on X and let AX be a quasi-coherent sheaf of OX -algebras
with involution. Then for every n ∈ Z and every quasi-compact open subscheme j :
V ⊂ X containing Z, restriction of vector-bundles induces a homotopy equivalence
of Grothendieck-Witt spectra

GWn(AX on Z, L)
∼
−→ GWn(AV on Z, j∗L).

Proof. This is because the maps

GWn(SiAX on Z, L) −→ GW n(SiAV on Z, j∗L).

are homotopy equivalences for i ∈ N, by theorem 9.3. �

10.13. Corollary (Mayer-Vietoris for open covers). Let X = U ∪ V be a scheme
with an ample family of line-bundles which is covered by two open quasi-compact
subschemes U, V ⊂ X. Let AX be a quasi-coherent OX -module with involution. Let
L be a line-bundle on X, and n ∈ Z. Then restriction of vector bundles induces a
homotopy cartesian square of Grothendieck-Witt spectra

GWn(AX , L) //

��

GWn(AU , L)

��
GWn(AV , L) // GWn(AU∩V , L).
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Proof. The map on vertical homotopy fibres is an equivalence, by theorems 10.11
and 10.12. �
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