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Generalized connections and characteristic classes

H.-J. !(IM

Abstract. We study derivations on a smooth manifold, its twisted de
Rham cohomology, generalized connections on veetor bundles and their
characteristic classes.

O. INTRODUCTION

On a smooth manifold M the most important differential operator is the exterior differ­
ential operator d, and it is the only "natural" first order operator up to a multiplicative
scalar [5]. This standard d is weil understood, e.g., we have de Rham cohomology and
Poincare lemma. But if we are interested in the 3pecial geometrie properties of M, instead
of general or funetorial properties, then the ordinary dis not enough, since it is too simple
and too general. For instance, Laplace operators or Yang-Mills equations play an imporant
role to tmderstand the special object M. Also for a Morse function f on M, the operator
d t = e-tj

0 d 0 etj , aI-parameter family of connections on a trivial line bundle, is used
to obtain the Morse inequalities [7]. In trus paper we will study a1l possible (first order)
derivations (1.1) on M, whieh includes, of course, the Cauchy-Riemarm operators, when
M admits a holomorphic structure. In section 1 we review basic properties of derivations
[3] and its twisted de Rham cohomologies. These derivations are used to define generalized
connections (section 2). Then semi-connections [4] are generalized connections when M
is a complex manifold. These generalized connections appear also in the study of Riggs
bundles (e.g., [6]). When derivations are integrable (1.5), characteristi c classes are defined
with values in the twisted de Rham cohomology spaces. The main result (2.5) and the
following remarks describe the relation between ordinary characteristic classes and the
twisted ones.

The original motivation of the study was to understand under what condition on a
complex manifold X, the rn-th plurigenus

is a smooth or deformation invariant. A naive approach is the following. For any topologjcal
!ine bundle Lover a smooth manifold M, assign a D-connection V' : A0(L) -+ Al (L) to
each derivation D on M, in some canonical way, and study its kernel H~(M, L), like
the Riemann-Roch problem. Then the reformulation of the problem is that whether the
"D-genus of L"

PD(L) = dimH~(M,L)

is independent of the choice of D, when restrieted to Cauehy-Riemann operators (i.e.,
holomorphic structures). When D is the ordinary exterior derivation d, the eanonical
ehoice of the conneetion on L is the one with the "hannonie eurvature" (with respect



to some Riemannian metrie on M), and when D is a Cauehy-Riemann operator 8, then
the eanonieal 8-eonneetion on L is a holomorphic strueture on L. If M is a (eompaet,
oriented) 4-manifold with b+, the number of positive eigenvalues of the interseetion form,
equal to 1, then every holomorphie strueture on M has a vanishing geometrie genus and
eonsequently every topologieal Ene btmdle has a holomorphie strueture. The tmiqueness
of such strueture is guaranteed if the first Betti number b1 (M) vanishes. The final produet
was somewhat independent of the original motivation.

Acknowledgement. I Eke to thank Max-Planck-Institut für Mathematik, Bonn, where
I stayed during the preparation of the paper. I am also very grateful to professor T.
Mabuehi for explaining some eonjeetures about Kodaira dimension.

1. DERIVATIONS

Let M be a eompaet eonnected smooth manifold. The space of complex valued smooth
differential p-forms on M will be denoted by AP. T and T V denote the eomplexijied tangent
and eotangent bundle of M and for any eomplex veetor bundle E, the spaee of smooth
p-forms on M with values in E will be denoted by AP(E). Then AO is the algebra of
eomplex valued smooth funetions on M and AO(T) is the spaee of (eomplex) veetor fields
onM.

1.1. Definition. A eomplex derivation 0/ degree 1 or simply a derivation on M is a
eomplex linear map

such that D(fg) = D(f)g +!D(g) for !, 9 E AO.

Higher degree derivations are obtained if we eonsider operators from AO to AP. Real
derivations ean be eomplexified to get eomplex derivations. Note that derivations are
loeal, i.e.,

support(D!) C supporte!),

and henee they ean be interpreted as morphisms of sheaves.
Let V be the set of all derivations on M. Then it is an AO-module isomorphie to

AO(EndT) ~ AO(EndTV). For, if F: T -+ Tor its dual F V
: T V -+ TV is given, then

D = dF:= F V od

defines a derivation and any derivation is defined in this way uniquely, sinee

F(X)(f) = XJDf =: Dxf

for a function f and a veetor field X on M. Under this isomorphism the ordinary exterior
derivation d eorresponds to the identity endomorphism I. If F = 1(2(1 + HJ), where
J : T -+ T is an almost complex structure (i.e., a real operator with J2 = -I), then
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is the Cauchy-Riemann operator, provided J is integrable. In general a derivation D = dF
may be eonsidered as "d twisted by F" .

Note that the diffeomorphism group Diff(M) aets on 'D by

4>·D = 4>--1 oDo4>-

and the stabilizer of D is equal to Diff(M) if and only if D is proportional to d [5]. We
say that two derivations are equivalent if they are in the same orbit.

The space 'DP of derivations of degree p is also an AO-module isomorphie to AP(T).
For D E 'D, we put

H'b(M) = ker(D).

Note that constant funetions are always contained in this kernel and equivalent derivations
have the isomorphie kerneis.

1.2. Definitions. A derivation D is said to be regular if H'b( M) = C. H the associated
endomorphism F : T ---+ T of a derivation D is an isomorphism, we say that D is elliptic.

The set of regular derivations form an open dense subset of 'D. Regularity and elliptieity
are Diff(M)-invariant notions. It is obvious that elliptie derivations are regular. But there
are many non-elliptie regular derivations, e.g., if F is an isomorphism on a proper dense
subset and singular outside, then the associated derivation is non-elliptic and regular.
Holomorphie struetures aare also such examples.

1.3. Theorem [3]. Any derivation D has a unique complex linear extension D : AP ---+

AP+l such that

(1.3.1 )

and

(1.3.2)

Dd+ dD = 0

for eE AP and 1] E A q •

For example, if f E A 0
, then df := f .d : A° --+ A 1 has the extension

(1.4)

where df : AP ---+ AP+1 is the exterior multiplication.
The "symbol" of dF : AP ---+ AP+1 at eE T:, x E M,

0"( D, e) : /llT: ---+ J\P+1 T:

is the exterior multiplieation by FV(e). Thus our notion of ellipticity (1.2) is correet.
H D is a derivation aJJ Deiated to F : T ---+ T, then D 0 D : A° ---+ A2 is a derivation of

degree 2 and heuce it defines an element NF of A2(T). Then

NF(X,Y) = [FX,FY] - F[FX,Y] - F[X,FY] +F 2 [X,Y]

for vector fields X, Y. We will call N F the NijenhuiJ tenJor associated to an endomorphism
F or a derivation D.

1.5. Definition. A derivation D is integrable if D 0 D = O.
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1.6. Theorem [3]. A derivation is integrable if and only if the associated Nijenhuis
tensor vanishes.

PROOF: Note that DoD = 0 if and only if DoDIAo = 0 by (1.3.2). Now the result follows
from the identity

where f is a function and X, Y vector fields. I

Note that for any function fon M, df is an integrable derivation (1.4). If Dis integrable,
then for any scalar A, )..D and D + Ad are integrable. In particular, if J is an integrable
almost complex structure, then F = 1/2(1 +HJ) is also integrable.

When D is integrable, we call

the p-th cohomology space of M associated to D. By (1.3.2)

Hö(M) = 2: Hß(M)
p~O

is a graded algebra over C. These "twisted" cohomology spaces are finite dimensional
when D is elliptic (and integrable) or is a holomorphic structure.. When D = d,

is the ordinary de Rham cohomology algebra. When D = ä is a holomorphic structure,

H~ = 2: H~,r(M)
q+r=p

where HJ,r denotes the Dolbeault cohomologies.

1.7. Lemma [3]. For an integrable derivation D = dF, t-l FV : AP ~ AP is achain map
ofthe de Rham complex (Ae,d) to the twisted one (A·,D), i.e., the diagram

d
I AP+lAP

APFvl 1"p+l F V

AP I AP+l
D

commutes for evelJ' p.

We write the above relation simply by D 0 Fe = Fe 0 d. As a corollary,
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1.8. Theorem. Fbr an integrable derivation D = dF, tbere is a canomcal bomomorpbism

between graded C-algebras, wbich is an isomorphism when D is elliptic.

Remark. When D = 8, a holomorphic structure on M, FP(HP(M)) C H~'P(M), associ­

ated to the projection AP -+ A~'p.

2. GENERALIZED CONNECTIONS AND CHARACTERISTIC CLASSES

Let E be a smooth complex vector bundle over M.

2.1. Definition. For a derivation D on M, a D-connection on E is aC-linear map

V' : AO(E) -+ AI(E)

such that V'(/s) = D/· 8 + /V'(8) for / E AO and S E AO(E).

There always exists a D-connection and the set ConD(E) of all D-connections is an
affine space with the associated vector space AI(EndE). When D = d, we put Con(E) =
Cond(E) and obtain ordinary connections. When D = 0, we obtain an element of
A I (End E). When D = 8, a holomorphic structure on M, such li-connections are consid­
ered in the study of Higgs bundles (see e.g. [6]). Semi-connections in [4] are all li-connec­
tions,

We put

(2.2)

The following propositions are trivial.

2.3. Proposition. (1) Two generalized connections can be added, i.e., tbere is a map

for any del'ivations D I and D2 on M. Tbis map is surjective.
(2) Let D = dF be a deriviation on M. Tben tbe canomcal affine map

pV : Con(E) -+ ConD(E),

is an isomorpbism, wben D is elliptic.

2.4. Proposition. (1) Let V'1 and V'2 be D-connections on vector bundles EI and E 2 ,

respectively. Tben they induce, in a standard way, D-connections V'1 ffi V'2, '\71 0 V'2, V'Y
on EI ffi E 2 , EI 0 E 2 and E~ , respectively.

(2) Let V' be a D-connection on E. Tben there exists a unique linear extension '\7 :
AP(E) -+ AP+I(E) ofV' such tbat '\7(€, 8) = D€ . 8 + (-l)P€ /\ '\78 for € E AP, 8 E AO(E),
Wben D is integrable, R V = V' 0 '\7 is an element of A2(End E), called the curvature tensor
of V', satisfying the Bianchi identity V'End E(RV ) = O.

5



}3) Let D = dF be integrable and let V' be an ordinary d-connection on E so that
V' = pv 0 \J : AO(E) -t- Al (E) is a D-connection on E. Then the diagram

V
I AP+l(E)AP(E)

I\PF
V1 1I\p+l F V

v F

I AP+l(E)AP(E)

commutes for every p. In particular, if R denotes the curvature of \J, the the curvature oE
\JF is FeR := 1\2 FV(R). .

From now on we will assume that D is integrable. Then for any D-connection \J on
E, the curvature tensor R V E A2(End E) is well-defined and satisfies the Bianchi identity.
Now the Chern-Weil theory of characteristic classes [2] can be played onee we replace the
ordinary cohomology groups by the twisted one. For instance

is independent of the choice of D-conneetion \J on E. Now we have

2.5. Theorem. Let D = dF be an integrable derivation on M and let pe : He(M) -+

HiJ(M) be the canonical map (1.8). Tben for any complex vector btmdle E on M,

pe(ch(E)) = ChD(E),

where ch(E) is the ordinazy ehern cbaracter.

PROOF: Let \J be any ordinary d-connection on E with the eurvature R. Then for D = dF,
\JF is a D-connection with the curvature pe(R) = 1\2PV(R). Now

A Apech(E) = [FeTr(exp(~R))J = [Tr(exp(~FeR))] = chD(E). •

Remark. (1) More generally, the "Chern polynomial" ean be replaeed by any invariant
polynomial f : gier, C) -i' C, r = rkE, and the theorem is

FeC/(E)) = /D(E) E Hn(M)

for an integrable derivation D = dF.
(2) When D = 8, then the existence of a holomorphie strueture on a smooth vector

bundle E over (M, ä) is equivalent to the existence of a ä-conneetion on E with the
vanishing "eurvature" [1]. Thus if E aclmits a holamorphie structure, then chlJ(E) = 0 or

for every invariant polynomial / on gier, C), as is well-known.\
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(3) In a functorial point of view, an object in our category is a pair (M, F) of a smooth
manifold M and a smooth integrable endomorphism F of the complex tangent bundle TM,
and the morphisms 1> : (MI, F I ) ~ (M2 , F2 ) are those that make the diagram

AO
Ft

V od
Al

Mt • Mt

~·r T~.

A~2 J Al
F

2
v o d M2

commute. Then characteristic classes behave "naturally". Of course the ordinary category
of smooth manifolds and the category of complex manifolds are full sub categories of ours.
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