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The quasiclassical solution to the extended Toda chain hierarchy, corresponding to
the deformation of the simplest Seiberg-Witten theory by all descendants of the dual
topological string model, is constructed explicitly in terms of the complex curve
and generating differential. The first derivatives of prepotential or quasiclassical
tau-function over the extra times, extending the Toda chain, are expressed through
the multiple integrals of the Seiberg-Witten one-form. We derive the corresponding
quasiclassical Virasoro constraints, discuss the functional formulation of the problem
and propose generalization of the extended Toda hierarchy to the nonabelian theory.

1 Introduction

The appearance of integrable systems in the context of the Seiberg-Witten theory is now clearly
related to the gauge/string duality. The quasiclassical tau-functions or the infrared prepoten-
tials, which give the exact low-energy effective actions on the gauge side, become identified
in this framework with generating functions of the particular topological string models on the
string side of duality. For example, the simplest possible quasiclassical tau-function of extended
Seiberg-Witten theory explicitly coincides [1, 2] with the “half-truncated” generating function
for the Gromov-Witten classes on P1 or the correlation functions of the topological P1 string
model.

The gauge/string vocabulary looks here as follows: we compare the oversimplified but per-
turbed in the ultraviolet, simplest possible “U(1)” Seiberg-Witten theory (to be seen, for ex-
ample, as naive Nc = 1 particular case of the U(Nc)-family) with the topological string model,
describing quantum cohomologies of P1, to be generally identified with the base curve of the
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asymptotically free Seiberg-Witten theory. The variable a, coupled to the unity operator 1 of
string theory, is identified with the only condensate 〈φ〉 = a on the gauge theory side, while
the variable t1 = τ0 = ϑ0

2π
+ 4πi

g20
, coupled to the Kähler class $ of P1 target space, is identified

with the (complexified) coupling constant. Moreover, it turns out, that all perturbations of the
gauge theory, encoded in the ultraviolet prepotential

FUV (x; t) = t(x) =
∑
k>0

tk
xk+1

k + 1
(1.1)

correspond to switching on all gravitational descendants ⊕k>0tk+1σk($) of the Kähler class
$ of the P1 model, while the gravitational descendants of the unity operator remain to be
turned off, except for the σ1(1), which forms the condensate with 〈σ1(1)〉 6= 0. An essential
point is that string coupling ~ in the P1 model arises as certain “equivariant parameter” of
the background, providing the infrared regularization of the theory on the gauge theory side
[3], in order to collect contributions from the gauge theory instantons, while the instantonic
expansion in gauge theory is going in powers of the scale Λ2 = et

′′(a).

The exact quasiclassical solution of this theory was explicitly constructed in [2] as a solu-
tion to dispersionless Toda hierarchy. More generally it was also proposed for the nonabelian
extended Seiberg-Witten theory in terms of quasiclassical tau-function [4] on the deformed by
ultraviolet perturbations Seiberg-Witten curve.

However, from the string side of duality this gives rise only to the truncated version of the
P1 model, and a natural step would be including the whole set of descendants ⊕k>0Tkσk(1)
of another primary - the unity operator. This has been done already in the P1 model itself,
see [5, 6, 7, 8, 9], where the matrix integral descriptions was first conjectured, the Virasoro
constraints for the corresponding Gromov-Witten theory were formulated, and the generating
functions were constructed in terms of specific correlators in the theory of free fermions.

Below we are going to write explicitly the quasiclassical solution to this theory, directly
generalizing that of [2] (see also [12]). It terms of integrable hierarchies, it will raise the
dispersionless Toda chain to the so called, following [10, 11], extended Toda hierarchy, where
the gravitational descendants ⊕k>0Tkσk(1) of unity, and corresponding “logarithmic flows” [5]
extend the set of mutually commuting flows of the Toda chain. It turns out, that introducing
descendants of unity into the gauge theory is a very nontrivial step, presumably related to their
role of “deformation” of the moduli space of background condensates in field theory, and we
will find some hints of that reflected in the properties of the exact quasiclassical solution.

The extended quasiclassical solution will be constructed in pure geometric terms, which
immediately suggest a natural nonabelian generalization - an extremely important thing if one
would seriously have in mind the application of this duality for the purposes of gauge theory.
The nonabelian generalization is also proposed below, but - quite typically in the geometric
approach - only for class of solutions, when certain finite number of gravitational descendants of
unity is turned on. We discuss also the relation of our solution to the variational problem for a
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certain functional (in spirit of [2, 13]), in fact even with two equivalent functional formulations,
whose exact relation with the Nekrasov partition function of summation over the gauge theory
instantons [3] remains beyond the scope of this paper.

The paper is organized as follows: in sect. 2 we remind the construction for the quasiclas-
sical solution to dispersionless Toda chain, corresponding to the half-truncated P1 topological
string model, with the descendants of unity switched off, except for a condensate 〈σ1(1)〉 6= 0.
In sect. 3 we generalize this solution for the switched on descendants of unity, propose the
formula for the first derivatives of the generating function w.r.t. new variables, and present
explicit computations for the simplest nontrivial cases of this extension. Next, in sect. 4 we
turn first time to the nonabelian theory, and construct the solution corresponding to the per-
turbative limit, which produces all important ingredients for the functional formulation of the
problem: the kernel and generalized ultraviolet prepotential (1.1) for switched on descendants
of unity. In sect. 5 we discuss the quasiclassical Virasoro constrains and functional formulations
of the problem. Despite the form, suggested by perturbative nonabelian theory, we propose
its equivalent formulation, obtained by an integral transformation and useful for studying the
dependence of the functional upon new times {Tn} of the extended hierarchy. Finally, in sect. 6
we propose the formulation of the nonabelian U(Nc) theory in terms of abelian differentials on
hyperelliptic curve of genus g = Nc−1, and discuss the results and their possible generalizations
in sect. 7.

2 Dispersionless Toda chain

Let us, first, remind the main formulas for the solution from [2] for the dispersionless Toda
chain. We will follow here more convenient normalization from [12].

In the case of the deformed in the ultraviolet U(1) supersymmetric gauge theory the Nc = 1
Seiberg-Witten curve has a single cut, and the double cover of the z-plane y2 = (z−x+)(z−x−)
can be always presented in the form

z = v + Λ

(
w +

1

w

)
(2.1)

with x± = v ± 2Λ and
y2 = (z − v)2 − 4Λ2 (2.2)

The solution to dispersionless Toda chain is encoded into the function S, odd under the invo-
lution w ↔ 1

w
on the double cover (2.1), with the asymptotic

S(z) =
z→∞

−2z(log z − 1) + t′(z) + 2a log z − ∂F
∂a
− 2

∑
k>0

1

kzk
∂F
∂tk

(2.3)

The coefficients at singular terms are identified with the variables of the hierarchy, while the
regular part of expansion defines the first derivatives of the (logarithm of the) tau-function F .
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In terms of the uniformizing variable w one can globally write

S = −2z logw − 2Λ(log Λ− 1)

(
w − 1

w

)
+
∑
k>0

tkΩk(w) + 2a logw (2.4)

where
Ωk(w) = zk+ − zk−, k > 0 (2.5)

are the Laurent polynomials, odd under w ↔ 1
w

. The first term in (2.4) comes from the
Legendre transform of the Seiberg-Witten differential dΣ ∼ z dw

w
.

The canonical Toda chain times are extracted from (2.3) by

t0 = resP+dS = −resP−dS = 2a (2.6)

and

tk =
1

k
resP+z

−kdS = −1

k
resP−z

−kdS, k > 0 (2.7)

¿From the expansion of S it also immediately follows, that

∂F
∂tk

=
1

2
resP+z

kdS = −1

2
resP−z

kdS, k > 0 (2.8)

The consistency condition for (2.8) is ensured by the symmetricity of second derivatives

∂2F
∂tn∂tk

=
1

2
resP+(zkdΩn) =

1

2
resP+(zndΩk) (2.9)

where

Ω0 =
∂S

∂a
=

z→P±
±

(
2 log z − ∂2F

∂a2
− 2

∑
n>0

∂2F
∂a∂tn

1

nzn

)

Ωk =
∂S

∂tk
=

z→P±
±

(
zk − ∂2F

∂a∂tk
− 2

∑
n>0

∂2F
∂tk∂tn

1

nzn

)
, k > 0

(2.10)

form a basis of meromorphic functions with poles at the points P±, with z(P±) = ∞. All
time-derivatives here are taken at constant z.

Expansion (2.10) of the Hamiltonian functions (2.5) expresses the second derivatives of F
in terms of the coefficients of the equation of the curve (2.1), e.g.

Ω0 =
z→∞

2 log z − 2 log Λ− 2v

z
− 2Λ2 + v2

z2
+ . . .

Ω1 =
z→∞

z − v − 2Λ2

z
− 2vΛ2

z2
+ . . .

Ω2 =
z→∞

z2 − (v2 + 2Λ2)− 4vΛ2

z
− 2Λ2(Λ2 + 2v2)

z2
+ . . .

(2.11)
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Comparison of the coefficients in (2.11) gives, in particular,

∂2F
∂a2

= log Λ2,
∂2F
∂a∂t1

= v
∂2F
∂t21

= Λ2 (2.12)

and, therefore
∂2F
∂t21

= exp
∂2F
∂a2

(2.13)

which becomes the long-wave limit of the Toda chain equations for the co-ordinate aD = ∂F
∂a

after an extra derivative with respect to a is taken

∂2aD

∂t21
=

∂

∂a
exp

∂aD

∂a
(2.14)

One can now find the dependence of the coefficients of the curve (2.1) on the deformation
parameters t of the microscopic theory by requiring dS = 0 at the ramification points z =
x± = v ± 2Λ, where dz = 0. This condition avoids from arising of extra singularities at the
branch points in the variation of dS w.r.t. moduli of the curve. Equation

dz

d logw
= Λ

(
w − 1

w

)
= 0 (2.15)

fixes the branch points to be at w = ±1, where now

dS

d logw

∣∣∣∣
w=±1

=
∑
k>0

tk
dΩk

d logw

∣∣∣∣
w=±1

+ 2a− 2v ∓ 4Λ log Λ = 0 (2.16)

If tk = 0 for k > 1, solution to (2.16) immediately gives

v = a, Λ2 = et1 (2.17)

and the prepotential

F =
1

2
aaD +

1

2
resP+ (zdS)− a2

2
=

1

2
a2t1 + et1 (2.18)

which is a well-known expression for the generating function of the P1 model, restricted to the
“small phase space” of the primary operators.

Φ-function

In the context of dispersionless and generic quasiclassical hierarchies it is useful to introduce

Φ =
dS

dz
=

z→∞
−2 log z + t′′(z) +

2a

z
+ 2

∑
k>0

1

zk+1

∂F
∂tk

(2.19)

5



odd under the involution w ↔ 1
w

, or globally

Φ = −2 logw +
∑
k>1

ktkΩk−1 (2.20)

Consistency between (2.20) and (2.19) gives rise exactly to the equations (2.16), and can be
used as another way of their derivation. This function does not have singularities except for
the points P± with z(P±) =∞. It has a natural integral representation

Φ(z) = t′′(z)−
∫
dxf ′′(x) log(z − x) (2.21)

with the integrable “density” f ′′(x)

1
2

∫
dxf ′′(x) = 1, 1

2

∫
dxxf ′′(x) = a (2.22)

related to the second derivative of the extremal shape function for random partitions [13]. One
can easily see, that

2if ′′(z) = ∆Φ′(z) = Φ′(z + i0)− Φ′(z − i0) (2.23)

while for the function (2.21) itself one gets

∆Φ(z) = Φ(z + i0)− Φ(z − i0) = −2i

∫
dxf ′′(x) arg(z − x) = 2if ′(z) (2.24)

The function Φ, together with z (or generally one should better refer to their differentials dΦ
and dz [4]), is a basic ingredient for the quasiclassical hierarchy, and will be exploited below,
when discussing the Virasoro constrants.

3 Extended quasiclassical Toda hierarchy

Formula (2.4) can be naturally generalized to the higher logarithmic flows

S =
∑
k>0

tkΩk(w) + 2a logw − 2
∑
n>0

TnHn(z, w) (3.1)

so that (2.4) is a particular case of (3.1), corresponding to Tn = δn,1. The extra Hamiltonians

Hk(z, w) = zk logw +
k∑
j=1

C
(k)
j Ωj(w) (3.2)
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are odd under involution w ↔ 1
w

and fixed by the asymptotic

Hk(z, w) =
z→∞

±H(+)
k (z) +O(1)

H
(+)
k (z) = zk(log z − ck)

(3.3)

where the Harmonic numbers

ck =
k∑
i=1

1

i
, k > 0 (3.4)

(one can also set c0 = 0) ensure ”scaling property” of the singular parts

dH
(+)
k = kH

(+)
k−1dz (3.5)

¿From (3.3) one immediately gets, that

C
(k)
k = log Λ− ck = H

(+)
k (Λ)Λ−k

C
(k)
j = ωk−j, j = 1, . . . , k − 1

logw =
z→∞

log z − log Λ−
∑
k>0

ωk
zk

(3.6)

In particular, H0 = logw, and

H1(z, w) = z logw + Λ(log Λ− 1)

(
w − 1

w

)
(3.7)

is the Eguchi-Yang term (see [5]), remaining in the expansion (2.3) for Tn = δn,1, which corre-
sponds to nonvanishing condensate 〈σ1(1)〉 6= 0. One can also write for (3.1)

S = −2T (z) logw + 2a logw +
∑
k>0

t̂kΩk(w) (3.8)

with
T (z) =

∑
n>0

Tnz
n

t̂k = tk − 2Tk(log Λ− ck)− 2
∑
l>0

ωlTk+l, k > 0
(3.9)

which can be interpreted as a reparameterization z → T (z) with certain compensating trans-
formation of the function (2.4). The function T (z), and therefore the times {Tn} can be defined
through the jumps of the function (3.1), (3.8)

T (z) =
i

4π
∆S (3.10)
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or, in a different way, via the residues of derivatives

Tn = − 1

2n!
resP+dS

(n) =
1

2n!
resP−dS

(n), n ≥ 0 (3.11)

with S(n) = dnS
dzn .

Now let us propose the dual to (3.11) formula, which defines the corresponding derivatives
of the prepotential

∂F
∂Tn

∣∣∣∣
t

= (−)nn! (Sn)0 (3.12)

where
dnSn
dzn

= S, n ≥ 0 (3.13)

or Sn is the n-th primitive of (3.1), odd under the involution w ↔ 1
w

of (2.1). This is a
new ingredient in the formulation of quasiclassical hierarchy, going beyond the original setup
of [4]. This formula is directly related to the gravitational dressing of the primary operators
in the (here dual, with the superpotential z = v + Λ

(
w + 1

w

)
on the w-cylinder) Landau-

Ginzburg theory, suggested in [14]. We propose now, that (3.12), (3.13) is a strict definition
of dependence of the quasiclassical tau-function upon the times if extended hierarchy, which is
trusted by symmetricity of the corresponding second derivatives of (3.14) and (3.12), following
from the Riemann bilinear identities on the cut w-cylinder (2.1), see Appendix. The definitions
of the prepotential, as a function of Toda chain times t remains intact, i.e.

∂F
∂tk

∣∣∣∣
T

=
1

2
resP+z

kdS = −1

2
resP−z

kdS, k > 0 (3.14)

where the derivatives are now taken at fixed T.

Instead of (2.3) one can now write for (3.1)

S(z) =
z→∞

−2
∑
n>0

Tnz
n(log z − cn) + t′(z) + 2a log z − ∂F

∂a
− 2

∑
k>0

1

kzk
∂F
∂tk

(3.15)

It means, that in addition to (2.10) one gets for the logarithmic Hamiltonians

Hn(z, w) = −1

2

∂S(z)

∂Tn
=

z→∞
zn(log z − cn) +

1

2

∂2F
∂a∂Tn

+
∑
k>0

1

kzk
∂2F
∂Tn∂tk

(3.16)

Note also, that the constant term in the r.h.s. of (3.12) essentially depend on the negative
powers of expansions of Ωk, therefore ∂F

∂Tn
is expressed in terms of ∂2F

∂tk∂tn
, and this can be

rewritten as a sort of quasiclassical mixed Hirota-Virasoro type constraints. For example, one
gets in this way

dS1 = S(z)dz =
∑
k>0

tkz
kdz + 2a log zdz − 2

∑
n>o

TnH
(+)
n (z)dz − ∂F

∂a
dz − 2

∂F
∂t1

dz

z
+ . . .

(3.17)
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i.e.

S1 =
∑
k>0

tk
k + 1

Ωk+1(w) + 2aH1(z, w)− 2
∑
n>o

Tn
n+ 1

Hn+1(z, w)− ∂F
∂a

Ω1(w)− 2
∂F
∂t1

logw

(3.18)
and therefore

(S1)0 = −
∑
k>0

tk
k + 1

∂2F
∂a∂tk+1

+ a
∂2F
∂a∂T1

−
∑
n>o

Tn
n+ 1

∂2F
∂a∂Tn+1

+
∂F
∂a

∂2F
∂a∂t1

+
∂F
∂t1

∂2F
∂a2 (3.19)

Upon (3.12) this can be rewritten as

∂

∂a

(
a
∂F
∂T1

+
∂F
∂a

∂F
∂t1
−
∑
k>0

1

k + 1

(
tk

∂F
∂tk+1

+ Tk
∂F
∂Tk+1

))
= 0 (3.20)

The quasiclassical Virasoro constraints in their canonical form will be discussed below in sect. 5.

Small phase space

Let now only t1, a and T1 6= 1 be nonvanishing. Then

S = t1Ω1 + 2a logw − 2T1H1 =

=
z→∞

t1z − 2T1z(log z − 1) + 2a log z + (2T1v log Λ− t1v − 2a log Λ)−

−
(
2T1Λ2 − T1v

2 − 4T1Λ2 log Λ + 2T1Λ2 + 2av
) 1

z
+O

(
1

z2

) (3.21)

which means that

S1 =
t1
2

Ω2(w)− T1H2(z, w) + 2aH1(z, w) + (2T1v log Λ− t1v − 2a log Λ) Ω1(w)−

−
(
2T1Λ2 − T1v

2 − 4T1Λ2 log Λ + 2T1Λ2 + 2av
)

logw
(3.22)

and therefore

(S1)0 =
1

2
t1v

2 − t1Λ2 − 2T1Λ2 − 2T1v
2 log Λ + 4T1Λ2 log Λ + 2av log Λ−

−4T1Λ2 (log Λ)2 + 2t1Λ2 log Λ
(3.23)

Equations dS
d logw

∣∣∣
w=±1

= 0 now give

v =
a

T1

, Λ2 = exp
t1
T1

(3.24)
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which upon substitution into (3.23), and using (3.12) gives rise to

F(t1, a, T1) =
a2t1
2T1

+ T 2
1 exp

t1
T1

(3.25)

found originally in [6]. One can conclude therefore, that switching on the first time T1 results
in simultaneous rescaling of all the times t1 → t1

T1
, a→ a

t1
etc, together with the string coupling

~→ ~
T1

, since (3.25) can be rewritten as

1

T 2
1

F(t1, a, T1) =
1

2

(
a

T1

)2
t1
T1

+ exp
t1
T1

= F
(
t1
T1

,
a

T1

;T1 = 1

)
(3.26)

with the r.h.s. defined in (2.18).

It is interesting to point out that at T1 →∞, (3.25) gives

F(t1, a, T1) ∼
T1→∞

(
T 2

1 + T1t1 +
t21
2

)
+

1

T1

(
a2t1

2
+
t31
6

)
+ . . . =

= . . .+
1

6T1

(
(t1 + a)3 + (t1 − a)3

)
+ . . . = . . . F(t1 + a, T1) + F(t1 − a, T1) + . . .

(3.27)

modulo quadratic terms and O
(
T−2

1

)
, where

F(x, T1) =
x3

6T1

(3.28)

is the prepotential of pure two-dimensional topological gravity.

T2 now switched on

Equations (2.16) for the switched on T2 (in addition to the small phase space) give rise to

t1 = (2T1 + 4T2v) log Λ

a = T1v + T2

(
v2 − 2Λ2 + 4Λ2 log Λ

) (3.29)

which already cannot be solved analytically for v and Λ, though the solutions can be easily
found as series in T2, with the first few terms

v =
a

T1

− T2

T 3
1

(
a2 + 2t1T1e

t1
T1 − 2T 2

1 e
t1
T1

)
+

2aT 2
2

T 5
1

(
a2 + 2t21e

t1
T1 + 2t1T1e

t1
T1 − 2T 2

1 e
t1
T1

)
+ . . .

log Λ =
t1

2T1

− at1T2

T 3
1

+
t1T

2
2

T 5
1

(
3a2 + 2t1T1e

t1
T1 − 2T 2

1 e
t1
T1

)
+ . . .

(3.30)
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and formulas (3.14), (3.12) lead to the following expression for the prepotential

F =
a2t1
2T1

+ T 2
1 e

t1
T1 + T2

(
−a

3t1
3T 3

1

+ 4ae
t1
T1 − 2at1

T1

e
t1
T1

)
+

+T 2
2

(
a4t1
2T 5

1

+
2a2t21
T 4

1

e
t1
T1 − 2a2t1

T 3
1

e
t1
T1 +

t21
T 2

1

e
2t1
T1 − 3t1

T1

e
2t1
T1 +

5

2
e

2t1
T1

)
+ . . .

(3.31)

which certainly satisfies, up to quadratic order in T2, the long-wave limit of the Toda chain
equation (2.13). One can also easily check, that formula (3.31) up to the shift T1 → 1−δT1 from
the condensate of 〈σ1(1)〉 and certain rescaling (say, T2 → −T2

2
) coincides with the expansion,

obtained in the Appendix of the second paper of [10]. When deriving (3.31) we have used, in
particular, n = 1, 2 cases of (3.12), expressing as in (3.23) the constant parts of the first two
primitives of S (together with the constant part of the S itself) in terms of the coefficients of
the curve (2.1)

(S)0 = 2T1v log Λ− 4T2Λ2 + 2T2v
2 log Λ + 4T2Λ2 log Λ− vt1 − 2a log Λ

(S1)0 = 4T2vΛ2 log Λ− 4T1Λ2(log Λ)2 + 4T1Λ2 log Λ− 2T2v
3 log Λ− 2T1v

2 log Λ+

+1
2
t1v

2 − 2Λ2T1 + 2av log Λ− 8vΛ2T2(log Λ)2 + 2t1Λ2 log Λ− t1Λ2

(S2)0 = T2v
4 log Λ− 2aΛ2 log Λ− av2 log Λ + 2aΛ2 + t1Λ2v − 1

6
t1v

3+

+T1v
3 log Λ +

5

2
T2Λ4 − 2T1vΛ2 log Λ− 4T2v

2Λ2 log Λ− 6T2Λ4 log Λ+

+4T2Λ4(log Λ)2 + 8T2v
2Λ2(log Λ)2 + 4T1vΛ2(log Λ)2 − 2t1vΛ2 log Λ

(3.32)

It is also instructive to write explicitly in this case

Φ(t1, a, T1, T2) =
dS

dz
= −2T1 logw − 4T2H1(z, w) =

= −2T1 logw − 4T2

(
z logw + Λ(log Λ− 1)

(
w − 1

w

)) (3.33)

and

Φ′(t1, a, T1, T2) =
dΦ

dz
= −4T2 logw − 2

Λ

T1 + 2T2v + 2T2 log Λ(z − v)

w − 1
w

(3.34)

where the coefficients of the curve (2.1) Λ = Λ(t1, a, T1, T2) and v = v(t1, a, T1, T2) are con-
strained by (3.29). We see, in particular, that the Vershik-Kerov “arcsin law” [15], correspond-
ing to the first term in the r.h.s. of (3.33) is now not only perturbed by the semicircle Wigner
distribution, (like for the σ1($) or t2 switched on, see [2, 12]), but is also “modulated” by
multiplication by a linear function. Moreover, one can find, that

Φ′′(t1, a, T1, T2) =
d2Φ

dz2
=

=
1√

(z − v)2 − 4Λ2

(
−4T2 +

T1 + 2T2v + 4T2Λ log Λ

z − v − 2Λ
+
T1 + 2T2v − 4T2Λ log Λ

z − v + 2Λ

) (3.35)
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For the nonabelian generalization it is also rather useful to rewrite (3.34) in the form

dΦ(t1, a, T1, T2) = −4T2 logwdz − 4T2 log Λdy − 2(T1 + 2T2v)
dz

y
(3.36)

with y defined in (2.2).

T2, T3 switched on

Now, instead of (3.33), one gets

Φ(t1, a, T1, T2, T3) =
dS

dz
= −2T1 logw − 4T2H1(z, w)− 6T3H2(z, w) (3.37)

provided by

t1 = (2T1 + 4T2v + 6T3v
2) log Λ + 12T3Λ2(log Λ− 1)

a = T1v + T2

(
v2 − 2Λ2 + 4Λ2 log Λ

)
+ T3

(
v3 − 6vΛ2 + 12vΛ2 log Λ

) (3.38)

One can easily notice, that in the limit suppressing instantons, i.e. suppressing powers of Λ
and keeping only the logarithmic terms log Λ, equations (3.29), (3.38) acquire the form

t1 = 2T ′(v) log Λ +O(Λ2)

a = T (v) +O(Λ2)
(3.39)

reflecting the sense of higher descendants of unity as reparameterization z → T (z).

4 Nonabelian theory: perturbative limit

Let us now turn to the problem, how to construct the abelian integral with asymptotic (3.15)
on generic hyperelliptic curve

y2 =
2Nc∏
j=1

(z − xj) (4.1)

of the extended nonabelian Seiberg-Witten theory. On the small phase space, i.e. when only
the t1 is nonvanishing, or the descendants of the Kähler class are switched off, the curve (4.1)
can be also written as

ΛNc

(
w +

1

w

)
= PNc(z) =

Nc∏
i=1

(z − vi) (4.2)

with (4.1) turning into
y2 = PNc(z)2 − 4Λ2Nc (4.3)

12



The perturbative limit corresponds to Λ → 0 in the above formulas, when the hyperelliptic
curve splits into two disjoint sheets of z-plane with Nc punctures, which can be described by

wpert = PNc(z) =
Nc∏
i=1

(z − vi) (4.4)

i.e. a rational function on the z-plane with Nc punctures. In this section we discuss the
perturbative limit of the nonabelian theory, defined entirely in terms of the rational curve
(4.4), and turn to generic situation of (4.1) below in sect. 6.

Only T2 switched on

A perturbative anzatz for

Φ′ = −2
Nc∑
j=1

(
2T2 log(z − vj) +

T ′(vj)

z − vj

)
(4.5)

with
T ′(vj) = T1 + 2T2vj, j = 1, . . . , Nc (4.6)

can be easily conjectured, having e.g. formula (3.36). The coefficients of (4.5) are fixed by

resz=∞dΦ′ = 4T2 ·Nc

resz=∞dΦ ≡ −resz=∞dΦ′ = −2T1 ·Nc

(4.7)

The modified Seiberg-Witten periods are now given by the formulas

aj =
1

2πi

∮
Aj

z2

2
dΦ′ = resz=vj

z2

2
dΦ′ =

= T (vj) = T1vj + T2v
2
j , j = 1, . . . , Nc

(4.8)

Integrating (4.5) one gets explicitly

Φ = −2
Nc∑
j=1

(2T2(z − vj)(log(z − vj)− 1) + T ′(vj) log(z − vj)) + t1 (4.9)

One easily finds, that the derivatives of generating differential

∂

∂aj
Φdz =

1

T ′(vj)

∂Φ

∂vj
dz = 2

dz

z − vj
, j = 1, . . . , Nc (4.10)
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appear to be the “canonical holomorphic” differentials with the first order poles at z = vj on
rational degeneration of the curve (4.2). Moreover, one can find, that

−2dHn =
∂

∂Tn
Φ

∣∣∣∣
a

dz =
∂

∂Tn
Φ

∣∣∣∣
v

dz −
Nc∑
j=1

vnj
dz

z − vj
(4.11)

giving rise to

dH1 = dz
Nc∑
j=1

(
log(z − vj) +

vj
z − vj

)

dH2 = dz
Nc∑
j=1

(
2z(log(z − vj)− 1) + 2vj +

v2
j

z − vj

) (4.12)

where the last terms in the r.h.s. (linear combinations of the “holomorphic” differentials on
degenerate rational curve) kill the residue at infinity.

Integrating (4.9) further, one finds

S = t1z − 2
Nc∑
j=1

(
T2(z − vj)2

(
log(z − vj)−

3

2

)
+ T ′(vj)(z − vj)(log(z − vj)− 1)

)
=

= t1z − 2
Nc∑
j=1

(
T2H

(+)
2 (z − vj) + T ′(vj)H

(+)
1 (z − vj)

)
(4.13)

which defines the perturbative prepotential by

aDi = S(vi) = t1vi − 2
∑
j 6=i

(
T2H

(+)
2 (vi − vj) + T ′(vj)H

(+)
1 (vi − vj)

)
=
∂Fpert

∂ai
(4.14)

Formula (4.14) can be integrated, since for i 6= k one gets

∂S(vi)

∂vk
= −2T ′(vk) log(vi − vk) (4.15)

and this gives rise to the perturbative prepotential

Fpert(a1, . . . , aNc ;T1, T2) =
Nc∑
j=1

FUV (vj) +
∑
i 6=j

F (vi, vj;T1, T2) (4.16)

where one have substitute for vi a solution to T (vi) = ai with the asymptotic vi ∼ ai

T1
+ . . .,

when expanding over the higher times Tn. The bare ultraviolet prepotential

FUV (v) =
1

2
t1

(
T1v

2 +
4

3
T2v

2

)
=
a2t1
2T1

− T2a
3t1

3T 3
1

+
T 2

2 a
4t1

2T 5
1

+ . . . (4.17)

14



coincides, of course, with the perturbative part of the U(1) prepotential (3.31) or partition func-
tion of the P1 model. The “interacting part” in (4.19) F (vi, vj;T1, T2) satisfies the integrability
condition

∂2F

∂ai∂aj
= log(vi − vj) (4.18)

provided by ai = T (vi), i = 1, . . . , Nc. If only T1, T2 6= 0, the direct integration gives an
expression

F (v1, v2;T1, T2) = −1

2
(v1 − v2)2(T1 + T2(v1 + v2))2 log(v1 − v2)+

+
1

4
(v1 − v2)2

(
3(T1 + T2(v1 + v2))2 +

1

2
T 2

2 (v1 − v2)2

)
=

= −1

2
(T (v1)− T (v2))2 log(v1 − v2) +

3

4
(T (v1)− T (v2))2 +

T 2
2

8
(v1 − v2)4 =

= −1

2
(a1 − a2)2 log(v1 − v2) +

3

4
(a1 − a2)2 +

T 2
2

8
(v1 − v2)4

(4.19)

Expanding over T2 we see that gravitational descendants of unity give rise to the polynomial
corrections to the coupling constants

Tij =
∂2Fpert

∂ai∂aj
∼ log(vi − vj) = log

ai − aj
T1

− T2

T 2
1

(ai + aj) +O(T 2
2 ) (4.20)

which remind arising in the context of five-dimensional supersymmetric gauge theories. More-

over, for the particular values Tn = (−)n−1

n
, we get formally the perturbative limit of the (com-

pactified) five-dimensional Seiberg-Witten theory [16], with the infrared couplings

log(vi − vj) = log (eai − eaj ) =
ai + aj

2
+ log

(
2 sinh

ai − aj
2

)
(4.21)

and studied recently in the context of its relation to summing over random partitions in [17].

Perturbative theory with N descendants of unity switched on

For N first descendants of unity switched on (with arbitrary N), it is convenient to introduce
auxiliary functions

σ(z;x) =
∑
k>0

T (k)(x)

k!
H

(+)
k (z − x)

ϕ(z;x) =
dσ

dz
=
∑
k>1

T (k)(x)

(k − 1)!
H

(+)
k−1(z − x) + T ′(x) log(z − x)

(4.22)
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with T (k)(x) being k-th derivatives of the polynomial T (x) =
∑N

n=1 Tnx
n. One can define

generally

S(z) = S(z; v1, . . . , vNc) = −2
Nc∑
j=1

σ(z; vj) + t′(z)

Φ(z) = Φ(z; v1, . . . , vNc) = −2
Nc∑
j=1

ϕ(z; vj) + t′′(z) =
dS

dz

(4.23)

and express the derivatives of the perturbative prepotential as

∂Fpert

∂vi
= S(vi) = t′(vi)− 2

∑
j 6=i

σ(vi; vj) (4.24)

where the integrability condition (4.18) is now ensured by

∂

∂x
σ(z;x) =

∑
k>0

T (k+1)(x)

k!
H

(+)
k (z − x)−

∑
k>0

T (k)(x)

(k − 1)!
H

(+)
k−1(z − x) =

=
T (N+1)(x)

N !
H

(+)
N (z − x)− T ′(x) log(z − x) = −T ′(x) log(z − x)

(4.25)

We therefore justify formula (4.19) for arbitrary N , i.e.

Fpert(a1, . . . , aNc ; t, T ) =
Nc∑
j=1

FUV (aj; t, T ) +
∑
i 6=j

F (ai, aj;T )

aj = T (vj), j = 1, . . . , Nc

FUV (a; t,T) = FUV (v(a); t,T) =

∫ v(a)

0

t′(v)dT (v) =

∫ a

0

t′(v(a))da

∂2

∂ai∂aj
F (ai, aj; T) = log(vi(ai,T)− vj(aj,T))

(4.26)

with v(a) = v(a, T ) = T−1(a), being a solution with asymptotic v = a
T1

+ . . . for small higher
times.

Before considering the nonperturbative formulation on smooth curve (4.1) it is instructive to
discuss the relation of already obtained in Nc = 1 case formulas with the functional formulation.
As in the half-truncated theory [2, 12] we postulate, that the linear and bilinear parts of the
functional are directly determined by the perturbative prepotential (4.26). In its turn, the
functional formulation would become a good “reference point” for the construction in terms of
abelian differentials on smooth hyperelliptic curve (4.1).
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5 Functional methods and Virasoro constraints

Let us now turn to the functional formulation of the proposed above analytic formulas. To
remind, we start first with the case, when all gravitational descendants of unity are switched
off, except for the condensate of 〈σ1(1)〉 6= 0.

Switched off Tn, n > 1

The curve (2.1) endowed with the function (2.4) arises [2] in the extremum problem for the
functional

F =
1

2

∫
dxf ′′(x)t(x)− 1

2

∫
x1>x2

dx1dx2f
′′(x1)f ′′(x2)F (x1 − x2) (5.1)

extremized w.r.t. second derivative of the profile function f ′′(x) = d2f
dx2 , constrained by

1 = 1
2

∫
dxf ′′(x) = 1

2
f ′(x)

∣∣x+

x−
(5.2)

together with

T0 = −a = −1
2

∫
dx xf ′′(x) = 1

2
(f(x)− xf ′(x))|x+

x−
(5.3)

and where the kernel is

F (x) =
1

2
H

(+)
2 (x) =

x2

2

(
log x− 3

2

)
(5.4)

while the source t(x) is defined by ultraviolet prepotential in (1.1).

Constraints (5.2), (5.3) can be taken into account by adding them to the functional (5.1)
with the Lagrange multipliers

F → F + aD
(
a− 1

2

∫
dx xf ′′(x)

)
+ σ

(
1− 1

2

∫
dx f ′′(x)

)
(5.5)

so that the variational equation for (5.5) reads

t(x)−
∫
dx̃f ′′(x̃)F (x− x̃) = aDx+ σ (5.6)

One also gets from (5.1)

∂F
∂tk

=
1

2(k + 1)

∫
dxf ′′(x)xk+1, k > 0 (5.7)
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and, due to (5.5)

aD =
∂F
∂a

(5.8)

The second Lagrange multiplier in (5.5)

σ = − (S1)0 =
∂F
∂T1

(5.9)

is given by the derivative of prepotential w.r.t. the first flow of the extended hierarchy. We re-
mind that the derivatives over the Lagrange multipliers can be taken directly, at constant f ′′(x),
since all other contributions to these derivatives are proportional to the extremum equation,
and therefore vanish on its solutions.

Integrating (5.6), one gets the double-integral representation

F =
1

2

∫
x1>x2

dx1dx2f
′′(x1)f ′′(x2)F (x1 − x2) + aaD + σ (5.10)

which, together with (5.1), gives

F =
1

4
aaD +

1

2
σ +

1

4

∫
dxf ′′(x)t(x) =

1

4
a
∂F
∂a

+
1

2

∑
k>0

tk
∂F
∂tk

+
1

2
σ (5.11)

where the last equality follows from (5.7), (5.8). Comparing it with representation

F =
1

2

(
a
∂F
∂a

+
∑
k>1

(1− k)tk
∂F
∂tk

)
+
∂F
∂t1
− a2

2
(5.12)

and using (5.9), one derives

∂F
∂T1

+
1

2
a
∂F
∂a
−
∑
k>0

ktk
∂F
∂tk

+ 2
∂F
∂t1
− a2 = 0 (5.13)

or the quasiclassical L0-Virasoro constraint at fixed Tn = δn,1.

Quasiclassical Virasoro constraints

The following integral along the boundary of the cut cylinder∮
Φ2zn+1dz =

∮ (
dS

dz

)2

zn+1dz = 0, n = −1, 0, 1, 2, . . . (5.14)
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vanishes, since, analogously to [4],

Φ =
dS

dz
=

z→∞
−2
∑
n>0

nTnz
n−1(log z − cn−1) +

∑
k>0

ktkz
k−1 +

2a

z
+ 2

∞∑
k=1

1

zk+1

∂F
∂tk

(5.15)

has no singularities in the interior of the cut cylinder, since dS = 0 at the branching points,
where dz = 0.

Technically, it is simpler instead of (5.14) to consider the “string equations”, or the a-
derivative of this formula. Namely,∮

Φzn+1 ∂

∂a
Φdz =

∮
Φzn+1dw

w
= 0 (5.16)

since all time-derivatives are taken at constant z. Moreover, one can take care only of the
constant part of the contributions into (5.14) and (5.16) from the A- and B- integrals, forming
the boundary of the cut cylinder, see details in Appendix. For example, if n = −1 and only
T1 6= 0, formula (5.16) gets two obvious contributions[∫

B+

+

∫
B−

]
Φ
dw

w
∼ T1

∫
B

dw

w
∼ T1

∂2F
∂a2

(5.17)

while [∫
A+

+

∫
A−

]
Φ
dw

w
∼ res∞

(
t′′(z)

dw

w

)
∼ t1 +

∑
k>1

ktk
∂2F

∂a∂tk−1
(5.18)

which form together the desired string equation, or a-derivative of the L−1 Virasoro constraint
from [6, 9].

Functional with all descendants switched on

The perturbative formulas in the nonabelian case (4.26) suggest the following form of the
functional with all gravitational descendants stitched on

F =
1

2

∫
dxf ′′(x)FUV (x) +

1

2

∫
x1>x2

dx1dx2f
′′(x1)f ′′(x2)F (x1, x2; T)+

+aD
(
a− 1

2

∫
dxf ′′(x)T (x)

)
+ σ

(
1− 1

2

∫
dxf ′′(x)

) (5.19)

where 1

FUV (x) ≡ FUV (x; t,T) =

∫ x

0

t′(x)dT (x)

∂2

∂x1∂x2

F (x1, x2; T) = T ′(x1)T ′(x2) log(x1 − x2)

(5.20)

1Formulas (5.19) and (5.20) were derived earlier by N. Nekrasov, in a similar context, but using different
arguments.

19



The variation of (5.19) over f ′′(x) gives

FUV (z) +

∫
dxf ′′(x)F (z, x;T ) = aDT (z) + σ, z ∈ I (5.21)

whose z-derivative, after dividing by T ′(z), turns into

t′(z)−
∫
dxf ′′(x)σ(z;x) = aD, z ∈ I (5.22)

Due to the property of the function σ(z, x), following directly from its definition (4.22) and
expansion

1

n!
H(+)
n (z − x) =

1

n!
(z − x)n (log(z − x)− cn) =

=
n∑
k=0

H
(+)
n−k(z)

(n− k)!

(−x)k

k!
+ (−)n−1

∑
k>0

xn+k

kzk
1

(k + 1) . . . (k + n)

(5.23)

one gets (for the switched on N descendants of unity)

σ(z;x) =
∑
k>0

T (k)(x)

k!
H

(+)
k (z − x) =

N∑
n=1

TnH
(+)
n (z)− T (x) log z +

∑
k>0

Fk(x)

kzk
(5.24)

where

Fk(x) =

∫ x

0

xkdT (x) (5.25)

and we have used the obvious polynomial identities

k!Tk = T (k)(0) =
N∑
n=0

T (n+k)(x)

n!
(−x)n, k = 0, . . . , N (5.26)

¿From (5.22) it follows, that the integral

S(z) = t′(z)−
∫
dxf ′′(x)σ(z;x)− aD =

= t′(z)− aD −
∑
k>0

∫
dxf ′′(x)

T (k)(x)

k!
H

(+)
k (z − x)

(5.27)

whose real part vanishes on the support by (5.22) has an asymptotic expansion (3.15) and is
constant on the cut. Moreover, the coefficients at negative powers of z in the r.h.s. are given
by ∫

dxf ′′(x)Fk(x) = 2

∫
dxf ′′(x)

∂FUV (x; t,T)

∂tk
= 2

∂F
∂tk

(5.28)
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However, it is not easy to get any simple expression for the Tn-derivatives of the functional
(5.19), since almost everything depends on {Tn} in the r.h.s. of this formula. In order to get
the new formula (3.12) for the derivatives over the variables extending the Toda chain hierarchy,
one has to consider a different form of the functional (5.19).

Another form of the functional

The formula (5.5) in fact suggests how the functional problem can be re-formulated in a different
way, when the higher times of extended hierarchy are switched of. Suppose again that only
T1, . . . , TN are non-vanishing, which somehow characterize the N -th “class of backgrounds” for
the gauge theory. One can write for the perturbative prepotential

FUV (x) =

∫ x

0

t′(x)dT (x) = t(x)T ′(x)− t2(x)T ′′(x) + . . .+ (−)N−1tN(x)T (N) =

= D̂N−1(x)tN(x)

(5.29)

where

tN(x) =
∑
k>0

tk
xk+N

(k + 1) . . . (k +N)

t(x) ≡ t1(x) =
dN−1

dxN−1
tN(x)

(5.30)

and we have introduced the differential operator with the polynomial coefficients

D̂N−1(x) = T ′(x)
dN−1

dxN−1
− T ′′(x)

dN−2

dxN−2
+ . . .+ (−)N−1T (N) (5.31)

Consider also an integral transform, or introduce new “density” by the formula∫
dxρ(x)g(x) =

∫
dxf ′′(x)D̂N−1(x)g(x) (5.32)

for an integral over the support I with an arbitrary function g(x) (from some reasonable class
of functions). It means, that in certain sense this density is ρ(x) ∼ D̂†N−1(x)f ′′(x). Note also,

that using D̂-operators (5.29), one can write for the kernel in (5.20)

F (z, x) =
(−)N

(2N)!
D̂N−1(z)D̂N−1(x)H

(+)
2N (z − x) =

=
N∑

n,k=1

(−)n−1T (n)(z)T (k)(x)
H

(+)
n+k(z − x)

(n+ k)!

(5.33)

while the contribution of the linear term in (5.19) - with the ultraviolet prepotential - turns
into ∫

dxf ′′(x)FUV (x) =

∫
dxρ(x)tN(x) (5.34)
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The density ρ(x) obeys important constraints, directly following from (5.32), namely

1

2

∫
dxρ(x)

xn

n!
=

1

2

∫
dxf ′′(x)D̂N−1(x)

xn

n!
= (−)n−1TN−n

n = 0, 1, 2, . . . , T0 = −a
(5.35)

which have to be taken into account, if one considers variation of the functional over the new
density.

In other words, instead of (5.1) one can consider an extremum for

F = FN [ρ] =
1

2

∫
dxρ(x)tN(x)− (−)N−1

2(2N)!

∫
x1>x2

dx1dx2ρ(x1)ρ(x2)H
(+)
2N (x1 − x2)+

+
N∑
n=0

σn

(
Tn −

(−)n−1

2

∫
dx

xN−n

(N − n)!
ρ(x)

) (5.36)

where the kernel (−)N−1

(2N)!
H

(+)
2N (x) = 1

(2N)!
x2N (log x− c2N) does not depend explicitly of the times

T, all this dependence is absorbed by density ρ(x). The extremum condition for the functional
(5.36) stays, that (real part of)

SN(z) = tN(z)− (−)N−1

(2N)!

∫
dxρ(x)H

(+)
2N (z − x) +

N∑
n=0

σn(−)n
zN−n

(N − n)!
(5.37)

vanishes on the support z ∈ I of ρ(z). Taking up to N -th derivatives of (5.37) one gets

SN−1(z) = tN−1(z)− (−)N−1

(2N − 1)!

∫
dxρ(x)H

(+)
2N−1(z − x) +

N−1∑
n=0

σn(−)n
zN−n−1

(N − n− 1)!

...

S(z) = t′(z)− (−)N−1

N !

∫
dxρ(x)H

(+)
N (z − x) + σ0

(5.38)

a sequence of functions vanishing on the cut. The last integral S(z) = dN

dzN SN(z) coincides with
(5.27), and therefore has the same properties.

In particular, at z → ∞ the last integral in (5.38) has an expansion where the coefficients
are expressed by the “moments” of new density

S(z) =
z→∞

t′(z)−
N∑
n=0

zn(log z − cn)
(−)N−n

(N − n)!

∫
xN−nρ(x)dx+ σ0+

−
∑
k>0

1

k(k + 1) . . . (k +N)zk

∫
xN+kρ(x)dx =

= t′(z)− 2
N∑
n=0

Tnz
n(log z − cn)− ∂F

∂a
− 2

∑
k>0

1

kzk
∂F
∂tk

(5.39)
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reproducing (3.15) by (5.32) and (5.35) (or upon the constraints at Lagrange multipliers in
(5.36)). ¿From the properties of the functional (5.36), one can straightforwardly find the
derivatives

∂F
∂tk

=
1

2(k + 1) . . . (k +N)

∫
xk+Nρ(x)dx

σ0 =
∂F
∂T0

= −∂F
∂a

= −aD
(5.40)

coinciding with (5.28).

However, after arbsorbing all nontrivial T-dependence into ρ in (5.36), it becomes obvious,
that

∂F
∂Tn

= σn = (−)nn! (Sn)0 , n = 0, . . . , N (5.41)

The naively divergent integrals, containing ρ(x), should be understood only in the sense of
(5.32).

6 Nonabelian theory from abelian integrals

Finally, let us turn to discussion of generic nonabelian theory, whose perturbative limit was
considered in sect. 4. The quasiclassical tau-function is now defined by constructing an abelian
integral on the hyperelliptic curve (4.1), whose properties can be extracted from integral rep-
resentations of sect. 5.

It is again important to fix certain finite number N of the gravitational descendants of unity
being switched on. The integral representation (5.27) defines a multivalued abelian integral on
the curve (4.1), and only its N -th derivative becomes single-valued. Denote as usual Φ = dS

dz
,

and further Φ′ = dΦ
dz
, . . . up to

dΦ(N−1) = d

(
dN−1Φ

dzN−1

)
=

= t(N+2)(z)dz −N !TN

∫
f ′′(x)dx

z − x
dz −

N−1∑
k=1

(−)k
∫
T (N−k)(x)f ′′(x)dx

(z − x)k+1
dz

(6.1)

which is already a single-valued on the non-degenerate curve (4.1) abelian differential, odd
under the hyperelliptic involution, since its real part vanishes on the cut. Its form can be
totally determined by its singularities at the infinity points P± and at the ramification points
{xj}, j = 1, . . . , 2Nc, where it also has poles due to behavior f ′′(x) ∼ (x − x±)−1/2. The
singularities at ramification points are in fact artificial, in the sense that one may think of
Φ′, . . . ,Φ(N−1) as of the regular at branch points 2−, . . . , N− differentials on the curve (4.1).
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One can therefore write for (6.1) an explicit formula

dΦ(N−1) =
φ(z)dz

y
+
dz

y

2Nc∑
j=1

N−1∑
k=1

(
qkj

(z − xj)k

)
(6.2)

where φ(z) is a polynomial of power

deg φ(z) =

{
Nc − 1, n ≤ N

Nc − 1 + n−N, n > N
(6.3)

for the theory on genus Nc − 1 curve (4.1) and with n− 1 and N nonvanishing times {tk} and
{Tn} correspondingly. The periods of (6.2) are fixed by (6.1), or

1

2πi

∮
Ai

dΦ(N−1) = −2N !TN∮
Bi

dΦ(N−1) = 0
(6.4)

Couning the period constraints (6.4), one can consider Nc cycles Ak, k = 1, . . . , Nc, surrounding
generally Nc distinct segments of the support of f ′′(x) 6= 0, x ∈ Ik, k = 1, . . . , Nc, which is
equivalent to the canonical choice of A-cycles together with the residue at infinity. Totally,
(6.4) give 2Nc − 1 period constraints, and should be completed by the 2Nc-th condition∫ z(P+)

z(P−)

dΦ(N−1) = −2N !NcTN log z + 4πiN !TNZ +O

(
1

z

)
(6.5)

i.e. the regularized constant part of the integral
∫ P+

P−
dΦ(N−1) vanishes modulo the period lattice

(6.4), since the integral (6.5) depends on the choice of the integration path.

Small phase space and T2 6= 0

Consider for simplicity only t1 6= 0 and switched on T1, T2. Formula (6.1) gives for this case

dΦ′ =
φNc−1(z)dz

y
+
dz

y

2Nc∑
j=1

(
qj

z − xj

)
(6.6)

which depends on 3Nc coefficients of φNc−1(z) and {qj}, as well as 2Nc branch points {xj},
i.e. totally of 5Nc undetermined yet coefficients. The period integrals (6.4), together with the
residue

resP+dΦ′ = −resP−dΦ′ = 4T2 ·Nc (6.7)
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give altogether 2Nc constraints, or fix the parameters {qj} of the differential (6.6), leaving yet
no restrictions for the coefficients of φNc−1(z) and branch points of the curve.

Now, one can define an abelian integral Φ′(P ) =
∫ P

dΦ′ or the differential

dΦ = dz

∫ z

dΦ′ (6.8)

which is multivalued, but all the jumps are fixed by (6.4), being proportional to 4πi ·T2dz. The
integration constant in (6.8) is fixed by requirement, that Φ′(P ) ∼

z(P )→∞
−4NcT2 log z+O

(
1
z

)
,

consistent due to (6.5). Since the differential of hyperelliptic co-ordinate on (4.1) has vanishing
periods

∮
dz = 0 along any cycle, one can make sense of the periods of the differential (6.8)

itself, and put

1

2πi

∮
Ak

dΦ ≡ − 1

2πi

∮
Ak

zdΦ′ = T1

∫
Ik

dxf ′′(x) = 2T1, k = 1, . . . , Nc∮
Bk

dΦ ≡
∮
Bk

zdΦ′ = 0
(6.9)

The period integrals (6.9) together with normalization condition (say, Φ(xNc) = 0) give 2Nc

more constraints on the total set of undetermined parameters, while the rest is absorbed by
the Seiberg-Witten periods, defined now as

aj =
1

4πi

∮
Aj

z2

2
dΦ′, j = 1, . . . , Nc (6.10)

whose sum gives the residue at infinity.

N descendants T1, . . . , TN 6= 0

Almost the same counting can be performed for the generic case with N descendants. One
has now 2Nc · N + Nc = (2N + 1)Nc parameters of φNc−1(z), {qkj } and branch points {xj}
(in the case of nonvanishing higher {tk} they will be absorbed into higher coefficients of the
polynomial φ(z) and the integration constants). Being constrained by constancy of its periods,
we rest with (2N − 1)Nc variables.

We have then to restore the differential dΦ by multiple integration of (6.1). At each step
we have to fix the periods of dΦ(N−2), . . . , dΦ′ by 2Nc constraints, ending up, therefore with

(2N + 1)Nc − 2Nc ·N = Nc (6.11)

variables, which can be conveniently chosen as the Seiberg-Witten periods

aj =
1

4πi

∮
Aj

zN

N !
dΦ(N−1), j = 1, . . . , Nc (6.12)
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The multivalued differential dS = Φdz has now constant jumps, depending linearly upon a and
the times T1, . . . , TN , and one can always choose its branch with the asymptotic (3.15), if taken
along the real axis at z → +∞ on the “upper” sheet.

Quasiclassical tau-function

The dual periods

aDj = 1
2

∮
Bj

zN

N !
dΦ(N−1) =

∂F
∂aj

, j = 1, . . . , Nc (6.13)

define the gradients of the quasiclassical tau-function. Integrability condition for (6.13) is
guaranteed by symmetricity of the period matrix of the curve (4.1), following from

δ(dS) = δ (Φdz) ' holomorphic (6.14)

following directly from the constancy of the periods dΦ′, . . . , dΦ(N−1). In addition to the remain-
ing intact “abelian formulas” (3.14) and (3.12) that defines the full quasiclassical tau-function
for the perturbed theory, and the integrability is guaranteed by the Riemann bilinear relations.

7 Discussion

We have presented in this paper a quasiclassical geometric formulation for the full non-truncated
topological P1 string model, when all the descendants σk($) and σk(1) with k > 0 are switched
on, and propose its generalization to the nonabelian dual supersymmetric gauge theory. For the
topological string model the quasiclassical formulation is given in “mirror” terms - a rational
curve, which can be interpreted as a dual Landau-Ginzburg superpotential z = v + Λ

(
w + 1

w

)
on a cylinder, and the set of functions, odd under its involution w ↔ 1

w
. The descendants

of the Kähler class σk($) generate the flows of dispersionless Toda chain hierarchy, while the
descendants of unity σk(1) produce the logarithmic flows [5] of the so called [10] extended Toda
hierarchy, which can be possibly reformulated as a reduction of two-dimensional Toda lattice.
The exact relation of the quasiclassical solution, proposed above, to the two-dimensional Toda
lattice is beyond the scope of this paper, but let us present here a hint, how the multiple integral
formula (3.12) can be interpreted in this way.

Equivariant Toda lattice

The relation between the extended Toda and equivariant Toda lattice [8, 11] includes the change
of the variables

Xk+1 =
Tk
ε

+ tk+1, X̄k+1 = −Tk
ε
, k ≥ 0 (7.1)

26



or
tk = Xk + X̄k, k > 0

Tk = ε
(
Xk+1 − X̄k+1

)
, k ≥ 0

(7.2)

For example, the prepotential on the small phase space

F(X1, X̄1; ε) =
ε2

6

(
X3

1 + X̄3
1

)
+ eX1+X̄1 =

=
a2t1

2
+ et1 +

ε

2
at21 +

ε2

6
t31

(7.3)

coinciding with (2.18) at ε→ 0, indeed satisfies the two-dimensional Toda lattice equation

∂2F
∂X̄1∂X1

= exp

(
1

ε2

(
∂

∂X1

− ∂

∂X̄1

)2

F

)
(7.4)

if one takes the solutions, constrained by reduction, including

∂F
∂X1

− ∂F
∂X̄1

= ε
∂F
∂X0

(7.5)

One can expect therefore, generally, that

∂F
∂Xk

− ∂F
∂X̄k

= εR̂k ◦ F , ∀k > 0 (7.6)

where R̂k is presumably a (k-th order) differential operator in X0, R̂1 = ∂
∂X0

. At ε → 0
conditions (7.6), (7.5) turn into the Toda chain reduction

∂F
∂Xk

− ∂F
∂X̄k

= 0, ∀k > 0

∂F
∂Xk

+
∂F
∂X̄k

= 2
∂F
∂tk

, ∀k > 0
(7.7)

where {tk} (7.2) are the times of the Toda chain. More generally, in the reduction to the Toda
chain, the first set of conditions (7.7) can have a linear function at the r.h.s.

∂F
∂Xk

− ∂F
∂X̄k

= Ck(Xk − X̄k), ∀k > 0 (7.8)

with Ck ∼ k is a constant as a function of times. For the function (7.3) one gets instead if (7.8)

∂F
∂X1

− ∂F
∂X̄1

=
ε

2

(
X2

1 − X̄2
1

)
=
ε

2

(
X1 + X̄1

) (
X1 − X̄1

)
(7.9)

so one finds, that C1 = ε
2

(
X1 + X̄1

)
= ε

2
t1 instead of a constant becomes a “slow” modulated

linear function of the Toda chain time t1. The exact form of the operators R̂k is not yet
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known (though perhaps can be extracted from [8]), but the formulas (3.12), (A.1) establish the
quasiclassical correspondence

R̂nF ∼

∫
dz

. . .

∫
dz︸ ︷︷ ︸

n

S


0

(7.10)

For the two-dimensional Toda lattice one has two different co-ordinates z+ and z− at two
infinities P± corresponding to the flows in X and X̄ time variables. One may think then, that
z+ − z− ∼

∫
dS and the differences of the higher Hamiltonians Ω(z+) − Ω̃(z−) ∼

∫
. . .
∫
dS

produces the desired formula (7.10).

Nonabelian theory

It is not yet completely clear, when is the sense of “descendant” deformation of the nonabelian
theory. The descendants of the Kähler class deform the gauge theory in the ultraviolet, which
is encoded in 1

2
τ0x

2 → FUV (x; t) for the short-distance prepotential (1.1). The descendants of
unity perform rather a reparameterization on the moduli space of gauge theory aj → T (aj) +
O(Λ2Nc), whose exact sense remains yet unclear.

We have considered in [2, 12] and above here the theory, where all tk with k > 1 and Tn with
n > 1 generate infinitesimal perturbations of the model on “small phase space”. Nevertheless,
all descendants deform the Seiberg-Witten curve (except for the “abelian” case of the P1 model),
which now turns to be a generic hyperelliptic curve (4.1), though still being “not to far” in
the moduli space from the Seiberg-Witten curve (4.2). In particular, we do not address any
questions, related with possible “large” deformations in moduli space, changing the genus etc.
Roughly speaking, if the t-deformations of the theory lead us towards the processes of generation
of fundamental multiples, in the same sense the T -deformations lead towards embedding of the
theory into the compactified higher-dimensional target spaces.
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Appendix

A Riemann bilinear identities

Equation (3.12), or

∂F
∂Tn

∣∣∣∣
t

=

∫
dz

. . .

∫
dz︸ ︷︷ ︸

n

S


0

(A.1)

gives rise to the mixed second derivatives

∂2F
∂tk∂Tn

=

∫
dz

. . .

∫
dz︸ ︷︷ ︸

n

Ωk


0

(A.2)

which should be compared to

∂2F
∂Tn∂tk

=
1

2
resP+z

kdHn = −1

2
resP−z

kdHn, (A.3)

following from (2.8). In order to establish equivalence between (A.2) and (A.3), consider the
integral along the boundary of the cut w-cylinder with the removed points P±∮

∂Σ

HndΩk = 2πi
∑

res HndΩk = 0 (A.4)

The integral in the l.h.s. can be rewritten as∮
∂Σ

HndΩk =

[∫
A+

+

∫
A−

]
HndΩk +

[∫
B+

+

∫
B−

]
HndΩk (A.5)

where we have chosen the following parameterization of the cut w-cylinder:

A+ : w = εeiϕ, 0 < ϕ < 2π

B+ : ε < w < R

A− : w = Reiϕ, 2π > ϕ > 0

B− : R > w > ε

(A.6)

The last term in the r.h.s. of (A.5) gives[∫
B+

+

∫
B−

]
HndΩk =

∫
B

(
H+
n dΩk −H−n dΩk

)
= 2πi

∫
B

zndΩk =

= 2πi
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)∣∣∣R
ε

(A.7)
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where, similarly to (3.13),

dnΩ
(n)
k

dzn
= Ωk, n ≥ 0 (A.8)

is introduced.

For the A-integrals one can write∫
A±
HndΩk =

∫
A±
H(+)
n (z)dΩk ∓ 2πi resP±z

kdHn (A.9)

where by residue the coefficient at the term z−1 is meant. The first term in the r.h.s. of (A.9)
can be integrated by parts using (3.3) and (A.8), giving rise to∫

A+

H(+)
n dΩk =

(
H(+)
n Ωk − nH(+)

n−1Ω
(1)
k + . . .+ (−)nn!H

(+)
0 Ω

(n)
k

)∣∣∣ε+
ε−

=

= 2πi
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)
(ε)
∣∣∣
div∫

A−
H(+)
n dΩk =

(
H(+)
n Ωk − nH(+)

n−1Ω
(1)
k + . . .+ (−)nn!H

(+)
0 Ω

(n)
k

)∣∣∣R−
R+

=

= −2πi
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)
(R)
∣∣∣
div

(A.10)

where in the r.h.s.’s one gets only the divergent parts of the corresponding expressions.

Altogether (A.4), (A.5), (A.7), (A.9) and (A.10) give rise to

0 =
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)∣∣∣R
ε

+

+
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)
(ε)
∣∣∣
div
−

−
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)
(R)
∣∣∣
div
−

−resP+z
kdHn + resP−z

kdHn

(A.11)

or, using the antisymmetry w.r.t. involution exchanging P+ and P−,

resP+z
kdHn = −resP−z

kdHn =

=
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)
(ε)
∣∣∣
const

=

= −
(
znΩk − nzn−1Ω

(1)
k + . . .+ (−)nn!Ω

(n)
k

)
(R)
∣∣∣
const

(A.12)

or
resP+z

kdHn = −resP−z
kdHn = (−)nn!

[
Ω

(n)
k

]
0

(A.13)

30



References

[1] A. S. Losev, A. Marshakov and N. Nekrasov, “Small instantons, little strings and free
fermions,” in Ian Kogan memorial volume, M.Shifman, A.Vainshtein and J. Wheater
(eds.) From fields to strings: circumnavigating theoretical physics, 581-621 [arXiv:hep-
th/0302191].

[2] A. Marshakov and N. Nekrasov, JHEP 0701 (2007) 104 [arXiv:hep-th/0612019].

[3] N. Nekrasov, Adv. Theor. Math. Phys. 7 (2004) 831 [arXiv:hep-th/0206161].

[4] I. Krichever, Commun. Pure. Appl. Math. 47 (1992) 437 [arXiv:hep-th/9205110].

[5] T. Eguchi and S. K. Yang, Mod. Phys. Lett. A 9 (1994) 2893 [arXiv:hep-th/9407134].

[6] T. Eguchi, K. Hori and S. K. Yang, Int. J. Mod. Phys. A 10 (1995) 4203 [arXiv:hep-
th/9503017].

[7] A. Givental, “Gromov-Witten invariants and quantization of quadratic hamiltonians”,
arXiv:math/0108100.

[8] A. Okounkov and R. Pandharipande, “Gromov-Witten theory, Hurwitz theory, and com-
pleted cycles”, arXiv:math.AG/0204305; “The equivariant Gromov-Witten theory of P1”,
arXiv:math.AG/0207233.

[9] A. Okounkov and R. Pandharipande, “Virasoro constraints for target curves”,
arXiv:math/0308097.

[10] G. Carlet, B. Dubrovin and Y. Zhang, “The extended Toda hierarchy”,
arXiv:nlin/0306060;
B. Dubrovin and Y. Zhang, “Virasoro symmetries of the extended Toda hierarchy”,
arXiv:math/0308152.

[11] T. Milanov, “Hirota quadratic equations for the extended Toda hierarchy”,
arXiv:math/0501336; “The equivariant Gromov-Witten theory of CP 1 and integrable hi-
erarchies”, arXiv:math-ph/0508054; “Gromov-Witten theory of CP 1 and integrable hier-
archies”, arXiv:math-ph/0605001.

[12] A. Marshakov, “On microscopic origin of integrability in Seiberg-Witten theory,”
arXiv:0706.2857 [hep-th].

[13] N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,” arXiv:hep-
th/0306238.

31



[14] K. Saito, “On the periods of primitive integrals”, Harvard Lecture Notes, 1980;
A. S. Losev, Theor. Math. Phys. 95 (1993) 595 [Teor. Mat. Fiz. 95 (1993) 307] [arXiv:hep-
th/9211090];
T. Eguchi, H. Kanno, Y. Yamada and S. K. Yang, Phys. Lett. B 305 (1993) 235 [arXiv:hep-
th/9302048].

[15] B. Logan and L. Shepp, Advances in Math. 26 (1977), no. 2, 206;
S. Kerov and A. Vershik, DAN SSSR, 233,1024(1977), (in Russian).

[16] N. Nekrasov, Nucl. Phys. B531 (1998) 323 [arXiv:hep-th/9609219];
A. Lawrence and N. Nekrasov, Nucl. Phys. B513 (1998) 239 [arXiv:hep-th/9706025];
A. Marshakov and A. Mironov, Nucl. Phys. B 518 (1998) 59 [arXiv:hep-th/9711156];
H. Braden, A. Marshakov, A. Mironov and A. Morozov, Phys. Lett. B 448 (1999) 195
[arXiv:hep-th/9812078]; Nucl. Phys. B 558 (1999) 371 [arXiv:hep-th/9902205].

[17] T. Maeda, T. Nakatsu, K. Takasaki and T. Tamakoshi, Nucl. Phys. B 715 (2005) 275
[arXiv:hep-th/0412329];
T. Nakatsu and K. Takasaki, “Melting crystal, quantum torus and Toda hierarchy,”
arXiv:0710.5339 [hep-th].

32


