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Introduction.

In this paper we shall study a certain Dirichlet series. D (s)

F,G
attached to two Siegel cusp forms F and G of integral weight k on

SPZ(Z), which formally could be viewed as an analogue of the Rankin

convolution series in the theory of elliptic modular forms. By defini-

tion, its-.Nth

Nth coefficients of the Fourier—-Jacobi expansions of F and G, respec—

coefficient equals <¢NrwN> , where ¢N and wN are the

tively, and <, > denotes the Petersson scalar product on Jacobi cusp
forms of weight k and index N.

By applying the Rankin-Selberg method with a certain non-holomor-—
phic Eisenstein series on sz(z) of RKlingen-Siegel type, we shall |
prove that

-23

D;:G(sj = (2T) T(s)T {s=k+2)z (25=2k+4)D (s)

F,G
has a meromorphic continuation to ¢ and is invariant under s =»2k-2-g3
(§1) . Since for k even the T-factor and type of functional equation

Ig the same as that of the spinor zeta function of a Hecke eigenform

of weight k and degree 2, one might ask if in this case there is any



connection between D* (s) and linear combinationsof functions

F,G
Z; (s) ({Fi} a basis of Hecke eigenforms, Z; {s) = spinor zeta func-
i i
tion of Fi completed with its natural I'-factor}.

Although in general this question remains unanswered here, we
can prove two special results (§2). First, it will be shown that if F
s a non-zero eigenfunction in the Maass space then D;;E}s) coincides
up to the factor <¢,,¢,> with Z;(s), in other words

_ £ (s=k+1) ¢ (s-k+2)
Pp,p(S) = <0904> = 3skrn) e (8

where f is the normalized Hecke eiéenform of weight 2k-2 on SLz(z)
which corresponds to F under the Saito-Kurokawa lifting, and Lf(s)
denotes its Hecke L-function. As " .coreollary -. we shall obtain a
simple procf (and even a more precise statement) of a formula obtained

previcusly by one of the authors [5] relating the quotient of Petersson
<F,F>

products (¢1,¢1>

to the special value Lf(k). Secondly, if F is an ar-

Bftrary non-zero Hecke eigenform of weight k and P (D<O0 a fundamen-

th

k,D

tal discriminant) is the Maass lift of the D Jacobi-Poincaré series

»

of weight k and index 1, then we shall prove that DF p
!

(s) is pro-
k’D

portional to Z;(s). In particular, if the éonstant of proportionality
1s non-zero for some D, one obtains a new proof of the meromorphié
continuation and functional equation of z;(s).

Certainly some of our results can be generalized to higher genus
n, however, a more detail ed study of Jacobi forms of genus n-1 is then

required. We hope to come back to this in a future paper.
Notations

We let &, be the upper half-plane. The symbol.ﬁn denotes the

'Sfegel upper half-space of degree 2 consisting of complex 2x2 matrices



LEV]

T 2
z T

Z with positive definite imaginary part. We often write Z=( )y

X=Re(z)=(i E,) and'Y=Im(Z)¥(¥ 3;). We usually set [Y|/=det Y..
We let F1=SL2(Z) be the modular group, P2=Sp2(z) the group of
integral symplectic 4x4-matrices and Pf=?1x22 be the Jacobi modular

group. {[2]) . These groups act on %q-%é and &xC, respectively, by

' ab _ at+b ab
T r?(c d)<T> oTrd ((c d)&r1)’

7 > MCZ> = (AZ+B) (CZ4D) " (M= (2 g)el‘z)

and -

at+b z+AT+U ab J
(1,2) M (Srrg et q) (g g T .

The letter k denotes a positive integer. We write Sk(Fn)-for the

cusp
k,N

gspace of Jacobi cusp forms of weight k and index N ([2]). The Petersson

space of cusp forms of weight k on Fn. By J we understand the

products on these spaces are normalized by

<£,9> = I'{Za. f(T)g(f)vknzdudv (f'gesk(p‘])y
1
<F.GY = §  F(2)6@ 1y axay (F,GeS. (T.))
T\, k'2
and
A 2
Cou> = - J et )t v ST /vdudvdxdy (¢,¢€JEUSP).

rilgxe

1. Meromorphic continuation and functional. equation of D (s)

F,G

Let F be a Siegel cusp form of weight k on PZ. Then F has a

Fourier-Jacobi expansion



F(z) = & oo (t,2)e? N7,

N21

where ¢N is a Jacobi cusp form of weight k and index N ([2],§6).
For two functions F and G in Sk(TZ) we define a formal Dirichlet
geries by

D .(8) = 2 <o, > N S,
F,G N>1 N'™N

Here ¢N and wN denote the Nth Fourier-Jacobi ccoefficients of F and G,

cusp

respectively, and <, > 1s the Petersson product on I N

Lemma 1. The coefficients <¢N’¢N> of DF'G(ST satisfy
k
<¢N'LbN> = G(N )r

where the etconstant dépénds only on F and G. Hence D (s) is~ab-

F,G
solutely convergent for Re{s)>k+1 and represents a holomorphic

" function in this domain.

Procf. We use a variant of the classical Hecke argument. For fixed
(t,2)e 4%C we write

1C+1 .
¢N(T,z) = S F(Z)e 2miNT at’,

ic

2
where C is any real constant greater than %—. Observing that

k/2

2 1
| Y] |F(2)] is bounded on.fa.2 and choosging C=%—+§ we obtain

—k/2€2ﬂNy2/v

by (T,2) = OGP )

with the O-constant independent of T and z. From this Lemma 1 follows

Immediately.



We. define

=28

D;’G(s) = (27) "°°T(s) T (s~k+2) ¢ (25=2k+4)D_ .(s).

F,G

The main result of this section is the following

Theorem 1. The function D; G(s) has a meromorphic continuation to C
, .

and satigsfies the functional equation D; d(s) = D;'G(Zk—z—s). It is
4 r

holomorphic except for at most two 'simple poles at s=k and s=k-2.

The residue at s=k eguals o k+2 ¢ F,G>.

The fest of this section is devoted to the oroof of Theorem 1.

According to the Rankin-~Selberg method we shall write D (s) as the

F,G
Petersson product of F(Z)5?E3lYlk'against a certain non-holomorphic
Eisenstein sgeries ES(Z) of Klingen-Siegel type. The analytic proper-
tieg of DF’G(s) and the fdnctional equation then follow from the
corresponding.properties of Es. |

Denote (for the moment) the upper left entry of ZG%Q by Z, and

1
let C=C2 1 be the subgroup of F2 consisting of matrices whose last
’

rows have the form (0,0,0,1). For Ze%n and seC with Re(s)>2 we put

det Im M<LZ> s
E (2) = 2 ( )
MeC\Pz Im M<Z>T

This series is well-defined, converges absolutely and uniformly En

_,A B
2° Indeed, if M—(c D)eC and lwe

denote by a,b,c,d the upper left entries of A,B,C,D, respectively,

compact sets and is invariant under T

then M1=(2 g) is in F1 and the formula M<Z>, = M1(Z1> holds. From this,

1
tHe formula

det Im M{Z> = Idet(CZ.-_l‘-D)l-z det Im 2 (M=(E B)er‘z) R



the corresponding formula for matrices in F1 and the well-known fact

. X . ___1\"0
that (C D)E:C implies C (O O) it follows that

det Im M<Z>
Im M<Z>1

is invariant under left-multiplication by elements of C. The absolute
and uniform convergence on compact sets of the series ES(Z) for Re(s)
>2 can be checked by the same arguments as used in [4],pp.33,34. The
invariance of ES(Z) under P2 i1s then clear.

We define

E;(z) = w“sr(s);(zs)Es(Z).

Main Lemma. The functien E;(Z) has a meromorphic continuation to all s,

tﬁe‘only singularities being simple poles at s=2 and s=0 of residues

1 and. -1, respectively. It satisfies the functional equation E:(Z)
= @€

Although this result certainly is implicitly contained in the
general theory of Eisenstein series, we repeat, for the reader”s con-
venience, a proof in this special case.

A B
For M=(c D)el“2 we have

Im M<Z> = |det(CZ+D)| =2, (C'Z.'I-D)* tY(CZ+D)'x' '

where for a 2x2-matrix A=(2 g) we denote by A*=(_2 -g) its adjoint and

by At its transpose. From this we see that
_ =2 roks Ciyy, de
Im M<Z>, = |det(cz+D)| ~ % ¥(@*¥(_ ) +(_3*)].
_c; -d,
(Notation: C=(f X), D=(3 g ) ¥[Z] = @B)Y(]) for a,bec.).

Hence



det Im M<Z> _ VY|
Im M<Z2> %, Cyu dy
1 ¥ (z (_c3)+(_d3)]

where (c3,c ,d3,d4) denotes the last row of M.

4

It is well<known and can easily be checked that the map P2-+?4

’

M—(0,0,0,1)M induces a bijection between C\I‘2 and the set of primitive
vectors in 24. Thus

.. ’ Y1
ci2s)E_(2) = 2.
s c,dez? y[z*c+a]®

s .

where the sum extends over all vectors ¢ and 4 in 22 with (c¢,d) & (0,0)

Now for positive real t define a theta series

c =t Y] Yy [2¥c+ad
et(z) = z: ) € ’ L .
c,de?

Then by Mellin“s formula we have for s in the region of absolute
convergence

* _ ¢ _1y+5 4t .
E¥(z) = g (6, (2)-1)¢% S50

Splitting the integral into the sum of the corresponding integrals

from 1 to » and from O to 1 and then making the subsgtitution tr9l

t
in the latter integral we deduce for Re(s)>>0

-s dt

* - ( e 4t L 7 -
e¥(2) = § (s (-1t + {8, (@)= £

3 € T U1/t

For 2 fixed write

-t -1 *
£,(c,d) = e wte 1Y) Ty [2¥e+d]

50 that

8. (2) = 2 . £ _(c,d).
t c,deZ2 t

By the Poisson summation formula we have



A
6., (2) = & o £.,.(c,d),
1/t c'd6?2 1/t

where
_ € gty
f o 2ri(c™,4d7) (v,w)f

1/t(c,d) = R4 1/t(v,w) dvdw

A
£

is the Fourier transform and the dot denotes the usual scalar product

on Y.

Lemma 2. Cne has

-2

A
f1/t(c,d) =t -ft(d,-c).

Proof. For any symmetric positive definite 4x4-matrix F the identity
- . — t — - + -]
j; e~2Tix.y ~Ty Fy dy = IF| 1/2 -mx"F~lx
R
holds. Setting

(Y*t x*t> (t-1 1y ~y o, ) v* o,
F = A < ,
0, E 0 £y 7Ty x* E

2 2 2

where 02 and E2 denote the zero and unit matrix, respectively, and
observing -

iF) = ¢4

and (as 1s easily checked)

t .t,~1,C

(c®,aHr () = £y} Te(z*a-c],

our assertion follows.

Lemma 2 implies the transformation formula
6, ,.(2) = t%8, (2)
1/t h t

and hence the identity



* ¢ _1y.8 4t T .2 _1y+~8 dt
EX(2) = 15 (6, (2)=1)¢% £= + 1{ (%6, (2)-1) €75 &
- Ve s, ,.2~-s, dt 1 1
-{ (9, (2)=1) (£%+£°7%) £ = (2 + 52),

from which the meromorphic continuation and the functional equation

of E;(Z) are obvious. This proves our Main Lemma.

From tHe Main Lemma we shall now deduce the assertions of Theorem
1. Let F,GeS, (T',) with Fourier-Jacobi coefficients ¢, and y., res-

pectively. Then by the usual unfolding argument

<FE,,6> = [ F@)E ()& 1y F7? axay
T\,
= F(Z)G(Z)v 1y~ axay (Re (s)>2) .
I s g 3+s

o\,

Now note that the group C is the centralizer of the element

00
B, Gy
in Fz and hence we have an isomorphism

0, E,

P1D(IH(Z) ':"Cf

0

1

(3 'g),u,u),K)H( \- (ow = 7, G5,

u
K
1

o e o

a
A
c O
00
where H(2) = {((A,u),K)l(AruJezz,Kez} is the Heisenberg group (cf. [27],
§6; recall that H(2) is a group under the law ((k,ﬁ),n)((l',u‘),n’)

= ((A+A’,ﬁ+u‘,K+K'+Aﬁ’—A’u), and that I‘1 actg on |H(Z) on the right by

X,x)oM = (XM,k)).

From this we see that a fundamental domain for the action of ¢

) 2
on &y, is given by {(; :,)[(t,z)eF,v‘>§-,Osu'51}, where F is a funda-
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2

mental domain for the action of rf:r xZ° on £4x¢, Therefore we obtain

1
after inserting the Fourier-Jacobi expansions of F and G

—— 2T (MM VT
<FE /GD = .(l Z ¢, (t,2)Y, (T,2)e
2 >L Osu <1 M,N21 4 N

LY i - 2 —
eZﬂi(d N)u _Vk 3,.-.Y )k 3+s du’ d

(v 5 v] dudvdxdy.

Carrying out the inte@ration over u° and making the substitution
2

t=v’w- 5— we deduce

S[Z ¢N(T,2)We'4“NY2-/V JK=3

<FES:G>
F "N21

[ =]
- S e‘4nNttk-3+s dt )] dudvdxdy
0]

. .
_ D ey Y <oy bgd N (STE D (re(s)»3)
N21
where in the last line we have used the standard integral representatio
of the T'=function and have interchanged the order of summation and

integration.

Hence we obtain the identity

-k+2 ¥
<EQ 4 oF iG> = Dp,g{s)

from which the assertions of Theorem 1 are obvious.
§2. Relations to spinor zeta functions
In this section we shall give a relation between the Dirichlet

series constructed in the preceding paragraph and spinor zeta functilons

We shall assume throughout that k 1s even.
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For FESD(FZ) a non-zero Hecke eigenform with T(n)F = A, (n)F (neN)
we denote by

2k=-4

)p~2s

-s 2 2 2k-3-2s
2p(s) =TT (1=AL(p) P+ (AL (p) “=AL (p™) -p

+Ao (P)p
P

+p4k—6-4s)—1 (Re (s) >>0)

the associated spinor zeta function. According to Andrianov [1], ZF(s)
has a meromorphic continuation to all s with at most one simple pole

at s=k, and the modified function
2m(s) = (2m) T2ST(8) T (s-k+2) 2y (5)
is invariant ﬁnder st2k=-2-3.

Recall that for N¢lN we have a linear operator

. . LCusp cusp
NG Ik, ey
2 -
- c(D,,r)e(r 4DT+rz) — 2; ( - 1c(%7r§))
DxO,reZ D<O,re?Z dl(r N)
D=r2(4) D=r? (4N) D=r?(4N4)
r?-p 2tiz
- e (=gg-Ttra) (e(z)=e )

([2),§4) . We shall use the following result whose proof will be post-

poned until the end of thils section:

Propositicn. Let V*: quSp—--;-quSP be the adjoint of V.. with respect
— N k,N k.1 N

" to the Petersson products. Then:

i) The action of V*\on Fourier coefficlents s given by

2: c(D,r)e(x T+rz)+—+ E: ('%: ak=2 Zf C(—TDrd5))
diN

D<QO,re2 D<Q,re? s(24)
D=r? (4N) DEr2(4) s23D(44)

2
-e(r 4D1+rz).
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ii) One has

= S s:)tk’2 T},
"y S ( t

slt
E squarefree

where T(n) denotes the Hecke operator on J;u?p.

We will first prove a resul£ on eigenforms in the Maass space

* *
Sk(Fz)c Sk(Tz). Recall that Sk(Tz) consists of those forms
F(z) = Zi A(n,r,N) e(nTt+rz+Nt")
n,re?,Ne¢eN
r2<4Nn

whose Fouriler coefficients A(n,r,N) depend only on the discriminant
r2-4Nn and the content gcd(n,r,N), and that it is stable under all

Hecke operators. If F is a non-zero Hecke eigenform in S;(rz) then

there exists a unique normalized Hecke eigenform f in SZk—Z(F1) such
that
(1) Zp(s) = c(s—k+1)c(é—k+2)Lf(s),
where
Le(s) = 1T (1= (@ p %+02 73725 ™1 (e (9) 550, 7 () E=A ()£ (new)

P

is the Hecke L-function associated to f (Saito—-Kurokawa correspondence,

loc. cit.). More precisely , there exist isomorphisms

* ~

which are compatible with Hecke operators in the following sense:

T(p) on Jiu?P corresponds to T(p) on SZk—Z(F1) and to T(p)—pk-T—pk-z
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on S;(Pz). (Note that on S;(Fz) the relation T(p2) = 7 (p) 24 (pF 14pK™2)

1, k-2, 2k-3_ 2k-4

;Cpk’ +p =T(p))-2p holds.) Moreover, when suitably norma-

lized, the isomcrphism

CUsSp ~

¥
Ie,1. —> 5T

2)

1s given explicitly by

(2) b(t,2) > 2 YV 6(T,2) e(NT).
N21

By results of Evdokimov [3] and O0da [7] the Hecke eigenforms F
in S;(Pz) are characterized among all Hecke eigenforms in Sk(Fz)'by

the fact that their zeta functions ZF(S) have-a pole at s=k.

Theorem 2. Let Fesi(Pz) be a non-zero Hecke eigenform, and let ¢ &

Jiu?p‘be‘itS'first Fourier~Jacobi coefficient. Then
!

(3) Dp p(8) = <¢,> Zp(s).

By comparing residues at s=k on both sides of (3) and using (1)

we obtain

Corcllary. Denote bv feSZk_z(F1) the normalized Hecke eigenform

corresponding to F under the Saito-Kurokawa correspondence (1). Then

" the formula

k <F,Fy _ v
(4) LA ?$f$$ = Lf(x)
3. g

holdsg, where ck = =T

Formula (4) was first proved by one of the authors ([51,Thm.) by

a different method, However, without giving the exact rational value

k

of the constant Cp - Note that <¢,¢> = 22 -3<fg,g> ,» where g



+
2
=M/ ({2) ,Thm. 5.4 and Cor.

is the cusp form of weight k-

cusp

under the natural map Jk 1
!

Proof of Theorem 2. We have

F(Z) = 2 Vet (T, 2) e(NT°)
N21 °

and hence

¥ =S
Dp p(s) = N% <V, 0,V 6> N (Re (s) >>0) .

By the Proposition, ii)

"
LVgh Vo> = VVed, 6

<T 202 udh%)rdoe> .

tiN sit

14

on FO(4) which corresponds to ¢

4) .

Since T(n)¢ = Af(n)¢ for all n, where Af(n) is the eigenvalue

of £ under T(n) and f corresponds to F by (1),

| k-2 Lty 2 N
VbVt > = tlzN t (s'zt u(;) s)lf(g).<¢,¢>.

From the iIdentity

£, 2 - r(g=1)z(s) .
Z( > u () s)NS = Qsc()ngs

N>1 s}t
we find
_ g(s=k+1)T(s-k+2)
Dp,p (8] T (25-k+4) Lg(s),

and this by (1) 1is equivalent to the statement of Theorem 2.

We shall now consider Hecke eiéenforms not necessarily

in the

Maass space. For a fundamental discriminant D<O we let Pk D be the

Dth Poincaré series in JSUSP

X, 1 characterized by
r
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cusp).

(s) (¢:Pk D> = c¢(D,r) (Y ¢(%’z)=', Z: c¢(D ,r)e (= t+rz)e J
! , D<O£rez

D=r“(4)

We let P be the image of P

o
k,D in Sk(Fé) under the map (2)f i.e.

k,D

(t,2 E: V P (r,z)e(NT‘)-

P
kD N2

We denote integral binary quadratic forms by Q(x,v)=[a.B,Y] (x,¥)

=ax2+8xy+yy2. Recall that the group T, acts on such forms by

1

(2 2) (x,y) = Q(ax+by,cx+dy) .

e ocassionally write A(Q) instead of A(a,8,y) for the Fourier

coefficients of Siegel modular fdérms.

Theorem 3. Let F be a non=zero Hecke eigenform in Sk(Fz). Then

*
DF P

() = A(Q)Z}(s),
"k,D ‘

where Q denotes anv quadratic form of discriminant D representing 1

énd A(Q) is'fhe Q-th coefficient of F.

Remark. If A(Q)#0 for some D, then by combining Theorems 1 and 3 Qe
obtain a new proof for the meromorphic continuation and functional
equation of Z;(s), and also for the fact that for F in the orthogonal
complement of the Maass space the zeta function Z;(s) is holomorphic
for all s (cf. [3,7]). The smallest weight k for which s;(rz)"ﬂo} is

k=20, and in this case we have A(Q)#0 for D=-4, cf. [6]},p. 157.

Proof of Thecorem 3. Let ¢ﬁ be the Nth'Fourier—Jacobi coefficient of F,
and write F(2Z) = Z:A(n,r,N)e(nT+rz+NT'). The Nth coefficient of

Dp p (s) equals

""k,D

oyrVy Ppp> = <VN¢N,Pk p>
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- 2
= 2 a2 2 aE-22R 08,5
d|N s(24) y '

s 22D (4N)

by (5) and the Proposition, i).
Let {Qi}i=1,...,h be a set of representatives of binary quadratic
forms of discriminant D. Then the above sum can be written as
h

k=2 . N
Z. d;; @ ™*n(Q, 1 )A(RR,)

where n(Qi;d) is the number of s(mod 2d) such that szED(mod 4d) and
3.
[E——Qus,d] is equivalent to Q..
4d i
Observing that

T n@uM NS =g (s)z(2s) ),

-
M3 1 Q
where %q (s) is the zeta function of the ideal class of Q(VB') corres-
i

ponding in the usual way to the F1-class of Qi (cf£. [8],Propos.3), we
obtain

h
(6) £(2s~2k+4)D (s) = ¥ g, (s=k+2)R_ (s)
FrPe,p i=1 9% Q

with

(s) = L A(NQ,)NS.
RQi N2 1 i

Identity (6) so far is true for any form F in Sk(Pz). We shall now
rewrite the vight-hand gide of (6) in terms of ZF(s), if F is an eigen-

form. In this case we have the fundamental identity

(7) A Zg(s) = L{s=k+2,X) 121 x(Qp)Rg ()

valid for any ideal class character ¥, where L{(s,y) is the L-function



n
attached to X and AX:= > x(Qi)A(Qi) ([1],Thm. 2.4.1). Inverting (7)
1=1

we f£ind

1

(8) R, (5) = £2.(s) 2 X(Q)A L(s-k+2,x)” (i=1,...,h).
i =X X

Q

Inserting (8) into (6) and using the fact that L(s,x)=L(s,X) we obtain

after a short calculation

C(25_2k+4)DF,Pk D(s) = A(Q)ZF(S),

where Q represents the trivial class. This proves Theorem 3.

We still have to prove the Proposition.

Proof of Proposition, i). We identify F1 with its canonical image in
Ff. Let G be a P1—conjugate of a subgroup cf finite index of F?.

Then G contains a subgroup of finite index in Ff, say H. We define the
Petersson product of two cusp forms ¢ and ¥ of weight k and index N

on G by

‘ —_— e - 2
<$,9> = [F{=H]_1 \ j- ¢(Tf2)w(1;z)vk 3gm4mNy /v dudvdxdy.
G

Yxe
TBis normalization of the scalar product does not depend on the choice

of the subgroup H, and we have the formula

(9)  <oIn, > = <é,uinT 0>

1

for all neJ(Q)::SLz(Q)RQ2~S1 (S the circle group). Here we use the

notation "¢|n = ¢|k Nn" for the usual " "-action of elements 7e

Ik,N
J{®) on functions ¢(v,z) (cf. [2],§1). The above assertions can easily

be checked using standard techniques as in the case of ordinary modula:

forms.

cusp

By [2],§6 we have for beg, 7
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b I, N(ﬁ%* A)

Vo = K/ 2=1
AeF1\M2(Z)
where
- ¢ab el
M, (T = {(c d)EMz(Z)lad be=N}

and where ¢C(T,2) = ¢(T,CcZ)

elements in MZ(Z)N

a perfect

_ k/2-1 5

VN¢

Nk/2—1

>

N°| N,N/N" =0 Aero(N‘)\r1

where in the last line IO(N) is the subgroup {(2

have made use of the fact that the map F1-9M;(ZTN,, (

10 a
.(o N‘)(c
the function

VWl o

o qﬁ?)(TfZ)

¢¢ﬁ'k,N (

1g a Jacobi cusp form of weilght

The above discussion gives

2

N°| N,N/N"=0U

2

Nl N,N/N"=0

Nk/2-1

<VN¢'I¢'>

Nk/2-1

(ce@) .

N’ N,N/N°=0 ;Aer1\M;(z)

Denoting by M?(Z)N the primitive

and using the notation "§r=u" to mean that Er is

N

square we can rewrite the above formula as

V‘ k N(

7 *)
2

(N
0

0
il Ve A

g)EF |N“] b} and we

c d)b—#

g) induces a bijection FO(N’)\F1-2§P1\M;(Z)N.. Observe that

T
¢(ﬁ7r4ﬁ7 z)

0 2
k and index N on ' (N)x2".

cusp
k.1’

cusp

for ¢ed kN

b

Ael (N‘)\I‘1

yed the formula

W-

1
Coygleno  (IBWD

[t 0T ol (%2

(by (9)).
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VW' o

. 2
Since wWW"[k,N o Vﬁ’-l) has index 1 and is on I (N)xZ

Ty =

{(2 g)e I'%]NI c}), and since
- -1 Vi©

Coghen (N B> =Cogaly (8 &>,

we have
VN° T o ,=2 e
¢ ( Y > = N TELr aT () 2
<m]k’N o VN > 1o ‘]x mod N° 2% A&I‘O(N')\I'1
"

N O
RGN 8 lk,N' Co v =) A'k,N X>

hence-by a similar argument as above

| _ k/2~3 Z 1
Vb, 0> = K 4,N 2 byt A x>
N X mod N7 AeT \M, (B) w ‘k'N(m )k'N

As the function standing on the right-hand side in the Petersson pro-

cusp

duct In the above formula is, in fact, in Jk 1

(immediate verifi-

catdfon!), we hHave proved that

cusp cusp
k,N 9,1 ¢

b > NK/273 > S

2
X mod NZ° Ael \M,(2)

J

Yyt 'k,N A |k,N X

is the operator Vg adjoint to VN'

We must now compute the Fourier expansion of ng. Write

. 2 _
p(t,z) = E: c(D,r)e(EEﬁEr+rz).
D<O,re?
Dar? (4N)
Choosing as a set of representatives for F1\M2(T)N the matrices (g g)

EMZ(Z) with ad=N, b{(mod d) we obtain from the above formula

V*w(r,z) — Nk/2—3 zz E: '('d )_kw(aT+b,z+AT+u)e(A2T+2lz)
N RTIL PR = i O d d
b (d)
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-— N — 2— .‘ *
- /23 Y > (¢%r) ko 5 c(D,r)e((r4ND-g+Ag+A2)t

A, U (N) ad=N D<O,re?
b (d) D=r* (4N)
h -D b ru
(520 2 i )
The sum
2-
)2 e(r4ND'g'rg)
b(d) ,u (N)
2
has the value Nd or zero according as both the conditions d|r4ND and

dlr are satisfied or not. Hence replacing r by rd and D by Dd2 we obtair

v, =2 T % a2 c(a’p,ar)

A(N) dIN D<O,ré2
D=r? (4N/4)
e(lEiE%l——21+(r+2A)z)
- — 2-
«~E2 Y gtk b -c(dzD,dr)e(r4 Dryray.

alN A(N) D<0,re?
D= (r- 2A)2 4N/4d)

Now set Ass+§s’(mod N) with s running over Z/gZ'and s‘ over 2/42. Then

d(r-2))zd(r-2s) (mod 2N), D=(r-2s)® (mod 4.

Since the coefficients c(D,r) depend only on the pair (D,r) with

r{mod 2N) and DErz(mod 4N) we obtain

V§¢(1‘,z) = N2 2 g%k Z Z c(a®p,a(r-2s))
ajn g (N/4) D<O,reZ
D= (r-2s) ? (4N/4d)
'e(r:*pr+rz)

D'I'+rz) '

= .E:dk- Z: c(dzD,dsjk(rZ—

D<O rez 4ajN 2d)
2 (4) 22p (44)

where in the last line we have replaced d by‘% and r-2s by s.



Proof of Proposition,ii). The identity claimed can be checked using
the explicit formulas for the action of VN,Vg and T(n) on Fourier
coefficients. In fact, 1t is sufficient to check it on Fourier coeffi-
cients indexed by fundamental discriminants, since v¥v__ and T(n)

N'N
;U?P has a basls of Hecke eigenforms whose Fourier coeffi-
4

commute and J
cients are determined by those indexed by fundamental discriminants.
This simplifies the calculations considerably. We leave the details to

the reader.
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