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WILD KERNELS AND DIVISIBILITY IN K-GROUPS OF
GLOBAL FIELDS

GRZEGORZ BANASZAK

Abstract. This paper is a comprehensive study of the divisibility and the
wild kernels in algebraic K-theory of global fields F. We extend the notion
of the wild kernel to all K-groups of global fields and prove that Quillen-
Lichtenbaum conjecture for F is equivalent to the equality of wild kernels
with corresponding groups of divisible elements in K-groups of F. We show
that there exist generalized Moore exact sequences for even K-groups of global
fields. Without appealing to the Quillen-Lichtenbaum conjecture we show
that the group of divisible elements is isomorphic to the corresponding group
of étale divisible elements and we apply this result for the proof of the lim1

analogue of Quillen-Lichtenbaum conjecture. We also apply this isomorphism
to investigate: the imbedding obstructions in homology of GL, the splitting
obstructions for the Quillen localization sequence, the computations of divisi-
ble elements via special values of ζF (s). Using the Rost-Voyevodsky theorem,
which established the Quillen-Lichtenbaum conjecture, we conclude that wild
kernels are equal to corresponding groups of divisible elements.

1. Introduction

Let l be a prime number and let F be a global field of characteristic charF 6= l.
If l = 2 we assume that µ4 ⊂ F. The main goal of this paper is to establish general
results concerning divisibility and wild kernels in algebraic K-theory of global fields.

It has already been shown by Bass [B], Tate [Ta2] and Moore (see [Mi, p. 157])
that for a number field F the group K2(F ) and in particular the group of divisible
elements and the wild kernel in K2(F ) are closely related to arithmetic of F and the
Dedekind zeta ζF (s) at s = −1. The divisible elements for the Galois cohomology
of number fields and local fields in the mix characteristic case were introduced
in [Sch2]. The divisible elements and wild kernels for the odd torsion part for
the even higher K-groups of number fields were introduced in [Ba1] and [Ba2].
The results of Bass [B], and Moore (see [Mi, p. 157]) concerning the divisible
elements and the wild kernel for K2 where extended in [Ba2] to higher even K-
groups of number fields F and values of ζF (s) at negative integers. The étale
wild kernel as a Shafarevich group in Galois cohomology of number fields was
introduced in [Ng]. The work in [Ba1], [Ba2], [Ng] and [Sch2] was carried out
under assumption l > 2. The wild kernels for the 2-primary part even, higher K-
groups were introduced in [Os] and in [We3] were studied for all l ≥ 2. In this
paper we investigate the wild kernels and the divisible elements for even and odd
K-groups of global fields and for all l ≥ 2 (see Theorems 1.1 - 1.11 and Corollary
1.12 in this introduction). We carry our computations as explicitly as possible,
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hence except Theorem 1.8, all our results are proven without appealing to the
Quillen-Lichtenbaum conjecture. It was shown in [Ba2] and [BGKZ] in the case of
number fields that the Quillen-Lichtenbaum conjecture for odd torsion part of the
even K-groups is equivalent to the isomorphism between corresponding wild kernels
and divisible elements. This isomorhism holds indeed due to the Rost-Voevodsky
theorem [V1] which established the isomorphism between the motivic and étale
cohomology of F, (hence established the Quillen-Lichtenbaum conjecture) due to
motivic cohomology results of Bloch, Friedlander, Levine, Lichtenbaum, Morel,
Rost, Suslin, Voevodsky, Weibel and others. C. Weibel [We3] and K. Hutchinson
[Hu] worked on wild kernels and divisible elements in the K-theory of number
fields for l ≥ 2. C. Weibel [We3] computed the index of the the group of divisible
elements in the corresponding wild kernel for even K-theory of number fields for the
2-primary part. The key ingredient in his proof was the Rost-Voevodsky theorem
[V2]. In this paper we show (see Theorem 1.8) that the wild kernel is isomorphic
to the divisible elements in K-groups of global fields for all indexes n > 1 and l ≥ 2
(assuming µ4 ∈ F in the case of the 2-primary part). To prove this we first show
that Quillen-Lichtenbaum conjecture is equivalent to the isomorphism between wild
kernel and the divisible elements in our case and then we apply the Rost-Voevodsky
theorem.

Recall that the divisible elements in K-groups of number fields are in the center of
classical conjectures in algebraic number theory and algebraic K-theory. Indeed,
the conjectures of Kummer-Vandiver and Iwasawa can be reformulated in terms of
divisible elements in even K-groups of Q [BG1], [BG2]. We have already pointed
out in [Ba2, p. 292], that the divisible elements in higher K-groups of a number
field F are precise analog of the class group of OF . Moreover, as shown in section
6 of this paper, there is a positive integer N0 such that for every positive integer
N, such that N0 |N, there is the following exact sequence:

0→ K2n(OF )→ K2n(F )[N ]→ ⊕vK2n−1(kv)[N ]→ D(n)→ 0.

Recall that the class group Cl(OF ) appears in the classical exact sequence:
0→ K1(OF )→ K1(F )→ ⊕vK0(kv)→ Cl(OF )→ 0.

In addition, as already mentioned above, the conjecture of Quillen-Lichtenbaum
can be reformulated in terms of the wild kernels and divisible elements (see also
Theorem 5.5 for more detailed presentation). At the last but not the least we would
like to point out the close relation of divisible elements and the Coates-Sinnott
conjecture [Ba1], [BP].

The organization of the paper is as follows. In chapter 2 we introduce basic
notation and recall some classical facts about the cohomological dimension. In
chapter 3 we extend results of P. Schneider [Sch2] concerning the divisible elements
in Galois cohomology (in [Sch2] the assumption was charF = 0 and l > 2). Namely
we obtain Theorem 3.5 and Corollary 3.6 which lead us to the following analog of
the classical Moore exact sequence (see [Mi, p. 157]) for higher étale K-theory:

Theorem 1.1. Let n ≥ 1. For every finite S ⊃ S∞,l there are exact sequences:

0→ Det(n)→ Ket
2n(OF,S)→

⊕
v∈S

Wn(Fv)→Wn(F )→ 0.

0→ Det(n)→ Ket
2n(F )l →

⊕
v

Wn(Fv)→Wn(F )→ 0
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where Det(n) := div Ket
2n(F )l. In particular:

|Ket
2n(OF,S)|
|Det(n)|

=

∣∣∏
v∈S wn(Fv)

∣∣−1
l

|wn(F )|−1l
.

In chapter 4 we investigate the divisibility in K-theory and étale K-theory of F.
Let D(n) := div K2n(F ) and for every k > 0 let:

D(n, lk) := ker (K2n(OF , Z/lk)→ K2n(F, Z/lk)),

Det(n, lk) := ker (Ket
2n(OF [1/l], Z/lk)→ Ket

2n(F, Z/lk)).

The following result shows that the Dwyer-Friedlander homomorphism is an iso-
morphism when restricted to the groups D(n, lk) and div K2n(F )l :

Theorem 1.2. If l > 2 then ∀ k ≥ 1 there is the following canonical isomorphism:

D(n, lk) ∼= Det(n, lk)

If l = 2 then ∀ k ≥ 2 there is the following canonical isomorphism:

D(n, 2k) ∼= Det(n, 2k)

If l ≥ 2 then there is the following isomorphism D(n)l ∼= Det(n) or more explicitly

div K2n(F )l ∼= div Ket
2n(F )l

By Theorem 1.2 and Corollary 3.6 (see section 3) the divisible elements are ex-
pressed in terms of Tate-Shafarevich groups for all n > 0 :

D(n)l ∼= Det(n) ∼= Dn+1(F ) = X2
S(F,Zl(n+ 1)) = X2(F,Zl(n+ 1)).

We also get the following lim1 analogue of the Quillen-Lichtenbaum conjecture.

Theorem 1.3. For every n ≥ 1 there is the following isomorphism:

(1) lim←−
k

1 Kn(F, Z/lk)
∼=−→ lim←−

k

1 Ket
n (F, Z/lk).

Moreover there is the following equality:

(2) lim←−
k

1 K2n(F, Z/lk) = 0

and the exact sequence:

(3) 0→ D(n)l → lim←−
k

1 K2n+1(F, Z/lk)→ lim←−
k

1 ⊕v K2n(kv,Z/lk)→ 0

In the end of chapter 4 we show that the natural maps:

H2n(GL(OF ), Z/lk) → H2n(GL(F ), Z/lk)

are not injective in general. In particular we show that the maps:

H22(GL(Z), Z/691) → H22(GL(Q), Z/691)

H30(GL(Z), Z/3617) → H30(GL(Q), Z/3617)

are not injective.

In chapter 5 we define wild kernel Kw
n (OF )l for all n > 0 :

Kw
n (OF )l := ker (Kn(F )l →

⊕
v

Ket
n (Fv)l )
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and observe that:
div Kn(F )l ⊂ Kw

n (OF )l ⊂ Kn(OF )l.

Further, we obtain the analogue of the classical Moore exact sequence for higher
K-groups:

Theorem 1.4. For every n ≥ 1 and every finite set S ⊃ S∞,l there are the following
exact sequences:

(4) 0→ Kw
2n(OF )l → K2n(OF,S)l →

⊕
v∈S

Wn(Fv)→Wn(F )→ 0.

(5) 0→ Kw
2n(OF )l → K2n(F )l →

⊕
v

Wn(Fv)→Wn(F )→ 0.

In particular:

(6)
|K2n(OF,S)l|
|Kw

2n(OF )l|
=
∣∣∏v∈S wn(Fv)

wn(F )

∣∣−1

l
.

In chapter 5 we define another wild kernel WKn(F ) for all n ≥ 0 :

WKn(F ) := ker (Kn(F )→
⊕
v

Kn(Fv) )

We observe that for all n ≥ 0 :

WKn(F ) ⊂ Kn(OF )tor

WKn(F )l ⊂ Kw
2n(OF )l

and if Kn(Fv)l
∼=−→ Ket

n (Fv)l for every v ∈ Sl, then:

div Kn(F )l ⊂ WKn(F )l ⊂ Kn(OF )l.

The Dwyer-Friedlander homomorphisms [DF] which are surjective:

Kn(OF,S)l → Ket
n (OF,S)l

Kn(F )l → Ket
n (F )l,

(see also [Ba2]) are also split as follows by results of [Ba2], [Ca], [K] which can
be extended also to the function field case. We use this to establish the following
properties of wild kernels and divisible elements (see Theorems 5.1, 5.4 and 5.10).

Theorem 1.5. For all n ≥ 1 the Dwyer-Friedlander homomorphisms induce the
following canonical map:

Kw
n (OF )l → div Kn(F )l

which is split surjective. The Dwyer-Friedlander homomorphisms induce the fol-
lowing canonical map:

WKn(F )l → div Kn(F )l

which is split surjective if Kn(Fv)l
∼=−→ Ket

n (Fv)l for every v ∈ Sl.

The first splitting map of the Theorem 1.5 in case of number fields and l > 2 was
done in [Ng] by use of an argument from [Ba2]. Note that Theorem 1.5 is obvious
for n odd since in this case div Kn(F ) = 0.

Theorem 1.6 below shows that the Quillen-Lichtenbaum conjecture holds modulo
the wild kernel:



WILD KERNELS AND DIVISIBILITY IN K-GROUPS OF GLOBAL FIELDS 5

Theorem 1.6. The Dwyer-Friedlander homomorphisms induce the following canon-
ical isomorphisms for all n ≥ 1 :

Kn(OF,S)l/K
w
n (OF )l

∼=−→ Ket
n (OF,S)l/divK

et
n (F )l

Kn(F )l/K
w
n (OF )l

∼=−→ Ket
n (F )l/divK

et
n (F )l

Theorem 1.7 below shows that the difference between the wild kernels and the
divisible elements is the obstruction to the Quillen-Lichtenbaum conjecture.

Theorem 1.7. Let n > 1. The following two conditions are equivalent:

Kn(OF )⊗ Zl
∼=−→ Ket

n (OF [1/l]),

Kw
n (OF )l = divKn(F )l.

Moreover assume that Kn(Fv)l
∼=−→ Ket

n (Fv)l for every v ∈ Sl. Then the two condi-
tions above are equivalent to:

WKn(F )l = divKn(F )l.

At the end of sections 5 by use of the Rost-Voevodsky theorem we prove:

Theorem 1.8. For every n > 1 we have the following equality:

Kw
n (OF )l = divKn(F )l.

Assume that Kn(Fv)l
∼=−→ Ket

n (Fv)l for every v ∈ Sl and every n > 1. Then for
every n ≥ 0 :

WKn(F ) = div Kn(F ).

Observe that for 0 ≤ n ≤ 1 we have WKn(F ) = div Kn(F ) = 0 for obvious
reasons. In chapter 6 we investigate the obstructions for the splitting of the Quillen
localization sequence and complete a statement of [Ba2, Cor. 1 and Prop. 1 p.
293]. Recall, that Tate (see [Mi, Theorem 11.6]) proved that there is the following
isomorphism

K2(Q) ∼= K2(Z) ⊕
⊕
p

K1(Fp).

The results concerning the splitting of the Quillen exact sequence for higher K-
groups of number fields were obtained in [Ba1] and [Ba2]. A very special case of
results of [Ba1] is the following isomorphism:

K2n(Q)l ∼= K2n(Z)l ⊕
⊕
p

K2n−1(Fp)l,

for n = 3, 5, 7, 9 and l > 2.Moreover one has [Ba2, Cor. 2 p. 294] (see also Corollary
6.6 in section 6):

Theorem 1.9. Let n be an odd positive integer and let l be an odd prime number.
The following conditions are equivalent:

K2n(Q)l ∼= K2n(Z)l ⊕
⊕
p

K2n−1(Fp)l.

|wn+1(Q)ζQ(−n)|−1l = 1
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In this paper, under the assumption that l ≥ 2 and F is a global field with charF 6= l
(if l = 2 we assume µ4 ⊂ F ), we get the following result concerning the splitting of
the Quillen localization sequence that extends the splitting results of [Ba1], [Ba2],
[Ca] for the number field case:

Theorem 1.10. Let n ≥ 1. The following conditions are equivalent:
(1) D(n, lk) = 0 for every 0 < k ≤ k(l),
(2) Det(n, lk) = 0 for every 0 < k ≤ k(l),
(3) K2n(F )l ∼= K2n(OF )l ⊕

⊕
v K2n−1(kv)l,

(4) Ket
2n(F )l ∼= Ket

2n(OF [1/l])l ⊕
⊕

v K
et
2n−1(kv)l,

where k(l) is defined by (55) and (56) in section 4.

The group of divisible elements is the obstruction to splitting of the following nat-
ural boundary map in the Quillen localization sequence:

Theorem 1.11. Let n > 0 and let k ≥ k(l). The following conditions are equivalent:
(1) ∂1 : K2n(F )l →

⊕
lk | qnv−1

K2n−1(kv)l is split surjective,
(2) D(n)l = 0.

This implies the following corollary:

Corollary 1.12. Let F be a totally real number field, n odd and l > 2 or let F be
a global field of charF > 0, n ≥ 1 and l 6= charF. Then for every k ≥ k(l) the
following conditions are equivalent:

(1) The following surjective map splits

∂1 : K2n(F )l →
⊕

lk | qnv−1

K2n−1(kv)l

(2) ∣∣wn(F )wn+1(F )ζF (−n)∏
v|l wn(Fv)

∣∣−1
l

= 1.

Observe that
∣∣wn(F )

∣∣−1
l

= 1 for F totally real, n odd and l odd.

2. Basic notation and set up

2.1. Notation.
(1) l is a prime number.
(2) F := a global field.
(3) p := charF, if charF > 0.

(4) OF :=

{
the integral closure of Z in F if charF = 0
the integral closure of Fp[t] in F if charF > 0

(5) v a place of F.

(6) S∞ :=

{
{v : v|∞} if charF = 0
{v : v|vt−1} if charF > 0

(7) Sl :=

{
{v : v|l} if charF = 0
∅ if charF > 0

(8) S∞,l := S∞ ∪ Sl.
(9) S a finite set of places of F containing S∞,l.
(10) OF,S the ring of S-integers in F.
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(11) Fv the completion of F at v.

(12) Ov :=

{
{α ∈ Fv : v(α) ≥ 0} if v 6 |∞ and charF = 0
{α ∈ Fv : v(α) ≥ 0} if charF > 0

(13) kv :=

{
OF /v = Ov/v if v /∈ S∞ and charF ≥ 0
Ov/v if v ∈ S∞ and charF > 0

(14) F s the separable closure of F.
(15) FS ⊂ F s the maximal separable extension of F unramified outside S.
(16) GF := G(F s/F ).
(17) GS := G(FS/F ).
(18) Wn := Wn

l := Ql/Zl(n) for any n ∈ Z.
(19) Wn(L) := Wn

l (L) := H0(GL,Ql/Zl(n)) for a field L with charL 6= l.
(20) wn(L) :=

∏
l 6=charL |Wn

l (L)| whenever |Wn
l (L)| < ∞ for every l 6= charL

and |Wn
l (L)| = 1 for almost every l.

(21) divA := {a ∈ A : ∀m∈Z ∃a′∈A ma′ = a} for an abelian group A,
(22) DivA := the maximal divisible subgroup of A,
(23) A/Div := A/DivA.

2.2. Fields of cohomological dimension ≤ 2. Let L be a field. If L = Fq is
a finite field with q elements then cdl(Fq) = 1. If L is a local field it follows from
[Se, II, sec. 4.3, Prop. 12,] that cdl(L) ≤ 2. If L = F is a global field and l > 2
then cdl(F ) ≤ 2 by [Se, II, sec. 4.3, Prop. 11 and Prop. 13,]. If charF = 0,
then cd2(F ) ≤ 2 iff Fv = C for every v|∞. It is so because for any m ≥ 3 and
any 2-torsion, finite GF -module M there is the following natural isomorphism [M,
Theorem 4.8 (c) Chap. I]:

(7) Hm(F,M)
∼=−→

⊕
v real

Hm(Fv,M)

Hence if charF = 0, and F does not have real imbeddings then triviallyHm(Fv,M) =
0 for all v|∞, all G(Fv/Fv)-modules M and all m > 0. This will always be the case
in this paper since for l = 2 we will assume that µ4 ⊂ F.
The localization sequence for étale cohomology [So1, pp. 267-268] shows that
cdl(Ov) ≤ 2 for all nonarchimedean v and cdl(OF,S) ≤ 2 for all finite S ⊃ S∞,l

Lemma 2.1. Let L be a field such that charL 6= l and µl∞ ⊂ L. Assume that
K2(L′)/DivK2(L′) is torsion for any algebraic extension L′/L. Then cdl(L) ≤ 1.

Proof. Let L′/L be an algebraic extension. Since µl ⊂ L′, by Merkurev-Suslin
Theorem [MS]:

(8) K2(L′)/lK2(L′)
∼=−→ H2(L′, Z/l(2))

∼=−→ Br(L′)[l]⊗ Z/lZ(1).

By assumption K2(L′)/lK2(L′) = K2(L′)l/lK2(L′)l. By Suslin theorem [Su2, The-
orem 1.8] if α ∈ K2(L′)[lk] then there is a ∈ L′ such that α = {ξlk , a}. Hence α is
divisible by l in K2(L′)l because µl∞ ⊂ L′. This shows that Br(L′)[l] = 0. Hence
cdl(L) ≤ 1 by [Sh, Corollary 2, p. 100]. �

Corollary 2.2. Let L be an algebraic extension of a global or local field. Let
charL 6= l and µl∞ ⊂ L. Then cdl(L) ≤ 1.

Proof. Let L be an algebraic extension of a global field. Observe that for n > 0 the
K2n groups of rings of integers in global fields are finite by results of Borel [Bo],
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Harder [Ha] and Quillen [Q2]. Hence by the Quillen localization sequence [Q1] the
group K2(L′) is torsion for every algebraic extension L′/L. If L is an algebraic
extension of a local field then by [Ta3] and [Me] the group K2(L′)/DivK2(L′) is
torsion for every algebraic extension L′/L. Now the claim follows from Lemma
2.1. �

Let L be a field such that charL 6= l. We have G(L(µl∞)/L) ∼= ∆ × Γ where
∆ := G(L(µl)/L) and Γ := G(L(µl∞)/L(µl)).

Lemma 2.3. Let L be a field such that charL 6= l. If l = 2 assume that µ4 ⊂ L.
Then cdl(G(L(µl∞)/L) ≤ 1.

Proof. By assumptions Γ ∼= Zl if µl∞ 6⊂ L and Γ = 1 if µl∞ ⊂ L. Moreover
∆ ⊂ Z/l× if l > 2 and ∆ := 1 if l = 2. Consider the spectral sequence for any
l-torsion G(L(µl∞)/L)-module M.

(9) Ep,q2 = Hp(∆, Hq(Γ, M))⇒ Hp+q(G(L(µl∞)/L), M).

Ep,q2 = 0 for all p > 0 and q > 1 because l 6 | |∆| and cdl(Γ) ≤ 1 by [Ri, Chap. IV,
Cor. 3.2]. Hence Hm(G(L(µl∞)/L), M) = 0 for all m > 1. �

The following two theorems are straightforward extensions of well know results of
Tate [Ta1] and Schneider [Sch2] to the framework of general fields.

Theorem 2.4. Let L be a field such that charL 6= l and µl∞ 6⊂ L. If l = 2 assume
that µ4 ⊂ L. Let M be a discrete G(L(µl∞)/L) module. Then

(10) H1(G(L(µl∞)/L), M ⊗Z W ) = 0.

Proof. Is clear that H1(∆, M ⊗Z W ) = 0. Hence to get (10) it is enough to prove
H1(Γ, M ⊗ZW ) = 0 as in [Ta1] and apply the inflation-restriction exact sequence.

�

Theorem 2.5. Let L be a field such that charL 6= l and µl∞ 6⊂ L. If l = 2 assume
that µ4 ⊂ L. Assume that K2(L′)/DivK2(L′) is torsion for any algebraic extension
L′/L(µl∞). Then

(11) Hm(GL, W
n) ∼=

 0 if m > 2 and n ∈ Z
0 if m = 2 and n 6= 1
Br(L)l if m = 2 and n = 1

Proof. Consider the spectral sequence:

(12) Ep,q2 = Hp(G(L(µl∞)/L), Hq(GL(µl∞ ), W
n))⇒ Hp+q(GL, W

n)

Observe that Ep,q2 = 0 for all p > 1 or q > 1 by Lemmas 2.1 and 2.3. Hence
Hm(GL, W

n) = 0 for all m > 2 and all n ∈ Z and E2,0
2 = E0,2

2 = 0 for all n ∈ Z.
If n 6= 1 then by Theorem 2.4

E1,1
2 = H1(G(L(µl∞)/L), H1(GL(µl∞ ), W

n)) =

= H1(G(L(µl∞)/L), L(µl∞)× ⊗Z Wn−1)) = 0.

Hence H2(GL, W
n) = 0 for n 6= 1. For n = 1 the long cohomology exact sequence

associated with the short exact sequence 1→ µlk → Gm → Gm → 1 and the Hilbert
90 show thatH2(GL, µlk) ∼= Br(L)[lk] for each k. HenceH2(GL, W ) = Br(L)l. �

Corollary 2.6. Let L be a global or local field with charL 6= l. Assume that µ4 ⊂ L
if l = 2. Then the isomorphism (11) holds for L.
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Proof. It is shown in the proof of Corollary 2.2 thatK2(L′)/DivK2(L′) is torsion for
any algebraic extension L′/L(µl∞). Hence the claim follows from Theorem 2.5. �

Assuming that µ4 ⊂ F if l = 2, the l-cohomological dimension of the any of the fol-
lowing rings OF,S , F, Ov, and Fv is ≤2 for any l. Hence the Dwyer-Friedlander spec-
tral sequence [DF] Proposition 5.1 shows that for X = specOF,S , specF, specOv,
specFv there are natural isomorphisms:

(13) Ket
2n(X) ∼= H2

cont(X,Zl(n+ 1)), Ket
2n+1(X) ∼= H1

cont(X,Zl(n+ 1))

From now on in this paper charF 6= l and µ4 ⊂ F if l = 2.

3. Galois cohomology of local and global fields

3.1. Tate-Shafarevich groups and Tate-Poitou duality. The r-th Tate-Shafarevich
group Xr

S(F,M) for a GF,S-module M is defined as follows [M, p. 70]:

(14) Xr
S(F,M) := ker (Hr(GF,S , M)

∏
v∈S rv−→

∏
v∈S

Hr(GFv
, M))

In this paper S is finite. In loc. cit. Xr
S(F,M) is defined for any nonempty S

(containing S∞ if charF = 0). In particular for a GF -module M :

(15) Xr(F,M) := ker (Hr(GF , M)
∏

v rv−→
∏
v

Hr(GFv
, M))

Observe that for an abelian variety A/F and M = A(F s) we have X1(F,A(F )) ⊂
X(A/F ) where X(A/F ) is the classical Tate-Shafarevich group. By Tate-Poitou
duality (see eg. [M, Theorem 4.10, Chap. I]) for any finite GS-module M with
order being a unit in OF,S and for the GS-module MD := Hom(M, F

×
) there is

the following perfect pairing

(16) X1
S(F,M)×X2

S(F,MD) −→ Q/Z

Since Z/lk(n)D ∼= Z/lk(1− n) we get perfect pairing:

(17) X1
S(F,Z/lk(n))×X2

S(F,Z/lk(1− n)) −→ Z/lk

Passing on the left and the target of (17) to the direct limit and on the right of
(17) to the inverse limit we get perfect pairing:

(18) X1
S(F,Ql/Zl(n))×X2

S(F,Zl(1− n)) −→ Ql/Zl

Let M be a finite discrete G(F/F )-module. If ρM : G(F/F )→ AutZ(M), then
we put F (M) := F

ker ρM
. For any place v of F fix a place v in F . Let w be the

place of F (M) below v. Consider the following commutative diagram with exact
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columns:
0

��

0

��
H1(G(F (M)/F ),M)

��

∏
v rv// ∏

v H1(G(F (M)w/Fv),M)

��
H1(GF , M)

��

∏
v rv // ∏

v H1(GFv , M)

��
0 // H1(GF (M), M)

∏
w rw // ∏

w H1(GF (M)w , M)

By Chebotarev’s density theorem the bottom horizontal arrow
∏
w rw is a monomor-

phism, hence X1(F (M),M) = 0. Hence it is clear that the upper horizontal arrow
is a monomorphism if and only if X1(F,M) = 0. If F (M)/F is cyclic then by
Chebotarev’s theorem there are infinitely many places v such that G(F (M)/F ) =
G(F (M)w/Fv). So it is clear that in this case the top horizontal arrow

∏
v rv is a

monomorphism hence X1(F,M) = 0. The most interesting case for this paper is
M = Z/lk(n), where l 6= charF and n ∈ Z. In this case all horizontal arrows in the
above diagram are monomorphisms. Hence for every n ∈ Z and every k ≥ 0

(19) X1(F,Z/lk(n)) = 0.

By Tate-Poitou duality (17) for every n ∈ Z and every k ≥ 0

(20) X2(F,Z/lk(n)) = 0.

The equalities (19) and (20), in the number field case, have already been observed
by Neukirch [Ne, Satz 4.5]. Hence (20) and the exact sequence of GF -modules

(21) 0 −→ Z/lk(n) −→Wn lk−→Wn −→ 0

give the following commutative diagram with exact rows and columns:
0

��

0

��
0 // H1(GF ,W

n)/lk

��

∏
v rv // ∏

v H1(GFv ,W
n)/lk

��
0 // H2(GF ,Z/lk(n))

∏
v rv// ∏

v H2(GFv , Z/lk(n))

This diagram gives the following equality:

(22) div H1(GF ,W
n) = {h : rv(h) ∈ div(H1(GFv

,Wn)), for all v}
For an abelian group M put M∗ := Hom(M, Q/Z). For a finite S containing
S∞,l and for a finite GS module M Tate-Poitou duality gives the following exact
sequence.

(23) 0→ H0(GS ,M) −→
⊕
v∈S

H0(GFv ,M) −→ H2(GS ,M
D)∗

→ H1(GS ,M) −→
⊕
v∈S

H1(GFv ,M) −→ H1(GS ,M
D)∗
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→ H2(GS ,M) −→
⊕
v∈S

H2(GFv ,M) −→ H0(GS ,M
D)∗ → 0

Taking M := Z/lk(n) and passing to direct limits gives the exact sequence:

(24) 0→ H0(GS ,W
n) −→

⊕
v∈S

H0(GFv ,W
n) −→ H2(GS ,Zl(1− n))∗

→ H1(GS ,W
n) −→

⊕
v∈S

H1(GFv
,Wn) −→ H1(GS ,Zl(1− n))∗

→ H2(GS ,W
n) −→

⊕
v∈S

H2(GFv ,W
n) −→ H0(GS ,Zl(1− n))∗ → 0

3.2. Divisible elements in Galois cohomology of local fields. By Theorem
2.5 and Corollary 2.6.

(25) Hm(GFv
, Wn) ∼=

 0 if m > 2 and n ∈ Z
0 if m = 2 and n 6= 1
Br(Fv)l ∼= Ql/Zl if m = 2 and n = 1

It follows from local Tate duality [M, I Corollary 2.3] or [Se, II, sec. 5.2 Theorem 2
and the remark following it], that for each i such that 0 ≤ i ≤ 2 there is a perfect
pairing

(26) Hi(Fv,Ql/Zl(n))×H2−i(Fv,Zl(1− n))→ Ql/Zl.

Hence the following group is finite for every n 6= 1 :

(27) H2(GFv
,Zl(n)) ∼= H0(GFv

,W 1−n)∗ ∼= Wn−1(Fv),

so by (25):

(28) H1(GFv
, Wn)/Div ∼= H2(GFv

,Zl(n)) for n 6= 1.

Moreover by Hilbert 90 we have:

(29) H1(GFv
,W 1) ∼= F×v ⊗Ql/Zl ∼= DivH1(GFv

, W 1).

Hence for any local field Fv, any prime l 6= charFv and any n ∈ Z :

(30) div H1(GFv , W
n) = DivH1(GFv , W

n).

By (27) and (28), for any v /∈ Sl, the boundary map ∂v in the localization sequence
for Ov gives the following isomorphism:

(31) ∂v : H1(GFv ,W
n)/Div

∼=−→ H0(gv, W
n−1)

Theorem 3.1. There is the following isomorphism:

(32) DivH1(GFv
,Wn) ∼=


(Ql/Zl)[Fv :Ql]+1 if v ∈ Sl, n ∈ {0, 1}
(Ql/Zl)[Fv :Ql] if v ∈ Sl, n /∈ {0, 1}
Ql/Zl if v /∈ Sl, n ∈ {0, 1}
0 if v /∈ Sl, n /∈ {0, 1}
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Proof. For any finite GFv
-module M with order m := |M | prime to charFv the

Euler characteristic can be computed as follows [M, chap. I Theorem 2.8 ]:

(33) χ(GFv
,M) :=

|H0(GFv
, M)| |H2(GFv

, M)|
|H1(GFv

, M)|
= | Ov/mOv |−1

Hence

(34) χ(GFv
,Z/l(n)) =

{
l−[Fv:Ql] if v ∈ Sl
1 if v /∈ Sl

Taking logl in (34) gives

(35)
2∑
i=0

dimZ/lH
i(GFv

,Z/l(n)) =

{
−[Fv : Ql] if v ∈ Sl
0 if v /∈ Sl

Observe that

(36) H0(GFv
,Wn) ∼=

{
Ql/Zl if n = 0
finite if n 6= 0

Computing the divisible rank of H1(GFv
,Wn) by use of (25), (35), (36) and the

following exact sequence gives the formula (32).

(37) 0→ H0(GFv
,Z/l(n)) −→ H0(GFv

,Wn)
l−→ H0(GFv

,Wn)

→ H1(GFv
,Z/l(n)) −→ H1(GFv

,Wn)
l−→ H1(GFv

,Wn)

→ H2(GFv
,Z/l(n)) −→ H2(GFv

,Wn)
l−→ H2(GFv

,Wn)→ 0.

�

Remark 3.2. Theorem 3.1 was proved by P. Schneider [Sch2, Satz 4 sec. 3] for l > 2
and charFv = 0.

3.3. Divisible elements in Galois cohomology of global fields. Consider any
first quadrant spectral sequence Ep,q2 ⇒ En with n = p + q ≥ 0. The differentials
dp,qr : Ep,qr → Ep+r,q−r+1

r define Ep,qr+1 := ker dp,qr / im dp−r,q+r−1r for every r ≥ 2.
For r > n + 1 we have dp,qr = 0. Put Ep,q∞ := Ep,qn+2 = Ep,qn+3 = . . . . The filtration
0 ⊂ Enn ⊂ Enn−1 ⊂ · · · ⊂ En0 = En gives Enp /Enp+1

∼= Ep,q∞ . If Ep,q2 = 0 for
every p > 2 then the exact sequence of lower terms extends to the following exact
sequence:

(38) 0→ E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2

1 → E1,1
2 → 0

Consider the Leray spectral sequence for the natural map j : specF → specOF,S :

(39) Ep,q2 = Hp(OF,S , Rqj∗Wn)⇒ Hp+q(F, Wn)

Since cdl(GS) = cdl(OF,S) = 2 the exact sequence (38) gives the following local-
ization exact sequence in cohomology:

(40) 0→ H1(OF,S ,W
n) −→ H1(F,Wn)

∂−→
⊕
v/∈S

H0(kv,W
n−1)→

→ H2(OF,S ,Wn) −→ H2(F,Wn)
∂−→
⊕
v/∈S

H1(kv,W
n−1)→ 0
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By Theorem 2.5 and Corollary 2.6 we get H2(GF ,W
n) = 0 for all n 6= 1. Hence for

any n 6= 1 the sequence (40) has the following form:

(41) 0→ H1(OF,S ,W
n) −→ H1(F,Wn)

∂−→
⊕
v/∈S

H0(kv,W
n−1)→ H2(OF,S ,W

n)→ 0

By [Ta2, Prop. 2.3] there is the following exact sequence:

(42) 0→ H1(GS , W
n)/Div → H2(GS , Zl(n))→ H2(GS , Ql(n))→ H2(GS , W

n)→ 0

P. Schneider defined numbers in(F ) as follows:

in(F ) := dimFl
(DivH2(GS , W

n))[l]

In other words in(F ) is the number of copies of Ql/Zl in DivH2(GS , W
n). Note

that in(F ) = 0 iff H2(GS , Ql(n)) = 0 since Hi(GS , Zl(n)) are finitely generated
Zl-modules. It is immediate from (41) that in(F ) does not depend on the finite set
S and for every finite S containing Sl :

(43) DivH1(GF,S ,W
n) = DivH1(GF ,W

n).

Conjecture 3.3. (P. Schneider) in = 0 for all n 6= 1.

Lemma 3.4. H2(OF,S ,Wn) = 0 for any n > 1 and any finite S ⊃ S∞,l. In
particular in = 0 for all n > 1.

Proof. Consider the following commutative diagram for each n > 1 :

0 // K2n−2(OF,S)l

��

// K2n−2(F )l

��

∂ //⊕
v/∈S K2n−3(kv)l

∼=
��

// 0

0 // H1(OF,S , W
n)/Div // H1(F, Wn)/Div

∂ //⊕
v/∈S H0(kv, W

n−1) // 0

The top row is exact by Quillen localization sequence [Q1] and results of Soulé
[So1, Théorème 3 p. 274], [So2, Théorème 1 p. 326]. The left and the middle
vertical arrows are surjective by [DF, Theorems 8.7 and 8.9] and the right vertical
arrow is an isomorphism by [DF, Corollary 8.6]. This implies that the bottom
sequence is also exact. Hence (41) shows that H2(OF,S ,Wn) = 0 for all n > 1. So
in = 0 for all n > 1. �

Put:
Dn(F ) := div(H1(GF ,W

n)/Div)

The following theorem extends [Sch2, Satz 8 sec. 4].

Theorem 3.5. Assume that in = 0 for n 6= 1. There are the following exact
sequences:

(44) 0→ Dn(F )→ H1(GS , W
n)/Div →

⊕
v∈S

Wn−1(Fv)→Wn−1(F )→ 0.

(45) 0→ Dn(F )→ H1(GF , W
n)/Div →

⊕
v

Wn−1(Fv)→Wn−1(F )→ 0
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Proof. Let us prove the exactness of (44). Substituting n for 1−n in the first three
terms of the exact sequence (24), dualizing and applying [Ta2, prop. 2.3] gives us
the following exact sequence:

(46) H1(GS , W
n)/Div →

⊕
v∈S

H1(GFv , W
n)/Div →Wn−1(F )→ 0.

For every S ⊃ S∞,l consider the following commutative diagram:

0 // Dn(F )

��

// H1(GF , W
n)/Div

∼=
��

∂ //⊕
v H1(GFv , W

n)/Div

��
0 // H1(OF,S , W

n)/Div // H1(F, Wn)/Div
∂ //⊕

v/∈S H0(kv, W
n−1)

The exactness of the top sequence follows by (22) and (30). By (31) this gives the
following commutative diagram:

0 // Dn(F ) // H1(GF , W
n)/Div

∂ //⊕
v H1(GFv , W

n)/Div

0 // Dn(F ) //

=

OO

H1(OF,S , W
n)/Div //

OO

⊕
v∈S H1(Fv, W

n)/Div

OO

Hence the exact sequence (44) is obtained by connecting the bottom exact sequence
of the last diagram and the exact sequence (46) and applying isomorphisms (27)
and (28). The exact sequence (45) is obtained from (44) by passing to the direct
limit over S. �

Corollary 3.6. Let n 6= 1 and let in = 0. For every finite S ⊃ S∞,l :

(47) Dn(F ) = X2
S(F, Zl(n)) = X2(F, Zl(n))l.

Proof. Follows by Theorem (3.5) and [Ta2, Prop. 2.3]. �

Let (see (54) in the next chapter):

(48) Det(n) := div Ket
2n(F )l.

Theorem 3.7. Let n > 0. For every finite S ⊃ S∞,l there are exact sequences:

(49) 0→ Det(n)→ Ket
2n(OF,S)→

⊕
v∈S

Wn(Fv)→Wn(F )→ 0.

(50) 0→ Det(n)→ Ket
2n(F )l →

⊕
v

Wn(Fv)→Wn(F )→ 0

Moreover there is the following equality:

(51)
|Ket

2n(OF,S)|
|Det(n)|

=

∣∣∏
v∈S wn(Fv)

∣∣−1
l

|wn(F )|−1l
.

Proof. By Lemma 3.4 the sequences (44) and (45) are exact. Moreover by [DF,
Prop. 5.1] and [Ta2, prop. 2.3] there are the following isomorphisms:

Ket
2n(OF,S) ∼= H2(GF,S , Zl(n+ 1))l ∼= H1(GF,S , W

n+1)/Div.

Ket
2n(F )l ∼= H2(GF , Zl(n+ 1))l ∼= H1(GF , W

n+1)/Div
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Hence Det(n) ∼= Dn+1(F ). Observe that the group H1(GF,S , W
n+1)/Div is fi-

nite. Indeed by [Bo], [Ha] and [Q2] the group K2n(OF,S) is finite and the Dwyer-
Friedlander map K2n(OF,S) → Ket

2n(OF,S) [DF] is surjective. The formula (51)
follows from (49) because all the terms of this exact sequence are finite. �

4. Divisible elements in K-groups of global fields

Consider the following commutative diagram. The rows are localization sequences
and the vertical maps are the Dwyer-Friedlander maps [DF].

// K2n+1(F, Z/lk)

��

∂ //⊕
v K2n(kv, Z/lk)

∼=
��

// K2n(OF , Z/lk) //

��
// Ket

2n+1(F, Z/lk)
∂et //⊕

v 6 | l K
et
2n(kv, Z/lk) // Ket

2n(OF [
1
l
], Z/lk) //

For every k > 0 define:

D(n, lk) := ker (K2n(OF , Z/lk)→ K2n(F, Z/lk)) = coker ∂

Det(n, lk) := ker (Ket
2n(OF [1/l], Z/lk)→ Ket

2n(F, Z/lk)) = coker ∂et

We do not consider coker ∂ and coker ∂et in the following commutative diagram:

// K2n(F, Z/lk)

��

∂ //⊕
v K2n−1(kv, Z/lk)

∼=
��

// K2n−1(OF , Z/lk) //

��
// Ket

2n(F, Z/lk)
∂et//⊕

v 6 | l K
et
2n−1(kv, Z/lk) // Ket

2n−1(OF [
1
l
], Z/lk) //

because the isomorphismK2n−1(OF ) ∼= K2n−1(F ) (resp. the isomorphismKet
2n−1(OF [ 1l ])l

∼=
Ket

2n−1(F )l) for every n > 1 and the comparison of Bockstein sequences for OF and
F (resp. OF [ 1l ] and F ) show that:

coker ∂ = ker (K2n−1(OF , Z/lk)→ K2n−1(F, Z/lk)) = 0

coker ∂et = ker (Ket
2n−1(OF [1/l], Z/lk)→ Ket

2n−1(F, Z/lk)) = 0

Comparing the Bockstein exact sequences in K-theory for OF and for F (resp. étale
K-theory for OF [1/l] and for F ) we notice that for each k > 0:

(52) D(n, lk) ∼= ker (K2n(OF )/l
k → K2n(F )/lk) ∼=

∼= K2n(OF ) ∩K2n(F )l
k

/K2n(OF )l
k

.

(53) Det(n, lk) ∼= ker (Ket
2n(OF [1/l])/l

k → Ket
2n(F )/lk) ∼=

∼= Ket
2n(OF [1/l]) ∩Ket

2n(F )l
k

/Ket
2n(OF [1/l])l

k

.

Hence for every k ≥ 1 the group D(n, lk) (resp. Det(n, lk) ) is a subquotient of
K2n(OF ) ( Ket

2n(OF [1/l]) resp.). Following [Ba1] we will abbreviate our notation
at some places as follows:

(54) D(n) := div K2n(F ) and Det(n) := div Ket
2n(F )l .
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Applying Bockstein sequences (cf. [Ba2, Diagrams 2.1 and 2.3, p. 289-290]) for all
k � 0 gives:

(55) K2n(OF )/lk = K2n(OF )l and D(n, lk) ∼= D(n)l .

Moreover for all k � 0 we get by similar argument:

(56) Ket
2n(OF [1/l])/lk = Ket

2n(OF [1/l])l and Det(n, lk) ∼= Det(n) .

Let k(l) be the smallest k such that both conditions (55) and (56) hold. We observe
that if l 6 | |K2n(OF )| then D(n, lk) = D(n)l = 0 for all k ≥ 1.

The following theorem generalizes [Ba2, Theorem 3] which was obtained jointly
with M. Kolster.

Theorem 4.1. If l > 2 then ∀ k ≥ 1 there is the following canonical isomorphism:

(57) D(n, lk) ∼= Det(n, lk)

If l = 2 then ∀ k ≥ 2 there is the following canonical isomorphism:

(58) D(n, 2k) ∼= Det(n, 2k)

If l ≥ 2 then there is the following isomorphism D(n)l ∼= Det(n) or more explicitly

(59) div K2n(F )l ∼= div Ket
2n(F )l

Proof. For every l odd and k ≥ 1 (resp. for l = 2 and k ≥ 2) consider the following
commutative diagram.

// K2n+1(F, Z/lk)

��

∂ //⊕
v K2n(kv, Z/lk)

∼=
��

// D(n, lk) //

∼=
��

0

// Ket
2n+1(F, Z/lk)

∂et //⊕
v 6 | l K

et
2n(kv, Z/lk) // Det(n, lk) // 0

The right vertical map is an isomorphism because the middle vertical map is an
isomorphism by [DF, Corollary 8.6] and the left vertical arrow is an epimorphism by
[DF, Theorem 8.5]. The isomorphism (59) follows from (55), (56), (57), (58). �

Corollary 4.2. For all n > 0 there are the following isomorphisms:

(60) D(n)l ∼= Det(n) ∼= Dn+1(F ) = X2
S(F,Zl(n+ 1)) = X2(F,Zl(n+ 1)).

Proof. This follows by Lemma 3.4, Theorem 3.5, Corollary 3.6, Theorem 4.1 and
by the following isomorphism Ket

2n(F ) ∼= H2(F,Zl(n+ 1)) [DF, Prop. 5.1]. �

Theorem 4.3. For every n ≥ 1 there are the following isomorphisms:

(61) lim−→
k

D(n, lk) = 0,

(62) lim←−
k

D(n, lk) ∼= D(n)l.

(63) lim−→
k

Det(n, lk) = 0,
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(64) lim←−
k

Det(n, lk) ∼= Det(n)

Proof. The isomorphisms (61), (62), (63), (64) follow by comparing the Bockstein
exact sequences in K-theory for OF and for F (resp. in étale K-theory for OF [1/l]
and for F ). �

Proposition 4.4. For every n ≥ 1 :

(65) lim←−
k

⊕
v

K2n(kv,Z/lk) = lim←−
k

⊕
v

Ket
2n(kv,Z/lk) = 0

and the group

(66) lim←−
k

1
⊕
v

K2n(kv,Z/lk) = lim←−
k

1
⊕
v

Ket
2n(kv,Z/lk)

is torsion free.

Proof. Notice thatK2n(kv,Z/lk) ∼= K2n−1(kv)[l
k] andKet

2n(kv,Z/lk) ∼= Ket
2n−1(kv)[l

k].

Because K2n(kv,Z/lk) ∼= Ket
2n(kv,Z/lk) by [DF] it is enough to make the proof for

K-theory Hence (65) follows because:

lim←−
k

⊕
v

K2n(kv,Z/lk) ⊂ lim←−
k

∏
v

K2n(kv,Z/lk) = 0.

Applying the lim− lim1 exact sequence to the exact sequence:

0→ ⊕vK2n(kv,Z/lk)→
∏
v

K2n(kv,Z/lk)→
∏
v

K2n(kv,Z/lk)/⊕v K2n(kv,Z/lk)→ 0

gives the natural isomorphism

(67) lim←−
k

∏
v

K2n(kv,Z/lk)/⊕v K2n(kv,Z/lk) ∼= lim←−
k

1 ⊕v K2n(kv,Z/lk)

The group on the left hand side of (67) is clearly torsion free. �

Theorem 4.5. For every n ≥ 1 there is the following isomorphism:

(68) lim←−
k

1 Kn(F, Z/lk)
∼=−→ lim←−

k

1 Ket
n (F, Z/lk).

Moreover there is the following equality:
(69) lim←−

k

1 K2n(F, Z/lk) = 0,

and the following exact sequence:
(70) 0→ D(n)l → lim←−

k

1 K2n+1(F, Z/lk)→ lim←−
k

1 ⊕v K2n(kv,Z/lk)→ 0.

Proof. In the number field case this theorem was proved in [BZ]. We are going to
give a proof that works for all global fields satisfying our assumptions set up in
section 2. Consider the following Bockstein exact sequences:
(71) 0→ Kn(F )/lk → Kn(F, Z/lk)→ Kn−1(F )[lk]→ 0

(72) 0→ Ket
n (F )/lk → Ket

n (F, Z/lk)→ Kn−1(F )et[lk]→ 0

If n = 2m then K2m−1(OF,S)l = K2m−1(F )l and Ket
2m−1(OF,S)l ∼= Ket

2m−1(F )l are
all finite groups. Since the natural mapsKn(F )/lk+1 → Kn(F )/lk andKet

n (F )/lk+1 →
Ket
n (F )/lk are surjective for all n ≥ 0 and all k ≥ 0, the equality (69) follows by

applying the lim− lim1 exact sequence to the Bockstein sequences (71) and (72).
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Consider the natural maps

i : K2n+1(OF,S , Z/lk)→ K2n+1(F, Z/lk),

iet : Ket
2n+1(OF,S , Z/lk)→ Ket

2n+1(F, Z/lk).

Since the groups K2n+1(OF,S , Z/lk) and Ket
2n+1(OF,S , Z/lk) are finite, the lim −

lim1 exact sequence shows that

lim←−
k

1K2n+1(F, Z/lk)/i(K2n+1(OFS , Z/lk)) ∼= lim←−
k

1K2n+1(F, Z/lk)

lim←−
k

1K2n+1(F, Z/lk)/iet(Ket
2n+1(OF,S ,Z/lk)) ∼= lim←−

k

1Ket
2n+1(F, Z/lk).

Hence taking into account the Theorem 4.3 (62) and applying the lim− lim1 exact
sequence to the rows of following commutative diagram :

0→ K2n+1(F, Z/lk)/iet(Ket
2n+1(OFS , Z/lk))

��

//⊕
v K2n(kv, Z/lk)

∼=
��

// D(n, lk)→ 0

∼=
��

0→ K2n+1(F, Z/lk)/iet(Ket
2n+1(OFS ,Z/lk) //⊕

v 6 | l K
et
2n(kv, Z/lk) // Det(n, lk)→ 0

gives the natural commutative diagram:

0 // D(n)l

∼=

��

// lim←−
1

k
K2n+1(F, Z/lk)

��

// lim←−
1

k

⊕
v K2n(kv, Z/lk) //

∼=

��

0

0 // Det(n) // lim←−
1

k
Ket

2n+1(F, Z/lk) // lim←−
1

k

⊕
v 6 | l K

et
2n(kv, Z/lk) // 0

Hence the top row of the diagram is the exact sequence (70) and the middle vertical
arrow is the isomorphism (68) �

Theorem 4.1 gives the opportunity to compute the order of the group D(n)l.
Recall that for n odd, l > 2 and a totally real number field F [Ba2, Theorem 3 (ii)
p. 289] there is the following formula:

(73) ]D(n)l =
∣∣wn+1(F )ζF (−n)∏

v|l wn(Fv)

∣∣−1
l
.

One gets this formula taking S = Sl, applying the equalities (51) and (58), observing
that in this case |wn(F )|−1l = 1 and using the theorem of Wiles which states that

]H2(OSl
, Zl(n+ 1)) = |wn+1(F )ζF (−n)|−1l .

Now let charF = p > 0 and let Fq be the algebraic closure of Fp in F. Let X/Fq
be a smooth curve corresponding to F. This curve is unique up to Fq isomorphism.
The Leray spectral sequence for the natural map i ; specF → X :

Ep,q2 = Hp(X, Rqi∗W
n+1)⇒ Hp+q(F, Wn+1)

gives the following exact sequence of the lower terms:

(74) 0 −→ H1(X, Wn+1) −→ H1(F, Wn+1)
∂−→
⊕
v

H0(kv, W
n)
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By (31) and the exact sequences (45) and (50) we obtain for all n ≥ 1 the following
natural isomorphism:

(75) Det(n) ∼= H1(X, Wn+1)

Its is well known c.f. [Ko] p. 202 that |H0(X, Wn+1)| = qn+1−1, |H2(X, Wn+1)| =
qn − 1 and

(76) |H1(X, Wn+1)| = |(qn+1 − 1)(qn − 1)ζX(−n)|−1l .

Since Fq is the algebraic closure of Fp in F we have W k(F ) = W k(Fq) for all
k ∈ Z. In particular for all k > 0 we have |wk(F )|−1l = |wk(Fq)|−1l = |qk − 1|−1l . If
qv := Nv, then wk(Fv) = wk(kv) = |qkv − 1|−1l . Observe that:

ζF (s) = ζX(s)
∏
v |∞

(1−Nv−s)

Hence by Theorem 4.1 we get:

(77) ]D(n)l =
∣∣wn(F )wn+1(F ) ζF (−n)∏

v |∞ wn(Fv)

∣∣−1
l
.

Theorem 4.6. For every n ≥ 1, k ≥ 1 and l > n+ 1 the kernel of the natural map

(78) H2n(GL(OF ), Z/lk) → H2n(GL(F ), Z/lk)

contains a subgroup isomorphic to D(n, lk).

Proof. Let A be a commutative ring with identity. Comparing the Bockstein exact
sequences for K-theory of A and for the homology of GL(A) and applying the result
of Arlettaz [Ar2, Cor. 7.19] (cf. [Ar1]) we observe that for all l > n+ 1 and k ≥ 1
the Hurewicz homomorphism

(79) h2n : K2n(A, Z/lk) → H2n(GL(A), Z/lk)

is injective. Hence the claim follows by the following commutative diagram.

K2n(OF , Z/lk)

h2n

��

// K2n(F, Z/lk)

h2n

��
H2n(GL(OF ), Z/lk) // H2n(GL(F ), Z/lk)

�

Corollary 4.7. Let n ≥ 1 and l > n + 1. Assume that Ket
2n(OF [1/l]) ∼= Det(n)l

and l || |D(n)l|. Then kernel of the natural map

(80) H2n(GL(OF ), Z/l) → H2n(GL(F ), Z/l)
contains a subgroup isomorphic to D(n)l.

Proof. By Theorem 4.1 we have D(n)l ∼= Det(n)l and D(n, l) ∼= Det(n, l). Moreover
by (53) and the assumptions we have the following isomorphismDet(n)l ∼= Det(n, l),
hence D(n)l ∼= D(n, l). �

Corollary 4.8. Let F = Q and let n ≥ 1 be odd. Assume that l > n + 1 is such
that l || |wn+1(Q)ζQ(−n)|−1l . Then the kernel of the natural map

(81) H2n(GL(Z), Z/l) → H2n(GL(Q), Z/l)
contains a subgroup isomorphic to Z/l.
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Proof. Recall that Ket
2n(Z[1/l]) ∼= Det(n)l = divKet

2n(Q) (see [Ba2]). Moreover
|D(n)l| = |Det(n)l| = |wn+1(Q)ζQ(−n)|−1l by [Ba2, Theorem 3 p. 289]. Hence
the claim follows by Corollary 4.7. �

Example 4.9. Let F = Q, n = 11 and l = 691. Observe that w12(Q)ζQ(−11) =
2× 691 cf. [Ba1, p. 343]. Then the kernel of the natural map:

H22(GL(Z), Z/691) → H22(GL(Q), Z/691)

contains a subgroup isomorphic to Z/691.

Example 4.10. Let F = Q, n = 15 and l = 3617. Observe that w16(Q)ζQ(−15) =
2× 3617 cf. [Ba1, Example, p. 358]. Hence the kernel of the natural map:

H30(GL(Z), Z/3617) → H30(GL(Q), Z/3617)

contains a subgroup isomorphic to Z/3617.

5. The wild kernels and divisible elements

5.1. Wild kernels and the Moore exact sequence. The following theorem is
basically known however the results are scattered over a number of papers. Namely,
surjectivity of the map (82) is due to [DF] and surjectivity of (83) for number fields
was proven in [Ba2]. The splitting of the map (82) in the number field case was
settled in [Ba2] and the canonical splitting of the map (82) in global field case was
settled in [K]. The splitting of the map (83) for the even K-groups of number field
was proven in [Ca]. For the record we make a very short proof of Theorem 5.1
pointing out key ingredients.

Theorem 5.1. For every n ≥ 1 and every finite set S ⊃ Sl the following natural
maps are split surjective:

(82) Kn(OF,S)l → Ket
n (OF,S)l.

(83) Kn(F )l → Ket
n (F )l.

Proof. If X denotes OF,S or F then by [DF] Theorem 8.5 the left vertical arrow in
the following commutative diagram is surjective.

(84) Kn+1(X, Z/lk)

��

// Kn(X)[lk] //

��

0

Ket
n+1(X, Z/lk) // Ket

n (X)[lk] // 0

Hence the right vertical arrow is surjective so Kn(X)l → Ket
n (X)l is surjective cf.

[Ba2, Theorem 1] . The surjectivity of the map (83) follows also by surjectivity of
the maps (82) for all finite S upon taking the direct limit over S, (cf. [Ba2] the proof
of Theorem 1). Since the groups Kn(OF,S)l, K

et
n (OF,S)l, are finite for all n > 0,

and the groups Kn(F )l and Ket
n (F )l are finite for all n odd then the splitting for

the map (82) for all n > 0 (resp. the splitting of the map (83) for all n odd) follows
from the investigation of the right vertical arrow of the diagram (84), cf. the proof
of [Ba2, Proposition 2] . For the splitting of the map (83) with n even we use the
method of Luca Caputo [Ca]. Namely from the diagram (84) we find out that the
kernel of the map (83) is a pure subgroup of K2n(F )l and from the diagram of the
proof of Lemma 3.4 we get that this kernel is finite. Hence by [Ka, Theorem 7] the
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map (83) is split surjective. Actually the splitting of both maps (82) and (83) for
all n ≥ 1 follows by this method by use of [Ka, Theorem 7].

�

The Wild kernelsKw
n (OF )l andWKn(F ) are defined as the kernels of the natural

localization maps to make the following sequences exact:

(85) 0→ Kw
n (OF )l → Kn(F )l →

∏
v

Ket
n (Fv)l

(86) 0→WKn(F )→ Kn(F )→
∏
v

Kn(Fv)

Observe that WKn(F ) ⊂ Kn(OF ) for any global field F and n ≥ 0 cf. [BGKZ].
In the number field case it was proved in [BGKZ] that WKn(F ) is torsion. In the
function field case Kn(OF ) is torsion for all n > 1 and it is clear that WK0(F ) =
WK1(F ) = 0. Hence for any global field F and any n ≥ 0 we get:

(87) WKn(F ) ⊂ Kn(OF )tor

Hence in particular if F is a number field then the group Kw
2n(OF )l has already

been defined in [Ba2] and the group WKn(F ) has been defined in [BGKZ].

Consider the following commutative diagram.

0 // WKn(F )l

��

// Kn(F )l

=

��

// ∏
v Kn(Fv)l //

��
0 // Kw

n (OF )l // Kn(F )l // ∏
v K

et
n (Fv)l //

From this diagram we notice that for any n > 0 and any l ≥ 2 we have:

(88) WKn(F )l ⊂ Kw
n (OF )l ⊂ Kn(OF )l.

Hence by [Ta2], Proposition 2.3 p. 261 we observe that

(89) Ket
2n(Fv)l ∼= H1(Fv,Ql/Zl(n+ 1))/Div ∼= Wn(Fv),

(90) Ket
2n+1(Fv)l ∼= H0(Fv,Ql/Zl(n+ 1))/Div ∼= Wn+1(Fv),

Hence the group Ket
n (Fv)l is finite for any v, any n ≥ 1 and l ≥ 2. This shows that

(91) div Kn(F )l ⊂ Kw
n (OF )l ⊂ Kn(OF )l.

Applying Quillen localization sequences for rings OF,S and Ov it is also important
to notice, that for any finite set S ⊃ Sl there are the following exact sequences:

(92) 0→WKn(F )l → Kn(OF,S)l →
∏
v∈S

Kn(Ov)l

(93) 0→ Kw
n (OF )l → Kn(OF,S)l →

∏
v∈S

Ket
n (Ov)l

The following theorem gives the analog of the classical Moore exact sequence for
higher K-groups and global fields.
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Theorem 5.2. For every n ≥ 1 and every finite set S ⊃ S∞,l there are the following
exact sequences:

(94) 0→ Kw
2n(OF )l → K2n(OF,S)l →

⊕
v∈S

Wn(Fv)→Wn(F )→ 0.

(95) 0→ Kw
2n(OF )l → K2n(F )l →

⊕
v

Wn(Fv)→Wn(F )→ 0.

In particular:

(96)
|K2n(OF,S)l|
|Kw

2n(OF )l|
=
∣∣∏v∈S wn(Fv)

wn(F )

∣∣−1

l
.

Proof. It results from Theorems 3.7 and 5.1. The equality (96) follows from (94)
since all terms in this exact sequence are finite. �

Lemma 5.3. For every n ≥ 1 and every l ≥ 2 there is the following exact sequence

(97) 0→ div Ket
n (F )l → Ket

n (F )l →
∏
v

Ket
n (Fv)l

Proof. Put n = 2i − j for j = 1, 2. Hence by (13), by [Ja, Theorem 3.2] and by
[Ta2, Proposition 2.3 p. 261], the exact sequence has the following form:
(98)
0→ div K2i−j(F )l → Hj−1(GF ,Ql/Zl(i))/Div →

∏
v

Hj−1(GFv ,Ql/Zl(i))/Div.

Let j = 1. Then the map H0(GF ,Ql/Zl(i))/Div → H0(GFv ,Ql/Zl(i))/Div is
trivially injective for each v and div K2i−1(F ) = 0 so (98) is exact in this case. For
j = 2 the exactness of (98) is the result of Theorem 3.5. �

Consider the following commutative diagrams:

0 // Kw
n (OF )l

��

// Kn(F )l

��

// ∏
v K

et
n (Fv)l

=

��
0 // div Ket

n (F )l // Ket
n (F )l // ∏

v K
et
n (Fv)l

0 // Kw
n (OF )l

��

// Kn(OF,S)l

��

// ∏
v K

et
n (Fv)l

=

��
0 // div Ket

n (F )l // Ket
n (OF,S)l // ∏

v K
et
n (Fv)l

The left vertical arrows in both diagrams are identical.

Theorem 5.4. The left vertical arrows in the diagrams above are split surjective.
The middle vertical arrows induce canonical isomorphisms for all n > 1 :

(99) Kn(OF,S)l/K
w
n (OF )l

∼=−→ Ket
n (OF,S)l/divK

et
n (F )l

(100) Kn(F )l/K
w
n (OF )l

∼=−→ Ket
n (F )l/divK

et
n (F )l

Proof. It follows since the middle vertical arrows in the diagrams above are split
surjective by Theorem 5.1. �



WILD KERNELS AND DIVISIBILITY IN K-GROUPS OF GLOBAL FIELDS 23

5.2. Divisible elements, wild kernels and Quillen-Lichtenbaum conjec-
ture. We keep working with global fields as stated in the introduction. In partic-
ular µ4 ⊂ F if l = 2. The Quillen-Lichtenbaum conjecture for the global field F
states that for all n > 1 and l 6= charF the natural map:

(101) Kn(OF )⊗ Zl → Ket
n (OF [

1

l
])

is an isomorphism.

Theorem 5.5. The following conditions are equivalent:

(1) Kn(OF )⊗ Zl
∼=−→ Ket

n (OF [ 1l ]) for all n > 1,

(2) Kn(F )l
∼=−→ Ket

n (F )l for all n > 1,

(3) Kn(OF ,Z/lk)
∼=−→ Ket

n (OF [ 1l ],Z/l
k) for all k > 0 and n > 1.

(4) Kn(F,Z/lk)
∼=−→ Ket

n (F,Z/lk) for all k > 0 and all n > 1.

(5) lim←−kKn(F,Z/lk)
∼=−→ lim←−kK

et
n (F,Z/lk) for all n > 1.

(6) Kcts
n (F,Zl)

∼=−→ Ket
n (F ) for all n > 1.

(7) Kw
n (OF )l = divKn(F )l for all n > 1.

Proof. The equivalence of conditions (1), (2), (3) and (4) follows by finite generation
of K-groups of OF and by comparison of Bockstein and localization sequences
for Quillen and étale K-theory. Clearly (4) implies (5). Consider the following
commutative diagram cf. [BZ]:

0 // lim←−k
1Kn+1(F,Z/lk)

∼=
��

// Kcts
n (F,Zl)

��

// lim←−kKn(F,Z/lk) //

��

0

0 // lim←−k
1Ket

n+1(F,Z/lk) // Ket
n (F ) // lim←−kK

et
n (F,Z/lk) // 0

where Kcts
n (F,Zl) is the continuous K-theory defined in [BZ]. Hence (5) and The-

orem 4.5 implies that the middle vertical arrow in this diagram is an isomorphism.
By [BZ] Theorem 1 this implies (2). Hence we proved that (5) implies (4). This
diagram also shows that (5) and (6) are equivalent. By the diagram following the
proof of Lemma 5.3 conditions (2) and (7) are equivalent. �

Base on the proof of Theorem 5.5 we easily prove the following theorem.

Theorem 5.6. For every n > 1 the following conditions are equivalent:

(1) Kn(OF )⊗ Zl
∼=−→ Ket

n (OF [ 1l ]),

(2) Kn(F )l
∼=−→ Ket

n (F )l,

(3) lim←−kKn(F,Z/lk)
∼=−→ lim←−kK

et
n (F,Z/lk),

(4) Kcts
n (F,Zl)

∼=−→ Ket
n (F ),

(5) Kw
n (OF )l = divKn(F )l.

Proof. Exercise for the reader. �

Proposition 5.7. Let l be prime to char kv. There are natural isomorphisms:

(102) Kn(Ov, Z/lk)
∼=−→ Ket

n (Ov, Z/lk)
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(103) Kn(Ov)[lk]
∼=−→ Ket

n (Ov)[lk]

(104) Kn(Ov)/lk
∼=−→ Ket

n (Ov)/lk

Proof. Consider the following commutative diagram.

Kn(Ov,Z/lk)

∼=
��

∼= // Ket
n (Ov,Z/lk)

∼=
��

Kn(kv,Z/lk)
∼= // Ket

n (kv,Z/lk)

The left vertical arrow is an isomorphism by [Su1, Corollaries 2.5 and 3.9] . The
bottom vertical arrow is an isomorphism by [DF, Corollary 8.6] . Hence the top
horizontal arrow is a monomorphism. Moreover, the top horizontal arrow is an
epimorphism by [DF] Theorem 8.5 and by comparison of K-theory and étale K-
theory localization sequences with coefficients for the local ring Ov. The maps
(103), (104) are isomorphisms by comparison of Bockstein K-theory and étale K-
theory sequences for Ov with corresponding Bockstein sequences for kv cf. [BGKZ]
Section 2. �

Corollary 5.8. Let l be prime to char kv. There are natural isomorphisms:

(105) Kn(Fv, Z/lk)
∼=−→ Ket

n (Fv, Z/lk)

(106) Kn(Fv)[l
k]
∼=−→ Ket

n (Fv)[l
k]

(107) Kn(Fv)/l
k ∼=−→ Ket

n (Fv)/l
k

Proof. The isomorphism (105) follows by Proposition 5.7 and by comparison of
K-theory and étale K-theory localization sequences with coefficients. Consider the
following commutative diagram with exact rows:

0 // Kn(Ov)l
∼=
��

// Kn(Fv)l

��

// Kn−1(kv)l //

∼=
��

0

0 // Ket
n (Ov)l // Ket

n (Fv)l // Ket
n−1(kv)l // 0

The bottom exact sequence is an appropriate étale cohomology exact sequence
written in terms of étale K-theory. It follows by Proposition 5.7 that the map (106)
is an isomorphism, hence by Bockstein sequence argument the map (107) is also an
isomorphism. �

Remark 5.9. If p = char kv then it was proven in [HM] that:

(108) Kn(Fv, Z/pk)
∼=−→ Ket

n (Fv, Z/pk).

By Bockstein sequence argument the map

(109) Kn(Fv)[p
k]
∼=−→ Ket

n (Fv)[p
k]

is an epimorphism and the map

(110) Kn(Fv)/p
k ∼=−→ Ket

n (Fv)/p
k

is a monomorphism.
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Consider the following commutative diagram.

0 // WKn(F )l

��

// Kn(F )l

��

// ∏
v Kn(Fv)l

��
0 // div Kn(F )l // Ket

n (F )l // ∏
v K

et
n (Fv)l

Theorem 5.10. Assume that for every v ∈ Sl :

(111) Kn(Fv)l
∼=−→ Ket

n (Fv)l.

Then for all n ≥ 1 the left vertical arrow in the diagram above is split surjective.
Moreover the following conditions are equivalent for all n ≥ 1:

(1) Kn(F )l
∼=−→ Ket

n (F )l,
(2) WKn(F )l = divKn(F )l

Proof. By theorem 5.1 the middle vertical arrow is split surjective. The right ver-
tical arrow is an isomorphism by Corollary 5.8 and our assumption. This shows
that the left vertical arrow is split surjective. Hence the left vertical arrow is an
isomorphism if and only if the middle vertical arrow is an isomorphism. �

As stated in the introduction the results on motivic cohomology make it possible
to prove that the equivalent conditions in Theorems 5.5, 5.6 and 5.10 hold true.
Consider the spectral sequence connecting the motivic cohomology and K-theory:

Ep,q2 = Hp−q
M (F, Z/lk(−q))⇒ K−p−q(F, Z/lk).

Geisser and Levine [GL] proved that for l > 2 the Bloch-Kato conjecture implies
Hj
M(F,Z/lk(i)) ∼= Hj

et(F,Z/lk(i)) for all j ≤ i and Hj
M(F,Z/lk(i)) = 0 if j > i.

The Bloch-Kato conjecture has been established by Voyevodsky [V2, Theorem 6.16]
so all this implies that:

(112) Kn(F,Z/lk) ∼= Ket
n (F,Z/lk).

Hence for l > 2 the Quillen-Lichtenbaum conjecture holds for global fields of char-
acteristic 6= l, (cf. Theorem 5.5 above). When l = 2 the theorem of Voevodsky and
Rost [V1] was used by Rognes-Weibel, [RW] to compute 2-part of the K-theory of
rings of integers. In particular their work implies the isomorphism (112) for l = 2
in the case µ4 ∈ F. Hence the isomorphism (112) for all l ≥ 2 and the Theorem 5.5
imply the following theorem:

Theorem 5.11. For every n > 1 we have the following equality:

Kw
n (OF )l = divKn(F )l.

Assume that Kn(Fv)l
∼=−→ Ket

n (Fv)l for every v ∈ Sl and every n > 1. Then for
every n ≥ 0 :

WKn(F )l = div Kn(F )l.

Remark 5.12. It is easy to observe that WKn(F ) = div Kn(F ) = 0 for 0 ≤ n ≤ 1.
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6. Splitting obstructions to Quillen boundary map

Observe that the [Ba2, Diagram 2.5] and the corresponding diagram for étale
K-theory and also [Ba2], Diagram 3.2 extend naturally to the global field case and
l ≥ 2. Hence by analogues arguments as the ones in loc. cit. we get for every k ≥ 1,
every n ≥ 1 the following commutative diagram with exact rows:

. . . // K2n(F )[lk]

��

// ⊕v K2n−1(kv)[l
k]

∼=
��

// D(n, lk) //

∼=
��

0

. . . // Ket
2n(F )[lk] // ⊕v 6 | l K

et
2n−1(kv)[l

k] // Det(n, lk) // 0

Actually the rows of this diagram have the following form:
(113) 0→ K2n(OF )[l

k]→ K2n(F )[lk]→ ⊕v K2n−1(kv)[l
k]→ D(n, lk)→ 0.

(114) 0→ Ket
2n(OF )[l

k]→ Ket
2n(F )[lk]→ ⊕v K

et
2n−1(kv)[l

k]→ Det(n, lk)→ 0.

Taking direct limit in (113) gives the l-part of the Quillen localization sequence

(115) 0→ K2n(OF )l → K2n(F )l
∂−→ ⊕v K2n−1(kv)l → 0.

which also implies the property (61).

Recall the definition of the numbers k(l) in section 4. Define

(116) N0 :=
∏

l | |K2n(OF )|

lk(l).

The exact sequence (113) for every l shows that for every positive integer N such
that N0 |N we have the following exact sequence:
(117) 0→ K2n(OF )→ K2n(F )[N ]→ ⊕v K2n−1(kv)[N ]→ D(n)→ 0.

The exact sequence (117) shows that the group D(n) is the analog for higher K-
groups of the class group Cl(OF ) that appears in the exact sequence:
(118) 0→ K1(OF )→ K1(F )→ ⊕v K0(kv)→ Cl(OF )→ 0.

Remark 6.1. To determine whether a map of two l-torsion abelian groups is split
surjective I considered in [Ba2, p. 293 and p. 296] obstructions to the splitting via
lk truncations of this map. Working throughout [Ba2] with k � 0 I did not consider
on p. 293 loc. cit. the cokernels of the lk truncation of ∂ for k < k(l). By (113) the
cokernel of the lk trancation of ∂ is D(n, lk) and in particular for k ≥ k(l) we have
D(n)l = D(n, lk). As a result in [Ba2, Corollary 1, p. 293] I have an incomplete
statement. The Proposition 6.2 below completes the statement of [Ba2, Corollary
1, p. 293]. The proof of the Proposition 6.2 below is the same as the the proof of
[Ba2, Corollary 1, p. 293] by considering lk truncations for all k > 0 not just for
k ≥ k(l). The gap in the statement of [Ba2] Corollary 1 p. 293 has been noticed by
Luca Caputo in [Ca].

Proposition 6.2. The following conditions are equivalent:
(1) D(n, lk) = 0 for every 0 < k ≤ k(l),
(2) K2n(F )l ∼= K2n(OF )l ⊕

⊕
v K2n−1(kv)l
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Proof. (2) implies K2n(F )[lk] ∼= K2n(OF )[lk] ⊕
⊕

v K2n−1(kv)[l
k] for every k > 0

hence D(n, lk) = 0 for every k > 0 by (113).

Now assume (1). By definition of k(l) we note that D(n, lk) = 0 for every 0 < k ≤
k(l) if and only if D(n, lk) = 0 for every k > 0. Hence by (113) there is an exact
sequence for every k > 0 :

(119) 0→ K2n(OF )[lk]→ K2n(F )[lk]→
⊕
v

K2n−1(kv)[l
k]→ 0.

The groups K2n−1(kv) are finite cyclic. Hence for every v we can choose k ≥ 0
that K2n−1(kv)l = K2n−1(kv)[l

k]. Hence the exact sequence (119) allows us to
construct a homomorphism Λv : K2n−1(kv)l → K2n(F )l such that for every element
ξv ∈ K2n−1(kv)l we get ∂(Λv(ξv)) = (. . . , 1, ξv, 1, . . . ) ∈

⊕
v K2n−1(kv)l. Hence the

map
Λ :=

∏
v

Λv,

Λ :
⊕
v

K2n−1(kv)l → K2n(F )l

clearly splits ∂ in the Quillen localization sequence (115). �

Proposition 6.3. The following conditions are equivalent:
(1) Det(n, lk) = 0 for every 0 < k ≤ k(l),
(2) Ket

2n(F )l ∼= Ket
2n(OF [1/l])l ⊕

⊕
v K

et
2n−1(kv)l

Proof. The proof is precisely the same as the proof of Proposition 6.2 with use of
the exact sequence (114). �

Theorem 6.4. The following conditions are equivalent:
(1) D(n, lk) = 0 for every 0 < k ≤ k(l),
(2) Det(n, lk) = 0 for every 0 < k ≤ k(l),
(3) K2n(F )l ∼= K2n(OF )l ⊕

⊕
v K2n−1(kv)l,

(4) Ket
2n(F )l ∼= Ket

2n(OF [1/l])l ⊕
⊕

v K
et
2n−1(kv)l.

Proof. It follows by Theorem 4.1, Propositions 6.2, 6.3 and the definition of k(l). �

Observe that for any totally real number field F any odd n > 0 and any odd prime
number l we have

] Ket
2n(OF [1/l]) = |wn+1(F )ζF (−n)|−1l .

The following corollary is a correction of [Ba2] Proposition 1 p. 293.

Corollary 6.5. Let n be an odd positive integer and let l be an odd prime number.
Let F be a totally real number field such that

∏
v|l wn(Fv) = 1. The following

conditions are equivalent:
(1) The following exact sequence splits

0→ K2n(OF )l → K2n(F )l
∂−→ ⊕vK2n−1(kv)l → 0.

(2)
|wn+1(F )ζF (−n)|−1l = 1
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Proof. In our case D(n)l = |wn+1(F )ζF (−n)|−1l , (see (73)). Moreover, by Theorem
4.1, for every k > 0 we have D(n, lk) ∼= Det(n, lk) and Det(n, lk) is a subquo-
tient of Ket

2n(OF [1/l]). In addition, as we observed before, D(n)l ∼= D(n, lk) for
k � 0. Hence in the assumptions of the corollary D(n, lk) = 0 for all k > 0 iff
|wn+1(F )ζF (−n)|−1l = 1. Hence the corollary follows by Corollary 6.2. �

Corollary 6.6. Let n be an odd positive integer and let l be an odd prime number.
The following conditions are equivalent:

(1) The following exact sequence splits

0→ K2n(Z)→ K2n(Q)
∂−→ ⊕vK2n−1(kv)→ 0.

(2)
|wn+1(Q)ζQ(−n)|−1l = 1

Proof. It follows from Corollary 6.5 since |wn(Ql)|−1l = 1. �

Remark 6.7. Take F = Fp(x). Then OF = Fp[x]. By the homotopy invariance [Q1]
Corollary p. 122 we have Kn(Fp[x]) = Kn(Fp). Hence the boundary map in the
localization sequence gives the following isomorphism:

K2n(Fp(x))
∼=−→ ⊕vK2n−1(kv)

In particular D(n) = divK2n (Fp(x)) = 0.

Let lk0 be the exponent of the group K2n(OF )l.

Lemma 6.8. For every k ≥ 1 and every k′ ≥ k + k0 :

(1) the natural map D(n, lk)→ D(n, lk
′
) is trivial,

(2)
⊕

v K2n−1(kv)[l
k] ⊂ ∂(K2n(F )[lk

′
]).

Proof. Statement (1) follows from the commutative diagram with exact rows:

0 // D(n, lk)

��

// K2n(OF )/lk

lk
′−k

��

// K2n(F )/lk

lk
′−k

��
0 // D(n, lk

′
) // K2n(OF )/lk

′ // K2n(F )/lk
′

since the middle vertical map is trivial by definition of k0.

Statement (2) follows from (1) and the following commutative diagram with exact
rows:

K2n(F )[lk]
∂ //

��

⊕
v K2n−1(kv)[l

k]

��

// D(n, lk)

0

��

// 0

K2n(F )[lk
′
]

∂ // ⊕
v K2n−1(kv)[l

k′ ] // D(n, lk
′
) // 0

since the left and the middle vertical arrows are natural imbeddings. �
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For any k ≥ k(l) let us define⊕
v

(1)
K2n−1(kv)l :=

⊕
lk | qnv−1

K2n−1(kv)l

⊕
v

(2)
K2n−1(kv)l :=

⊕
lk 6| qnv−1

K2n−1(kv)l

Theorem 6.9. Let F be a global field, n ≥ 1 and l be any prime number. The
following conditions are equivalent:

(1) D(n)l = 0,
(2) the following surjective map splits

∂1 : K2n(F )l →
⊕
v

(1)
K2n−1(kv)l.

Proof. For each k′ ≥ k consider the following exact sequence

(120) K2n(F )[lk
′
]

∂−→
⊕
v

(1)
K2n−1(kv)[l

k′ ]⊕
⊕
v

(2)
K2n−1(kv)[l

k′ ]→ D(n)l → 0.

where ∂ = ∂1 ⊕ ∂2. Assume that D(n)l = 0. Hence for each k′ ≥ k the following
map is surjective:

(121) K2n(F )[lk
′
]
∂1−→
⊕
v

(1)
K2n−1(kv)[l

k′ ].

So for each v such that lk | qnv − 1 we take k′ ≥ k such that lk
′ ||qnv − 1 and we notice

that there is a homomorphism

Λv : K2n−1(kv)l → K2n(F )l

such that
∂1 ◦ Λv(ξv) = (. . . , 1, ξv, 1, . . . ),

for any ξv ∈ K2n−1(kv)l. It is clear that

Λ1 :
⊕
v

(1)
K2n−1(kv)l → K2n(F )l

Λ1 :=
∏
v

(1)
Λv

splits ∂1.

Assume now that ∂1 is split surjective. Consider the exact sequence (120) for
k′ = k + k0. For such k′ by Lemma 6.8 we have

∂2(K2n(F )[lk
′
]) ⊂

⊕
v

(2)
K2n−1(kv)[l

k′ ] =

(122) =
⊕
v

(2)
K2n−1(kv)[l

k] ⊂
⊕
v

K2n−1(kv)[l
k] ⊂ ∂(K2n(F )[lk

′
]).

On the other hand ∂1 is split surjective hence
⊕

v
(1)
K2n−1(kv)[l

k′ ] = ∂1(K2n(F )[lk
′
]).

Since ∂ = ∂1 ⊕ ∂2 then by (122) we see that ∂1(K2n(F )[lk
′
]) ⊂ ∂(K2n(F )[lk

′
]).

Hence again by (122) the map ∂ in the exact sequence (120) is surjective. Hence
D(n)l = 0. �
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Corollary 6.10. Let F be a totally real number field. Let n be an odd positive
integer and let l be an odd prime number. The following conditions are equivalent:

(1) The following surjective map splits

∂1 : K2n(F )l →
⊕
v

(1)
K2n−1(kv)l

(2) ∣∣wn+1(F )ζF (−n)∏
v|l wn(Fv)

∣∣−1
l

= 1

Proof. By [Ba2] Theorem 3 p. ]D(n)l = |wn+1(F )ζF (−n)∏
v|l wn(Fv)

|−1l . Hence the corollary
follows by Theorem 6.9 �

Corollary 6.11. Let F be a global field of charF > 0. Let n > 1 be an integer and
let l 6= charF . The following conditions are equivalent:

(1) The following surjective map splits

∂1 : K2n(F )l →
⊕
v

(1)
K2n−1(kv)l

(2) ∣∣wn(F )wn+1(F ) ζF (−n)∏
v |∞ wn(Fv)

∣∣−1
l

= 1.

Proof. Due to (77) the corollary follows by Theorem 6.9 �
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