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On normal and conormal maps for affine hypersurfaces

Katsumi Nomizu and Barbara Opozda

Let f : M™ — R"'! be a nondegenerate hypersurface with affine normal
¢ in the affine space R**!. We then have the normal map ¢ : M™ — R"*!
and the conormal immersion v : M® — R, 41, where R, is the the coaffine
space of R™! (for the terminology see [N-P]). Our main results are the
following.

THEOREM 1. An ovaloid f : M? — R® is an ellipsoid if and only if the
Laplacian of the normal map ¢ : M?> — R? is proportional to ¢.

THEOREM 2. For a hyperovaloid f : M™® — R™*! n > 2, the following
three conditions are equivalent:

(1) The conormal image v(M™") is a hyperellipsoid with center at the origin
of Rn+1 .

(2) The normal image ¢(M™"™) is a hyperellipsoid with center at the origin of
Rt

(3) f(M™) is a hyperellipsoid.

In Section 1 we study the normal and conormal maps for nondegenerate
hypersurfaces. By using the notion of conjugate connection we express the
relationships between the three connections that arise when the normal map
is an immersion. In Section 2 we compute the Laplacian of the normal map
and prove Theorem 1. We may prove Theorem 2 in the case n = 2 using
the same method, but the general case of Theorem 2 requires a different
approach and this is presented in Section 3.

We thank Professor U. Simon for calling our attention to the work of
Y-B. Shen [Sh] after the results in Section 1 and 2 were presented in his
seminar at Technische Universitdt Berlin.
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1. Conormal and normal maps; conjugate connections

For a nondegenerate immersion f : M™ — R™*! there is a transversal
vector field £, unique up to sign and called the affine normal, so that we have
the basic equations for any vector fields X, Y on M™":

(1) Dx(fe(Y)) = f(VxY) + H(X,Y )¢

(2) Dx¢ = —fu(5X)

where D is the canonical flat connection in R™*?!, ¥ the induced connection,
h the affine metric and S the shape operator. The induced volume element
0 given by

0(X1,...,Xn) =det(fu(X1), ..., fu(X2n), E)

satisfies V8 = 0 and 8 = wj, where wp denotes the volume element for the
metric h. The condition Vw, = 0 is called apolarity. We have the funda-
mental equations of Gauss, Codazzi (for h and S), and Ricci, repectively, as
follows:

(3) R(X,Y)Z = h(Y, Z)SX — h(X,Z)SY
(4) (Vxh)(Y, 2Z) = (Vyh)(X, Z)

(5) (VxS)(Y) = (VyS)(X)

(6) h(SX,Y) = h(X, SY).

(For these equations, see, for example, [N-P].)

The conormal vector, say, v, at £ € M™ is a covector uniquely deter-
mined by the conditions v,(f.(X)) = 0 for all X € T,(M") and v,({,;) = 1.
The conormal map v : M™* — R, 4; is defined by ¢ — v, € R,4+1. By
differentiating v(f.«(Y)) = 0 we obtain v.(X)(fu(Y)) = —h(X,Y), which
shows that v is an immersion. Regarding v : M® — R, as centro-affine
hypersurface with transversal field —v, we get

(7) DX(U*(Y)) = v*(vxy) +E(X,Y)(—’U),
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where V is the induced connection and_ h is the fundamental form. It is
known that the two connections V and V are related by the equation

(8) XKY,Z)=hVxY,Z)+ h(Y,VxZ),

where X,Y, Z are arbitrary vector fields on M™. We say that V and V
are conjugate to each other relative to the metric h. (See [N-P] as well as
[D-N-V].)

We now define the normal map ¢ associated to f : M™® — R"t1. For
each x € M™*! let ¢(z) be the end point of the vector £; when it is displaced
parallelly so as to have the starting point at origin,say, o of R"*1. In this way,
we get the map ¢ : M™ — R"t!. Since ¢.(X) = Dx¢ = Dx¢& = —f.(SX),
it follows that ¢ is an immersion if and only if S is nonsingular. The following
is noted specifically, since it does not seem to be in literature.

Proposition 1. Assume that S is nonsingular. Then
(1) the normal map ¢ is an immersion;
(ii) as centro-affine hypersurface with —¢ as transversal field we can write

(9) Dx(¢(Y)) = ¢u(VxY) + K'(X,Y)(—9),
where the induced connection V' is equal to

(10) VY = STHVxS)Y + VxY

and the fundamental form h' is given by

(11) R'(X,Y) = h(SX,Y).

(iii) the connections V' and V are conjugate relative to the metric h = k'

Proof. (ii) easily follows from ¢.(X) = —f.(SX). The verification of (iii)
is also straightforward computation. It can also be shown by a geometric
observation that both f : M™ — R"*! and ¢ : M® — R"™*! have the same
conormal, because for each z € M" the tangent hyperplane to f(M™") at
f(z) and the tangent hyperplane to ¢(M™) at ¢(z) are parallel, and £ at
f(z) and —¢(z) at ¢(z) are also parallel to each other. It follows that the
connection V' is the conjugate of the connection V relative to the metric h.
(This geometric observation that f and ¢ are in Peterson correspondence is
found in the Appendix of [Sch].)

Remark. Proposition 1 is valid more generally for any nondegenerate im-
mersion M" — R"™*! with an equiaffine transversal vector field ¢ (that is,
Dx¢ is tangential, without requiring that it be the affine normal).
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2. Laplacian of the normal map

Now we compute the Laplacian of the normal map ¢. In general, we re-
call that the Laplacian can be defined for any differentiable map f : M — M,
where M is a Riemannian or pseudo-Riemannian manifold with metric, say
g, and M is a manifold with a torsion-free connection D. First we define the
Hessian Hesss of f by setting Hessf(X,Y) = Dx(fu(Y)) — fu(VxY'), where
X,Y are any vector fields on M and V is the Levi-Civita connection for the
metric g. Thus Hessy is a bilinear symmetric mapping of T, (M) x T:(M) into
T¢(z)(M). Then we take A f = tracesHess; (that is, > oii=1 hiHess(e;, €;),
where {e1,...,€,} is an orthonormal basis in T, (M ). For the conormal im-
mersion, we have Av = —(trS)v. (See [N].) Thus Av is always proportional
to v, as is known in the Lelieuvre formula [B, p.133] for the case of a nonde-
generate surface.

We apply this definition to the normal map ¢ : M" — R"*+! (without
assuming that it is an immersion). We get

Dx(4.(Y)) = Dx(fo(=5Y)) = fu(—=Vx(SY)) + (X, SY)(—¢€)

= fu(=(VxS)Y) — S(VxY)) — (X, SY)¢.

Using the Levi-Civita connection V for the affine metric & we have

(13)  $u(VxY) = ful(=S(VxY)) = fu(~S(VxY) + SK(X,Y)).

where K is the difference tensor: K(X,Y)=VxY — VxY. Thus
Hessy(X,Y) = fu(—(VxS)Y) - SK(X,Y)) - h(X, SY ).

Using apolarity in the form trp K = 0 we get

(14) A¢ = — fu(trr(VS)) — tr(S)¢.

We have thus
Proposition 2. For a nondegenerate hypersurface f : M™ — R"*! with
the affine normal, the Laplacian of the normal map is given by (14). Conse-
quently,
(1) ¢ is harmonic if and only if trp(VS) = 0 and tr S = 0 (the affine mean
curvature H is 0).
(2) Aé¢ is proportional to ¢ if and only if trp(VS) = 0. In this case, the
proportion factor is nH .

Remark 1. We may establish the relationship
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h(tra(VS),Y) = YirS + 2tr(Ky S) for every Y € T, (M™"),
where KyZ = K(Y, Z).

Remark 2. The terminology is somewhat different in [Sh], where the tan-
gential component of our Laplacian is computed in the case where S is non-
singular.

We shall now prove Theorem 1. Suppose A¢ is proportional to ¢. By
Proposition 2 (2) we obtain try(V.S) = 0. Now around each point in M? we
take an isothermal coordinate system (z,y) for the affine metric h and write
X = 9/0z,Y = 8/8y so that h(X,X) = h(Y,Y) = E,h(X,Y) = 0. Then
we see that we have a globally defined quadratic form

U = {h(SX,X) — h(SY,Y) — 2ih(SX,Y)}dz%, where z = z + iy.

This form is holomorphic under the condition try(VS) = 0, as we shall prove
in the lemma below. Qur surface being homeomorphic to $?, ¥ must vanish
everywhere. Thus A(SX,X) = h(SY,Y) and A(SX,Y) = 0, which imply
that § = AI, that is, M? is an affine sphere. We note that S cannot be 0.
By a classical theorem of Blaschke, it follows that f(M?) is an ellipsoid.

Lemma. The form ¥ defined above is holomorphic if and only if trp(VS) is
identically zero.

Proof. Let u = h(SX,X) - h(SY,Y) and v = —2h(5X,Y). We compute to
show that the Cauchy-Riemann equations are valid. Since (2,y) is an isother-
mal coordinate system, we have VXX = —VyY Using KxX + KyY =0
(apolarity), we obtain

(15) VxX =VxX 4+ KxX =-VyY — KyY = —VyY.

Of course, we have also VxY = Vy X. Now we have
Ou/0z = X(h(SX,X) - h(SY,Y))
=(Vxh)(S5X,X) - (Vxh)SY,Y)
+h((VxS)X,X) +2h(SX,VxX)
—h((VxS)Y,Y) - 2hr(SY,VxY).
Similarly we get
~0v/0y = Y(h(X,S8Y)+ h(SX,Y))
= (Vyh)(X,S5Y)+ (Vyh)(SX,Y)
+h((Vy S)Y, X) + 2h(SX,VyY)
+h((VyS)X,Y)+ 2h(SY,Vy X).
Using the Codazzi equations for S and h, the apolarity and (15), we get
OufOz—0v/0y = (X, (VxSYX))+h(X,(VyS)Y)) = Eh(trp(VS), X).

By similar computation we have



Ou/dy + Ov/0z = h(Y,(VxS)X) + (VyS)(Y)) = ER(Y,trn(VS)).
From these equations it follows that the Cauchy-Riemann equations are sat-
isfied (and the form ¥ is holomorphic) if and only if tra(VS) = 0, thus
proving the lemma and completing the proof of Theorem 1.

Remark. For a nondegenerate surface M? with affine normal £ one can eas-
ily verify that tr,(V.S) = 0 holds if and only if (Vw R)(X,Y)Z is symmetric
in Z and W. This fact can be used in order to prove a theorem in [O-V] that
an ovaloid M? with VR = 0 is an ellipsoid.

3. Proof of Theorem 2.

" We start with the following proposition which summarizes the relation-
ships among the three connections induced by f,v, and ¢.

Proposition 3. If f : M™ — R"'! is a nondegenerate immersion with an
equiaffine transversal field £ and nonsingular S, then the following conditions
are equivalent:

(la) Vh = 0;
(1b) v(M™) is an open part of a hyperquadric with its center at the origin of
R,41.

(2a) V'R! = 0.

(2b) ¢(M™) is an open part of a hyperquadric with its center at the origin
of Rpyy. '

(3a) V' =V,
(3b) 2KxY = =S~ YV xS)(Y).

Proof. The equivalence of (1a) and (1b) as well as that of (2a) and (2b)
are well-known. The equivalence of (3a) and (3b) follows from (10) and
Vx —Vx =2Kx. In order to prove the equivalence of (1a), (2a) and (3a),
it is sufficient to note in general that if two connections V! and V? are
conjugate relative to a nondegenerate metric g, then they coincide if and
only if V!g = 0, or equivalently, if and only if V2g = 0. This completes the
proof of Proposition 3.

The essential part of Theorem 2 in the case where n = 2 and S is
non-singular follows from this propostion. From (1) or (2) we get 2KxY =
—8§~1(VxS8)Y, as in Proposition 3. By apolarity try K = 0, then, we get
trp(VS) = 0. Now we can use the same argument as for Theorem 1 to
conclude that f(M?) is an ellipsoid. We may prove Theorem 2 in the general
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case as follows. First, (3) obviously implies (1). If we assume (1), then we see
that the immersion v is non-degenerate. This means that S is non-singular.
Thus ¢ is an immersion and, by the equivalence of (1a), (1b), (2a) and (2b)
in Propostion 3 we see that (1) implies (2). It now remains to prove that (2)
implies (3). For an arbitrary dimension n, we can do this as follows.

We start with the following observation.

Proposition 4. Let f : M™ — R"*! be an isometric immersion of a pseudo-
riemannian manifold M™ with metric g into a pseudo-euclidean space R™t!.
Let £ be a field of (space-like or time-like) unit normal vectors. Suppose the
Gauss-Kronecker curvature K, (i.e. the determinant of the shape operator
A) is nowhere 0. Then, f is non-degenerate and the affine normal has the
same direction as £ if and only if K, is constant.

Proof. The metric second fundamental form k is equal to g(AX,Y) and
hence non-degenerate. The affine normal is obtained in the form A{ + f.(Z),
where A = |K,|'/("+?) and Z is a tangent vector field such that h(X,Z) =
—(dA)(X) for all tangent vectors X. Thus the affine normal has the same
direction as £ if and only if Z = 0, that is, |K,| is constant.

Now assume that ¢(M™) is a hyperellipsoid with center at the origin.
This means that there is a positive-definite D-parallel scalar product ¢ in
R™1 such that ¢(M™) is the unit sphere I relative to g: g(£,€) = 1. Thus we
get g(Dx€,€) = 0. Since Dx§ = —fu.(SX), it follows that g(f.(SX), &) =0.

Let U be an open subset of M™ on which det S is not 0. Then f :
U — R""1is an immersion for which ¢ is a unit vector field perpendicular to
f(U). By Proposition 4 we can conclude that the Gauss-Kronecker curvature,
namely, det S in this case is constant on U.

Now go back to ¢ : M™ — R"1. Since ¢(M™) is a hyperellipsoid, we
cannot have det S identically equal to 0 on M™. Let det S = ¢ # 0 at some
point and consider the set W of all points where det S = ¢. Then W is a
closed subset of M™. On the other hand, if £ € W, then there exists an
open neighborhood U of z on which det S is not zero and hence constant
according to the assertion above. Thus W is an open subset. We conclude
that W = M™", that is, det S is constant on M™. It is known ([Si]; also [Si])
that for a hyperovaloid this condition implies that it is a hyperellipsoid. We
have thus completed the proof of Theorem 2 in the general case.

Remark. By using similar arguments we can prove, for a nondegener-
ate hypersurface f : M™ — R"t! with affine normal, the equivalence of
the statements (1b), (2b) given in Proposition 3 and the statement that
f(M™) — R™! is an open part of a pseudo-riemannian hypersurface with
constant Gauss-Kronecker curvature isometrically immersed in a pseudo-
euclidean space R*t1,
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