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Abstract. We show that if a compact Kähler manifold X admits a cohomologically

hyperbolic surjective endomorphism then its Kodaira dimension is non-positive. This

gives an affirmative answer to a conjecture of Guedj in the holomorphic case.

The main part of the paper is to determine the geometric structure and the funda-

mental groups (up to finite index) for those X of dimension 3.

1. Introduction

We work over the field C of complex numbers.

Let X be a compact Kähler manifold of dimension n ≥ 2. A surjective endomorphism

f : X → X is cohomologically hyperbolic in the sense of [Gu06], if there is an ` ∈
{1, 2, . . . , n} such that the `-th dynamical degree

d`(f) > di(f) for all (` 6=) i ∈ {0, 1, . . . , n}

(or equivalently, for both i = ` ± 1, by the Khovanskii - Tessier inequality). Here we

refer to, for instance, [Gu05, (1.1)] for the definition of the dynamical degrees; we set

d0(f) = 1 and dn+1(f) = 0.

In his papers [Gu05] - [Gu06], Guedj assumed that a dominant rational self map f :

X ···→X has large topological degree (i.e., it is cohomologically hyperbolic with ` = dim X

in the definition above), and constructed a unique f∗-invariant measure µf . Further, the

measure is proved to be of maximal entropy, ergodic, equidistributive for f -periodic

and repulsive points, and with strictly positive Lyapunov exponents. In [Gu06], Guedj

classified cohomologically hyperbolic rational self maps of surfaces S and deduced that

the Kodaira dimension κ(S) ≤ 0. Then he conjectured that the same should hold in

higher dimension.

The result below gives an affirmative answer to the above-mentioned conjecture of

Guedj [Gu06] page 7 for holomorphic endomorphisms (see [Zh2, Theorem 1.3] for the

case of automorphisms on threefolds). The proof is given very simply by making use of

results in [NZ]. It is classification-free and for arbitrary dimension.
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Theorem 1.1. Let X be a compact complex Kähler manifold and f : X → X a surjective

and cohomologically hyperbolic endomorphism. Then the Kodaira dimension κ(X) ≤ 0.

The main part of this paper is to determine the geometric structure for projective

threefolds in Theorem 1.1. The result below is part of the more detailed one in Theorem

2.1.

Theorem 1.2. Let V be a smooth projective threefold and let f : V → V be a surjective

and cohomologically hyperbolic étale endomorphism. Then one of the following cases

occurs; see §3 for some realizations.

(1) V is f -equivariantly birational to a Q-torus in the sense of [Ny].

(2) V is birational to a weak Calabi-Yau variety, and f ∈ Aut(V ).

(3) V is rationally connected in the sense of [Cp] and [KoMM], and f ∈ Aut(V ).

(4) The albanese map V → Alb(V ) is a smooth and surjective morphism onto the

elliptic curve Alb(V ) with every fibre a smooth projective rational surface of Picard

number ≥ 11. Further, the dynamical degrees satisfy d2(f) > d1(f) ≥ deg(f) ≥ 2.

(5) V is f -equivariantly birational to the quotient space of a product (Elliptic curve)×
(K3) by a finite and free action. Further, the dynamical degrees satisfy d2(f) >

d1(f) ≥ deg(f) ≥ 2.

We can also determine the topological fundamental groups (up to finite index) for those

threefolds admitting a cohomologically hyperbolic étale endomorphism.

Theorem 1.3. Let X be a smooth projective threefold admitting a surjective and cohomo-

logically hyperbolic étale endomorphism f . Then either π1(X) is finite, or π1(X) contains

a finite-index subgroup isomorphic to either one of:

Z⊕2, Z⊕6.

Note. Our approach is algebro-geometric in nature; see Fujimoto [Fm], Fujimoto-Nakayama

[FN], Oguiso [Og03] - [Og06] for similar approach.

Conventions 1.4. We shall use the conventions of Hartshorne’s book, [KMM] and [KM].

(1) A normal projective variety X is minimal if it is Q-factorial, has at worst terminal

singularities and the canonical divisor KX is nef.

(2) A minimal projective variety X is a weak Calabi-Yau variety if KX ∼Q 0 and

qmax(X) = 0. Here

qmax(Z) := max{q(Y ) | Y → Z finite étale}.

A minimal projective variety X of dimension n is a Calabi-Yau variety if

KX ∼ 0, π1(X) = (1), H i(X,OX) = 0 (1 ≤ i ≤ n − 1).
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(3) A morphism σ : X → Y is f -equivariant if there are endomorphisms f = f |X : X →
X and f = f |Y : Y → Y such that σ ◦ (f |X) = (f |Y ) ◦ σ.

(4) In this paper, every endomorphism on a compact Kähler manifold (or a projective

variety) is assumed to be surjective, so it is also finite, and even étale when the

Kodaira dimension κ(X) ≥ 0; see [Fm, Lemma 2.3].

Acknowledgement. The author would like to thank Noboru Nakayama for very care-

fully reading, critical comments and valuable suggestions to the paper. The author is

supported by an Academic Research Fund of NUS, and would like to thank the Max-

Planck-Institute for Mathematics at Bonn for the very warm hospitality.

2. Proofs of Theorems 1.1 - 1.3

In this section, we shall prove Theorems 1.1 and 1.3, and also Theorem 2.1 below which

implies Theorem 1.2 and determines the geometric structure for projective threefolds in

Theorem 1.1.

Theorem 2.1. Let V be a smooth projective threefold and let f : V → V be a surjective

and cohomologically hyperbolic étale endomorphism. Then one of the following cases

occurs; see §3 for some realizations.

(1) κ(V ) = 0 and qmax(V ) = dim V = 3. Further, V is f -equivariantly birational to a

Q-torus in the sense of [Ny]. To be precise, there are an f -equivariant birational

morphism V → X and an f -equivariant étale Galois cover Y → X from an

abelian variety Y .

(2) κ(V ) = 0 = qmax(V ), π1(V ) is finite, and f ∈ Aut(V ). Further, V is birational

to a weak Calabi-Yau variety.

(3) κ(V ) = −∞, qmax(V ) = 0, π1(V ) = (1) and f ∈ Aut(V ). Further, V is rationally

connected in the sense of [Cp] and [KoMM].

(4) κ(V ) = −∞, qmax(V ) = q(V ) = 1 and the dynamical degrees satisfy d2(f) >

d1(f) ≥ deg(f) ≥ 2. Further, the albanese map V → Alb(V ) is smooth and

surjective with every fibre F a smooth projective rational surface of Picard number

≥ 11.

(5) κ(V ) = 0, qmax(V ) = 1 and the dynamical degrees satisfy d2(f) > d1(f) ≥
deg(f) ≥ 2. Further, V is f -equivariantly birational to the quotient space of

a product (Elliptic curve)× (K3) by a finite and free action. To be precise, V has

a unique minimal model X and f |V induces a finite étale endomorphism f |X on

X. There is an f -equivariant étale Galois cover Y = E×S → X with E an elliptic

curve and S a (smooth and minimal) K3 surface, such that f |Y = (f |E)× (f |S)
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for some isogeny f |E with deg(f |E) = deg(f |V ) and f |S ∈ Aut(S) of positive

entropy.

Remark.

(1) See [Fm] and [FN] for the case where κ(V ) ≥ 0 and deg(f) ≥ 2.

(2) The étaleness of f in Theorems 1.3 and 2.1 above is automatic if either deg(f) = 1,

or if deg(f) ≥ 2 and κ(X) ≥ 0; see [Fm, Lemma 2.3].

(3) In Theorem 2.1 (1) and (5), we have di(f |V ) = di(f |Y ) for all i. In general, we

have dj(g|V ) = dj(g|W ) for all j if V → W is a g-equivariant generically finite

morphism; see [NZ, Appendix, Lemma A.8].

2.2. Proof of Theorem 1.1.

We will make use of [NZ, Theorem A, and Appendix]. Suppose the contrary that the

Kodaira dimension κ(X) ≥ 1. Then f : X → X is a finite étale morphism (see [Fm,

Lemma 2.3]). We choose m � 0 such that

Φm = Φ|mKX | : X ···→Wm ⊆ P(H0(X, mKX))

gives rise to the Iitaka fibring. By [NZ, Theorem A], f induces an automorphism

fm : Wm → Wm of finite order, such that Φm ◦ f = fm ◦ Φm. Replacing X by an f -

equivariant resolution of base locus of |mKX | due to Hironaka (see also [NZ, §1.4]), we

may assume that Φm is a well defined morphism. Now the theorem follows from the

result below, noting that dim Wm = κ(X) ≥ 1.

Lemma 2.3. Let π : X → Y be a proper holomorphic map from a compact Kähler man-

ifold X to a compact complex analytic variety Y with general fibres connected, and let

f : X → X and fY : Y → Y be surjective endomorphisms such that π ◦ f = fY ◦ π.

Suppose that f is étale, fY is an automorphism of finite order and f is cohomologically

hyperbolic. Then dim Y = 0 (and Y is a single point).

Proof. Replacing f by its power, we may assume that fY = id. Let F be a smooth general

fibre of π. We claim that f |F is also cohomologically hyperbolic. Indeed, by the funda-

mental work of Gromov and Yomdin, the topological entropy h(g) of an endomorphism

g of a compact Kähler manifold is the maximum of logarithms log di(g) of dynamical

degrees. So suppose that for some 1 ≤ r ≤ k := dim F , we have:

h(f |F ) = log dr(f |F ) = max
1≤i≤k

di(f |F ).

By [NZ, Appendix, Proposition A.9 and Theorem D], we have:

h(f |F ) = log dr(f |F ) ≤ log dr(f |X) ≤ h(f |X) = h(f |F ),
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so dr(f |F ) = dr(f |X). Now for any i 6= r, by [ibid.], we have:

di(f |F ) ≤ di(f |X) < dr(f |X) = dr(f |F ).

Here the strict inequality holds because f |X is cohomologically hyperbolic. This proves

the claim.

On the other hand, note that deg(f |X) = deg(f |F ). Hence, by [ibid.], we have the

following, with n = dim X and k = dim F :

h(f |F ) = log dr(f |F ) ≤ log dr+n−k(f |X) ≤ log dr(f |X) = h(f |F ).

Thus all inequalities above become equalities; since f |X is cohomologically hyperbolic,

the maximality of dr implies that r + n− k = r. So n = k and Y is a point. This proves

the lemma and also Theorem 1.1. �

We need the result below in the proof of Theorem 2.1.

Lemma 2.4. Let X be a compact Kähler manifold of dimension n and let f : X → X be a

surjective endomorphism. Then the dynamical degrees satisfy dn−i(f) = di(f
−1)(deg(f)).

Here dj(f
−1) denotes the spectral radius of the linear transformation

(f ∗)−1 : Hj,j(X, C) → Hj,j(X, C).

Proof. One can use the fact that f∗f
∗ = (deg(f)) id on the cohomology ring of X to give

a simple proof. Below is another elementary proof. Set s = hi,i(X, C) = hn−i,n−i(X, C).

Let {e1, . . . , es} and {ε1, . . . , εs} be dual bases of H i,i(X, C) and Hn−i,n−i(X, C) with

respect to the perfect pairing below such that ei.εj = δij (Kronecker’s symbol):

H i,i(X, C) × Hn−i,n−i(X, C) → C.

Let A (resp. B) be the matrix representation of (f ∗)−1|H i,i(X, C) (resp. f ∗|Hn−i,n−i(X, C)).

Then a calulation in linear algebra implies that B = (deg(f))AT . The lemma follows. �

2.5. Proof of Theorem 2.1.

By Theorem 1.1, κ(V ) ≤ 0. Our Theorem 2.1 follows from the three lemmas below.

Lemma 2.6. Theorem 2.1 is true when κ(V ) = 0.

Proof. We will make use of [NZ, Theorem B]. Let f : V → V be as in the theorem. Let

X be a (Q-factorial) minimal model of V with at worst terminal singularities, whence

KX ∼Q 0 (see [Mi], [Ka]). Then f |V induces a dominant rational map f : X ···→X,

which is nearly étale in the sense of [NZ, §3]. By [NZ, Theorem B and its Remark],

either an étale cover ˜X of X is a weak Calabi-Yau variety, or there are an étale cover

τ : F ×A → X, an automorphism ϕF : F → F and a finite étale endomorphism ϕA : A →
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A with deg(ϕA) = deg(f) such that f ◦ τ = τ ◦ (ϕF × ϕA). Here F is either a point (and

hence A is a 3-torus), or K3 or Enriques (and A is an elliptic curve), by the classification

of lower dimensional weak Calabi-Yau varieties.

By further étale cover (to the Galois closure), we may assume that τ is Galois. Re-

placing τ , we may also reduce the Enriques case of F to the K3 case.

The case above involving ˜X fits Theorem 2.1 (2). Indeed, π1(V ) = π1(X) (see [Ko,

Theorem 7.8] and [Ty, Theorem 1.1]), so π1(V ) is finite by [NS, Corollary 1.4].

Consider the case dim A = 3. Then X is a Q-torus in the sense of [Ny]. Both the

birational map V ···→X and the dominant rational map f : X ···→X are well defined

morphisms by the absence of rational curves on tori and Hironaka’s resolution of inde-

terminancy of a rational map; see also [Un, Lemma 9.11]. So Theorem 2.1(1) occurs.

Consider the case dim A = 1. We shall show that Theorem 2.1 (5) takes place. Note

that F × A is the unique minimal model of its biraitonal class, up to isomorphism.

This is because other minimal models are obtained from F × A by a finite sequence of

flops with centre a union of rational curves which must be contained in some fibres of

F × A → Alb(F × A) = A, i.e., contained in the K3 surfaces F . However, we assert

that F × A admits no flop. Indeed, such a flop induces a non-isomorphic birational

automorphism of F , which is an isomorphism away from a few rational curves, and hence

is indeed an isomorphism by the uniqueness of a surface minimal model, absurd! So the

assertion is true. This assertion also appeared in [Fm, page 66].

Next we claim that X is the unique minimal model in its birational class, up to iso-

morphism. This claim appeared in [Fm, page 61]. We prove it for the convenience of the

readers. It is enough to show the assertion of the absence of flops from X. Suppose the

contrary that σ : X ···→X ′ is a flop to another minimal model. Then X ′ is also smooth.

Since the fundamental group of a smooth variety will not be changed after a smooth

blowup or blowdown and after removing some codimension 2 subsets, the existence of

an étale Galois cover τ : F × A → X induces an étale Galois cover τ ′ : ˜X ′ → X ′ and a

birational map σ̃ : F × A ···→ ˜X ′ lifting the flop σ : X ···→X ′ and being isomorphic in

codimension one. So σ̃ is either an isomorphism or a composition of flops. The absence

of such flop as shown in the paragraph above, implies that σ̃ is indeed an isomorphism.

The consideration of the fundamental group again implies that Gal((F × A)/X) and

Gal(˜X ′/X ′) are conjugate to each other whose quotients are hence isomorphic via the

initial map σ. But σ, being a flop, is not isomorphic. We reach a contradiction. Hence

both the assertion and the claim are true.

Applying [NZ, Lemma 3.2] to f : X ···→X, we see that f is the composition of a

birational map γ : X ···→X ′′ and a finite étale morphism X ′′ → X. Thus X ′′ is also

a minimal model and hence γ is either an isomorphism or a composition of flops. The
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assertion in the paragraph above implies that γ is an isomorphism. So our initial f is

indeed a well defined finite étale morphism. Thus Theorem 2.1 (5) takes place, where we

set S := F , E := A and Y := F ×A. Indeed, since di(f |V ) = di(f |Y ) by [NZ, Appendix,

Lemma A.8] and applying the Künneth formula, we have:

di(f |V ) = max
0≤s≤i

{ds(f |S) di−s(f |E)}.

Since f |V is cohomologically hyperbolic, we must have d1(f |S) ≥ 2 and d1(f |E) ≥ 2,

whence the inequalities about the dynamical degrees follow. Also, since π1(Y ) = π1(E),

we see that (qmax(V ) =) qmax(Y ) = 1. This completes the proof of the lemma. �

Next we consider the case κ(V ) = −∞. The completed good minimal model program

for threefolds (see [KMM] or [KM]), implies that V is uniruled. Let MRCV : V ···→Y ′

be a maximal rationally connected fibration in the sense of [Cp] and [KoMM]. Then Y ′

is not uniruled by [GHS, (1.4)]. So κ(Y ′) ≥ 0. By [NZ, Theorem C and its Remark],

there are a birational morphism X → V from a smooth projective variety, and a smooth

projective variety Y birational to Y ′, such that f |V induces a finite étale endomorphism

f : X → X, the induced maps π := MRCX : X → Y and fY : Y → Y are well defined

morphisms, and π ◦ f = fY ◦ π. Further, deg(f) = deg(fY ).

Since a torus contains no rational curves, we have Alb(V ) = Alb(X) = Alb(Y ). Fur-

ther, the composition V ···→X → Y → Alb(Y ) is the well defined albanese morphism

albV . Note also that κ(Y ) = κ(Y ′) ≥ 0 and hence fY is finite étale.

If dim Y = 0, then Theorem 2.1 (3) takes place because a rationally connected smooth

projective variety is simply-connected (see [Cp]), whence deg(f) = 1. We now consider

the cases dim Y = 1, 2 separately.

Lemma 2.7. Assume that κ(V ) = −∞ and MRCV (V ) is a curve. Then Theorem 2.1(4)

takes place. Further, for the F there, the anti-canonical divisor −KF is not big and

K2
F < 0.

We now prove the lemma. By Lemma 2.3, fY is not periodic. So Y is an elliptic

curve, noting that κ(Y ) ≥ 0. Further, either fY is an isogeny of deg(fY ) ≥ 2, or fY is

a translation of infinite order and hence deg(f) = deg(fY ) = 1 (so both f and fY are

automorphisms).

We claim that π : X → Y is a smooth morphism. Indeed, suppose the contrary that

we have a non-empty set D(X/Y ), the discriminant locus of π, i.e., the subset of Y over

which π : X → Y is not smooth. Since f : X → X is étale and is the lifting of fY , we have

f−1
Y (D(X/Y )) = D(X/Y ). Replacing f by its power, we may assume that fY fixes every

point in D(X/Y ). This contradicts the description of fY above. Therefore, π : X → Y

is smooth and every fibre of it is a smooth rational projective surface.
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Note that π = albX . By the same reason, albV : V → Alb(V ) = Y is smooth. For the

clean-ness of the notation, we replace (V, f) by (X, f).

When f is an automorphism, we have d1(f) = d2(f) by [Zh2, Lemma 2.8]. This

contradicts the concavity as mentioned in Claim 2.11 below. Therefore, fY is an isogeny

with deg(f) = deg(fY ) ≥ 2.

Let 0 6= vf± be nef R-divisors such that

(f±)∗vf± = d1(f
±)vf±,

guaranteed by a result of Birkhoff [Bi] generalizing the Perron-Frobenius theorem to (the

nef) cone. Let F be a fibre of π = albX : X → Y . So F is a smooth projective rational

surface.

Claim 2.8. The following are true.

(1) f ∗F is a disjoint union of deg(f) fibres;

f ∗F ≡ deg(f)F ; di(f) ≥ deg(f) for both i = 1, 2.

(2) 0 = vf · F · KX = (vf )|F · KF .

(3) d2(f) = d1(f
−1) deg(f) ≥ deg(f) and d1(f

−1) ≥ 1.

(4) If vf · F = 0 then vf ≡ eF for some e > 0 and d2(f) > d1(f) = deg(f).

(5) If vf · F 6= 0 then d2(f) ≥ d1(f) deg(f) > d1(f) ≥ deg(f).

Proof. (1) The first two assertions are true because f is étale and F , being rational, is

simply connected. In particular, d1(f) ≥ deg(f). Applying f ∗ to the non-zero cycle

KX · F = KF , we get d2(f) ≥ deg(f).

(2) If c := vf · F · KX 6= 0, then deg(f)c = f ∗c = d1(f) deg(f)c and d1(f) = 1. This is

absurd because f is of positive entropy.

(3) follows from (2) and Lemma 2.4.

(4) The first part follows from the Lefschetz hyperplane section theorem to reduce to the

Hodge index theorem for surfaces (see the proof of [Zh2, Lemma 2.6]), while the second

follows from the first by applying f ∗, the assertion (1), and f being cohomologically

hyperbolic.

(5) is similar to (4) by applying f ∗. �

It remains to show the assertion that −KF is not big, and rank Pic(F ) ≥ 11 or

equivalently K2
F ≤ −1. Consider the case where −KF is big or K2

F ≥ 0, and we shall

derive a contradiction. If K2
F ≥ 1, then −KF is big by the Riemann-Roch theorem

applied to −nKF . Thus we assume that either K2
F = 0 or −KF is big. This assumption

and Claim 2.8 (2) imply (vf)|F ≡ αKF = αKX |F for some α 6= 0 (by Claim 2.9 below).

Applying f ∗, we get d1(f) = 1, absurd. Therefore, the assertion is true. The lemma



ENDOMORPHISMS OF COMPLEX MANIFOLDS 9

then follows. Indeed, qmax(V ) = qmax(Y ) (= 1) because π1(V ) = π1(Y ) as in the proof of

Theorem 2.1 at the end of this section.

Claim 2.9. Suppose K2
F = 0 or −KF is big. Then the cohomology class of vf is not a

multiple of that of F , so (vf) · F is not homologous to zero.

Proof. Suppose the contrary that the claim is false. Applying f ∗, we get d1(f) = deg(f).

Since f is cohomologically hyperbolic and by Claim 2.8 (1), we have d2(f) > deg(f),

and hence d1(f
−1) > 1 by Claim 2.8 (3). The latter and the proof of Claim 2.8 (2)

imply that 0 = vf−1 · F · KX = (vf−1 |F ) · KF . Then by the assumption on −KF and

the Hodge index theorem (see [BHPV, IV, Cor. 7.2]), we have vf−1 |F ≡ aKF = aKX |F
for some scalar a. If a 6= 0, applying f ∗ to the equality, we get d1(f

−1) = 1, absurd. If

a = 0, then vf−1 |F ≡ 0 and hence vf−1 ≡ bF for some b > 0 by the Lefschetz hyperplane

section theorem to reduce to the Hodge index theorem for surfaces. Applying f ∗, we get

1 > 1/(d1(f
−1)) = deg(f) > 1, absurd. This proves the claim and also the lemma. �

Lemma 2.10. In the situation of Theorem 2.1 it is impossible that κ(V ) = −∞ and

MRCV (V ) is a surface.

We now prove the lemma. Consider the case where (κ(X) =) κ(V ) = −∞ and

MRCV (V ) (or eqivalently Y = π(X)) is a surface. If κ(Y ) ≥ 1, then after equivari-

ant modification, we may assume that for some n > 0, the map Φ|nKY | : Y → Z is a well

defined morphism giving rise to the Iitaka fibring. By [NZ, Theorem A], fY descends

to an automorphism fZ : Z → Z of finite order. Note that dim Z = κ(Y ) ≥ 1. This

contradicts Lemma 2.3.

Therefore, κ(Y ) = 0. We may assume that Y is minimal. This can be achieved if

deg(fY ) (= deg(f)) = 1 by equivariant blowdown; on the other hand, if deg(fY ) ≥ 2,

then Y has no negative P1 and hence Y is already minimal, for otherwise, iterating f−1

will produce infinitely many disjoint negative P1 (noting that P1 is simply connected and

fY is étale), contradicting the finiteness of the Picard number of Y ; see [Fm, page 43].

Thus, Y is abelian, hyperelliptic, K3 or Enriques.

Claim 2.11. Y is neither K3 nor Enriques.

Proof. The claim is clear when the étale map fY has deg(fY ) ≥ 2 (so |πalg
1 (Y )| = ∞ by

iterating fY ), since |π1(Y )| ≤ 2 when Y is K3 or Enriques. Suppose fY (and hence f)

are automorphisms. By Lemma 2.3, fY is not periodic. If fY is of positive entropy, then

d1(f) = d2(f) as proved in [Zh2, Claim 2.11(1)]; this is absurd since f is cohomologically

hyperbolic and by the concavity from the Khovanskii-Tessier inequality as in [Gu05,

Proposition 1.2]. Thus fY is parabolic. Then there is an elliptic fibration Y → P1 such
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that fY descends to a periodic automorphism on P1; see [Zh2, Lemma 2.19]. However,

this contradicts Lemma 2.3. �

If Y is a hyperelliptic surface, then Y is a quotient of a torus Z by a group of order m =

2, 3, 4, or 6 (taking m minimal). Our fY : Y = Y1 → Y = Y2 lifts to an endomorphism fZ

of Z. Indeed, Z ×Y2
Y1 is isomorphic to Z (as the minimal torus cover of Y1). There is a

further lifting f̃ = f × fZ on ˜X := X ×Y Z so that the projection ˜X → Z is just MRC
X̃

.

Note that f̃ is also cohomologically hyperbolic by [NZ, Appendix, Lemma A.8]. We will

reach a contradiction by the argument below when Y is an abelian surface.

We now consider the case where Y is an abelian surface. By Lemma 2.3, fY and its

equivariant descents are not periodic. If f is an automorphism and fY is of positive en-

tropy, then by [Zh2, Claim 2.11 (1)] we have d1(f) = d2(f), which is absurd as mentioned

in the proof of Claim 2.11. If f is an automorphism and fY is rigidly parabolic in the

sense of [Zh2, 2.1], then we will get a contradiction as shown in [Zh2, Claim 3.13].

Thus, we may assume that (deg(fY ) =) deg(f) ≥ 2.

Claim 2.12. π : X → Y is a smooth morphism, so every fibre is P1.

Proof. Suppose the contrary that the discriminant locus D := D(X/Y ) is not empty.

Since f is étale, we have f−1
Y (D) = D, whence D does not contain isolated points and

D is a disjoint union of curves Di. We may assume that f−1
Y (Di) = Di for all i after

replacing f by its power. Further, deg(fY |Di) = deg(fY ) ≥ 2. Thus Di is not of general

type and hence κ(Di) = 0. By [Un, Theorem 10.3], every Di is an elliptic curve and a

subtorus for i = 1 (after changing the origin). fY induces an endomorphism fZ of the

elliptic curve Z := Y/D1 such that f−1
Z {di} = {di} for each di: the image of Di. Thus

ord(fZ) ≤ 6. This contradicts Lemma 2.3. So the claim is proved. �

Let 0 6= vf± be nef R-divisors such that (f ∗)±vf± = d1(f
±)vf± . Let F be a fibre of

π : X → Y . So F ∼= P1 by the claim above.

Claim 2.13. The following are true.

(1) f ∗F is a disjoint union of deg(f) fibres; f ∗F ≡ deg(f)F .

(2) d1(f
−1) deg(f) = d2(f) ≥ deg(f) and d1(f

−1) ≥ 1.

(3) F · vf = 0; vf ≡ π∗H+ for some nef divisor 0 6= H+ on Y .

(4) F · vf−1 = 0; vf−1 ≡ π∗H− for some nef divisor 0 6= H− on Y .

(5) H+ · H− 6= 0.

Proof. (1) and (2) are as in a claim of the previous lemma.

(3) If α := F · vf 6= 0, then we get a contradiction d1(f) = 1, by the calculation:

deg(f)α = f ∗α = (deg f)d1(f)α.
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Hence F · vf = 0. This and −KX being π-ample from Claim 2.12, imply that vf ≡ π∗H+

(see [KMM, Lemma 3-2-5] or [KM, page 46]). Here H+ is nef because so is vf .

(4) If β := F · vf−1 6= 0, then we get d1(f
−1) = 1 by the calculation:

deg(f)β = f ∗β = β deg(f)/d1(f
−1).

Thus d2(f) = deg(f) by (2). This contradicts [Gu05, (1.2)] as argued in Claim 2.11. The

rest of (4) is as in (3).

(5) If (5) is false, then H+ ≡ γH− for some γ > 0 by the Hodge index theorem.

Applying f ∗π∗, we get 1 < d1(f) = 1/d1(f
−1) ≤ 1 by (2), absurd! �

By the claim above, we can write vf · vf−1 ≡ δF for some δ > 0. Applying f ∗, we have

d1(f)/d1(f
−1) = deg(f) = d2(f)/d1(f

−1),

by Claim 2.13. Hence d1(f) = d2(f) ≥ deg(f), by Claim 2.13. This is impossible because

f is cohomologically hyperbolic. This proves the lemma. The proof of Theorem 2.1 is

also completed.

2.14. Proof of Theorem 1.3.

In view of Theorem 2.1, we have only to consider the case in Theorem 2.1(4). Since a

general fibre (indeed every fibre) F of albX : X → Alb(X) is a smooth projective rational

surface, we have π1(X) = π1(Alb(X)) = Z⊕2 (see [Cp]). This proves the theorem.

3. Examples

In this section we give examples to realize some cases in Theorem 2.1.

Example 3.1. Examples for Theorem 2.1 (4)-(5).

Let Z be a compact complex Kähler surface with an automorphism fZ of positive

entropy. Let E be an elliptic curve and fE : E → E an isogeny of deg(fE) ≥ 2. Set

X := Z × E and f := fZ × fE. Then d2(f) > d1(f) ≥ d3(f), because

di(f) = max
0≤s≤i

{ds(fZ) di−s(fE)}

by the Künneth formula for cohomologies. If we take Z to be K3 or Enriques (resp.

rational surface) then (X, f) fits Theorem 2.1 (5) (resp. (4)).

For examples of such (Z, fZ) of positive entropy, see [Ct], [Mc05].

Example 3.2. Cohomologically hyperbolic endomorphisms on rational varieties.

Let Si (1 ≤ i ≤ r) be a smooth projective rational surface and fi an automorphism of

Si of positive entropy; see [Mc05] for such examples. Set

X := S1 × · · · × Sr, f := f1 × · · · × fr ∈ Aut(X).
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Then f is cohomologically hyperbolic with dr(f) > di(f) for all i 6= r.

Let fp : P1 → P1 be an endomorphism of deg(fp) ≥ 2. Set

Y := P1 × S1 × · · · × Sr, fY := fp × f1 × · · · × fr.

Then fY is a cohomologically hyperbolic endomorphism with dr+1(fY ) > di(fY ) for all

i 6= r + 1. However, fY is not étale.

Example 3.3. Cohomologically hyperbolic rational self maps on smooth Calabi-Yau.

Denote by ζs = exp(2π
√
−1/s), a primitive s-th root of 1. Let E = C/(Z + Zζ3) be an

elliptic curve admitting a group automorphism fE of order 3. Set A3 = E × E × E and

f3 = diag[fE, fE, fE]. Then f3 acts on A with 27 fixed points.

Consider the Klein quartic curve below

C := {X0X
3
1 + X1X

3
2 + X2X

3
0 = 0} ⊂ P2.

which is of genus 3 and with |Aut(C)| = 42 deg(KC) (reaching the Hurwitz upper bound).

Indeed, Aut(C) = L2(7), a simple group of order 168. Let

fC : [X0 : X1 : X2] 7→ [ζ7X0 : ζ2
7X1 : ζ4

7X2].

be an order-7 automorphism of C. Let A7 = J(C) be the Jacobian abelian threefold and

let f7 = diag[ζ7, ζ
2
7 , ζ

4
7 ] be the induced order-7 automorphism on A7.

For An (n = 3, 7), let Xn = An/〈fn〉. Thanks to the work of Oguiso-Sakurai [OS, The-

orem 3.4], there is a crepant desingularization Xn → Xn, and Xn satisfies the following:

KXn
∼ 0, π1(Xn) = (1).

Note that KXn
∼ 0. By [Ko, Theorem 7.8], π1(Xn) = π1(Xn) = (1). Thus by the

Serre duality, Xn is a smooth Calabi-Yau variety, while Xn is a Calabi-Yau variety but

with isolated canonical singularities. For m ≥ 2, let mn : An → An, a 7→ m.a, be an

endomorphism of degree m6. Then Ker(mAn
) = (Z/(m))⊕6. The group below of order

n.m6 acts on An faithfully

Gm := ((Z/(m))⊕6) o 〈fn〉.

mn induces an endomorphism mn : Xn → Xn of degree m6. Note that mn is coho-

mologically hyperbolic, and hence so is mn by [NZ, Appendix, Lemma A.8]. The pairs

(Xn, mn) with n = 3, 7 and m ≥ 2, are close to the situation in Theorem 2.1 (2), though

each Xn here has isolated singularities, and the map mn may not be étale. mn induces

a cohomologically hyperbolic dominant rational map m̃n : Xn ···→Xn which may not be

holomorphic just like the similar construction on smooth Kummer surfaces.
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