Generalized connections and characteristic classes

by

H.-J. Kim

Max—Planck—Institut

fir Mathematik
Gottfried—Claren—Str. 26
5300 Bonn 3

Federal Republic of Germany

MPI/90-48



Generalized connections and characteristic classes

H.-J. Kim

Abstract. We study derivations on a smooth manifold, its twisted de
Rham cohomology, generalized connections on vector bundles and their
characteristic classes.

0. INTRODUCTION

On a smooth manifold M the most important differential operator is the exterior differ-
ential operator d, and it is the only “natural” first order operator up to a multiplicative
scalar [5]. This standard d is well understood, e.g., we have de Rham cohomology and
Poincaré lemma. But if we are interested in the special geometric properties of M, instead
of general or functorial properties, then the ordinary d is not enough, since it is too simple
and too general. For instance, Laplace operators or Yang-Mills equations play an imporant
role to understand the special object M. Also for a Morse function f on M, the operator
di = e odo e/, a l1-parameter family of connections on a trivial line bundle, is used
to obtain the Morse inequalities [7]. In this paper we will study all possible (first order)
derivations {1.1) on M, which includes, of course, the Cauchy-Riemann operators, when
M admits a holomorphic structure. In section 1 we review basic properties of derivations
[3] and its twisted de Rham cohomologies. These derivations are used to define generalized
connections (section 2). Then semi-connections [4] are generalized connections when M
is a complex manifold. These generalized connections appear also in the study of Higgs
bundles (e.g., [6]). When derivations are integrable (1.5), characteristic classes are defined
with values in the twisted de Rham cohomology spaces. The main result (2.5) and the
following remarks describe the relation between ordinary characteristic classes and the
twisted ones.

The original motivation of the study was to understand under what condition on a
complex manifold X, the m-th plurigenus '

Ppn(X) = dim HY(X, K&™)

is a smooth or deformation invariant. A naive approach is the following. For any topological
line bundle L over a smooth manifold M, assign a D-connection V : A°(L) — A'(L) to
each derivation D on M, in some canonical way, and study its kernel H% (M, L), like
the Riemann-Roch problem. Then the reformulation of the problem is that whether the
“D-genus of L”

Pp(L) = dim HY(M, L)

is independent of the choice of D, when restricted to Cauchy-Riemann operators (i.e.,
holomorphic structures). When D is the ordinary exterior derivation d, the canonical
choice of the connection on L is the one with the “harmonic curvature” (with respect



to some Riemannian metric on M), and when D is a Cauchy-Riemann operator 8, then
the canonical d-connection on L is a holomorphic structure on L. If M is a (compact,
oriented) 4-manifold with b%, the number of positive eigenvalues of the intersection form,
equal to 1, then every holomorphic structure on M has a vanishing geometric genus and
consequently every topological line bundle has a holomorphic structure. The uniqueness
of such structure is guaranteed if the first Betti number (M) vanishes. The final product
was somewhat independent of the original motivation.
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1. DERIVATIONS

Let M be a compact connected smooth manifold. The space of complez valued smooth
differential p-forms on M will be denoted by AP. T and TV denote the complezified tangent
and cotangent bundle of M and for any complex vector bundle E, the space of smooth
p-forms on M with values in E will be denoted by AP(E). Then A° is the algebra of
complex valued smooth functions on M and A°(T) is the space of (complex) vector fields
on M.

1.1. Definition. A complez derivation of degree 1 or simply a derivation on M is a
complex linear map
D: A% Al

such that D(fg) = D(f)g + fD(g) for f,g € A°.

Higher degree derivations are obtained if we consider operators from A® to A?. Real
derivations can be complexified to get complex derivations. Note that derivations are
local, i.e.,

support(D f) C support( f), feA

and hence they can be interpreted as morphisms of sheaves.

Let D be the set of all derivations on M. Then it is an A%-module isomorphic to
A®(EndT) ~ AY(End TV). For, if F: T — T or its dual F¥ : TV — TV is given, then

D=d" :=FVod
defines a derivation and any derivation is defined in this way uniquely, since
F(X)(f)=X]Df =:Dxf

for a function f and a vector field X on M. Under this isomorphism the ordinary exterior

derivation d corresponds to the identity endomorphism I. If F = 12(I 4+ +/—1J), where
J:T — T is an almost complex structure (i.e., a real operator with J2 = —I), then

8 =df
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is the Cauchy-Riemann operator, provided J is integrable. In general a derivation D = dF
may be considered as “d twisted by F”.
Note that the diffeomorphism group Diff (M) acts on D by

¢$-D=¢""oDog"

and the stabilizer of D is equal to Diff(M) if and only if D is proportional to d [5]. We
say that two derivations are eguivalent if they are in the same orbit.
The space DP of derivations of degree p is also an A°-module isomorphic to AP(T).
For D € D, we put
HYL(M) = ker(D).

Note that constant functions are always contained in this kernel and equivalent derivations
have the isomorphic kernels.

1.2. Definitions. A derivation D is said to be regular if HY(M) = C. If the associated
endomorphism F : T — T of a derivation D is an isomorphism, we say that D is elliptic.

The set of regular derivations form an open dense subset of D. Regularity and ellipticity
are Diff (M )-invariant notions. It is obvious that elliptic derivations are regular. But there
are many non-elliptic regular derivations, e.g., if F'is an isomorphism on a proper dense
subset and singular outside, then the associated derivation is non-elliptic and regular.
Holomorphic structures 8 are also such examples.

1.3. Theorem [3]. Any derivation D has a unique complex linear extension D : AP —
AP*Y such that

(1.3.1) Dd+dD =0
and
(13.2) D(¢ An) = D(€) A+ (—1)€ A Dp

for £ € A? and n € AS.
For example, if f € A, then dy := f-d: A® = A! has the extension
(14) 4|47 = f-d—p-df

where df : AP — APT! is the exterior multiplication.
The “symbol” of d¥ : AP - AP at L€ TY, z € M,

o(D,€) : NPTy — APHTY

is the exterior multiplication by FV(£). Thus our notion of ellipticity (1.2) is correct.
If D is a derivation associated to F: T — T, then Do D : A° — A? is a derivation of
degree 2 and hence it defines an element Ng of A%(T). Then

Np(X,Y)=[FX,FY]— F[FX,Y] - F[X,FY] + F*[X,Y]

for vector fields X, Y. We will call Np the Nijenhuis tensor associated to an endomorphism
F or a derivation D.

1.5. Definition. A derivation D is integrable if Do D = 0.
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1.6. Theorem [3]. A derivation is integrable if and only if the associated Nijenhuis
tensor vanishes.

PROOF: Note that DoD = 0 if and only if Do D|A®? = 0 by (1.3.2). Now the result follows
from the identity

D*f(X,Y) = Np(X,Y)f

where f is a function and X, Y vector fields. |§

Note that for any function f on M, dy is an integrable derivation (1.4). If D is integrable,
then for any scalar A, AD and D + Ad are integrable. In particular, if J is an integrable
almost complex structure, then F = 1/2(I + v/=1J) is also integrable.

When D is integrable, we call

HP(M) := ker(D : AP — AP*1)/D(AP7Y)

the p-th cohomnology space of M associated to D. By (1.3.2)

Hy(M) =) HYL(M)
p2>0

is a graded algebra over C. These “twisted” cohomology spaces are finite dimensional
when D is elliptic (and integrable) or is a holomorphic structure.. When D = d,

Hi(M)=H*(M)
is the ordinary de Rham cohomology algebra. When D = 0 is a holomorphic structure,

Hy= Y HY(M)
gt+r=p

where H2'" denotes the Dolbeault cohomologies.
1.7. Lemma [3]. For an integrable derivation D = d¥', APFV : AP — AP is a chain map
of the de Rham complex (A*,d) to the twisted one (A*, D), i.e., the diagram

d
AP —_— AP"‘]

APFVl lAy+1FV

AP — , Artl
D

commutes for every p.

We write the above relation simply by D o F'* = F* od. As a corollary,
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1.8. Theorem. For an integrable derivation D = d¥, there is a canonical homomorphism
F*:=A'FY:H* (M) - Hp(M),

between graded C-algebras, which is an isomorphism when D is elliptic.

Remark. When D = 8, a holomorphic structure on M, FP(HP(M)) C Hg’p(M), associ-
ated to the projection AP — Ag'p .

2. GENERALIZED CONNECTIONS AND CHARACTERISTIC CLASSES
Let E be a smooth complex vector bundle over M.

2.1. Definition. For a derivation D on M, a D-connection on E is a C-linear map
V: A%E) - AY(E)

such that V(fs) = Df - s+ fV(s) for f € A% and s € A°(E).

There always exists a D-connection and the set Conp(E) of all D-connections is an
affine space with the associated vector space A'(End E). When D = d, we put Con(E) =
Cong(E) and obtain ordinary connections. When D = 0, we obtain an element of
AY(End E). When D = 8, a holomorphic structure on M, such 8-connections are consid-
ered in the study of Higgs bundles (see e.g. [6]). Semi-connections in [4] are all 8-connec-
tions.

We put

(2.2) HY(E) = ker(V : A°(E) - AY(E)).

The following propositions are trivial.

2.3. Proposition. (1) Two generalized connections can be added, i.e., there is a map
ConDl(E) X COI}DQ(E) — COHD1+D,(E)

for any derivations Dy and Dy on M. This map is surjective.
(2) Let D = d* be a deriviation on M. Then the canonical affine map

FY: Con(E) — Conp(E), Vi FVoV=VF

is an isomorphism, when D is elliptic.

2.4. Proposition. (1) Let V, and V3 be D-connections on vector bundles E, and E,,
respectively. Then they induce, in a standard way, D-connections V1 & V3, V1 ® V3, VY
on E1 ® E;, E1 ® E2 and EY, respectively.

(2) Let V be a D-connection on E. Then there exists a unique linear extension V :
AP(E) — APYY(E) of V such that V(£-3) = D€ - s+ (=1)PEAVs for £ € AP, s € A°(E).
When D is integrable, RY = VoV is an element of A2(End E), called the curvature tensor
of V, satisfying the Bianchi identity Vgqa g(RY) = 0.
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IQS) Let D = d¥ be integrable and let V be an ordinary d-connection on E so that
=FVoV:A%E)— A'(E) is a D-connection on E. Then the diagram

AP(E) —— APHI(E)

APFVJ, 1AP+1 v

F

v
AP(E) ——— APYY(E)
commutes for every p. In particular, if R denotes the curvature of V, the the curvature of
vF is F*R := A’FY(R).

From now on we will assume that D is integrable. Then for any D-connection V on
E, the curvature tensor RV € A%*(End E) is well-defined and satisfies the Bianchi identity.
Now the Chern-Weil theory of characteristic classes [2] can be played once we replace the
ordinary cohomology groups by the twisted one. For instance

chp(E) = [Tr(ezp(Y—-R))] € Hp(M)

is independent of the choice of D-connection V on E . Now we have

2.5. Theorem. Let D = d¥ be an integrable derivation on M and let F* : H*(M) —

H}, (M) be the canonical map (1.8). Then for any complex vector bundle E on M,
F*(ch(E)) = chp(E),

where ch(E) is the ordinary Chern character.

PROOF: Let V be any ordinary d-connection on E with the curvature R. Then for D = dF,
V¥ is a D-connection with the curvature F*(R) = A?FV(R). Now

F*ch(E) = [F'Tr(e:cp(\é—;_lR))] = [Tr(ezp( \é?F

R))] = chp(E).

Remark. (1) More generally, the “Chern polynomial” can be replaced by any invariant
polynomial f: gl(r,C) — C, r =rk E, and the theorem is

F*(f(E)) = fp(E) € Hp(M)

for an integrable derivation D = dF.

(2) When D = 9, then the existence of a holomorphic structure on a smooth vector
bundle E over (M,d) is equivalent to the existence of a J-connection on E with the
vanishing “curvature” [1]. Thus if E admits a holomorphic structure, then ch3(E) =0 or

f5(E)=0€ Hg*(M) C H3(M)
for every invariant polynomial f on gi(r,C), as is well-known..
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(3) In a functorial point of view, an object in our category is a pair (M, F') of a smooth
manifold M and a smooth integrable endomorphism F' of the complex tangent bundle TM,
and the morphisms ¢ : (M;, F1) — (M, F3) are those that make the diagram

commute. Then characteristic classes behave “naturally”. Of course the ordinary category
of smooth manifolds and the category of complex manifolds are full sub categories of ours.
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