
L∞-interpretation of a classification of deformations of

Poisson structures
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Abstract. We give an L∞-interpretation of the classification, obtained in
[10], of the formal deformations of a family of exact Poisson structures in
dimension three. We indeed obtain again the explicit formulas for all the
formal deformations of these Poisson structures, together with a classification
in the generic case, by constructing a suitable quasi-isomorphism between two
L∞-algebras, which are associated to these Poisson structures.
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1. Introduction

In [10], we have exhibited a classification of the formal deformations of the
Poisson structures defined on F[x, y, z] (F is an arbitrary field of characteristic
zero), of the form:

(1) {· , ·}ϕ =
∂ϕ

∂x

∂

∂y
∧

∂

∂z
+

∂ϕ

∂y

∂

∂z
∧

∂

∂x
+

∂ϕ

∂z

∂

∂x
∧

∂

∂y
,

where ϕ is a weight-homogeneous polynomial of F[x, y, z], admitting an isolated
singularity, in the generic case. In the present paper, following an idea of B. Fresse,
we give an L∞-interpretation of this result, that is to say, we obtain this result
again by methods, which are different and which use the theory of L∞-algebras.

The Poisson structures appear in classical mechanics, where physical systems
are described by commutative algebras which are algebras of smooth functions on
Poisson manifolds. They generalize the symplectic structures, as for example the
natural symplectic structure on R2r, which was introduced by D. Poisson in 1809.
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On the contrary, in quantum mechanics, physical systems are described by non-
commutative algebras, which are algebras of observables on Hilbert spaces, and P.
Dirac has observed that, up to a factor depending on the Planck’s constant, the com-
mutator of observables appearing in the work of W. Heisenberg is the analogue of
the Poisson bracket of classical mechanics. The Poisson structures and their defor-
mations also appear in the theory of deformation quantization (see for instance [1])
with, in particular, the very important result obtained by M. Kontsevich in 1997:
given a Poisson manifold (M, π) and the associative algebra (A = C∞(M), ·), there
is a one-to-one correspondence between the equivalence classes of star products of A,
for which the first term is π, and the equivalence classes of the formal deformations
of π.

In a more general context, a Poisson structure on an associative commutative
algebra A is a Lie algebra structure on A, π : A×A → A, which is a biderivation
of A (see paragraph 2.2.1). In the case where A = C∞(M) is the algebra of smooth
functions over a manifold M , one says that (M, π) is a Poisson manifold. Formally
deforming a Poisson structure π defined on an associative commutative algebra A
means considering the Poisson structures π∗ defined on the ring A[[ν]] of all the
formal power series with coefficients in A and in one parameter ν, which extend
the initial Poisson structure (i.e., which are π, modulo ν). In this paper and in
[10], we study a classification of formal deformations of Poisson structures modulo
equivalence, two formal deformations π∗ and π′

∗ of π being equivalent if there exists
a morphism Φ : (A[[ν]], π∗) → (A[[ν]], π′

∗) of Poisson algebras over F[[ν]] which is
the identity modulo ν. There is a similar definition for the formal deformations of
an associative product, the ∗-products being formal deformations of an associative
product, for which each coefficient is a bidifferential operator. We refer to [10] for
an introduction to the study of formal deformations of Poisson structures and the
role played by the Poisson cohomology in this study.

M. Kontsevich proved the one-to-one correspondence mentioned above by using
the theory of L∞-algebras and Maurer-Cartan equations. In fact, he obtained this
result by proving his conjecture of formality for a certain differential graded Lie
algebra. A differential graded Lie algebra (dg Lie algebra, in short) is a graded
Lie algebra (g, [· , ·]

g
), endowed with a differential ∂g, which is a graded derivation

with respect to [· , ·]
g
. The differential ∂g is a degree 1 map satisfying ∂g ◦ ∂g = 0,

giving rise to a cohomology H(g, ∂g). A dg Lie algebra is a particular example of an
L∞-algebra, which is a graded vector space L, equipped with a collection of skew-
symmetric multilinear maps (ℓn)n∈N∗ , satisfying different conditions, which can be
viewed as generalized Jacobi identities. A quasi-isomorphism between two dg Lie
algebras (or between two L∞-algebras) is an L∞-morphism between them (that is
to say a collection of multilinear maps (fn)n∈N∗ from one to the other, satisfying a
collection of compatibility conditions), which induces an isomorphism between their
cohomologies. These notions will be recalled in the paragraph 2.1. A dg Lie algebra
is said to be formal if there exists a quasi-isomorphism between it and the dg Lie
algebra given by its cohomology H(g, ∂g) (equipped with the trivial differential
and the graded Lie bracket induced by [· , ·]

g
). To a dg Lie algebra (g, ∂g, [· , ·]

g
) is

associated an equation, called the Maurer-Cartan equation and given by:

∂g(γ) +
1

2
[γ, γ]

g
= 0,
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whose solutions γ ∈ g1 are degree one homogeneous elements of g, which can also
be considered as depending on a formal parameter ν, γ ∈ νg1[[ν]]. The set of all
these formal solutions is denoted by MCν(g). Notice that there is a also a no-
tion of generalized Maurer-Cartan equation associated to an L∞-algebra, which is
more complicated (because it takes into account the whole L∞-structure). Given
a Poisson manifold (M, π) (respectively, a Poisson algebra (A, π)), the Poisson co-
homology complex H(M, π) associated to (M, π) (respectively, H(A, π) associated
to (A, π)) is defined as follows: the cochains are the polyvector fields (respectively,
the skew-symmetric multiderivations of A) and the Poisson coboundary operator is
given by δπ := − [·, π]S , where [· , ·]S is the Schouten bracket (which is a graded Lie
bracket, extending the commutator of vector fields and which is a graded bideriva-
tion with respect to the wedge product). One can then associate to π the dg Lie
algebra gπ, given by the graded vector space of the Poisson cochains (with a shift
of degree), equipped with the Poisson coboundary operator associated to π as dif-
ferential (up to a sign) and the Schouten bracket as graded Lie bracket. Because
a degree one element γ ∈ g1

π or γ ∈ νg1
π[[ν]] satisfies the Jacobi identity (hence,

is a Poisson structure) if and only if [γ, γ]S = 0, an element γ ∈ νg1
π[[ν]] is then

a formal solution of the Maurer-Cartan equation associated to gπ if and only if
π + γ is a formal deformation of π. Similarly, the star products also correspond to
the formal solutions of the Maurer-Cartan equation associated to a dg Lie algebra
gH, constructed from the Hochschild cohomology complex of the associative alge-
bra (C∞(M), ·). M. Kontsevich showed that the dg Lie algebra gH is formal, by
showing that it is quasi-isomorphic to the particular dg Lie algebra gπ, associated
to the trivial Poisson bracket π = 0. This result, together with the fact that a
quasi-isomorphism between two dg Lie algebras induces a bijection between the
sets of all the formal solutions of the Maurer-Cartan equations modulo a gauge
equivalence, leads to the desired one-to-one correponsdence.

In this paper, we follow an idea of B. Fresse to obtain again, but with L∞-
methods, the explicit formulas for all the formal deformations (modulo equiva-
lence) of {· , ·}ϕ (defined in (1) and sometimes called exact Poisson structures),

which were obtained in [10], when ϕ ∈ A := F[x, y, z] is a weight homogeneous
polynomial with an isolated singularity, and in particular, the classification of the
formal deformations of these Poisson structures, when ϕ is generic (i.e., when its
weighted degree is different from the sum of the weights of the three variables x, y
and z, or, equivalently, when H1(A, {· , ·}ϕ) is zero). To do this, we show that this
classification is not a consequence of the formality of a certain dg Lie algebra, but
still of the existence of a suitable quasi-isomorphism between two L∞-algebras. In
order to explain this, let us consider ϕ a polynomial as before and (gϕ, ∂ϕ, [· , ·]S),
the dg Lie algebra associated to the Poisson algebra (A := F[x, y, z], {· , ·}ϕ) and

Hϕ its cohomology. As said before, there is a shift of degree implying that Hℓ
ϕ, the

homogeneous part of Hϕ of degree ℓ, is in fact the (ℓ + 1)-st Poisson cohomology
space Hℓ+1(A, {· , ·}ϕ), associated to (A, {· , ·}ϕ).

In fact, the classification of the formal deformations of the Poisson bracket
{· , ·}ϕ obtained in [10] was indexed by elements of H2(A, {· , ·}ϕ) ⊗ νF[[ν]] and
B. Fresse pointed out to me that it could come from the formality of the dg Lie
algebra gϕ, or at least from the existence of a suitable quasi-isomorphism between
Hϕ and the dg Lie algebra gϕ, where Hϕ would be equipped with a suitable L∞-
algebra structure, meaning that the set of all the formal solutions of the generalized
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Maurer-Cartan equation associated to it would be exactly H1
ϕ ⊗ νF[[ν]]. Indeed,

as in the case of dg Lie algebras, a quasi-isomorphism between two L∞-algebras
induces an isomorphism between the sets of formal solutions of the corresponding
generalized Maurer-Cartan equations, modulo a gauge equivalence, and in our case,
the formal solutions of the Maurer-Cartan equation associated to gϕ, modulo the
gauge equivalence, correspond exactly to the equivalence classes of the formal de-
formations of the Poisson structure {· , ·}ϕ. Using the explicit bases exhibited for

the Poisson cohomology associated to (A, {· , ·}ϕ) in [9] and the idea of B. Fresse,

we indeed obtained the following result (see the proposition 4.3):

Proposition 1.1. Let ϕ ∈ A = F[x, y, z] be a weight homogeneous polynomial
with an isolated singularity. Consider (gϕ, ∂ϕ, [· , ·]S) the dg Lie algebra associated
to the Poisson algebra (A, {· , ·}ϕ), as explained above, where {· , ·}ϕ is given by (1),

and Hϕ the cohomology associated to the cochain complex (gϕ, ∂ϕ).
There exist

(1) an L∞-algebra structure on Hϕ, such that the generalized Maurer-Cartan
equation associated to Hϕ is trivial (i.e., every element γ ∈ νH1

ϕ[[ν]] is
solution);

(2) a quasi-isomorphism fϕ
• from the L∞-algebra Hϕ to the dg Lie algebra

(gϕ, ∂ϕ, [· , ·]S), such that the isomorphism, induced by fϕ
• between the for-

mal solutions of the Maurer-Cartan equations, sends MCν(Hϕ) to the
representatives, exhibited in [10], for all the formal deformations of the
Poisson bracket {· , ·}ϕ, modulo equivalence.

This proposition 1.1 permits us to recover the results obtained in [10], concern-
ing the formal deformations of the Poisson structures {· , ·}ϕ. It also permits us to
better understand different phenomena about this result. In particular, we used in
[10] that, in the generic case, H1(A, {· , ·}ϕ) is zero and we now know that this fact

implies that the gauge equivalence in MCν(Hϕ) is trivial. Moreover, in the special
case (when the weighted degree of ϕ is the sum of the weights of the three variables
x, y and z or, equivalently, when H1(A, {· , ·}ϕ) is not zero), we can now better
understand the equivalence classes of the formal deformations, as the equivalence
relation for the formal deformations of {· , ·}ϕ can be obtained by transporting the

gauge equivalence in MCν(Hϕ) to MCν(gϕ).

Finally, notice that, given a dg Lie algebra (g, ∂g, [· , ·]
g
) and a choice of bases

for the cohomology spaces Hℓ(g, ∂g) associated to the cochain complex (g, ∂g), and
using a theorem of transfer structure (see for instance the “move” (M1) of [8]), we
know that there always exist an L∞-algebra structure on H(g, ∂g), together with
a quasi-isomorphism between this L∞-algebra and the dg Lie algebra (g, ∂g, [· , ·]g).
The problem to use this result in our context where g = gϕ, is that we do not need
only the existence of this L∞-structure and this quasi-isomorphism, but we also
need to be able to control these data, in order:

(1) for the formal solutions of the generalized Maurer-Cartan equation asso-
ciated to Hϕ to be simple (given by H1

ϕ ⊗ νF[[ν]]),

(2) for the image of the isomorphism, induced by fϕ
• between the sets of formal

solutions of the Maurer-Cartan equations, to give exactly the representa-
tives of the formal deformations of the Poisson bracket {· , ·}ϕ modulo

equivalence which were exhibited in [10].
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To be able to do this, we have proved, in the section 3, a proposition which permits
one, given a dg Lie algebra (g, ∂g, [· , ·]g) and a choice of basis for its associated

cohomology H(g, ∂g), to construct, step by step, both an L∞-algebra structure ℓ• =
(ℓn)n∈N∗ on H(g, ∂g), with ℓ1 = 0, and a quasi-isomorphism f• = (fn)n∈N∗ from
H(g, ∂g) to g, such that, at each step, whatever the choices made at the previous
steps for the maps ℓ2, . . . , ℓm−1 and f1, . . . , fm−1, satisfying the conditions required
at this step, the collections of maps (ℓn)1≤n≤m−1 and (fn)1≤n≤m−1 extend to an
L∞-algebra structure ℓ• on H(g, ∂g) and a quasi-isomorphism f• from H(g, ∂g) to
g. This result is given in the proposition 3.1 and permits us, together with the
explicit bases exhibited for the Poisson cohomology associated to (A, {· , ·}ϕ) in [9],
to prove the desired proposition 1.1.

Acknowledgments. I am grateful to B. Fresse for having introduced me to the
theory of L∞-algebras anf for pointing out to me a possible L∞-interpretation of
my results. I also would like to thank H. Abbaspour, M. Marcolli and T. Tradler
for giving me the opportunity of participating to this volume. Finally, this work
has been done when I was a visitor at the CRM (Centre de Recerca Matematicà)
and at the MPIM (Max-Planck-Institut für Mathematik), whose hospitality are
also greatly acknowledged.

2. Preliminaries: L∞-algebras and Poisson algebras

In this first section we recall some definitions in the theory of L∞-algebras. We
indeed need to fix our sign conventions and the notations. The notions of Poisson
structures, cohomology and the deformations of Poisson structures are also recalled.

2.1. L∞-algebras and morphisms, Maurer-Cartan equations. We first
recall the notions of L∞-algebras, L∞-morphisms, Maurer-Cartan equations, mainly
in order to fix the sign conventions. For these notions and the conventions we
choose, we refer to (the appendix A of) [7] (see also [5] and [2]).

In this paper, F is an arbitrary field of characteristic zero and every algebra, dg
Lie algebra, L∞-algebra, etc, is considered over F. If V is a graded1 vector space,
we denote by |x| ∈ Z the degree of a homogeneous element x of V . Let us denote
by

∧•
V , the graded commutative associative algebra (rather denoted by

⊙•
V in

[7]), obtained by dividing the tensor algebra T •V =
⊕

k∈N
V ⊗k of V by the ideal

generated by the elements of the form x ⊗ y − (−1)|x||y|y ⊗ x. Denoting by ∧ the
product in

∧• V , one then has:

x ∧ y = (−1)|x||y|y ∧ x,

where x and y are homogeneous elements of V . Then, if x1, . . . , xk ∈ V are elements
of V and σ ∈ Sk is a permutation of {1, . . . , k}, one defines the so-called Koszul
sign ε(σ; x1, . . . , xk), associated to x1, . . . , xk and σ, by the equality:

x1 ∧ · · · ∧ xk = ε(σ; x1, . . . , xk) xσ(1) ∧ · · · ∧ xσ(k),

valid in the algebra
∧•

V . Then, one also defines the number χ(σ; x1, . . . , xk) ∈
{−1, 1}, by:

χ(σ; x1, . . . , xk) := sign(σ) ε(σ; x1, . . . , xk),

1We here consider graded vector spaces as being graded over Z, but for the specific cases
which we study in the section 4, the considered graded vector spaces are graded only on N∪{−1}
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where sign(σ) denotes the sign of the permutation σ. When no confusion can arise,
we write χ(σ) for χ(σ; x1, . . . , xk). For i, j ∈ N, a (i, j)-shuffle is a permutation
σ ∈ Si+j such that σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(i + j), and the set of
all (i, j)-shuffles is denoted by Si,j .

2.1.1. L∞-algebras. An L∞-algebra L is graded vector space L =
⊕

n∈Z
Ln,

equipped with a collection of linear maps

ℓ• =

(

ℓk :
⊗k

L → L

)

k∈N∗

,

such that:

a. each map ℓk is a graded map of degree deg(ℓk) = 2 − k,
b. each map ℓk is a skew-symmetric map, which means that

ℓk(ξσ(1), . . . , ξσ(k)) = χ(σ)ℓk(ξ1, . . . , ξk),

for all ξ1, . . . , ξk ∈ L and all permutation σ ∈ Sk;
c. the maps ℓk, k ∈ N∗ satisfy the following “generalized Jacobi identity”:

(Jn)
∑

i+j=n+1
i,j≥1

∑

σ∈Si,n−i

χ(σ)(−1)i(j−1) ℓj

(
ℓi

(
ξσ(1), . . . , ξσ(i)

)
, ξσ(i+1), . . . , ξσ(n)

)
= 0,

for all n ∈ N∗ and all ξ1, . . . , ξn ∈ L.

The map ℓ1 (which satisfies ℓ2
1 = 0, by (J1)) is sometimes called the differen-

tial of L and denoted by ∂, while the map ℓ2 is sometimes denoted by a bracket
[· , ·]. A differential graded Lie algebra (dg Lie algebra in short) is an L∞-algebra
(L, ℓ1, ℓ2ℓ3, . . . ), with ℓk = 0, for all k ≥ 3.

Notice that if ℓ1 = 0, then the equation (Jn) reads as follows:

Jn(Ln−1; ξ1, . . . , ξn) = 0,

where Jn(Ln−1; ξ1, . . . , ξn) depends only on Ln−1 := (ℓ2, . . . , ℓn−1) (and not on ℓn)
and is defined by:

Jn(Ln−1; ξ1, . . . , ξn) :=
∑

i+j=n+1
i,j≥2

∑

σ∈Si,n−i

χ(σ)(−1)i(j−1) ℓj

(
ℓi

(
ξσ(1), . . . , ξσ(i)

)
, ξσ(i+1), . . . , ξσ(n)

)
.(2)

When no confusion can arise, we rather write Jn(ξ1, . . . , ξn) for Jn(Ln−1; ξ1, . . . , ξn).

2.1.2. L∞-morphisms, quasi-isomorphisms. There is a notion of (weak) mor-
phism of L∞-algebras, which we do not need here. We only need the particular
case when the considered morphism goes from an L∞-algebra to a dg Lie algebra.
(For the general definition of L∞-morphisms between L∞-algebras, see [3].) Let
L = (L, ℓ1, ℓ2, . . . ) be an L∞-algebra and let g = (g, ∂g, [· , ·]g) be a dg Lie algebra.

A (weak) L∞-morphism from L to g is a collection of linear maps

f• =
(

fn :
⊗n

L → g
)

n∈N∗
,

such that:

a. each map fn is a graded map of degree deg(fn) = 1 − n;
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b. each map fn is skew-symmetric;
c. the following identities hold, for all n ∈ N∗ and all (homogeneous) ele-

ments ξ1, . . . , ξn ∈ L:
(3)

∂g (fn(ξ1, . . . , ξn))

+
∑

j+k=n+1
j,k≥1

∑

σ∈Sk,n−k

χ(σ) (−1)k(j−1)+1 fj

(
ℓk

(
ξσ(1), . . . , ξσ(k)

)
, ξσ(k+1), . . . , ξσ(n)

)

+
∑

s+t=n
s,t≥1

∑

τ∈Ss,n−s

τ(1)<τ(s+1)

χ(τ) es,t(τ)
[
fs

(
ξτ(1), . . . , ξτ(s)

)
, ft

(
ξτ(s+1), . . . , ξτ(n)

)]

g
= 0,

where es,t(τ) := (−1)s−1 · (−1)
(t−1)

 

s
P

p=1
|ξτ(p)|

!

.

We point out that, for 1 ≤ s ≤ n and for an (s, n − s)-shuffle τ ∈ Ss,n−s, the
condition τ(1) < τ(s+1) is equivalent to τ(1) = 1. One says that the L∞-morphism
f• from L to g is a quasi-isomorphism (or a (weak) L∞-equivalence) if the chain map
f1 : (L, ℓ1) → (g, ∂g) induces an isomorphism between the cohomologies associated
to the cochain complexes (L, ℓ1) and (g, ∂g).

Notice that if the L∞-algebra (L, ℓ1, ℓ2, . . . ) satisfies ℓ1 = 0, then we write the
equation (3) rather in the following form:

(En) ∂g (fn(ξ1, . . . , ξn)) − f1 (ℓn (ξ1, . . . , ξn)) = Tn(Fn, Ln−1; ξ1, . . . , ξn)

where Tn(Fn, Ln−1; ξ1, . . . , ξn) depends on the elements Fn := (f1, . . . , fn−1) and
Ln−1 := (ℓ2, . . . , ℓn−1), and is defined by:
(4)

Tn(Fn, Ln−1; ξ1, . . . , ξn) :=
∑

j+k=n+1
j,k≥2

∑

σ∈Sk,n−k

χ(σ) (−1)k(j−1) fj

(
ℓk

(
ξσ(1), . . . , ξσ(k)

)
, ξσ(k+1), . . . , ξσ(n)

)

−
∑

s+t=n
s,t≥1

∑

τ∈Ss,n−s

τ(1)=1

χ(τ) es,t(τ)
[
fs

(
ξτ(1), . . . , ξτ(s)

)
, ft

(
ξτ(s+1), . . . , ξτ(n)

)]

g
,

for all n ∈ N∗ and all (homogeneous) elements ξ1, . . . , ξn ∈ L. When no confusion
can arise, we simply write Tn(ξ1, . . . , ξn) for Tn(Fn, Ln−1; ξ1, . . . , ξn).

2.1.3. Maurer-Cartan equation. To an L∞-algebra is associated the so-called
generalized Maurer-Cartan equation (or homotopy Maurer-Cartan equation). In
our context, we only need a particular case of it, where the solutions depend formally
on a parameter ν. Let L = (L, ℓ1, ℓ2, . . . ) be an L∞-algebra. The generalized
Maurer-Cartan equation associated to L is written as follows:

(5) −ℓ1(γ) −
1

2
ℓ2(γ, γ) +

1

3!
ℓ3(γ, γ, γ) + · · · +

(−1)n(n+1)/2

n!
ℓn(γ, . . . , γ) + · · · = 0,

for γ ∈ L1 ⊗ νF[[ν]] = νL1[[ν]], where ν is a formal parameter. Notice that the
maps ℓn, n ∈ N∗ are extended by bilinearity with respect to the parameter ν (and
are still denoted by ℓn) and that this infinite sum (5) is well-defined because there
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is no constant term in γ (i.e., γ is zero modulo ν), so that the coefficient of each νi,
i ∈ N is given by a finite sum. The same will hold for the equations (6) and (10).

The set of all the solutions of the generalized Maurer-Cartan equation associ-
ated to L and depending formally on a parameter ν is denoted by MCν(L). One
introduces the gauge equivalence on this set, which is denoted by ∼ and generated
by infinitesimal transformations of the form:

(6) γ 7−→ ξ · γ := γ −
∑

n∈N∗

(−1)n(n−1)/2

(n − 1)!
ℓn(ξ, γ, γ, . . . , γ),

where ξ ∈ L0 ⊗ νF[[ν]].

Remark 2.1. Let us consider the particular case where the L∞-algebra L is
a dg Lie algebra (g, ∂g, [· , ·]g) whose differential is given by ∂g = [χ, ·]

g
, for some

degree one element χ ∈ g1 satisfying [χ, χ]
g

= 0. Then, we have:

(7)
MCν(g) =

{

γ ∈ g1 ⊗ νF[[ν]] | [χ, γ]
g

+ 1
2 [γ, γ]

g
= 0

}

=
{

γ ∈ g1 ⊗ νF[[ν]] | [χ + γ, χ + γ]
g

= 0
}

.

Moreover the infinitesimal transformation (6) becomes in this case:

(8) γ 7−→ ξ · γ := γ + [ξ, χ + γ]
g
,

for ξ ∈ g0 ⊗ νF[[ν]].

We denote by Defν(L) the set of all the gauge equivalence classes of the solu-
tions of the generalized Maurer-Cartan equation associated to L,

Defν(L) := MCν(L)/ ∼ .

For γ ∈ MCν(L), we denote by cl(γ) ∈ Defν(L) its equivalence class modulo the
gauge equivalence. In the following we will use the theorem (see for instance [4]
or [2]):

Theorem 2.2. Let L and L′ be two L∞-algebras and let us suppose that f• =
(fn :

⊗n
L → L′)n∈N∗ is a quasi-isomorphism from L to L′. Then f• induces an

isomorphism Defν(f•) from Defν(L) to Defν(L′). This isomorphism is given, for
γ ∈ MCν(L), by:

(9) Defν(f•) (cl(γ)) := cl (MCν(f•)(γ)) ,

where

(10) MCν(f•)(γ) :=
∑

n≥1

(−1)1+n(n+1)/2

n!
fn(γ, . . . , γ).

Notice that we will only use this theorem in the case L′ is a dg Lie algebra.

2.2. Poisson algebras, cohomology and deformations. In this paper,
our goal is to apply the theory of L∞-algebras to the problem of deformations of
Poisson structures. We here recall the notions of Poisson algebras, cohomology
and deformations, and explain how one can associate a dg Lie algebra to a Poisson
algebra.
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2.2.1. Poisson algebra and cohomology. We recall that a Poisson structure
{· , ·} (also denoted by π0) on an associative commutative algebra (A, ·) is a skew-

symmetric biderivation of A, i.e., a map {· , ·} :
∧2

A → A satisfying the derivation
property:

(11) {FG, H} = F {G, H} + G {F, H} , for all F, G, H ∈ A,

(where FG stands for F ·G), which is also a Lie structure on A, i.e., which satisfies
the Jacobi identity

(12) {{F, G} , H} + {{G, H} , F} + {{H, F} , G} = 0, for all F, G, H ∈ A.

The couple (A, {· , ·} = π0) is then called a Poisson algebra.
The Poisson cohomology complex, associated to a Poisson algebra (A, π0), is

defined as follows. The space of all Poisson cochains is X•(A) :=
⊕

k∈N
Xk(A),

where X0(A) is A and, for all k ∈ N∗, Xk(A) denotes the space of all skew-
symmetric k-derivations of A, i.e., the skew-symmetric k-linear maps Ak → A
that satisfy the derivation property (12) in each of their arguments. The Poisson
coboundary operator δk

π0
: Xk(A) → Xk+1(A) is given by the formula

δk
π0

:= − [·, π0]S ,

where [· , ·]S : Xp(A) × Xq(A) → Xp+q−1(A) is the so-called Schouten bracket.
The Schouten bracket is a graded Lie bracket that generalizes the commutator of
derivations and that is a graded biderivation with respect to the wedge product
of multiderivations (see [6]). It is defined, for P ∈ Xp(A), Q ∈ Xq(A) and for
F1, . . . , Fp+q−1 ∈ A, by:

[P, Q]S [F1, . . . , Fp+q−1]

=
∑

σ∈Sq,p−1

sign(σ)P
[
Q[Fσ(1), . . . , Fσ(q)], Fσ(q+1), . . . , Fσ(q+p−1)

]
(13)

−(−1)(p−1)(q−1)
∑

σ∈Sp,q−1

sign(σ)Q
[
P [Fσ(1), . . . , Fσ(p)], Fσ(p+1), . . . , Fσ(p+q−1)

]
.

It is easy and useful to verify that, given a skew-symmetric biderivation π ∈ X2(A),
the Jacobi identity for π is equivalent to [π, π]S = 0, in other words, if π ∈ X2(A)
is a skew-symmetric biderivation of A, then π is a Poisson structure on A if and
only if [π, π]S = 0.

2.2.2. The dg Lie algebra associated to the Poisson complex. The Poisson coho-
mology complex associated to a Poisson algebra (A, π0) together with the Schouten
bracket give rise to a dg Lie algebra, (g, ∂g, [· , ·]g), defined as follows.

(1) For all n ∈ N∗, the degree n homogeneous part of g is given by

gn := Xn+1(A),

so that the degree of P ∈ Xp(A) = gp−1, viewed as an element of g, is
|P | := p − 1,

(2) for all P ∈ Xp(A) = gp−1,

∂g(P ) := (−1)|P |δp
π0

(P ) = (−1)p−1δp
π0

(P ),

(3) the graded Lie bracket on g is given by the Schouten bracket:

[· , ·]
g

:= [· , ·]S .
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Notice that, using the skew-symmetry of the Schouten bracket, and the definition
of δp

π0
, we can write ∂g = [π0, ·]S . As [π0, π0]S = 0 (see last paragraph 2.2.1), the

dg Lie algebra (g, ∂g, [· , ·]
g
) associated to a Poisson algebra (A, π0) satisfied the

conditions of the remark 2.1.

2.2.3. Formal deformations of Poisson structures. In this paragraph, we define
the notion of formal deformations of Poisson structures. For more details about
this, see [10]. Let (A, ·) be an associative commutative algebra over F and let
π0 be a Poisson structure on (A, ·). We consider the F[[ν]]-vector space A[[ν]] of
all formal power series in ν, with coefficients in A. The associative commutative
product “·”, defined on A, is naturally extended to an associative commutative
product on A[[ν]], still denoted by “·”. A formal deformation of π0 is a Poisson
structure on the associative F[[ν]]-algebra A[[ν]], that extends the initial Poisson
structure. In other words, it is given by a map π∗ : A[[ν]]×A[[ν]] → A[[ν]] satisfying
the Jacobi identity and of the form:

π∗ = π0 + π1ν + · · · + πnνn + · · · ,

where the πi are skew-symmetric biderivations of A (extended by bilinearity with
respect to ν). Notice that given a map π∗ = π0 + π1ν + · · · + πnνn + · · · : A[[ν]] ×
A[[ν]] → A[[ν]] where for all i ∈ N, πi ∈ X2(A) is a skew-symmetric biderivation
of A, we have that π∗ is a formal deformation of π0 if and only if [π∗, π∗]S = 0.

There is a natural notion of equivalence for deformations of a Poisson structure
π0. Two formal deformations π∗ and π′

∗ of π0 are said to be equivalent if there exists
an F[[ν]]-linear map Φ : (A[[ν]], π∗) → (A[[ν]], π′

∗), which is equal to the identity
modulo ν and is a Poisson morphism, i.e., it is a morphism of associative algebras
Φ : (A[[ν]], ·) → (A[[ν]], ·), which satisfies:

(14) π′
∗[Φ(F ), Φ(G)] = Φ(π∗[F, G]),

for all F, G ∈ A (and therefore, for all F, G ∈ A[[ν]]). It is also possible to write such
a morphism Φ as the exponential of an element ξ ∈ νX1(A)[[ν]] = X1(A)⊗ νF[[ν]],
so that (see for example the lemma 2.1 of [10]) the map π′

∗ given by (14) can also
be written as:

(15) π′
∗ = eadξ(π∗) = π∗ +

∑

k∈N∗

1

k!

[
ξ, [ξ, . . . , [ξ, π∗]S . . . ]S

]

S
︸ ︷︷ ︸

k brackets

.

Let us now consider the dg Lie algebra (g, ∂g, [· , ·]g) associated to the Poisson

algebra (A, π0), as explained in the previous paragraph 2.2.2. According to the
remark 2.1, we have:

MCν(g) =

{

γ =
∑

i≥1

πiν
i ∈ X2(A) ⊗ νF[[ν]] |

π∗ := π0 +
∑

i≥1

πiν
i is a formal deformation of π0

}

,

so that, there is a natural one-to-one correspondence between MCν(g) and the
space of all formal deformations of π0:

MCν(g) → {formal deformations of π0}
γ 7→ π0 + γ
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Moreover, the infinitesimal transformation (8) on elements of MCν(g) can be trans-
posed to an infinitesimal transformation on formal deformations π∗ of π0. It then
becomes:

π∗ 7−→ ξ · π∗ := π∗ + [ξ, π∗]S ,

for ξ ∈ X1(A) ⊗ νF[[ν]]. We conclude that Defν(g) is exactly the set of all the
equivalence classes of the formal deformations of π0.

3. Choice in a transfer of L∞-algebra structure

For g = (g, ∂g, [· , ·]g) a dg Lie algebra, we denote by H(g, ∂g), the graded vector

space given by the cohomology of the cochain complex (g, ∂g). Equipped with the
trivial differential, it is a cochain complex (H(g, ∂g), 0). Moreover, Z(g, ∂g) denotes
the graded vector space of all the cocycles of the cochain complex (g, ∂g):

Z(g, ∂g) = ker ∂g ⊆ g,

and B(g, ∂g), the graded vector space of all its coboundaries:

B(g, ∂g) = Im ∂g ⊆ g,

so that H(g, ∂g) = Z(g, ∂g)/B(g, ∂g). (The grading of Z(g, ∂g), B(g, ∂g) and
H(g, ∂g) is naturally induced by the grading of g.) We denote by p the natural pro-
jection from Z(g, ∂g) to the cohomology of g, and for every cocycle x ∈ Z(g, ∂g) ⊆ g,
the notations p(x) and x̄ both stand for the cohomological class of x,

(16)
p : Z(g, ∂g) → H(g, ∂g)

x 7→ p(x) = x̄.

We now define a graded linear map f1, of degree 0, from H(g, ∂g) to g. This
definition depends on a choice of a basis bℓ, for each cohomology space Hℓ(g, ∂g),
and on a choice of representatives

(
ϑℓ

k

)

k
of the elements of the basis bℓ:

bℓ =
(

ϑℓ
k

)

k
.

(We do not need here to specify the set by which the basis bℓ is indexed.) Then
the map f1 : H(g, ∂g) → g is defined by

(17)
f1 : Hℓ(g, ∂g) → Zℓ(g, ∂g) ⊆ gℓ

ξ =
∑

k λℓ
k ϑℓ

k 7→
∑

k λℓ
k ϑℓ

k,

for all ℓ ∈ Z, and where ξ =
∑

k λℓ
k ϑℓ

k is the unique decomposition of ξ ∈ Hℓ(g, ∂g)

in the fixed basis bℓ (the λℓ
k are constants). We deduce from the definition of f1

that we have:

(18) Z(g, ∂g) ≃ Im f1 ⊕ B(g, ∂g),

and

(19) x − f1 ◦ p(x) ∈ B(g, ∂g), for all x ∈ Z(g, ∂g).

Also the map f1 is a chain map between the two cochain complexes (H(g, ∂g), 0) and
(g, ∂g), which induces an isomorphism between their cohomologies. This implies in
particular that if one extends f1 to a (weak) L∞-morphism

f• =
(

fn :
⊗n

H(g, ∂g) → g
)

n∈N∗
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(where H(g, ∂g) is equipped with an L∞-algebra structure), then f• is automatically
a quasi-isomorphism.

We indeed want to construct an L∞-algebra structure on H(g, ∂g) together
with a quasi-isomorphism from it to the dg Lie algebra g. We know that, by using
a theorem of L∞-algebra structure transfer, (see for instance the “move” (M1)
of [8]), there exists such a L∞-algebra structure on H(g, ∂g) and such a quasi-
isomorphism from it to the dg Lie algebra g, which extends f1, but, as explained in
the introduction, the point here is that we need to construct a specific L∞-algebra
structure on H(g, ∂g) and a specific quasi-isomorphism. In order to have as much
control in this contruction as possible, we show the following:

Proposition 3.1. Let g = (g, ∂g, [· , ·]g) be a dg Lie algebra, let H(g, ∂g) de-
note the graded space given by the cohomology associated to the cochain complex
(g, ∂g). We fix f1 : H(g, ∂g) → g as being the map defined in (17), associated
to a choice of bases (bℓ)ℓ for the cohomology spaces (Hℓ(g, ∂g))ℓ. We also fix
ℓ1 : H(g, ∂g) → H(g, ∂g) as being trivial (ℓ1 = 0) so that the equations (E1) and
(J1) are automatically satisfied.

(a) There exist skew-symmetric graded linear maps

ℓ2 : H(g, ∂g) ⊗ H(g, ∂g) → H(g, ∂g), and f2 : H(g, ∂g) ⊗ H(g, ∂g) → g,

of degrees deg(ℓ2) = 0 and deg(f2) = −1, such that the equations (E2) and
(J2) are satisfied. Moreover, such a map ℓ2 satisfies also the equation (J3).

(b) Let m ≥ 3 be an integer. If there exist skew-symmetric graded linear maps

ℓk :
⊗k

H(g, ∂g) → H(g, ∂g), for 2 ≤ k ≤ m − 1,

fk :
⊗k

H(g, ∂g) → g, for 2 ≤ k ≤ m − 1,

of degrees deg(ℓk) = 2 − k and deg(fk) = 1 − k, for all 2 ≤ k ≤ m − 1,
and such that the equations (J2) – (Jm) and (E2) – (Em−1) are satisfied,
then there exist skew-symmetric graded linear maps

ℓm :
⊗m

H(g, ∂g) → H(g, ∂g) and fm :
⊗m

H(g, ∂g) → g,

with deg(fm) = 1−m, deg(ℓm) = 2−m and satisfying the equation (Em).
Moreover, such a map ℓm necessarily satisfies also the equation (Jm+1).

Remark 3.2. This proposition implies in particular that there exist an L∞-
algebra structure ℓ• on H(g, ∂g) with the trivial differential ℓ1 = 0 and a quasi-
isomorphism f• from H(g, ∂g) to g that extends f1 (defined in (17)). But, this
proposition implies morever that, whatever the choices made for the first m−1 maps
ℓ1, . . . , ℓm−1 and f1, . . . , fm−1 (m is an arbitrary integer), with ℓ1 = 0 and f1 given
by (17), if these maps satisfy the first m equations defining an L∞-algebra structure
(equations (J1) – (Jm)) and the first m − 1 equations defining an L∞-morphism
(equations (E1) – (Em−1)), then they still extend to an L∞-algebra structure ℓ• on
H(g, ∂g) and a quasi-isomorphism f• from H(g, ∂g) to g.

Proof. Let us first prove the part (a) of this proposition. To do this, we first
show (Step 1 ) that the identity ℓ1 = 0 and the definition (17) of f1 imply that
∂g (T2(ξ1, ξ2)) = 0, for all ξ1, ξ2 ∈ H(g, ∂g). By (18), the cocycle T2(ξ1, ξ2) then
decomposes as a coboundary (element in the image of ∂g) plus an element in the
image of f1, which permit us to conclude the existence of both maps f2 and ℓ2,
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satisfying the equation (E2). Secondly (Step 2 ), we show that the obtained map ℓ2,
satisfying (E2), also necessarily satisfies (J3).

(a) - Step 1. The skew-symmetric graded linear maps f1 (given by (17)) and
ℓ1 := 0 are of degree 0 and −1 respectively, and satisfy both equations:

(J1) ℓ1 ◦ ℓ1 = 0,

and

(E1) ∂g ◦ f1 = 0.

Let ξ1, ξ2 ∈ H(g, ∂g). We have T2(ξ1, ξ2) = − [f1(ξ1), f1(ξ2)]g. As (g, ∂g, [· , ·]
g
) is a

dg Lie algebra, ∂g is a (graded) derivation for [· , ·]
g
, hence:

(20) ∂g (T2(ξ1, ξ2)) = − [∂g (f1(ξ1)) , f1(ξ2)]g − (−1)|ξ1| [f1(ξ1), ∂g (f1(ξ2))]g = 0,

by (E1). We now define a skew-symmetric graded linear map ℓ2 :
∧2

H(g, ∂g) →
H(g, ∂g) of degree 0, by:

(21) ℓ2(ξ1, ξ2) := −p ◦ T2(ξ1, ξ2),

for all ξ1, ξ2 ∈ H(g, ∂g). This map is well-defined because, according to (20),
T2(ξ1, ξ2) is a cocycle for the cochain complex (g, ∂g), and it trivially satisfies the
equation (J2), because ℓ1 = 0. It is also possible, according to (19), to define a

skew-symmetric graded linear map f2 :
∧2

H(g, ∂g) → g, of degree −1, with the
following formula:

(22) ∂g (f2(ξ1, ξ2)) = T2(ξ1, ξ2) − f1 ◦ p (T2(ξ1, ξ2)) ,

for all ξ1, ξ2 ∈ H(g, ∂g). The maps ℓ2 and f2 then satisfy the equation (E2), because
−f1 ◦ p (T2(ξ1, ξ2)) = f1 ◦ ℓ2(ξ1, ξ2). Notice that, for every ξ1, ξ2 ∈ H(g, ∂g), the
choice of the element f2(ξ1, ξ2) ∈ g is unique, up to a cocycle.

(a) - Step 2. Now, let us prove the second part of (a), by showing that the
map ℓ2, defined in (21), satisfies the equation

(J3)
∑

σ∈S2,1

χ(σ) ℓ2

(
ℓ2

(
ξσ(1), ξσ(2)

)
, ξσ(3)

)
= 0,

for all ξ1, ξ2, ξ3 ∈ H(g, ∂g). We prove this, by using the equations (E1) and (E2)
and the graded Jacobi identity satisfied by [· , ·]

g
. Let ξ1, ξ2, ξ3 ∈ H(g, ∂g) and

let σ ∈ S2,1. By the definition (21) of ℓ2, we have ℓ2

(
ℓ2

(
ξσ(1), ξσ(2)

)
, ξσ(3)

)
=

−p
(
T2

(
ℓ2

(
ξσ(1), ξσ(2)

)
, ξσ(3)

))
. Moreover, by definition of T2,

T2

(
ℓ2

(
ξσ(1), ξσ(2)

)
, ξσ(3)

)
= −

[
f1

(
ℓ2

(
ξσ(1), ξσ(2)

))
, f1

(
ξσ(3)

)]

g

=
[
T2

(
ξσ(1), ξσ(2)

)
, f1

(
ξσ(3)

)]

g
−

[
∂g

(
f2

(
ξσ(1), ξσ(2)

))
, f1

(
ξσ(3)

)]

g

= −
[[

f1

(
ξσ(1)

)
, f1

(
ξσ(2)

)]

g
, f1

(
ξσ(3)

)]

g

−
[
∂g

(
f2

(
ξσ(1), ξσ(2)

))
, f1

(
ξσ(3)

)]

g
,

where we have used (E2) (i.e., ∂g ◦ f2 − f1 ◦ ℓ2 = T2) in the second step. As ∂g is a
derivation for [· , ·]

g
and using the fact that ∂g ◦ f1 = 0, one obtains:

[
∂g

(
f2

(
ξσ(1), ξσ(2)

))
, f1

(
ξσ(3)

)]

g
= ∂g

([
f2

(
ξσ(1), ξσ(2)

)
, f1

(
ξσ(3)

)]

g

)

.
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Finally, because p ◦ ∂g = 0,

−
∑

σ∈S2,1

χ(σ) p ◦ T2

(
ℓ2

(
ξσ(1), ξσ(2)

)
, ξσ(3)

)
=

p




∑

σ∈S2,1

χ(σ)
[[

f1

(
ξσ(1)

)
, f1

(
ξσ(2)

)]

g
, f1

(
ξσ(3)

)]

g



 = 0,

where we have used the graded Jacobi identity satisfied by [· , ·]
g
, to obtain the last

line. This shows that the map ℓ2 satisfies (J3).

Remark 3.3. The skew-symmetric graded linear map ℓ2 of degree 0 which
satisfies (E2) is unique and given by (21). Using (21) and the definition of T2, we
obtain that, for all ξ1, ξ2 ∈ H(g, ∂g),

ℓ2(ξ1, ξ2) = −p ◦ T2(ξ1, ξ2) = p
(

[f1(ξ1), f1(ξ2)]g

)

.

In other words, the map ℓ2 :
∧2

H(g, ∂g) → H(g, ∂g) is the map induced by the
graded Lie bracket [· , ·]

g
on H(g, ∂g). For this reason, we sometimes denote ℓ2 also

by [· , ·]
g
.

Let us now prove the part (b) of the proposition. To do this, we suppose that
m ≥ 3 and that f2, . . . , fm−1 and ℓ2, . . . , ℓm−1 are skew-symmetric graded linear
maps, of degrees deg(ℓk) = 2 − k and deg(fk) = 1 − k, which satisfy the equations
(J2) – (Jm) and (E2) – (Em−1). Then, we show (Step 1), that

∂g (Tm(ξ1, . . . , ξm)) = 0, for all ξ1, . . . , ξm ∈ H(g, ∂g).

This indeed implies, by (18), that the cocycle Tm(ξ1, . . . , ξm) decomposes as a
coboundary (element in the image of ∂g) plus an element in the image of f1, which
leads to the existence of both maps fm and ℓm, satisfying the equation (Em).

Then (Step 2 ), we show that the obtained map ℓm, satisfying (Em), necessarily
also satisfies the equation (Jm).

(b) - Step 1. Let ξ1, . . . , ξm ∈ H(g, ∂g) be homogeneous elements. Recall that
we have:

(23) Tm(ξ1, . . . , ξm) = Sm(ξ1, . . . , ξm) − Um(ξ1, . . . , ξm),

where we define, for all n ∈ N∗, and all ζ1, . . . , ζn ∈ H(g, ∂g):

(24)

Sn(ζ1, . . . , ζn) :=
∑

j+k=n+1
j,k≥2

∑

σ∈Sk,n−k

χ(σ) (−1)k(j−1)fj

(
ℓk

(
ζσ(1), . . . , ζσ(k)

)
, ζσ(k+1), . . . , ζσ(n)

)

and

(25)

Un(ζ1, . . . , ζn) :=
∑

s+t=n
s,t≥1

∑

τ∈Ss,n−s

τ(1)=1

χ(τ) es,t(τ)
[
fs

(
ζτ(1), . . . , ζτ(s)

)
, ft

(
ζτ(s+1), . . . , ζτ(n)

)]

g
,
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with es,t(τ) = (−1)s−1 · (−1)
(t−1)

 

s
P

p=1
|ζτ(p)|

!

. For j = 2, . . . , m − 1, the equation
(Ej) can be written as ∂g ◦ fj = Tj + f1 ◦ ℓj, so that

∂g (Sm(ξ1, . . . , ξm)) =
∑

j+k=m+1
j,k≥2

∑

σ∈Sk,m−k

χ(σ) (−1)k(j−1)Tj

(
ℓk

(
ξσ(1), . . . , ξσ(k)

)
, ξσ(k+1), . . . , ξσ(m)

)

+ f1 (Jm(ξ1, . . . , ξm)) =
∑

j+k=m+1
j,k≥2

∑

σ∈Sk,m−k

χ(σ) (−1)k(j−1)Tj

(
ℓk

(
ξσ(1), . . . , ξσ(k)

)
, ξσ(k+1), . . . , ξσ(m)

)
,

where we have used the equation (Jm) (in the case ℓ1 = 0, see (2)), in the second
step. Now, using the writing of Tj, for 2 ≤ j ≤ m − 1, we get:

∂g (Sm(ξ1, . . . , ξm)) = am(ξ1, . . . , ξm) + bm(ξ1, . . . , ξm) + cm(ξ1, . . . , ξm),

where, for all n ∈ N∗ and all ζ1, . . . , ζn ∈ H(g, ∂g), we have defined:

an(ζ1, . . . , ζn) :=
∑

p+q+k=n+2
p,q,k≥2

∑

α∈Sk+1
q−1,p−1

σ∈Sk,n−k

χ(σ; ζ1, . . . , ζn)χ(α; ζσ(k+1), . . . , ζσ(n)) · (−1)k(p+q)+q(p−1)·

fp

(
ℓq

(
ℓk

(
ζσ(1), . . . , ζσ(k)

)
, ζσα(k+1), . . . , ζσα(k+q−1)

)
, ζσα(k+q), . . . , ζσα(n)

)
,

and

bn(ζ1, . . . , ζn) :=
∑

p+q+k=n+2
p,q,k≥2

∑

α∈Sk+1
q,p−2

σ∈Sk,n−k

χ(σ; ζ1, . . . , ζn)χ(α; ζσ(k+1), . . . , ζσ(n))·

(−1)k(p+q)(−1)q(p−1) · (−1)
q+

 

k
P

r=1
|ζσ(r)|+k

!

·

 

k+q
P

s=k+1

|ζσα(s)|

!

·

fp

(
ℓq

(
ζσα(k+1), . . . , ζσα(k+q)

)
, ℓk

(
ζσ(1), . . . , ζσ(k)

)
, ζσα(k+q+1), . . . , ζσα(n)

)
,

and finally

cn(ζ1, . . . , ζn) :=

−
∑

j+k=n+1
j,k≥2

∑

σ∈Sk,n−k

∑

a+b=j
a,b≥1

∑

β∈Sk+1
a−1,b

χ(σ; ζ1, . . . , ζn)χ(β; ζσ(k+1), . . . , ζσ(n))·

(−1)k(j−1)(−1)a−1 · (−1)
(b−1)

 

k
P

r=1
|ζσ(r)|+k+

k+a−1
P

s=k+1

|ζσβ(s)|

!

·
[
fa

(
ℓk

(
ζσ(1), . . . , ζσ(k)

)
, ζσβ(k+1), . . . , ζσβ(k+a−1)

)
, fb

(
ζσβ(k+a), . . . , ζσβ(n)

)]

g
.
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Here, for r, s, t ∈ N, we have denoted by Sr+1
s,t the set of all the permutations σ

of {r + 1, . . . , r + s + t}, such that σ(r + 1) < · · · < σ(r + s) and σ(r + s + 1) <
· · · < σ(r + s + t). A permutation σ ∈ Sr+1

s,t can also be seen as a permutation of
{1, . . . , r + s + t}, simply by fixing σ|{1,...,r}

= id|{1,...,r}
.

Remark 3.4. Let us justify how one obtains that the sum

d(ξ1, . . . , ξm) :=
∑

j+k=m+1
j,k≥2

∑

σ∈Sk,m−k

χ(σ) (−1)k(j−1)Tj

(
ℓk

(
ξσ(1), . . . , ξσ(k)

)
, ξσ(k+1), . . . , ξσ(m)

)

is given by am(ξ1, . . . , ξm)+bm(ξ1, . . . , ξm)+cm(ξ1, . . . , ξm), using only the definition
of the Tj . Let ξ1, . . . , ξm ∈ H(g, ∂g) be homogeneous elements and let j, k ≥ 2 with
j + k = m + 1, and σ ∈ Sk,m−k. In order to simplify the notation, we denote by
η1 := ℓk

(
ξσ(1), . . . , ξσ(k)

)
and η2 := ξσ(k+1), . . . , ηj := ξσ(m) and write:

Tj (η1, η2, . . . , ηj) =
∑

p+q=j+1
p,q≥2

∑

γ∈Sq,j−q

χ(γ; η1, . . . , ηj)(−1)q(p−1)fp

(
ℓq

(
ηγ(1), . . . , ηγ(q)

)
, ηγ(q+1), . . . , ηγ(j)

)

−
∑

a+b=j
a,b≥1

∑

γ′∈Sa,j−a

γ′(1)=1

χ(γ′; ξσ(k+1), . . . , ξσ(m))(−1)
a−1+(b−1)

„

a
P

r=1
|ηγ′(r)|

«

·

[
fa

(
ηγ′(1), . . . , ηγ′(a)

)
, fb

(
ηγ′(a+1), . . . , ηγ′(j)

)]

g
.

Then, the second sum leads easily to cm(ξ1, . . . , ξm) and for the first sum, one has to
separate the two cases where the permutation γ ∈ Sq,j−q , which appears in the sum,
satisfies γ(1) = 1 or γ(q + 1) = 1, to obtain respectively the terms am(ξ1, . . . , ξm)

and bm(ξ1, . . . , ξm). Indeed, if γ(1) = 1, then there exists α ∈ Sk+1
q−1,p−1 such that:

ηγ(1) = ℓk(ξσ(1), . . . , ξσ(k)),
ηγ(2) = ξσα(k+1),

...
ηγ(q) = ξσα(k+q−1),

ηγ(q+1) = ξσα(k+q)

...
ηγ(j) = ξσα(m).

By checking that χ(γ; η1, . . . , ηj) = χ(α; ξσ(k+1), . . . , ξσ(m)), one obtains the sum
am(ξ1, . . . , ξm). In the case γ(q + 1) = 1, one can rather write:

ηγ(1) = ξσα(k+1),
...

ηγ(q) = ξσα(k+q),
ηγ(q+1) = ℓk(ξσ(1), . . . , ξσ(k)),

ηγ(q+2) = ξσα(k+q+1) ,
...

ηγ(j) = ξσα(m),

with α ∈ Sk+1
q,p−2. It is then possible to compute that sign(γ) = sign(α) · (−1)q and

ε(γ; η1, . . . , ηj) = ε(α; ξσ(k+1), . . . , ξσ(m)) · (−1)

 

k
P

s=1
|ξσ(s)|+k

!

·

 

k+q
P

r=k+1

|ξσα(r)|

!

. This
permits one to obtain the sum bm(ξ1, . . . , ξm).
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Now, we will successively show that both sums am(ξ1, . . . , ξm) and bm(ξ1, . . . , ξm)
are equal to zero. To do this, we prove the following lemmas.

Lemma 3.5. Let n ∈ N∗. Suppose that the equations (Jj) for 1 ≤ j ≤ n − 1
are satisfied by the maps ℓ1 = 0, ℓ2, . . . , ℓn−1, then

an(ζ1, . . . , ζn) = 0, for all ζ1, . . . , ζn ∈ H(g, ∂g).

proof of lemma 3.5. Let ζ1, . . . , ζn ∈ H(g, ∂g). For p, q, k ≥ 2 such that

p+q+k = n+2, and for σ ∈ Sk,n−k and α ∈ Sk+1
q−1,p−1, the permutation σ ◦α ∈ Sn

can be uniquely written as σ ◦ α = ρ ◦ β, with ρ ∈ Sn−p+1,p−1 and β ∈ Sk,q−1.
Using this, one obtains:

an(ζ1, . . . , ζn) =
n−2∑

p=2

∑

ρ∈Sn−p+1,p−1

χ(ρ)(−1)(n−p)(p−1)fp

(
Jp(ζρ(1), . . . , ζρ(n−p+1)), ζρ(n−p+2), . . . , ζρ(n)

)
,

where χ(ρ) stands for χ(ρ; ζ1, . . . , ζn) and Jp is defined in (2). For every 2 ≤ p ≤
n− 2 and every ρ ∈ Sn−p+1,p−1, one has Jp(ζρ(1), . . . , ζρ(n−p+1)) = 0, by (Jn−p+1),
where n − p + 1 = k + q − 1 runs through all integers between 3 and n − 1. Hence
an(ζ1, . . . , ζn) = 0. �

According to this lemma, and because the maps ℓ1 = 0, ℓ2, . . . , ℓm−1 are sup-
posed to satisfy the equations (J1) – (Jm−1), we have am(ξ1, . . . , ξm) = 0. Let us
now consider the sum bm(ξ1, . . . , ξm). It is also zero, according to the following:

Lemma 3.6. Let n ∈ N∗. For all ζ1, . . . , ζn ∈ H(g, ∂g), we have

bn(ζ1, . . . , ζn) = 0.

proof of lemma 3.6. This result follows from the skew-symmetry of the maps
f1, . . . , fn, making the sum bn(ζ1, . . . , ζn) equal to minus itself. �

Now, we consider the term ∂g (Um(ξ1, . . . , ξm)). As ∂g is a graded derivation
for [· , ·]

g
and because [· , ·]

g
is skew-symmetric, one has, for all ζ1, . . . , ζm ∈ H(g, ∂g)

and all s, t ∈ {1, . . .m − 1} such that s + t = m:

∂g

(

[fs (ζ1, . . . , ζs) , ft (ζs+1, . . . , ζm)]
g

)

=

[∂g (fs (ζ1, . . . , ζs)) , ft (ζs+1, . . . , ζm)]
g

−(−1)|fs(ζ1,...,ζs)|(1+|∂g(ft(ζs+1,...,ζm))|) [∂g (ft (ζs+1, . . . , ζm)) , fs (ζ1, . . . , ζs)]g .

Using this, the one-to-one correspondence between the set {τ ∈ Ss,m−s | τ(1) = 1}
and the set {τ ′ ∈ St,m−t | τ ′(t + 1) = 1} and finally the fact that Ss,m−s = {τ ∈
Ss,m−s | τ(1) = 1} ⊔ {τ ∈ Ss,m−s | τ(s + 1) = 1}, we obtain that:

∂g (Um(ξ1, . . . , ξm)) =
∑

s+t=m
s,t≥1

∑

τ∈Ss,m−s

χ(τ) es,t(τ)
[
∂g

(
fs

(
ξτ(1), . . . , ξτ(s)

))
, ft

(
ξτ(s+1), . . . , ξτ(m)

)]

g
.
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Finally, it remains for ∂g (Tm(ξ1, . . . , ξm)):

∂g (Tm(ξ1, . . . , ξm)) = ∂g (Sm(ξ1, . . . , ξm)) − ∂g (Um(ξ1, . . . , ξm))

= cm(ξ1, . . . , ξm)

−
∑

s+t=m
s,t≥1

∑

τ∈Ss,m−s

χ(τ) es,t(τ)
[
∂g

(
fs

(
ξτ(1), . . . , ξτ(s)

))
, ft

(
ξτ(s+1), . . . , ξτ(m)

)]

g
.

We now point out that, for all n ∈ N∗ and for all ζ1, . . . , ζn ∈ H(g, ∂g),
(26)

cn(ζ1, . . . , ζn) =
∑

s+t=n
s,t≥1

∑

τ∈Ss,n−s

χ(τ) es,t(τ)
[
(f1 ◦ ℓs + Ss)

(
ζτ(1), . . . , ζτ(s)

)
, ft

(
ζτ(s+1), . . . , ζτ(n)

)]

g
.

We use once more the equation (Es) and (23) to write ∂g ◦ fs = f1 ◦ ℓs + Ts =
f1 ◦ ℓs + Ss − Us, for s = 1, . . . , m − 1, and to obtain:

∂g (Tm(ξ1, . . . , ξm)) =
∑

s+t=m
s,t≥1

∑

τ∈Ss,m−s

χ(τ) es,t(τ)
[
Us

(
ξτ(1), . . . , ξτ(s)

)
, ft

(
ξτ(s+1), . . . , ξτ(m)

)]

g
.

Written differently, this reads as follows:

(27) ∂g (Tm(ξ1, . . . , ξm)) = Rm(ξ1, . . . , ξm),

where we have introduced the following notation (because we will need this notation
later): for all n ∈ N∗ and all ζ1, . . . , ζn ∈ H(g, ∂g),

Rn(ζ1, . . . , ζn) :=
∑

a+b+t=n
a,b,t≥1

∑

τ∈Sa+b,t

σ∈Sa,b

σ(1)=1

χ(τ ; ζ1, . . . , ζn) χ(σ; ζτ(1), . . . , ζτ(a+b)) ea+b,t(τ) ea,b(τ ◦ σ) ·

[[
fa

(
ζτσ(1), . . . , ζτσ(a)

)
, fb

(
ζτσ(a+1), . . . , ζτσ(a+b)

)]

g
, ft

(
ζτ(a+b+1), . . . , ζτ(n)

)]

g

.

It is then possible to show that this is zero, using the graded Jacobi identity satisfied
by [· , ·]

g
. Because we will need this result in another context, we show the following:

Lemma 3.7. For n ∈ N∗ and all ζ1, . . . , ζn ∈ H(g, ∂g), one has:

Rn(ζ1, . . . , ζn) = 0.

proof of lemma 3.7. Let ζ1, . . . , ζn ∈ H(g, ∂g). One first can show that

2 Rn(ζ1, . . . , ζn) =
∑

a+b+t=n
a,b,t≥1

∑

ρ∈Sa,b,t

χ(ρ; ζ1, . . . , ζn) ea+b,t(ρ) ea,b(ρ) ·

[[
fa

(
ζρ(1), . . . , ζρ(a)

)
, fb

(
ζρ(a+1), . . . , ζρ(a+b)

)]

g
, ft

(
ζρ(a+b+1), . . . , ζρ(n)

)]

g

,

where for a, b, t ∈ N, Sa,b,t is the set of all the permutations σ ∈ Sa+b+t of
{1, . . . , a + b + t}, satisfying: σ(1) < · · · < σ(a), σ(a + 1) < · · · < σ(a + b) and
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σ(a + b + 1) < · · · < σ(a + b + t). It is now possible to check that one has:

6 Rn(ζ1, . . . , ζn) =
∑

a+b+t=n
a,b,t≥1

∑

ρ∈Sa,b,t

χ(ρ) (−1)e·

Jacg

(
fa

(
ζρ(1), . . . , ζρ(a)

)
, fb

(
ζρ(a+1), . . . , ζρ(a+b)

)
, ft

(
ζρ(a+b+1), . . . , ζρ(n)

))
,

where e ∈ Z is an integer depending on ζ1, . . . , ζn and on the permutation ρ, and
where, for all x, y, z ∈ g,

Jacg(x, y, z) := (−1)|x||z|
[

[x, y]g , z
]

g

+(−1)|y||x|
[

[y, z]g , x
]

g

+(−1)|z||y|
[

[z, x]g , y
]

g

,

which is zero because of the graded Jacobi identity satisfied by [· , ·]
g
. We now

conclude that Rn(ζ1, . . . , ζn) = 0. �

This lemma, together with (27), imply that ∂g (Tm(ξ1, . . . , ξm)) = 0. This fact
means that, for all ξ1, . . . , ξm ∈ H(g, ∂g), the element Tm(ξ1, . . . , ξm) is a cocycle
for the cochain complex (g, ∂g). This allows us to define a skew-symmetric graded
linear map ℓm :

∧m
H(g, ∂g) → H(g, ∂g), of degree 2 − m, with the following

formula:

(28) ℓm(ξ1, . . . , ξm) := −p ◦ Tm(ξ1, . . . , ξm),

for all ξ1, . . . , ξm ∈ H(g, ∂g). As in the case m = 2 and according to (19), we also
have the existence of a skew-symmetric graded linear map fm :

∧m
H(g, ∂g) → g,

of degree 1 − m, which satisfies the equation (Em):

Tm(ξ1, . . . , ξm) = ∂g (fm(ξ1, . . . , ξm)) − f1 (ℓm(ξ1, . . . , ξm)) ,

for all ξ1, . . . , ξm ∈ H(g, ∂g).

(b) - Step 2. It remains to show, using the equations (J1) – (Jm) and (E1) –

(Em−1), satisfied by the maps ℓ1, . . . , ℓm−1 and f1, . . . , fm−1 and the equation (Em)
also satisfied by the maps ℓm and fm, that the map ℓm, defined in (28), satisfies
necessarily, for all ξ1, . . . , ξm+1 ∈ H(g, ∂g), the equation:
(Jm+1)∑

j+k=m+2
j,k≥2

∑

σ∈Sk,m+1−k

χ(σ)(−1)k(j−1) ℓj

(
ℓk

(
ξσ(1), . . . , ξσ(k)

)
, ξσ(k+1), . . . , ξσ(m)

)
= 0.

Let us fix ξ1, . . . , ξm+1 ∈ H(g, ∂g). By equations (E1) – (Em), we know that the
maps ℓj , for 1 ≤ j ≤ m, can be written as ℓj = −p ◦ Tj. Using the notation of the
remark 3.4, this implies that (Jm+1) is equivalent to:

p (dm+1(ξ1, . . . , ξm+1)) = 0.

We also use the same reasoning as the one explained in the remark 3.4 to obtain:

dm+1(ξ1, . . . , ξm+1) = (am+1 + bm+1 + cm+1) (ξ1, . . . , ξm+1).

Then, the lemma 3.5, together with the fact that the maps ℓ2, . . . , ℓm satisfy the
equations (Jj) for 1 ≤ j ≤ m, imply that am+1(ξ1, . . . , ξm+1) = 0. Secondly, the
lemma 3.6 also says that bm+1(ξ1, . . . , ξm+1) = 0. Finally it remains that:

(Jm+1) is equivalent to: p (cm+1(ξ1, . . . , ξm+1)) = 0,
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which is also equivalent to say that cm+1(ξ1, . . . , ξm+1) is a coboundary for the
cochain complex (g, ∂g). As (26) can be obtained without using anything but the
definitions of cm and Ss, we also have:

cm+1(ξ1, . . . , ξm+1) =
∑

p+q=m+1
q≥1,p≥2

∑

α∈Sp,q

χ(α)ep,q(α)
[
(Sp+f1 ◦ ℓp)

(
ξα(1), . . . , ξα(p)

)
, fq

(
ξα(p+1), . . . , ξα(m+1)

)]

g
.

Now, we use Sp = Tp + Up and the equations (Ep), satisfied by the maps ℓp and fp,
for 1 ≤ p ≤ m, to write Sp + f1 ◦ ℓp = ∂g ◦ fp + Up and:

cm+1(ξ1, . . . , ξm+1) =
∑

p+q=m+1
q≥1,p≥2

∑

α∈Sp,q

χ(α) ep,q(α)
[
∂g

(
fp

(
ξα(1), . . . , ξα(p)

))
, fq

(
ξα(p+1), . . . , ξα(m+1)

)]

g

+ Rm+1(ξ1, . . . , ξm+1).

By lemma 3.7, Rm+1(ξ1, . . . , ξm+1) = 0, and using the bijection between Sp,q and
Sq,p, given by:

Sp,q → Sq,p

α 7→ α′ :=

(
1 ··· q q+1 ··· p+q

α(p+1) ··· α(p+q) α(1) ··· α(p)

)

,

for which

sign(α′) = sign(α) · (−1)pq,

ε(α′; ξ1, . . . , ξp+q) = ε(α; ξ1, . . . , ξp+q) · (−1)

„

q
P

r=1
|ξα(r)|

«

·

 

p+q
P

r=q+1

|ξα(r)|

!

,

and also using the skew-symmetry of [· , ·]
g

and the fact that ∂g is a graded derivation

for [· , ·]
g
, we finally obtain:

2 cm+1(ξ1, . . . , ξm+1) =
∑

p+q=m+1
q,p≥2

∑

α∈Sp,q

χ(α) ep,q(α) ∂g

([
fp

(
ξα(1), . . . , ξα(p)

)
, fq

(
ξα(p+1), . . . , ξα(m+1)

)]

g

)

.

We have then obtained that cm+1(ξ1, . . . , ξm+1) is a coboundary for the cochain
complex (g, ∂g), so that ∂g (cm+1(ξ1, . . . , ξm+1)) = 0 and the equation (Jm+1) is
satisfied. This finishes the proof of the proposition 3.1. �

4. Deformations of Poisson structures via L∞-algebras

In this section, we consider a family of dg Lie algebras, constructed from a fam-
ily of Poisson structures in dimension three. We will then use the proposition 3.1,
to obtain a classification of all formal deformations of these Poisson structures in
the generic case, together with an explicit formula for the representative of each
equivalence classes of these deformations.
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4.1. Poisson structures in dimension three and their cohomology. In
the following, A denotes the polynomial algebra in three generators A := F[x, y, z],
where F is an arbitrary field of characteristic zero. To each polynomial ϕ ∈ A, one
associates a Poisson structure {· , ·}ϕ defined by:

(29) {· , ·}ϕ :=
∂ϕ

∂x

∂

∂y
∧

∂

∂z
+

∂ϕ

∂y

∂

∂z
∧

∂

∂x
+

∂ϕ

∂z

∂

∂x
∧

∂

∂y
.

In this context, the Poisson cohomology of (A, {· , ·}ϕ) is denoted by H•(A, {· , ·}ϕ).

We also denote by (gϕ, ∂ϕ, [· , ·]S), the dg Lie algebra associated to the Poisson

algebra (A, {· , ·}ϕ), as explained in the paragraph 2.2.2. Notice that gk
ϕ ≃ {0},

for all k ≥ 3. With these notations, and those of the previous section, we have:
Hn(gϕ, ∂ϕ) = Hn+1(A, {· , ·}ϕ), for all n ∈ Z (in fact, n ∈ N∪{−1}). As previously,

for every cocycle P of the cochain complex (gϕ, ∂ϕ), P̄ denotes its cohomology class
in H(gϕ, ∂ϕ). As we want to use the result of the previous section (proposition 3.1),
we need to choose representatives (ϑn

k )k of an F-basis of Hn(gϕ, ∂ϕ), for n ∈ Z.
To do this, we use the results of [9], in which the polynomial ϕ is supposed to be
weight-homogeneous and with an isolated singularity (at the origin). Let us recall
that a polynomial ϕ ∈ F[x, y, z] is said to be weight homogeneous of (weighted)
degree ̟(ϕ) ∈ N, if there exists (unique) positive integers ̟1, ̟2, ̟3 ∈ N∗ (the
weights of the variables x, y and z), without any common divisor, such that:

(30) ̟1 x
∂ϕ

∂x
+ ̟2 y

∂ϕ

∂y
+ ̟3 z

∂ϕ

∂z
= ̟(ϕ)ϕ.

This equation is called the Euler Formula and can also be written as: ~e̟[ϕ] =
̟(ϕ)ϕ, where ~e̟ is the so-called Euler derivation (associated to the weights of the
variables), defined by:

~e̟ := ̟1 x
∂

∂x
+ ̟2 y

∂

∂y
+ ̟3 z

∂

∂z
.

Recall that a weight homogeneous polynomial ϕ ∈ F[x, y, z] is said to admit an
isolated singularity (at the origin) if the vector space

Asing(ϕ) := F[x, y, z]/〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
〉(31)

is finite-dimensional. Its dimension is then denoted by µ and called the Milnor
number associated to ϕ. When F = C, this amounts, geometrically, to saying that
the surface Fϕ : {ϕ = 0} has a singular point only at the origin.

From now on, the polynomial ϕ will always be a weight homogeneous polyno-
mial with an isolated singularity. The corresponding weights of the three variables
(̟1, ̟2 and ̟3) are then fixed and the weight homogeneity of any polynomial
in A = F[x, y, z] has now to be understood as associated to these weights. In the
following, |̟| denotes the sum of the weights of the three variables x, y and z:
|̟| := ̟1 + ̟2 + ̟3 and we fix u0 := 1, u1, . . . , uµ−1 ∈ A, a family composed
of weight homogeneous polynomials in A whose images in Asing(ϕ) give a basis of
this F-vector space (and u0 = 1). (For example, one can choose the polynomials
u0, . . . , uµ−1 as being monomials of F[x, y, z]).

Proposition 4.1 ([9]). Let ϕ ∈ A be a weight-homogeneous polynomial with an
isolated singularity. Let (gϕ, ∂ϕ, [· , ·]S) denote the dg Lie algebra associated to the
Poisson algebra (A, {· , ·}ϕ), as explained in the paragraph 2.2.2, and where {· , ·}ϕ



22 ANNE PICHEREAU

is defined in (29). Here we give explicit representatives for F-bases of the Poisson
cohomology spaces associated to (A, {· , ·}ϕ) or equivalently to (gϕ, ∂ϕ).

(1) An F-basis of the first cohomology space H−1(gϕ, ∂ϕ) = H0(A, {· , ·}ϕ) is
given by:

b−1
ϕ :=

(

ϕi, i ∈ N
)

;

(2) An F-basis of the space H0(gϕ, ∂ϕ) = H1(A, {· , ·}ϕ) is given by:

b0
ϕ :=

{
(0) if ̟(ϕ) 6= |̟|,

(

ϕi ~e̟, i ∈ N
)

if ̟(ϕ) = |̟|;

(3) An F-basis of the space H1(gϕ, ∂ϕ) = H2(A, {· , ·}ϕ) is given by:

b1
ϕ :=

(

ϕi uq {· , ·}ϕ, i ∈ N, q ∈ Eϕ

)

∪
(

{· , ·}ur
, 1 ≤ r ≤ µ − 1

)

,

where

Eϕ :=

{
{1, . . . , µ − 1} if ̟(ϕ) 6= |̟|,
{0, . . . , µ − 1} if ̟(ϕ) = |̟|,

and where the skew-symmetric biderivation {· , ·}uq
is naturally obtained

by replacing ϕ by uq in (29);
(4) An F-basis of the space H2(gϕ, ∂ϕ) = H3(A, {· , ·}ϕ) is given by:

b2
ϕ :=

(

ϕi usD, i ∈ N, 0 ≤ s ≤ µ − 1
)

,

where D is the skew-symmetric triderivation of A, defined by:

D :=
∂

∂x
∧

∂

∂y
∧

∂

∂z
;

(5) For k ≥ 3,

Hk(gϕ, ∂ϕ) = Hk+1(A, {· , ·}ϕ) ≃ {0}.

Remark 4.2. More precisely, the basis of H2(A, {· , ·}ϕ) given here is obtained

by using the proposition 4.8 and the equality (27) of [9].

4.2. A suitable quasi-isomorphism between H(gϕ, ∂ϕ) and gϕ. Similarly
to the definition (17), we now have a linear graded map fϕ

1 of degree 0, associated
to the bases b−1

ϕ ,b0
ϕ,b1

ϕ,b2
ϕ:

(32)

fϕ
1 : Hℓ(gϕ, ∂ϕ) → Zℓ(gϕ, ∂ϕ)

ξ =
∑

k λℓ
kϑℓ

k 7→
∑

k λℓ
kϑℓ

k,

where ξ =
∑

k λℓ
kϑℓ

k is the unique decomposition of ξ in the basis bℓ
ϕ, ℓ = −1, 0, 1, 2,

for which the elements
(
ϑℓ

k

)

k
denote here the representatives, chosen in the previous

proposition 4.1, of the basis bℓ
ϕ.

Using the proposition 3.1 and the bases b−1
ϕ ,b0

ϕ,b1
ϕ,b2

ϕ of the Poisson coho-
mology spaces associated to (gϕ, ∂ϕ), we construct an L∞-algebra structure on
H(gϕ, ∂ϕ): (H(gϕ, ∂ϕ), ℓ1 = 0, ℓ2 = [· , ·]S , ℓ3, . . . ), and a (weak) L∞-morphism

fϕ
• =

(

fϕ
n :

⊕n
H(gϕ, ∂ϕ) → gϕ

)

n∈N∗
,

which extends fϕ
1 , thus is a quasi-isomorphism. We indeed prove the following:
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Proposition 4.3. Let ϕ ∈ A = F[x, y, z] be a weight-homogeneous polynomial,
with an isolated singularity and let {· , ·}ϕ be the associated Poisson bracket defined

in (29). Let (gϕ, ∂ϕ, [· , ·]S) be the dg Lie algebra associated to the Poisson cohomol-
ogy complex of (A, {· , ·}ϕ), as explained in the paragraph 2.2.2. For simplicity, we

denote by Hϕ the space H(gϕ, ∂ϕ), and for all i ∈ N∗, Hi
ϕ the space Hi(gϕ, ∂ϕ) (the

i-th cohomology space associated to (gϕ, ∂ϕ)). We fix fϕ
1 as being the map defined

in (32) and ℓϕ
1 : H(g, ∂g) → H(g, ∂g) as being the trivial map. We also fix the map

ℓϕ
2 as being the bracket induced by the Schouten bracket [· , ·]S, i.e.,

ℓϕ
2 (x, y) := [x, y]S , for all x, y ∈ gϕ.

There exist an L∞-algebra structure on Hϕ := H(gϕ, ∂ϕ), denoted by ℓϕ
• :=

(ℓϕ
i )i∈N∗ (with ℓϕ

1 and ℓϕ
2 given previously) and a quasi-isomorphism fϕ

• := (fϕ
i )i∈N∗

(extending fϕ
1 ) from Hϕ to the dg Lie algebra (gϕ, ∂ϕ, [· , ·]S), satisfying the following

properties:

(P1) The map fϕ
2 is defined by the values given in the table 1, for the case

̟(ϕ) 6= |̟|, and in the table 2, for the case ̟(ϕ) = |̟|;
(P2) For all i ≥ 2, the map ℓϕ

i is zero on H1
ϕ:

ℓϕ
i |

(H1
ϕ)⊗i

= 0, for all i ≥ 2;

(P3) For all i ≥ 3, the map fϕ
i is zero on H1

ϕ:

fϕ
i |

(H1
ϕ)⊗i

= 0, for all i ≥ 3.

Table 1. Case ̟(ϕ) 6= |̟|. The values of the linear map fϕ
2 on

the elements of the bases bi
ϕ and bj

ϕ of the spaces Hi
ϕ and Hj

ϕ, for

i, j = −1, 1, 2. Notice that in this case, H0
ϕ = {0}. In this table,

F (ϕ), G(ϕ) are arbitrary elements of F[ϕ] and 1 ≤ k, l, s, t ≤ µ−1.

Hi
ϕ × Hj

ϕ (ϑi, ϑj) ∈ bi
ϕ × bj

ϕ fϕ
2 (ϑi, ϑj) ∈ gi+j−1

ϕ

H−1
ϕ × H1

ϕ

(

F (ϕ), G(ϕ)ul {· , ·}ϕ

)

(

F (ϕ), {· , ·}us

)
0

F ′(ϕ)us

H−1
ϕ × H2

ϕ

(

F (ϕ), G(ϕ)ulD
)

(

F (ϕ), G(ϕ)D
)

0

1
̟(ϕ)−|̟|G(ϕ)F ′(ϕ)~e̟

H1
ϕ × H1

ϕ

(

F (ϕ)uk {· , ·}ϕ, G(ϕ)ul {· , ·}ϕ

)

(

F (ϕ)uk {· , ·}ϕ, {· , ·}us

)

(

{· , ·}us
, {· , ·}ut

)

0

F (ϕ)uk {· , ·}us

0
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Table 2. Case ̟(ϕ) = |̟|. The values of the linear map fϕ
2 on

the elements of the bases bi
ϕ and bj

ϕ of the spaces Hi
ϕ and Hj

ϕ, for
i, j = −1, 0, 1, 2. In this table, F (ϕ), G(ϕ) are arbitrary elements
of F[ϕ] and 0 ≤ k, l ≤ µ − 1 and 1 ≤ s, t ≤ µ − 1.

Hi
ϕ × Hj

ϕ (ϑi, ϑj) ∈ bi
ϕ × bj

ϕ fϕ
2 (ϑi, ϑj) ∈ gi+j−1

ϕ

H−1
ϕ × H0

ϕ

(

F (ϕ), G(ϕ)~e̟

)

0

H−1
ϕ × H1

ϕ

(

F (ϕ), G(ϕ)ul {· , ·}ϕ

)

(

F (ϕ), {· , ·}us

)
0

F ′(ϕ)us

H−1
ϕ × H2

ϕ

(

F (ϕ), G(ϕ)ulD
)

0

H0
ϕ × H0

ϕ

(

F (ϕ)~e̟, G(ϕ)~e̟

)

0

H0
ϕ × H1

ϕ

(

F (ϕ)~e̟, G(ϕ)ul {· , ·}ϕ

)

(

F (ϕ)~e̟, {· , ·}us

)
0

(
̟(us)−|̟|

|̟|
F (ϕ)−F (0)

ϕ

−F ′(ϕ)
)

us~e̟

H0
ϕ × H2

ϕ

(

F (ϕ)~e̟, G(ϕ)ulD
)

0

H1
ϕ × H1

ϕ

(

F (ϕ)uk {· , ·}ϕ, G(ϕ)ul {· , ·}ϕ

)

(

F (ϕ)uk {· , ·}ϕ, {· , ·}us

)

(

{· , ·}us
, {· , ·}ut

)

0

F (ϕ)uk {· , ·}us

0

proof of proposition 4.3. One can check (by a direct computation) that
the following hold:

(33)

[

F (ϕ)uk {· , ·}ϕ , G(ϕ)ul {· , ·}ϕ

]

S
= 0,

[

F (ϕ)uk {· , ·}ϕ , {· , ·}ut

]

S
= −∂ϕ

(
F (ϕ)uk {· , ·}ut

)
,

[
{· , ·}us

, {· , ·}ut

]

S
= 0,

for all 0 ≤ k, l ≤ µ − 1 and all 1 ≤ s, t ≤ µ − 1 and for arbitrary elements F (ϕ)
and G(ϕ) of F[ϕ]. Because of (3) of proposition 4.1, this implies that the map ℓϕ

2 ,
which is the map induced by the Schouten bracket on the cohomology Hϕ (and also
denoted by [· , ·]S), is zero when restricted to H1

ϕ ⊗ H1
ϕ.

Now, by ℓϕ
1 = 0 and the definition (32) of fϕ

1 , it is straightforward to show that

the skew-symmetric graded linear map fϕ
2 :

⊗2
H(gϕ, ∂ϕ) → gϕ, defined by the

tables 1 and 2, together with ℓϕ
2 = [· , ·]S , satisfy the equation (E2). In particular,

let us check this on H1
ϕ ⊗ H1

ϕ. Indeed, for all 0 ≤ k, l ≤ µ − 1 and for arbitrary

elements F (ϕ) and G(ϕ) of F[ϕ], the equation (E2) for ξ1 = F (ϕ)uk {· , ·}ϕ and
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ξ2 = G(ϕ)ul {· , ·}ϕ becomes, using (33),

∂ϕ

(

fϕ
2

(

F (ϕ)uk {· , ·}ϕ, G(ϕ)ul {· , ·}ϕ

))

= fϕ
1

([

F (ϕ)uk {· , ·}ϕ , G(ϕ)ul {· , ·}ϕ

]

S

)

−
[

F (ϕ)uk {· , ·}ϕ , G(ϕ)ul {· , ·}ϕ

]

S

= 0.

Similarly, one also obtains ∂ϕ

(

fϕ
2

(

{· , ·}us
, {· , ·}ut

))

= 0, for all 1 ≤ s, t ≤ µ − 1.

Finally, for any arbitrary element F (ϕ) of F[ϕ], and for all 0 ≤ k ≤ µ − 1 and 1 ≤

t ≤ µ − 1, the identities (33) imply that the equation (E2) for ξ1 = F (ϕ)uk {· , ·}ϕ

and ξ2 = {· , ·}ut
reads as follows

∂ϕ

(

fϕ
2

(

F (ϕ)uk {· , ·}ϕ, {· , ·}ut

))

= fϕ
1

([

F (ϕ)uk {· , ·}ϕ , {· , ·}ut

]

S

)

−
[

F (ϕ)uk {· , ·}ϕ , {· , ·}ut

]

S

= ∂ϕ

(
F (ϕ)uk {· , ·}ut

)
,

where we have used that fϕ
1 ◦ ∂ϕ = 0. This implies that if the map fϕ

2 takes, on
H1

ϕ ⊗ H1
ϕ, the values given in the tables 1 and 2, then the previous equations are

satisfied, i.e., the equation (E2) is satisfied on H1
ϕ ⊗ H1

ϕ.

We have obtained the existence of the maps ℓϕ
1 , ℓϕ

2 and fϕ
1 , fϕ

2 , satisfying the
equations (E1), (E2) and (J1), (J2), (J3). By the proposition 3.1, this implies that
there exist skew-symmetric graded linear maps

fϕ
3 :

⊗3
H(gϕ, ∂ϕ) → gϕ and ℓϕ

3 :
⊗3

H(gϕ, ∂ϕ) → H(gϕ, ∂ϕ)

with deg(fϕ
3 ) = −2, deg(ℓϕ

3 ) = −1 and satisfying the equation (E3). Moreover, the
proposition 3.1 also says that such a map ℓϕ

3 necessarily satisfies the equation (J4).
In the equation (En), we denote Tn(Fϕ

n , Lϕ
n−1; ξ1, . . . , ξn) by T ϕ

n (ξ1, . . . , ξn),
for n ∈ N∗ and ξ1, . . . , ξn ∈ H(g, ∂g), when Fϕ

n and Lϕ
n−1 denote the elements

Fϕ
n := (fϕ

1 , . . . , fϕ
n ) and Lϕ

n−1 := (ℓϕ
1 , . . . , ℓϕ

n−1). By (E3), we have ℓϕ
3 := −p ◦ T ϕ

3 .
Moreover, given the maps ℓϕ

1 , ℓϕ
2 , fϕ

1 , fϕ
2 as previously, one can also verify that:

T ϕ
3 |

(H1
ϕ)⊗3

= 0,

so that, ℓϕ
3 |

(H1
ϕ)⊗3

= −p ◦ T ϕ
3 |

(H1
ϕ)⊗3

= 0, and the equation (E3) is still satisfied

if we choose fϕ
3 |

(H1
ϕ)⊗3

:= 0, what we do from now on. Now we have chosen the

maps ℓϕ
1 , ℓϕ

2 , ℓϕ
3 and fϕ

1 , fϕ
2 , fϕ

3 such that the equations (E1), (E2), (E3) and (J1),
(J2), (J3), (J4) are satisfied, ℓϕ

i |
(H1

ϕ)⊗i
= 0 for i = 2, 3, fϕ

2 is given by the tables 1

and 2, and fϕ
3 |

(H1
ϕ)⊗3

= 0. The proposition 3.1 once more gives us the existence of

skew-symmetric graded linear maps

fϕ
4 :

⊗4
H(gϕ, ∂ϕ) → gϕ and ℓϕ

4 :
⊗4

H(gϕ, ∂ϕ) → H(gϕ, ∂ϕ)

with deg(fϕ
4 ) = −3 and deg(ℓϕ

4 ) = −2 and satisfying the equation (E4). Moreover,
according to the proposition 3.1, such a map ℓϕ

4 satisfies also the equation (J5). It
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is also straightforward, with the choices made previously, to show that

T ϕ
4 |

(H1
ϕ)

⊗4
= 0.

This implies that ℓϕ
4 |

(H1
ϕ)⊗4

= −p ◦ T ϕ
4 |

(H1
ϕ)⊗4

= 0 and that it is possible to choose

fϕ
4 |

(H1
ϕ)⊗4

= 0 (what we do from now on), so that (E4) is still satisfied. Finally,

because ℓϕ
i |

(H1
ϕ)⊗i

= 0, for i = 2, 3, 4, and fϕ
i |

(H1
ϕ)⊗i

= 0, for i = 3, 4, one has

necessarily that:

T ϕ
j |

(H1
ϕ)⊗j

= 0, for all j ≥ 5.

This fact, together with the proposition 3.1, imply that there finally exist skew-
symmetric graded linear maps

ℓϕ
k :

⊗k
H(gϕ, ∂ϕ) → H(gϕ, ∂ϕ), with k ≥ 5,

fϕ
k :

⊗k
H(gϕ, ∂ϕ) → gϕ, with k ≥ 5,

of degrees 2−k and 1−k respectively, and satisfying ℓϕ
k |

(H1
ϕ)⊗k

= 0, and fϕ
k |

(H1
ϕ)⊗k

=

0, for all k ≥ 5, such that the maps (ℓϕ
1 , ℓϕ

2 , ℓϕ
3 , . . . ) and (fϕ

1 , fϕ
2 , fϕ

3 , . . . ) satisfy the
conditions (P1) – (P3), and

- (ℓϕ
k )k∈N∗ is an L∞-algebra structure on Hϕ,

- (fϕ
k )

k∈N∗ is a quasi-isomorphism from Hϕ to gϕ,

hence the proposition 4.3. �

Remark 4.4. There is a natural question concerning this proposition 4.3,
which is: is it possible that ℓϕ

k = 0, for all k ≥ 3? In other words, is it pos-
sible that the proposition extends to a result of formality for gϕ? Indeed, a dg
Lie algebra (g, ∂g, [· , ·]g) is said to be formal if it is linked to the dg Lie algebra

(H(g, ∂g), 0, [· , ·]
g
) (endowed with the trivial differential and the graded Lie bracket

induced by [· , ·]
g
) by a quasi-isomorphism.

In fact, we can show that, except maybe if we change the definition of fϕ
1 (i.e.,

if we consider another choice of bases b−1
ϕ ,b0

ϕ,b1
ϕ,b2

ϕ), the map ℓϕ
3 cannot be zero.

In the case ̟(ϕ) 6= |̟|, one indeed has for example:

T ϕ
3

(
ϕ̄, ϕ̄, D̄

)
= 2

[
ϕ, fϕ

2

(
ϕ̄, D̄

)]

S
.

We know that the choice we made for the value fϕ
2

(
ϕ̄, D̄

)
is unique, up to a 1-cocycle

for the Poisson cohomology associated to (A, {· , ·}ϕ). According to the fact that

H1(A, {· , ·}ϕ) ≃ {0}, when ̟(ϕ) 6= |̟|, a 1-cocycle is a 1-coboundary, that is

to say an element of the form V = {·, F}ϕ, with F ∈ A (called an hamiltonian

derivation). For such an element, [ϕ,V ]S = −V [ϕ] = 0. This implies that the value

of T ϕ
3

(
ϕ̄, ϕ̄, D̄

)
does not depend on the choice for fϕ

2

(
ϕ̄, D̄

)
and, using the table 1,

T ϕ
3

(
ϕ̄, ϕ̄, D̄

)
= 2

[

ϕ,
1

̟(ϕ) − |̟|
~e̟

]

S

= 2
̟(ϕ)

|̟| − ̟(ϕ)
ϕ.

Because ℓϕ
3 = −p ◦ T ϕ

3 , we have ℓϕ
3

(
ϕ̄, ϕ̄, D̄

)
= 2 ̟(ϕ)

|̟|−̟(ϕ)ϕ̄, which is not zero.
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4.3. Classification of the formal deformations of {· , ·}ϕ. To obtain the

proposition 1.1, we fix an L∞-algebra structure ℓϕ
• on Hϕ and a quasi-isomorphism

fϕ
• from Hϕ to gϕ, as in proposition 4.3. By the paragraph 2.2.3, we know that
Defν(gϕ) is exactly the set of all the equivalence classes of the formal deformations
of {· , ·}ϕ. Let us now consider the set Defν(Hϕ). By definition of the generalized

Maurer-Cartan equation (5) and because the L∞-algebra structure ℓϕ
• = (ℓϕ

k )k∈N∗

satisfies ℓϕ
1 = 0 and the property (P2) of the proposition 4.3, we have:

MCν(Hϕ) = H1
ϕ ⊗ νF[[ν]] = H2(A, {· , ·}ϕ) ⊗ νF[[ν]].

In the generic case, that is to say when ̟(ϕ) 6= |̟|, according to proposition 4.1,
one has H0

ϕ ≃ {0}, so that the gauge equivalence in MCν(Hϕ) is trivial and

Defν(Hϕ) ≃ MCν(Hϕ) = H1
ϕ ⊗ νF[[ν]] = H2(A, {· , ·}ϕ) ⊗ νF[[ν]].

Moreover, in the special case where ̟(ϕ) = |̟|, then according to proposition 4.1,

one has H0
ϕ = F[ϕ]~e̟ and in this case:

Defν(Hϕ) = H1
ϕ ⊗ νF[[ν]]/ ∼= H2(A, {· , ·}ϕ) ⊗ νF[[ν]]/ ∼,

where ∼ is the gauge equivalence in MCν(Hϕ), generated by the infinitesimal
transformations of the form:

(34) γ 7−→ γ −
∑

k≥1

(−1)k(k−1)/2

(k − 1)!
ℓϕ
k (ξ, γ, . . . , γ),

for ξ =
∑

i≥1

Fi(ϕ)~e̟ νi ∈ H0
ϕ ⊗ νF[[ν]], where the Fi(ϕ) are elements of F[ϕ]. We

now are able to show the following:

Proposition 4.5. Let ϕ ∈ A = F[x, y, z] be a weight-homogeneous polynomial,
with an isolated singularity. To ϕ is associated the Poisson structure defined by:

{· , ·}ϕ :=
∂ϕ

∂x

∂

∂y
∧

∂

∂z
+

∂ϕ

∂y

∂

∂z
∧

∂

∂x
+

∂ϕ

∂z

∂

∂x
∧

∂

∂y
.

We consider the dg Lie algebra (gϕ, ∂ϕ, [· , ·]S), associated to ϕ and defined in
the paragraph 4.1, of all skew-symmetric multiderivations of A, equipped with the

Schouten bracket [· , ·]S and the differential ∂ϕ :=
[

{· , ·}ϕ , ·
]

S
.

We denote by C, the set of all (c, c̄), where c :=
(

ck
l,i ∈ F

)

(l,i)∈N×Eϕ

k∈N∗

is a fam-

ily of constants indexed by N × Eϕ × N∗ and c̄ :=
(
c̄ k
r ∈ F

)

1≤r≤µ−1
k∈N∗

is a family

of constants indexed by {1, . . . , µ − 1} × N∗, such that, for every k0 ∈ N∗, the

sequences (ck0

l,i)(l,i)∈N×Eϕ
and (c̄ k0

r )1≤r≤µ−1 have finite supports. Now, for every

element (c, c̄) =
(

(ck
l,i), (c̄

k
r )

)

∈ C, we associate an element γc,c̄ of g1
ϕ ⊗ νF[[ν]], by

the following formula:

γc,c̄ :=
∑

n∈N∗

γc,c̄
n νn,(35)
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with, for all n ∈ N∗, γc,c̄
n given by:

(36)

γc,c̄
n :=

∑

(l,i)∈N×Eϕ

1≤r≤µ−1

∑

a+b=n
a,b∈N

∗

ca
l,i c̄ b

r ϕl ui {· , ·}ur

+
∑

(m,j)∈N×Eϕ

cn
m,j ϕm uj {· , ·}ϕ +

∑

1≤s≤µ−1

c̄n
s {· , ·}us

,

where the uj, for 0 ≤ j ≤ µ − 1, are weight homogeneous polynomials of A =

F[x, y, z], whose images in Asing(ϕ) = F[x, y, z]/〈∂ϕ
∂x , ∂ϕ

∂y , ∂ϕ
∂z 〉 give a basis of the

F-vector space Asing(ϕ), and u0 = 1. Then, one has:

(1) The set of all the gauge equivalence classes of the solutions of the Maurer-
Cartan equation associated to the dg Lie algebra (gϕ, ∂ϕ, [· , ·]S) is then
given by:

Defν(gϕ) = {γc,c̄ | (c, c̄) ∈ C}/ ∼,

where ∼ still denotes the gauge equivalence;
(2) In the generic case where ̟(ϕ) 6= |̟|, this set is exactly given by:

Defν(gϕ) = {γc,c̄ | (c, c̄) ∈ C}.

Proof. To show this proposition, we fix an L∞-algebra structure ℓϕ
• on Hϕ

and a quasi-isomorphism fϕ
• , as in proposition 4.3. According to the theorem 2.2,

we know that
Defν(gϕ) = Defν(fϕ

• ) (Defν(Hϕ)) .

We also have seen at the beginning of this paragraph that, because ℓϕ
1 = 0 and

because of the property (P2) of proposition 4.3, Defν(Hϕ) = H1
ϕ⊗νF[[ν]]/ ∼. Now,

by definition of fϕ
• , and because it satisfies the property (P3) of the proposition 4.3,

and by definition (9) (and (10)) of Defν(fϕ
• ), we have:

Defν(gϕ) = Defν(fϕ
• ) (Defν(Hϕ))

=

(

fϕ
1 +

1

2
fϕ
2

)

(H1
ϕ ⊗ νF[[ν]])/ ∼ .

Let γ =
∑

n∈N
γn νn be an element of H1

ϕ ⊗ νF[[ν]], where each γn is an element

of H1
ϕ. For n ∈ N, every element γn can be decomposed in the basis b1

ϕ (see the

proposition 4.1), i.e., there exist families of constants (c, c̄) =
((

cn
m,j

)
, (c̄n

s )
)
∈ C

satisfying:

γn =
∑

(m,j)∈N×Eϕ

cn
m,j ϕm uj {· , ·}ϕ +

∑

1≤s≤µ−1

c̄n
s {· , ·}us

,

for all n ∈ N. Now, using the tables 1 and 2, we obtain exactly that
(
fϕ
1 + 1

2fϕ
2

)
(γ) =

γc,c̄, hence the result. For the case where ̟(ϕ) 6= |̟|, it only remains to recall
that in this case, the gauge equivalence ∼ is trivial, as explained at the beginning
of this paragraph. �

According to what we have seen in the paragraph 2.2.3, the previous proposition
can be translated into a result concerning the formal deformations of the family of
Poisson brackets {· , ·}ϕ, for ϕ ∈ F[x, y, z], a weight-homogenous polynomial with

an isolated singularity. It then becomes exactly the parts (a), (b) and (c) of the
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proposition 3.3 of [10] and replacing νF[[ν]] by νF[[ν]]/〈νm+1〉 (with m ∈ N∗) in
everything we have done leads to the part (d) of this proposition 3.3 of [10], which
we write once more here:

Proposition 4.6 ([10]). Let ϕ ∈ A = F[x, y, z] be a weight homogeneous
polynomial with an isolated singularity. Consider the Poisson algebra (A, {· , ·}ϕ)

associated to ϕ, where π0 := {· , ·}ϕ is the Poisson bracket given by (29). Then we
have the following:

(a) For all families of constants
(

ck
l,i ∈ F

)

(l,i)∈N×Eϕ

k∈N∗

and
(
c̄ k
r ∈ F

)

1≤r≤µ−1
k∈N∗

,

such that, for every k0 ∈ N∗, the sequences (ck0

l,i)(l,i)∈N×Eϕ
and (c̄ k0

r )1≤r≤µ−1

have finite supports, the formula

π∗ = {· , ·}ϕ +
∑

n∈N∗

πnνn,(37)

where, for all n ∈ N∗, πn is given by:

(38)

πn =
∑

(l,i)∈N×Eϕ

1≤r≤µ−1

∑

a+b=n
a,b∈N

∗

ca
l,i c̄ b

r ϕl ui {· , ·}ur

+
∑

(m,j)∈N×Eϕ

cn
m,j ϕm uj {· , ·}ϕ +

∑

1≤s≤µ−1

c̄n
s {· , ·}us

,

defines a formal deformation of {· , ·}ϕ, where the uj (0 ≤ j ≤ µ − 1)

are weight homogeneous polynomials of A = F[x, y, z], whose images

in Asing(ϕ) = F[x, y, z]/〈∂ϕ
∂x , ∂ϕ

∂y , ∂ϕ
∂z 〉 give a basis of the F-vector space

Asing(ϕ), and u0 = 1.

(b) For any formal deformation π′
∗ of {· , ·}ϕ, there exist families of constants

(

ck
l,i

)

(l,i)∈N×Eϕ

k∈N∗

and
(
c̄ k
r

)

1≤r≤µ−1
k∈N∗

(such that, for every k0 ∈ N∗, only a

finite number of ck0

l,i and c̄ k0
r are non-zero), for which π′

∗ is equivalent to

the formal deformation π∗ given by the above formulas (37) and (38).

(c) Moreover, if the (weighted) degree of the polynomial ϕ is not equal to
the sum of the weights: ̟(ϕ) 6= |̟|, then for any formal deformation

π′
∗ of {· , ·}ϕ, there exist unique families of constants

(

ck
l,i

)

(l,i)∈N×Eϕ

k∈N∗

and
(
c̄ k
r

)

1≤r≤µ−1
k∈N∗

(with, for every k0 ∈ N∗, only a finite number of non-zero

ck0

l,i and c̄ k0
r ), such that π′

∗ is equivalent to the formal deformation π∗ given

by the formulas (37) and (38).

This means that formulas (37) and (38) give a system of representa-
tives for all formal deformations of {· , ·}ϕ, modulo equivalence.

(d) Analogous results hold if we replace formal deformations by m-th order
deformations (m ∈ N∗) and impose in (c) that ck

l,i = 0 and c̄ k
r = 0, as

soon as k ≥ m + 1.
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