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Abstract. In 1971, Zariski [9] conjectured that if two complex hypersurface
singularities have the same (embedded) topological type, then they have the
same multiplicity. Partial positive answers have been given regularly but, in
general, the conjecture is still open. We show here that the multiplicity is
preserved under ‘small’ homeomorphisms. This is a consequence of an inter-
pretation of the conjecture in terms of the first homology which was given by
Ephraim in [3].

1. Introduction

Let f : (U, 0) → (C, 0) and g : (W, 0) → (C, 0) be two reduced holomorphic
functions defined on open neighbourhoods U and W of the origin in Cn (n ≥ 2).
Let Vf := f−1(0) and Vg := g−1(0) be the corresponding hypersurfaces in Cn, and
νf , νg the multiplicities at 0 of Vf and Vg respectively. By definition, νf is the
number of points of intersection near 0 of Vf with a generic (complex) line in Cn

passing arbitrarily close to, but not through, the origin. As f is reduced, νf is
also the order of f at 0, that is, the lowest degree in the power series expansion
of f at 0. We suppose that f and g are topologically equivalent, that is, there
exist open neighbourhoods U ′ ⊂ U and W ′ ⊂ W of the origin in Cn together
with a homeomorphism ϕ : W ′ → U ′ such that ϕ(Vg ∩W

′) = Vf ∩ U ′. In fact,
the question being local at 0, we may assume that W ′ = W and U ′ = U .

Conjecture 1.1 (Zariski’s multiplicity conjecture [9]). Under the hypotheses
described above, the multiplicities νf and νg are equal.

In fact, to be precise, Zariski ‘did not conjecture’ but only ‘asked’ whether the
topological equivalence between f and g implies the equality νf = νg. Neverthe-
less, it is common (and convenient) to call Zariski’s original question the Zariski
multiplicity conjecture.

Although partial positive answers have been given regularly, Zariski’s mul-
tiplicity conjecture is, in general, still unsettled (for a list of the main known

1991 Mathematics Subject Classification. 32S15.
Key words and phrases. Complex hypersurface singularities, multiplicity.
This research was supported by the Alexander von Humboldt Foundation and the Max–

Planck Institute for Mathematics in Bonn.
1



2 Christophe Eyral

results we refer to our survey article [4]). One of the most significant and first
partial results was given by Ephraim [3] and Trotman [8]. Namely, they proved
that the multiplicity is preserved under C1–diffeomorphisms. In this paper, we
are interested in Ephraim’s approach which is based on an interpretation of the
conjecture in terms of the first homology. This point of view has interesting
consequences which are also partial answers to Zariski’s conjecture. Especially,
we show that if the homeomorphism ϕ does not move too much the vertices of
an appropriate finite simplicial complex which triangulates a small circle around
the origin and contained in a generic (complex) line, then the multiplicities νf

and νg are equal (cf. Theorems 3.3 and 3.4).

2. Zariski’s conjecture via homology

2.1. Homology interpretations of the multiplicity. The following two inter-
pretations of the multiplicity in terms of the first homology are due to Ephraim [3].

Let L be a (complex) line through the origin in Cn such that L is not contained
in the tangent cone C(Vf) of Vf at 0. Then 0 is an isolated point of Vf ∩ L and
νf is equal to the order of f|L,C : L → C at 0 (denoted by ord f|L,C).1 So, if
D ⊂ L ∩ U is a closed disc centered at 0 so small that Vf ∩ D = {0} and if γ

is a generator of the first (integral) homology group H1(Ḋ) (Ḋ is the boundary
of D), then, choosing an isomorphism H1(C

∗) ' Z (we note C∗ := C − {0}), we
have

(f|Ḋ,C∗)∗(γ) = ±ord f|L,C = ±νf ,

where (f|Ḋ,C∗)∗ : H1(Ḋ) → H1(C
∗) is the homomorphism induced by f|Ḋ,C∗. The

sign ± just depends on the choice of the isomorphism H1(C
∗) ' Z. This gives

the first homology interpretation of the multiplicity.
A disc D as above will be called a good disc for f .
Now let Bε (respectively B̄ε) be the open (respectively closed) ball in Cn with

centre 0 and radius ε, and let Sε be the boundary of B̄ε. The local conic structure
lemma (cf. Milnor [5], Burghelea–Verona [1], Ephraim [3]), applied to Vf , says
that for any sufficiently small ε > 0 there is a homeomorphism of pairs

(2.1) (B̄ε, B̄ε ∩ Vf ) ' (B̄ε, c(Sε ∩ Vf)),

where c(Sε ∩ Vf ) := {s z ∈ B̄ε ; z ∈ Sε ∩ Vf , s ∈ [0, 1]} is the cone over Sε ∩ Vf

(with vertex the origin).
Next, consider a positive number ε0 > 0 for which (2.1) is satisfied for any

0 < ε ≤ ε0 and such that Bε0
⊂ U . Pick a good disc D for f which is contained

1As a general notation, if (X, A) and (Y, B) are pairs of topological spaces with A ⊂ X

and B ⊂ Y and if u : X → Y is a continuous map such that u(A) ⊂ B, then we denote by
u|A,B : A → B the restriction of u to A (at the source) and B (at the target).
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in some Bε with 0 < ε < ε0. Denote by j : Ḋ ↪→ Bε \ Vf the inclusion map. By
the first homology interpretation of νf , we have

(f|Bε\Vf ,C∗)∗ ◦ j∗(γ) = ±νf .

Now suppose f is irreducible. Then H1(Bε \ Vf) ' Z (cf. [3, Theorem 2.6]) and,
by [3, Theorem 2.7], (f|Bε\Vf ,C∗)∗ : H1(Bε \ Vf ) → H1(C

∗) is an isomorphism. It
follows that, choosing an isomorphism H1(Bε \ Vf) ' Z,

j∗(γ) = ±νf .

This gives the second homology interpretation of the multiplicity νf which is
valid only in the case where the function f is irreducible.

2.2. Homology formulation of Zariski’s conjecture. From now on we sup-
pose that f and g are irreducible. The following homology formulation of Zariski’s
conjecture also appears in Ephraim’s paper (cf. [3, p. 802]).

By shrinking ε0, we can assume that (2.1) also holds, for any 0 < ε ≤ ε0, with
f replaced by g, and that Bε0

⊂ W . Choose ε and ε′ satisfying 0 < ε′ ≤ ε < ε0

and so that B̄ε ⊂ ϕ(Bε0
) and ϕ(B̄ε′) ⊂ Bε, and consider a disc D ⊂ Bε′ ⊂ Bε

which is good for both f and g.

Theorem 2.1 (Ephraim). Choose an isomorphism H1(Bε \ Vf) ' Z. The mul-
tiplicities νf and νg are equal if and only if the embedding

ϕ|Ḋ,Bε\Vf
: Ḋ → Bε \ Vf

(induced by the homeomorphism ϕ) and the inclusion map

j : Ḋ ↪→ Bε \ Vf

induce (up to sign) the same homomorphism H1(Ḋ) → H1(Bε \ Vf ).

Let us recall briefly the idea of the proof. Consider the inclusion map l : Ḋ →
Bε′ \ Vg, and choose an isomorphism H1(Bε′ \ Vg) ' Z. By the second homology

interpretation of the multiplicity, if γ is a generator of H1(Ḋ), then l∗(γ) = ±νg.
On the other hand, by [3, Theorem 2.8], (ϕ|Bε′\Vg ,Bε\Vf

)∗ is an isomorphism. It
follows that (ϕ|Ḋ,Bε\Vf

)∗(γ) = (ϕ|Bε′\Vg ,Bε\Vf
)∗ ◦ l∗(γ) = ±νg. But by the second

homology interpretation of the multiplicity again we know that j∗(γ) = ±νf .

Remark 2.2. Theorem 2.1 still holds even if we consider different good discs for
the functions f and g. More precisely, if Dg ⊂ Bε′ and Df ⊂ Bε are good discs
(not necessarily contained in the same line) for g and f respectively, then we
have: ‘The multiplicities νf and νg coincide if and only if for any generators γg

and γf of H1(Ḋg) and H1(Ḋf ), respectively,

(ϕ|Ḋg,Bε\Vf
)∗(γg) = ±jf (γf),

where jf : Ḋf ↪→ Bε \ Vf is the inclusion map’.
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2.3. The knots Ḋ and ϕ(Ḋ). Theorem 2.1 shows that if the knots Ḋ and ϕ(Ḋ)
are cobordant in the smooth manifold Bε \ Vf , that is, if there is an embedding

φ : S
1 × [0, 1] → (Bε \ Vf) × [0, 1]

such that φ(S1 × {0}) = Ḋ × {0} and φ(S1 × {1}) = ϕ(Ḋ) × {1}, then the
multiplicities νf and νg are the same. Indeed, since φ is an embedding, the sets

ϕ(Ḋ) × {1} and Ḋ × {0} are both strong deformation retracts of φ(S1 × [0, 1]).
Then the natural homomorphisms

H1(ϕ(Ḋ) × {1}) → H1(φ(S1 × [0, 1])) and H1(Ḋ× {0}) → H1(φ(S1 × [0, 1])),

induced by inclusion, are automorphisms of Z. This implies that the maps

z ∈ Ḋ 7→ (ϕ(z), 1) ∈ φ(S1 × [0, 1]) and z ∈ Ḋ 7→ (z, 0) ∈ φ(S1 × [0, 1])

induce (up to sign) the same homomorphism between the first homology groups.
It follows easily that (ϕ|Ḋ,Bε\Vf

)∗ = j∗. Now apply Theorem 2.1.

Remark 2.3. In fact, if Dg and Df are discs as in Remark 2.2 and if the knot

ϕ(Ḋg) is cobordant to the knot Ḋf in the ambient space Bε \ Vf , then again we
have νf = νg. The same proof as above applies with Theorem 2.1 replaced with
Remark 2.2.

Also it is easy to see that if the knots Ḋ and ϕ(Ḋ) (respectively, and more
generally, the knots Ḋf and ϕ(Ḋg) of Remarks 2.2 and 2.3) are equivalent, that
is, if there exists a homeomorphism

ψ : Bε \ Vf → Bε \ Vf

sending Ḋ onto ϕ(Ḋ) (respectively sending Ḋf onto ϕ(Ḋg)), then the multiplic-
ities νf and νg are the same.

3. Zariski’s conjecture and small homeomorphisms

We are still working under the hypotheses of §2.2.
In this section, we point out interesting consequences of Theorem 2.1 which

are also partial answers to Zariski’s conjecture. Namely, we show that if the
homeomorphism ϕ, when restricted to a certain subset E, is small enough (i.e.,
if ϕ|E is sufficiently close to the inclusion map E ↪→ Cn), then the multiplicities
νf and νg are the same. We do not require the homeomorphism ϕ to be close to
the identity on the whole open set W ⊂ C

n. The meaning of ‘sufficiently close’
differs according to the subset E we consider.

We may already notice the following first corollary.

Corollary 3.1. If |ϕ(z)−z| < dist(Ḋ, Vf), for any z ∈ Ḋ, then the multiplicities

νf and νg are equal. (Here, dist(Ḋ, Vf) is the usual distance between Ḋ and Vf .)
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Indeed, by Theorem 2.1, we know that if the embeddings j and ϕ|Ḋ,Bε\Vf
are

homotopic, then the multiplicities νf and νg are equal. On the other hand, under
the hypothesis of the corollary, it is clear that the image of the straight homotopy
(z, t) ∈ Ḋ× [0, 1] 7→ (1− t) z + t ϕ(z) from j to ϕ|Ḋ,Bε\Vf

is contained in Bε \ Vf .

Remark 3.2. Corollary 3.1 still holds if we replace dist(Ḋ, Vf) with dist (ϕ(Ḋ), Vf).

In this corollary, the subset E where the homeomorphism ϕ is required to be
not too far from the identity is equal to the circle Ḋ and the expression ‘suffi-
ciently close’ has a precise meaning described in terms of the distance dist(Ḋ, Vf)

(respectively dist (ϕ(Ḋ), Vf)). However, the most interesting case is when E is
just a finite set. This is the object of Theorems 3.3 and 3.4 below in which the
terms ‘sufficiently close’ have a different meaning. Informally, these theorems
assert that if the homeomorphism ϕ does not move too much the vertices of an
appropriate finite simplicial complex triangulating Ḋ, then the multiplicities νf

and νg are equal.
More precisely, let O = {Ok} be an open cover of Bε \ Vf such that any two

O–close continuous maps u, v : Ḋ → Bε\Vf are always homotopic (we recall that

u and v are said to be O–close if, for any z ∈ Ḋ, u(z) and v(z) belong to the
same Ok). By Cauty [2, Lemme 1.4], such a cover always exists as Bε \ Vf is an
absolute neighbourhood retract (stratifiable). Notice that if the inclusion map
j : Ḋ ↪→ Bε \Vf and the embedding ϕ|Ḋ,Bε\Vf

are O–close, then the multiplicities

νf and νg are equal (this follows immediately from Theorem 2.1). Next, consider

a triangulation ((K,L), φ) of the smooth pair (Bε \ Vf , Ḋ), that is, a simplicial
pair (K,L) together with a homeomorphism

φ : (|K|, |L|) → (Bε \ Vf , Ḋ).

As usual (|K|, |L|) is the pair of underlying spaces (polytopes) of the simplicial
pair (K,L). Such a triangulation always exists by Munkres [6, Problem 10.14].
Notice that L is a finite subcomplex (cf. Munkres [7, Lemma 2.5]). Hereafter we
identify the pairs (Bε \Vf , Ḋ) and (|K|, |L|) by means of the homeomorphism φ.
By subdividing we can assume that the simplicial pair (K,L) is so that, for any
vertex v of L, there exists an open set Ok(v) ∈ O such that

st(v,K) ⊂ Ok(v),(3.1)

where st(v,K) is the closed star of v in K (cf. [7, Theorem 16.4]). Notice that
st(v,K) is the underlying space of a subcomplex st(v,K) of K which is not
necessarily a full subcomplex of K. However if we consider the first barycentric
subdivision (denoted by sd1(·)), then sd1(st(v,K)) is always a full subcomplex of
sd1K (cf. [7, §70]). Of course |sd1(st(v,K))| = |st(v,K)| = st(v,K) as topological
spaces (cf. [7, §15]). In addition, by [7, Theorem 16.1], there exists an integer m
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such that the map ϕ|Ḋ,Bε\Vf
has a simplicial approximation

ψ : sdmL→ sd1K,

where sdmL is the m–th iterated barycentric subdivision of L. Notice that sdmL

is also a finite complex.

Theorem 3.3. Suppose that, for any vertex v of sdmL, one has ϕ(v) ∈ st(v, sdmK).
Then the multiplicities νf and νg are equal. (Of course sdmK is the m–th iterated
barycentric subdivision of K.)

Let v be a vertex of sdmL. If v is also a vertex of L, then st(v, sdmK) ⊂
st(v,K). If v is not a vertex of L, let σ(v) be the carrier of v in L, that is, the
unique 1–simplex σ(v) of L such that v belongs to int σ(v) (we denote by int σ(v)
the interior of σ(v)). Let w1(v) and w2(v) be the vertices of σ(v). By Munkres
[7, Lemma 15.1], st(v, sdmK) ⊂ st(wi(v), K) (1 ≤ i ≤ 2). Then Theorem 3.3
follows from the next result.

Theorem 3.4. Suppose that, for any vertex v of sdmL, one has:
{

ϕ(v) ∈ st(v,K) if v is a vertex of L,
ϕ(v) ∈ st(w1(v), K) ∪ st(w2(v), K) otherwise,

where w1(v) and w2(v) are the vertices of the carrier σ(v) of v in L. Then the
multiplicities νf and νg are equal.

Notice that, although we will prove that the simplicial map ψ : Ḋ → Bε \Vf is

O–close to the inclusion map j : Ḋ ↪→ Bε\Vf , we do not assume in Theorems 3.3
and 3.4 that the embeddings ϕ|Ḋ,Bε\Vf

and j are O–close. Indeed, the hypotheses

of these theorems do not imply a priori that, given a point z ∈ Ḋ, its image
ϕ(z) belongs to the closed star in K of a vertex of sdmL. Hence the points z and
ϕ(z) do not necessarily belong to the same open set Ok ∈ O.

Proof of Theorem 3.4. By Theorem 2.1, it suffices to show that ϕ|Ḋ,Bε\Vf
and j

are homotopic maps. In addition, by Munkres [7, Theorem 19.4], we know that
ϕ|Ḋ,Bε\Vf

is homotopic to ψ. Therefore it is enough to prove that ψ and j are

homotopic. To do that it suffices to show that ψ and j are O–close, that is, for
any z ∈ Ḋ the points z and ψ(z) belong to the same open set Ok ∈ O.

First suppose that z ∈ Ḋ is a vertex v of both sdmL and L. By (3.1), there
exists an open set Ok(v) ∈ O such that

v ∈ st(v,K) ⊂ Ok(v).

By the hypothesis, ϕ(v) ∈ st(v,K) = |sd1(st(v,K))|. In particular, there is an
unique simplex s of sd1K, contained in st(v,K), such that ϕ(v) ∈ int s. Since ψ
is a simplicial approximation of ϕ|Ḋ,Bε\Vf

, it follows that ψ(v) ∈ s (cf. [7, Lemma

14.2]). Hence ψ(v) ∈ Ok(v).
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Now suppose that z ∈ Ḋ is a vertex v of sdmL but not a vertex of L. Let σ(v)
be the carrier of v in L, and w1(v), w2(v) its vertices. By (3.1), there exist two
open sets Ok(w1(v)) and Ok(w2(v)) in O such that

st(wi(v), K) ⊂ Ok(wi(v)) (1 ≤ i ≤ 2).

Combined with [7, Lemma 15.1], this gives:

v ∈ st(v, sdmK) ⊂ st(wi(v), K) ⊂ Ok(wi(v)) (1 ≤ i ≤ 2).

By the hypothesis, ϕ(v) belongs to st(w1(v), K) ∪ st(w2(v), K) which is nothing
but the underlying space of the full subcomplex

sd1(st(w1(v), K) ∪ st(w2(v), K))

of sd1K. In particular, there is an unique simplex s of sd1K, contained in
st(w1(v), K) ∪ st(w2(v), K), such that ϕ(v) ∈ int s. Now, as above, since ψ is a
simplicial approximation of ϕ|Ḋ,Bε\Vf

, it follows that ψ(v) ∈ s. Hence

ψ(v) ∈ Ok(w1(v)) ∪ Ok(w2(v)).

Finally suppose that z ∈ Ḋ is not a vertex of sdmL. Let ς(z) be the carrier of
z in sdmL, that is, the unique simplex ς(z) of sdmL such that z ∈ int ς(z). Let
v1, v2 be the vertices of ς(z). There are three cases:

(1) v1 and v2 are vertices of L;
(2) v1 is a vertex of L but v2 is not a vertex of L;2

(3) v1 and v2 are not vertices of L.

In case (1), there exist open sets Ok(v1) and Ok(v2) in O such that

z ∈ st(vi, K) ⊂ Ok(vi) (1 ≤ i ≤ 2).

By the hypothesis, ϕ(vi) ∈ st(vi, K). As above, this implies ψ(vi) ∈ st(vi, K).
In addition, the simpliciality of ψ also implies that ψ(ς(z)) is a simplex of sd1K.
Since its vertices ψ(vi) are contained in the full subcomplex

sd1(st(v1, K) ∪ st(v2, K)),

ψ(ς(z)) is also a simplex of it. Then

ψ(ς(z)) ⊂ |sd1(st(v1, K) ∪ st(v2, K))| = st(v1, K) ∪ st(v2, K).

Therefore the point ψ(z) (which lies in ψ(ς(z))) belongs to

Ok(v1) ∪Ok(v2).

In case (2), consider the carrier σ(v2) of v2 in L. Necessarily one of its vertices
w1(v2) or w2(v2) is equal to v1. Suppose for example w1(v2) = v1. There exist

2The case where v2 is a vertex of L and v1 is not a vertex of L is similar.
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open sets Ok(w1(v2)) = Ok(v1) and Ok(w2(v2)) in O such that
{

z ∈ st(v1, K) = st(w1(v2), K) ⊂ Ok(w1(v2)) and
z ∈ st(v2, sd

mK) ⊂ st(wi(v2), K) ⊂ Ok(wi(v2)) (1 ≤ i ≤ 2).

By the hypothesis, ϕ(v1) = ϕ(w1(v2)) ∈ st(w1(v2), K) and ϕ(v2) ∈ st(w1(v2), K)∪
st(w2(v2), K). The same argument as before shows that ψ(v1) and ψ(v2) are
vertices of the full subcomplex sd1(st(w1(v2), K) ∪ st(w2(v2), K)) of sd1K, and
ψ(ς(z)) is a simplex of it, that is,

ψ(ς(z)) ⊂ st(w1(v2), K) ∪ st(w2(v2), K).

One deduces
ψ(z) ∈ Ok(w1(v2)) ∪Ok(w2(v2)).

As for case (3), we have σ(v1) = σ(v2) = σ(ς(z)), where σ(vi) (respectively
σ(ς(z))) is the carrier of vi in L (respectively the carrier of ς(z) in L, that is,
the unique simplex of L containing ς(z) in its interior). Let w1(ς(z)), w2(ς(z))
be the vertices of σ(ς(z)). There exist open sets Ok(w1(ς(z))) and Ok(w2(ς(z))) in O
such that

z ∈ st(vi, sd
mK) ⊂ st(wi′(ς(z)), K) ⊂ Ok(wi′(ς(z))) (1 ≤ i, i′ ≤ 2).

By the hypothesis, ϕ(v1) and ϕ(v2) belong to st(w1(ς(z)), K) ∪ st(w2(ς(z)), K).
One concludes, by the same argument as above, that

ψ(z) ∈ Ok(w1(ς(z))) ∪Ok(w2(ς(z))).

�
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