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0. Introduction.

The main purpose of this paper is to show a sﬁ‘ong version of rectylinearization theorem
for subanalytic functions (Theorem 2.7). Our original aim of introducing this theorem was
the proof of existence of Lipschitz stratification for subanalytic sets [P] but it turned out
that it can be used also to study arc-analytic functions. Therefore, we have decided to state
it separately.

Our approach to subanalytic geometry is based mostly on [H1], where the two major
techniques used are desingularization and the local flattening theorem. To make our con-
siderations elementary one may use instead Hironaka’s desingularization various theorems
of Bierstone and Milman [B-M1]. Also the local flattening theorem can be replased by a
weaker result (Corollary 1.2), where instead of flatness we required only equidimension-
ality of the morphism. We present a short proof of this result in Section 1. In Section 2
we state and give a proof of our rectylinearization theorem which we use in Section 3 to

study the properties of arc-analytic functions.
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1. Local blowings-up.

Let X — M be a morphism of complex analytic spaces. We asumme for simplicity that
M is nonsingular. Let s, : W, — A be a composition of local blowings-up with smooth
and nowhere dense centers. By a local blowing-up we mean here a composition of an open
imbeding and a blowing-up (see [H1] or [B-M1] for the exact definitions).Let E, C: W,

denote the union of corresponding exceptional divisors of s,. By the strict transform

(Xa, fa) Of f by s, we mean the smallest analytic subspace X, of the fibre product
X xpm Wq which contains X x 37 (W \ Eo) and the map f, : Xo — W, induced by the
projection. Let us denote the other projection X, — X by 3,. In [H1] Hironaka showed

the local flattening theorem which we state as follows.

Theorem 1.1. Let f: X — M be a morphism of complex analytic spaces and assume
that M is nonsingular. Let L and K be compact subsets of X and M respectively.

Then, there exists a finite number of analytic morphisms
Sa i Wo = M,

such that:

(1) each sq is the composition of a finite sequence of local blowings-up with smooth
nowhere dense centers;
(2) for each « there is a compact subset K, of W, and

U sa(Ko) =K,

o 4

(3) the strict transforms fo : Xo — W, are flat at every point ¢ € X, corre-
sponding to L (i.e. at every z € §,%(L)).
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REMARK. To have the centers nonsingular we need some kind of desingularization
theorem. Since the statement already involves local blowings-up it is enough to use

Theorem 4.4 of [B-M1] (see the end of the proof of Corollary 1.2).

Hironaka used his flattening theorem to study the properties of subanalytic sets. For this
purpose it is enough to have a weaker result with equidimensionality instead of flamess.
We present a short proof of this result. The idea of proof is similar to that in [B] (one can

also use the approach of [D-D]).

Corollary 1.2, Let f : X — M, L, K be as in Theorem 1.1. Then, there exists a
finite number of maps

St Wo — M,

satisfying (1) and (2) of Theorem 1.1 and

(3°) the strict transforms fo : Xy — Wy satisfy at every point z € X, correspond-

ing to L the following equidimensionality property

dim(f3 ' (fa(z)),z) = dim(Xq,z) — &imM .

Proof.
Topological preparation.

We start with simple topological preparation which allows us to proceed with induction.
Assume that we have constructed a family ¢35 : V3 — M, Kg C Vj, satisfying the
conditions (1) and (2) of the statement. Let fg : Xg — Vj denote the corresponding strict
transforms. Fix, for each 3, a relatively compact subset Ug of Vg which contains I{s.

Note that the set Ly C X of points of fy 1(Tg) corresponding to L is compact.
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Assume that we have found for each (fg, Lg, Kg) a family sgo : Wga — Vaa, Kga C
Waa, satisfying the statement of Corollary 1.2. Then, it is easy to see that the family of
all {5 0 s,gc,|,;;(up), Kga N sgé(I(g) satisfies the statement.

In particular, in the proof we may proceed locally on A{. This means that it is enough
to show the corollary for a small neighbourhood U, of each point z € K, a compact

subneighbourhood K, of U; and L, = LN f~1(K,).

Induction
Let n = dimm M, The proof is by induction on
s = mazger {dim(f 1 (f(x)),z) + n — dim(X,z)}.
Since, by topological preparation, our problem is local on M, we may assume that M
is an open neighbourhood U of the origin in C™. Fix zo € L N f~1(0) and assume that

X is of pure dimension m in a neighbourhood of zo. By localizing X about zo, we may

assume that f is induced by a projection
zo=0eX —— UxC*

!

U
Let r = dim(f~1(0),0).

If » = m — n there is nothing to prove. Since always » > m — n, we may assume that
s=r4+n—-—m>0.

Let r < k. Then, there exists a linear projection p : C* — C7 such that (f,p)|(x,0) :
(X,0) — (U x C",0) is finite. So its image Z is an m-dimensional analytic subset
of a neighbourhood of the origin in U x C". Since s = r +n —m > 0, we have
(Z,0) # (U x Cr,0), and therefore there exists a nonzero function F' € O(yxcr 0y which

vanishes identically on (Z,0). Let us write it in a neighbourhood of the origin as

Fy,t)=>_ Ag(y)t?, where (y,t) €U xC".
B
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Let o : U’ — U be the blowing-up of the ideal I generated by all Ag (so by the finite

number of them). Consider the following diagram

7 ZxpU cU xCr
| |
U — U

Let Z' denote the strict transform of Z by o. At each point yo € U’ the ideal (6*I),,
is invertible (i.e. principal and generated by some Ag o o). Let us denote by y' the

coordinates near yg. Then, near y,

Flo(y) = Ap(a( )W) = D, (o(y))-F'(¥',1),
B

where

F'(y',t) =Y Ap(y)tf and Ay = (Agoa)/(Ag, 00).
B

It is easy to see that Z' C F'~'(0) and F” does not vanishes identically on any fiber of
the projection U’ x C™ — U,

From the above follows that if we consider the analogous construction for f, then for
the strict transforms f', X' of f, X by ¢ and every point z' € X' corresponding to zo we

get
(1.1) dim(f' " (f'("),z') +n — dim(X',2') < s.

Observe that if = = k, then we simply apply the above construction without choosing
the projection p (so Z = X) to obtain (1.1). By the construction, (1.1) holds also for all
z' € X' corresponding to a neighbourhood of z¢ in L.

If X is not of pure dimension, then it is near L the union of finitely many pure dimen-
sional analytic spaces X;. In this case we apply the above arguments to each X; — Af

separately, let us say by blowing up the ideal I;. If we blow up the product [ I;, then each

5



(o*I;) becomes invertible and consequently we get (1.1) for all the points corresponding
to a neighbourhood of z, in L. Since LN f~!(0) is compact we may cover it by a finite
number of open subsets V;, such that we get (1.1) for the points of corresponding of V;
by blowing-up the ideal J;. Then, by the same argument as above, the blowing-up of the
ideal [ J; gives (1.1) for the points corresponding to a neighbourhood of L N F740) in
L.

The only thing which lacks above is the smoothness of the centers. In fact we do
not need the blowing-up of a given ideal I but the compositions of local blowings-up
with smooth centers ¢ such that ¢*I is locally invertible. This can be achieved by using
Desingularization II of Hironaka [HS] or Theorem 4.4 of [B-M1] together with Lemma

4.7 (ibid.). This ends the proof.

W

Real case.

Let f : X — M be a morphism of real analytic spaces and assume again that Af is
nonsingular. Let L, be compact subsets of X and M respectively. Apply Corollary 1.2
to a complexification f : X — M of f. It follows from the proof of Corollary 1.2 that
in this case the local blowings-up in the statement can be choosen as complexifications of

local real blowings-up.

In fact, for z € L the ideal I C O,, where y = f(z), which we have to blow up can be
choosen real (i.e. generated by complexifications of real analytic functions). Therefore we
get a blowing-up & : U’ — U which is a complexification of a real analytic blowing-up
o:U — U. Let f': X' - U’ be the strict ransform of f by . Then the set of
points of X' corresponding to L is contained in the real part of X' (i.e. invariant under

autoconjugation of X'). This is certainly the case for the points outside f'~!(E) (where E
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is the exceptional divisor of #), and therefore, since X' \ f’—l(E’) = X' (set theoretically),
holds everywhere.
Thus, from the proof of Corallary 1.2 we can derive its real version (which can be also

obtained from 4.17 of [H1]).

Corollary 1.3. Let f : X — M be a complexification of a morphism of real analytic
spaces f : X — M and assume that M is nonsingular. Let L, K be compact
subsets of X and M respectively. Then, one can choose 54 : Wo — M satisfying the
statement of Corollary 1.2 as complexifications of the compositions of finite sequences
of real-analytic local blowings-up with smooth nowhere dense centers so : Wy — M.

We can choose also K, as subsets of W,,.

2. Rectylinearization of subanalytic functions.

In this section we shall prove a version of Rectylinearization Theorem for subanalytic

functions (Theorem 2.7).

DEFINITION 2.1. Let U be an open subset of R". We call a function f : U - R
subanalytic if the closure of its graph 'y in R™ x P! (where P! = R U {co} is the

real projective line) is subanalytic.

One may also define subanalytic functions as those whose graph is subanalytic only in
R" x R (see for example [D-L-S]). In this way one gets a broader class of functions
for which our rectylinearization (Theorem 2.7) does not hold. Note that a function f is

subanalytic in our sense if and only if f and f —1 is subanalytic in the weaker one (see also
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[K1] the classes SUB(M) and SUBB(M)). Note that both classes coincide for f locally
bounded on R".

The sum and the product of subanalytic functions is again a subanalytic function ((K1])
(on the intersection of the domains) and the same is true for the quotient on the set where
the denominator is not zero. Each subanalytic function f : U — R is analytic on an open
dense subanalytic subset of U. This shows that the notion of the partial derivatives of f
makes sense (on the obvious domain) and it is again a subanalytic function [K1].

Let us, throughout this section, denote the standard projections R"* x P! — R", R" x

P! — P! by 7, and =, respectively.

DEFINITION 2.2. Let M be an analytic manifold (over K = R or C) and let f be

an analytic function on M. We say that f is locally normal crossings if each point

of M admits a coordinate neighbourhood U, with coordinates z = (z1,22,... ,Zn),
such that
(2.1) f(z) =223 ... 23" g(2),

where x € U, «; € N and ¢ is analytic and nowhere vanishes in U.

We say that f is normal crossings if (2.1) can be achieve in one coordinate system
(M =UcCK").

Note that the function which is identically equal to zero is not normal crossings. By
this convention, if ] f; is (locally) normal crossings, then each of f; is (locally) normal
crossings.

By [B-M1] and [H1] one may describe the continuous subanalytic functions as follows.

Proposition 2.3. Let U be an open subset of R™ and let f : U — R be a continuous

subanalytic function. Then there exist a real analytic n-dimensional manifold N and
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a proper surjective real analytic mapping ¢ : N — U such that fo ¢ is locally normal

crossings (on these components of N where it does not vanish identically).

We sketch very briefly the proof of Proposition 2.3.

By the resolution of singularities there exist a real analytic manifold A and a proper
real analytic map ¢ : M — R" x P! whose image is just T'; (Theorem 0.1 of [B-M1] or
Proposition 8.1 of [H1]). The function f o 7 0 is analytic on ¥~ (U) and now we may
apply to it the rectylinearization theorem for analytic functions (Desingularization II [H2]

or Theorem 4.4 of [B-M1]). This gives the result.

DEFINITION 2.4. A subset X of R"™ is a (closed) quadrant if there is a partition of

{1,2,... ,n} into disjoint subsets Iy, I_ and I, such that

X={zeRYai=0ifit€lp,z; <0ift€l_andz;>0ifiel;}.

DEFINITION 2.5. We call a familly of real analytic morphisms
Sq: Va—= R, a€e]

locally finite if for each compact K C R", s7'(K) = § for all but finite number of «.

The rectylinearization of subanalytic sets may be obtain by maps of special form, namely
the compositions of local blowings-up (see Theorem 7.1 of [H1]). For closed subanalytic

subsets of R"™ it can be expressed as follows.

Theorem 2.6. Let X be a closed subanalytic subset of R™. Then there exist a locally
finite collection of real analytic morphisms
S5 : Ve = R"
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such that each of them is the composition of a finite sequence of local blowings-up

with smooth centers and:

(1) each V, is isomorphic to R™ and there are compact subsets K4 of Vo such
that | J, sa(Ko) Is a neighbourhood of X in R™ ;

(2) for each o, s;'(X) is a union of quadrants in R™.

We will show Theorem 2.6 during the proof of Theorem 2.7 (see Remark 2.9). It
is interesting to ask whether the rectylinearization of subanalytic functions (Proposition
2.3) may be also obtained by local blowings-up. The following simple example shows
that generally this is not possible. The function f(z) = |z|'/", » € N is a well defined
subanalytic (even semialgebraic) function on R but any blowing-up can not change R.
Note that the obvious substitution z = +y*" makes f analytic and normal crossings.

In [B-M2] Bierstone and Milman have develloped a method which shows that the
compositions of local blowings-up and substitution of powers give rectylinearization of any
continuous subanalytic function. We shall prove below that in fact in this compositions it
is enough to substitute powers only at the last step after all local blowings-up. This result
we shall use in the next section to give a new proof of Theorem 1.4 of [B-M2] and in [P]

to construct a Lipschitz stratification of subanalytic sets.

Theorem 2.7. (Rectylinearization of subanalytic functions)
Let U be an open subset of R™ and let f : U — R be a continuous subanalytic

function. Then there exist a locally finite collection U of real analytic morphisms
¢a: Wo = R”

such that:

(1) each W, is isomorphic to R™ and there are compact subsets K, of W, such
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that |, ¢a(Ka) is a neighbourhood of U;

(2) for each o there exist r; € N, 2 =1,...,n, such that

¢a=00°¢aa

where 0 is the composition of finite sequence of local blowings-up with smooth

centers and
(2.2) Yalz) = (6127, 62252, ... ,€nzy), for some €; = —1lor1l;

(3) for each «

$a(Wa) CU

and f o ¢o extends from ¢ '(U) on Wy to one of the following functions:

(a) the function identically equal to zero;

(b) a normal crossings ;

(c) the inverse of a normal crossings (this can happen only if $,(0) € U\U);
(4) if go =00 0o € ¥ and ¢o(0) € U, then ¢o(Wy) C U and for each ¢ like in

(2.2) (i.e. with all possible €;, but fixed r;) the composition oo 0 € U.

Proof. Let f: U — R be as above and let us assume for simplicity that U is relatively
compact. By the resolution of singularities (or Theorem 0.1 of [B-M1]) there exist a real
analytic manifold N and a proper real analytic map ¢ : N — R"™ x P! whose image is
just Ty.

We apply Corollary 1.3to 7y 0¢: N — R", L = N and K a compact neighbourhood
of U, and let s4 : Wy — R" K, C W, be the maps and compact sets satisfying
the statement of this corollary. Take one of them s = s, : W = W, — R". Let
(1 0¢) : N' = W be a strict transform of a complexification of (7; o ¢) which is, by
assumption, a finite map.
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Consider N' = N xrn (W \ E) C N’, where E denote the union of the exceptional
divisors. Let (m; 0¢) : N' —» W, s’ : N' — N be the map induced by tse standard
projections.

Then, the image I of N’ in W x P! by the map ((m; 0 ¢)', 72 0 $ 0 s') is contained in
a proper analytic subset of W x P! (since Zﬂ'l o ¢) is finite) whose projection on W is

finite. Moreover, in our case, I is just the closure of the graph of
g=fo.9:s_1(U)—+R,

so the fibres of the projection IV — W over s~!(U) are just single points ( at all points
of W they are finite).
Take any zo € K,. Choosing coordinates near zo we may assume that it is the origin

in R™. By the above g satisfies near an equation of the type

0,

k l

2.3) 6"+ aid" (67 + D a9
i=1 j=1

where all a;, a; are analytic in a neighbourhood of the origin and &;(0) = O for all j. By

Topological preparation (Section 1), it is enough to show the statement for ¢ restricted to

a small neighbourhooud of z,.

We consider two different cases: the first when zo € s7(U), so g is well defined and

continuous in a neighbourhood of g, and the second z € s~(U \ U).

Case 1. zo € K,Ns~ (V)
Then (2.3) has a form

k
gk +Zai'gk—i = 01

=1

and we may assume that the discriminant A(z) of

k
(2.4) F(t,z)=t*+> ai(z)t*" teR

=1
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is not identically equal to zer0.

Now we apply Theorem 4.4 of [B-M1] to make, after using again local blowings-up with
smooth centers, A and the first not identically equal to zero a; (i.e. either ap or a;) normal
crossings. Note that the discriminant of a complexification of F' is a complexification of
A and consequently is also normal crossings (in a neighbourhood of the origin).

For § = (61,...,6,) € R} we denote Us = {z € C" : |z;| < §;}. The following

observation is due to Sussman §5 of [S].

Lemma 2.8. Let G(t,z) = t* + EL] a;-t*=! be a complex analytic function defined
in C x Us and assume that the discriminant A(z) of G is normal crossings. Then,

there exist positive integers r; such that for any €¢; =1 or —1

E
2.5) G(t, 1yt 2057, ... enyi) = [ (2 = bi(w))
=1
in C x Ug, where §' = (5i/r1,... ,5,1,/”') and b; are complex analytic functions

(depending maybe on €;).
Moreover, all the differences of b; are normal crossings and If the first not identically

equal to zero a; is normal crossings, then so are all not identically equal to zero b;.

REMARK. We need to consider various €; since we are interested in the real domain
and the images of all real maps y — (€1y1",€2¥3%, ... ,€nyn") (with fixed r; but all

possible €; = 1 or ~1) cover the neighbourhood of the origin in R".

Proof. By assumption, the projection of the zero set Z of G on U; is finite. Fix
i =1,...,n and take a point 2° € H; = {z; = 0,z,; # 0for j # ¢}. Then, by the
Puiseux Lemma (with parameter) and the assumption on the discriminant we may find r;
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such that the substitution ~
T = E;y,-‘,

zj=y; if j#1,
for all possible ¢;, gives (2.5) near z°. Such r; does not depend on the choice of = € H;
(in the sense that if it is good at one point it is so at the others). Take such r; (for each
1) and fix also all ;. Then, b; satisfying (2.5) are well defined as a (not ordered) set of
analytic functions in the complement of a subset of (complex) codimension 2. Since such
a subset has to be simply connected, b; are in fact well defined bounded complex analytic
functions outside this set. By the Hartogs Theorem we may extend b; on the whole Ul
of the origin which proves the first part of the lemma.

Since the discriminant of G(t,e1y1",€2¥5°,... ,ExYn") is normal crossings so are the
differences of b;. The product of all b; equals (—1)*ag(e1y]*, €2y5?, .. . ,€nyi™), and con-
sequently, if a, is normal crossings so are the differences of b;. If ap = 0, then so is exactly
one of b; and the product of the rest of b; equals (—1) ~1a;(e1y]", €237, ... ,€nyin),

which is by assumption normal crossings. This end the proof of the lemma.

g

Apply the lemma to a complexification of F'. Then there exist positive integers 7; such

that in a neighbourhood of the origin

ky (k—k1)/2
F(t,eiyit, €293, senyy) = [J = 0:i)) [I (=)t - %)),
i=1 j=1

where b; are real analytic functions and ¢; are complex-valued real analytic functions. Fix

c=c¢; =d+1-¢ where d = Re(c), e = Im(c). Then
(t—c)(t—¢) = (t—d)? + ¢,

and since A is normal crossings so is e = %(c —T). Thus we have got the real-analytic

version of Lemma 2.8.
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Lemma 2.9. Let F(t,z) = t* + Z:’;l a;-t*~' be a real analytic function (t € R, z
from a neighbourhood of the origin in R" ) and assume that the discriminant A(z) of
F' is normal crossings. Then, there exist positive integers r; such that for any €; = 1

or —1 and in some neighbourhood of the origin

k1 (k—kl)lz
F(tery,eaus?, .. enunr) = [[(t = 0:w)- [ (¢ —di)? +€(w)),
j=1

=1

where b;, di, and e; are real analytic functions (depending maybe on ;).
Moreover, all the differences of b; and all e; are normal crossings and if the first
not identically equal to zero a; is normal crossings so are all not identically equal to

zero b;.

We continue the proof of Theorem 2.7. Take r; satisfying the statement of Lemma 2.9

for F given by (2.4) and fix all €;. The function

h‘(y) = g(ely;1162y;2y e aeny:;")

is continuous, real-valued, subanalytic and satisfies the equation

ki (k—k1)/2

[1n - 5)- H ((h—dj)*+¢€3)=0.

i=1
Since all e; are normal crossings ((h—d;)?+e%) can vanish only on the union of coordinate

hyperplanes H = {y;-y2-...-yn = 0}. Therefore, since h is continuous,

ky
[J(r-b)=0.

i=1

This does not necessarily mean that A equals one of b;, but this happens on H, =

{yi 2 0¢=1,2,... ,n} since on H4 \ H all b; are distinct. Therefore, if we substitute
yi =2z},1=1,2,...,n (the images of z — (€122 ,64223"%,... ,€,22"") with various ¢;

cover the neighbourhood of the origin in R") we get

h(zf,z%,... ,2,21) = bi(212,2-;2;,... ,zi)
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for each z from a neighbourhood of the origin in R™ and some b;. This ends the proof of

Case 1.
REMARK 2.10. Thoerem 2.6 follows from Case 1 applied to f(z) = dist(z, X).

Case 2. (z0 € KoaNs~ (U \U)

By Theorem 2.6 we may assume that s~!(U) is a union od quadrants. As in Case
1 we make the first not identically equal to zero a; and @; and the discriminants of
F(t,z) = t* + T ai(x) t*~% and F(t,z) = t~' + 3\, @;(z)-/~' normal crossings.
We may also do it simultaneously for z,-z3-...-z, so s~(U) remains to be a union of

quadrants. By Lemma 2.9 applied to F' and F', the function h we get satisfies an equation

of the type

The rest of the proof is the same as in Case 1. This ends the proof of Theorem 2.7.

O
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3. Arc-analytic functions.

Let M be a real analytic manifold and let dimM = n. We call a function f : M — R,
arc-analytic_if f o+ is analytic for every analytic arc v : I — M (where I = (0,1) C R).
This notion was introduced by Kurdyka in relation with arc-symetric semi-algebraic sets
[K2] (he considered only functions with semi-algebraic graphs), but in fact appeared before
in the works of Kuo on blow-analytic equivalence [Ku]. He considered the maps f : X —
Y of real analytic spaces, which he called blow-analytic i.e. which become analytic after
composition with modifications X' — X. He also gave a nontrivial example f : R? — R,
defined by f(z,y) = zy/(z* + y?), f(0,0) = 0. It is obvious that the blow-analytic
functions are arc-analytic and it is interesting to ask whether the converse is true (maybe
with additional assumptions). This question was first posed by Kurdyka. Namely, he
asked whether an arc-analytic function with a semi-algebraic graph is blow-analytic. The
affirmative answer was given in [B-M1] Theorem 1.1 by Bierstone and Milman, where
they also gave a characterization (Theorem 4.4 of [B-M2]) of arc-analytic functions with
subanalytic graph as “weakly” blow-analytic i.e. such functions which become analytic
after compositions with local blowings-up. Here we present a proof of this result based

on our rectylinearization of subanalytic functions (Theorem 2.7).

Theorem 3.1. A function f : M — R is arc-analytic and has a subanalytic graph if
and only if there is a locally finite family of analytic morphisms {m; : M; — M} and
compacts K; C M; such that:

(1) Uni(K;) = M;

(2) Each 7; is a composite of finitely many local blowings-up with smooth centers;

(3) Each f owj is analytic .
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Proof. The "if” is obvious. Since the problem is local we may assume that M = U C
R" is a small neighbourhood of the origin. By simple argument (see Lemma 6.8 of [B-M2])
each arc-analytic function with subanalytic graph is continuous. Let ¥ = {¢4 = 00 0%}
be a family satisfying the statement of Theorem 2.7 for (f,U). Fix ¢ = o, and the
corresponding r; € N. Then h = f o ¢ is arc-analytic and for each 1 like in (2.2) ko) is
normal crossings (in particular analytic). We shall show that it follows that & is analytic.

Fix 1 (and so the ¢;’s) for a moment. Let

hop(y)=> agy®.

Therefore, on Hy.,} = {z € R";¢;-z; 2 0fori=1,2,... ,n}

h(z) = Z ag H(gi.mi)ﬂ;/r.— .

Suppose that for some 3° one of coordinates 3! is not divisible by r; and ago # 0.

Then, for generic ¢ = (¢y,...,&,... ,¢n), such that €;-¢; > 0 for each j # i,

7(t) = h(C],. . ,C,‘_l,t,c,'+1,,, . 1Cn)

has the Puiseaux expansion with nonzero coefficient at ¢82/i . This Cdntradicts the as-
sumption that A is arc-analytic. Therefore, h is analytic on the quadrant Hy,,} = {z €
R";¢;-z; > 0} (ie. extends to an analytic function on a neighbourhood of Hy.,)).
Denote by {hi} the family of the obtained analytic functions (one for each quadrant
H{e;})- We claim that they give one analytic function. If not, then would exist two points
q1,92 € R™ such that in a neighbourhood of ¢; we have h = hi,, A(q1) # hi,(g1) and in
a neighbourhood of ¢ we have h = hy, and h(g2) # hi,(g2). But we may join ¢; and ¢,
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by an analytic arc (simply a line) and since h is arc-analytic we get a contradiction. This

ends the proof of the theorem.

O

REMARK. The assumption on subanalycity of the graph is essential. One may con-
struct an arc-analytic function whose graph is not subanalytic (B-M-P], [K3] or even

an arc-analytic function which is not continuous [B-M-P].

We call a function f : M — R weakly arc-analytic if for each analytic v : [0,1] — M

the composition f o« is analytic in a neighbourhod of 0. By the same argument as in
Lemma 6.8 of [B-M2], a weakly arc-analytic function with a subanalytic graph has to be

continuous. Therefore by the proof of Theorem 3.1 we get:

Proposition 3.2. A function f : M — R is weakly arc-analytic and has a subanalytic
graph if and only if there is a locally finite family of analytic morphisms {n; : M; —
M} and compacts K; C M; such that:

M) Urmi(;) = M;

(2) Each =; is a composite of finitely many local blowings-up with smooth centers;

(3) Each Mj is isomorphic to R™ and f ox; is continuous on R" and analytic and

normal crossing on each quadrant.
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