A NOTE ON EPHRAIM'S HOMOLOGY APPROACH OF THE ZARISKI MULTIPLICITY CONJECTURE

CHRISTOPHE EYRAL

Abstract

In 1971, Zariski [9] conjectured that if two complex hypersurface singularities have the same (embedded) topological type, then they have the same multiplicity. Partial positive answers have been given regularly but, in general, the conjecture is still open. We show here that the multiplicity is preserved under 'small' homeomorphisms. This is a consequence of an interpretation of the conjecture in terms of the first homology which was given by Ephraim in [3].

1. Introduction

Let $f:(U, 0) \rightarrow(\mathbb{C}, 0)$ and $g:(W, 0) \rightarrow(\mathbb{C}, 0)$ be two reduced holomorphic functions defined on open neighbourhoods U and W of the origin in $\mathbb{C}^{n}(n \geq 2)$. Let $V_{f}:=f^{-1}(0)$ and $V_{g}:=g^{-1}(0)$ be the corresponding hypersurfaces in \mathbb{C}^{n}, and ν_{f}, ν_{g} the multiplicities at 0 of V_{f} and V_{g} respectively. By definition, ν_{f} is the number of points of intersection near 0 of V_{f} with a generic (complex) line in \mathbb{C}^{n} passing arbitrarily close to, but not through, the origin. As f is reduced, ν_{f} is also the order of f at 0 , that is, the lowest degree in the power series expansion of f at 0 . We suppose that f and g are topologically equivalent, that is, there exist open neighbourhoods $U^{\prime} \subset U$ and $W^{\prime} \subset W$ of the origin in \mathbb{C}^{n} together with a homeomorphism $\varphi: W^{\prime} \rightarrow U^{\prime}$ such that $\varphi\left(V_{g} \cap W^{\prime}\right)=V_{f} \cap U^{\prime}$. In fact, the question being local at 0 , we may assume that $W^{\prime}=W$ and $U^{\prime}=U$.

Conjecture 1.1 (Zariski's multiplicity conjecture [9]). Under the hypotheses described above, the multiplicities ν_{f} and ν_{g} are equal.

In fact, to be precise, Zariski 'did not conjecture' but only 'asked' whether the topological equivalence between f and g implies the equality $\nu_{f}=\nu_{g}$. Nevertheless, it is common (and convenient) to call Zariski's original question the Zariski multiplicity conjecture.

Although partial positive answers have been given regularly, Zariski's multiplicity conjecture is, in general, still unsettled (for a list of the main known

[^0]results we refer to our survey article [4]). One of the most significant and first partial results was given by Ephraim [3] and Trotman [8]. Namely, they proved that the multiplicity is preserved under C^{1}-diffeomorphisms. In this paper, we are interested in Ephraim's approach which is based on an interpretation of the conjecture in terms of the first homology. This point of view has interesting consequences which are also partial answers to Zariski's conjecture. Especially, we show that if the homeomorphism φ does not move too much the vertices of an appropriate finite simplicial complex which triangulates a small circle around the origin and contained in a generic (complex) line, then the multiplicities ν_{f} and ν_{g} are equal (cf. Theorems 3.3 and 3.4).

2. Zariski's conjecture via homology

2.1. Homology interpretations of the multiplicity. The following two interpretations of the multiplicity in terms of the first homology are due to Ephraim [3].

Let L be a (complex) line through the origin in \mathbb{C}^{n} such that L is not contained in the tangent cone $C\left(V_{f}\right)$ of V_{f} at 0 . Then 0 is an isolated point of $V_{f} \cap L$ and ν_{f} is equal to the order of $f_{\mid L, \mathbb{C}}: L \rightarrow \mathbb{C}$ at 0 (denoted by ord $f_{\mid L, \mathbb{C}}$). ${ }^{1}$ So, if $D \subset L \cap U$ is a closed disc centered at 0 so small that $V_{f} \cap D=\{0\}$ and if γ is a generator of the first (integral) homology group $H_{1}(\dot{D})(\dot{D}$ is the boundary of D), then, choosing an isomorphism $H_{1}\left(\mathbb{C}^{*}\right) \simeq \mathbb{Z}$ (we note $\mathbb{C}^{*}:=\mathbb{C}-\{0\}$), we have

$$
\left(f_{\mid \dot{D}, \mathbb{C}^{*}}\right)_{*}(\gamma)= \pm \operatorname{ord} f_{\mid L, \mathbb{C}}= \pm \nu_{f},
$$

where $\left(f_{\mid \dot{D}, \mathbb{C}^{*}}\right)_{*}: H_{1}(\dot{D}) \rightarrow H_{1}\left(\mathbb{C}^{*}\right)$ is the homomorphism induced by $f_{\mid \dot{D}, \mathbb{C}^{*}}$. The sign \pm just depends on the choice of the isomorphism $H_{1}\left(\mathbb{C}^{*}\right) \simeq \mathbb{Z}$. This gives the first homology interpretation of the multiplicity.

A disc D as above will be called a good disc for f.
Now let B_{ε} (respectively \bar{B}_{ε}) be the open (respectively closed) ball in \mathbb{C}^{n} with centre 0 and radius ε, and let S_{ε} be the boundary of \bar{B}_{ε}. The local conic structure lemma (cf. Milnor [5], Burghelea-Verona [1], Ephraim [3]), applied to V_{f}, says that for any sufficiently small $\varepsilon>0$ there is a homeomorphism of pairs

$$
\begin{equation*}
\left(\bar{B}_{\varepsilon}, \bar{B}_{\varepsilon} \cap V_{f}\right) \simeq\left(\bar{B}_{\varepsilon}, c\left(S_{\varepsilon} \cap V_{f}\right)\right), \tag{2.1}
\end{equation*}
$$

where $c\left(S_{\varepsilon} \cap V_{f}\right):=\left\{s z \in \bar{B}_{\varepsilon} ; z \in S_{\varepsilon} \cap V_{f}, s \in[0,1]\right\}$ is the cone over $S_{\varepsilon} \cap V_{f}$ (with vertex the origin).

Next, consider a positive number $\varepsilon_{0}>0$ for which (2.1) is satisfied for any $0<\varepsilon \leq \varepsilon_{0}$ and such that $B_{\varepsilon_{0}} \subset U$. Pick a good disc D for f which is contained

[^1]in some B_{ε} with $0<\varepsilon<\varepsilon_{0}$. Denote by $j: \dot{D} \hookrightarrow B_{\varepsilon} \backslash V_{f}$ the inclusion map. By the first homology interpretation of ν_{f}, we have
$$
\left(f_{\mid B_{\varepsilon} \backslash V_{f}, \mathbb{C}^{*}}\right)_{*} \circ j_{*}(\gamma)= \pm \nu_{f} .
$$

Now suppose f is irreducible. Then $H_{1}\left(B_{\varepsilon} \backslash V_{f}\right) \simeq \mathbb{Z}$ (cf. [3, Theorem 2.6]) and, by [3, Theorem 2.7], $\left(f_{\mid B_{\varepsilon} \backslash V_{f}, \mathbb{C}^{*}}\right)_{*}: H_{1}\left(B_{\varepsilon} \backslash V_{f}\right) \rightarrow H_{1}\left(\mathbb{C}^{*}\right)$ is an isomorphism. It follows that, choosing an isomorphism $H_{1}\left(B_{\varepsilon} \backslash V_{f}\right) \simeq \mathbb{Z}$,

$$
j_{*}(\gamma)= \pm \nu_{f}
$$

This gives the second homology interpretation of the multiplicity ν_{f} which is valid only in the case where the function f is irreducible.
2.2. Homology formulation of Zariski's conjecture. From now on we suppose that f and g are irreducible. The following homology formulation of Zariski's conjecture also appears in Ephraim's paper (cf. [3, p. 802]).

By shrinking ε_{0}, we can assume that (2.1) also holds, for any $0<\varepsilon \leq \varepsilon_{0}$, with f replaced by g, and that $B_{\varepsilon_{0}} \subset W$. Choose ε and ε^{\prime} satisfying $0<\varepsilon^{\prime} \leq \varepsilon<\varepsilon_{0}$ and so that $\bar{B}_{\varepsilon} \subset \varphi\left(B_{\varepsilon_{0}}\right)$ and $\varphi\left(\bar{B}_{\varepsilon^{\prime}}\right) \subset B_{\varepsilon}$, and consider a disc $D \subset B_{\varepsilon^{\prime}} \subset B_{\varepsilon}$ which is good for both f and g.

Theorem 2.1 (Ephraim). Choose an isomorphism $H_{1}\left(B_{\varepsilon} \backslash V_{f}\right) \simeq \mathbb{Z}$. The multiplicities ν_{f} and ν_{g} are equal if and only if the embedding

$$
\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}: \dot{D} \rightarrow B_{\varepsilon} \backslash V_{f}
$$

(induced by the homeomorphism φ) and the inclusion map

$$
j: \dot{D} \hookrightarrow B_{\varepsilon} \backslash V_{f}
$$

induce (up to sign) the same homomorphism $H_{1}(\dot{D}) \rightarrow H_{1}\left(B_{\varepsilon} \backslash V_{f}\right)$.
Let us recall briefly the idea of the proof. Consider the inclusion map $l: \dot{D} \rightarrow$ $B_{\varepsilon^{\prime}} \backslash V_{g}$, and choose an isomorphism $H_{1}\left(B_{\varepsilon^{\prime}} \backslash V_{g}\right) \simeq \mathbb{Z}$. By the second homology interpretation of the multiplicity, if γ is a generator of $H_{1}(\dot{D})$, then $l_{*}(\gamma)= \pm \nu_{g}$. On the other hand, by [3, Theorem 2.8], $\left(\varphi_{\mid B_{\varepsilon^{\prime}} \backslash V_{g}, B_{\varepsilon} \backslash V_{f}}\right)_{*}$ is an isomorphism. It follows that $\left(\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}\right)_{*}(\gamma)=\left(\varphi_{\mid B_{\varepsilon} \backslash V_{g}, B_{\varepsilon} \backslash V_{f}}\right)_{*} \circ l_{*}(\gamma)= \pm \nu_{g}$. But by the second homology interpretation of the multiplicity again we know that $j_{*}(\gamma)= \pm \nu_{f}$.

Remark 2.2. Theorem 2.1 still holds even if we consider different good discs for the functions f and g. More precisely, if $D_{g} \subset B_{\varepsilon^{\prime}}$ and $D_{f} \subset B_{\varepsilon}$ are good discs (not necessarily contained in the same line) for g and f respectively, then we have: 'The multiplicities ν_{f} and ν_{g} coincide if and only if for any generators γ_{g} and γ_{f} of $H_{1}\left(\dot{D}_{g}\right)$ and $H_{1}\left(\dot{D}_{f}\right)$, respectively,

$$
\left(\varphi_{\mid \dot{D}_{g}, B_{\varepsilon} \backslash V_{f}}\right)_{*}\left(\gamma_{g}\right)= \pm j_{f}\left(\gamma_{f}\right),
$$

where $j_{f}: \dot{D}_{f} \hookrightarrow B_{\varepsilon} \backslash V_{f}$ is the inclusion map'.
2.3. The knots \dot{D} and $\varphi(\dot{D})$. Theorem 2.1 shows that if the knots \dot{D} and $\varphi(\dot{D})$ are cobordant in the smooth manifold $B_{\varepsilon} \backslash V_{f}$, that is, if there is an embedding

$$
\phi: \mathbb{S}^{1} \times[0,1] \rightarrow\left(B_{\varepsilon} \backslash V_{f}\right) \times[0,1]
$$

such that $\phi\left(\mathbb{S}^{1} \times\{0\}\right)=\dot{D} \times\{0\}$ and $\phi\left(\mathbb{S}^{1} \times\{1\}\right)=\varphi(\dot{D}) \times\{1\}$, then the multiplicities ν_{f} and ν_{g} are the same. Indeed, since ϕ is an embedding, the sets $\varphi(\dot{D}) \times\{1\}$ and $\dot{D} \times\{0\}$ are both strong deformation retracts of $\phi\left(\mathbb{S}^{1} \times[0,1]\right)$. Then the natural homomorphisms
$H_{1}(\varphi(\dot{D}) \times\{1\}) \rightarrow H_{1}\left(\phi\left(\mathbb{S}^{1} \times[0,1]\right)\right) \quad$ and $\quad H_{1}(\dot{D} \times\{0\}) \rightarrow H_{1}\left(\phi\left(\mathbb{S}^{1} \times[0,1]\right)\right)$,
induced by inclusion, are automorphisms of \mathbb{Z}. This implies that the maps

$$
z \in \dot{D} \mapsto(\varphi(z), 1) \in \phi\left(\mathbb{S}^{1} \times[0,1]\right) \quad \text { and } \quad z \in \dot{D} \mapsto(z, 0) \in \phi\left(\mathbb{S}^{1} \times[0,1]\right)
$$

induce (up to sign) the same homomorphism between the first homology groups. It follows easily that $\left(\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}\right)_{*}=j_{*}$. Now apply Theorem 2.1.

Remark 2.3. In fact, if D_{g} and D_{f} are discs as in Remark 2.2 and if the knot $\varphi\left(\dot{D}_{g}\right)$ is cobordant to the knot \dot{D}_{f} in the ambient space $B_{\varepsilon} \backslash V_{f}$, then again we have $\nu_{f}=\nu_{g}$. The same proof as above applies with Theorem 2.1 replaced with Remark 2.2.

Also it is easy to see that if the knots \dot{D} and $\varphi(\dot{D})$ (respectively, and more generally, the knots \dot{D}_{f} and $\varphi\left(\dot{D}_{g}\right)$ of Remarks 2.2 and 2.3) are equivalent, that is, if there exists a homeomorphism

$$
\psi: B_{\varepsilon} \backslash V_{f} \rightarrow B_{\varepsilon} \backslash V_{f}
$$

sending \dot{D} onto $\varphi(\dot{D})$ (respectively sending \dot{D}_{f} onto $\varphi\left(\dot{D}_{g}\right)$), then the multiplicities ν_{f} and ν_{g} are the same.

3. Zariski's conjecture and small homeomorphisms

We are still working under the hypotheses of $\S 2.2$.
In this section, we point out interesting consequences of Theorem 2.1 which are also partial answers to Zariski's conjecture. Namely, we show that if the homeomorphism φ, when restricted to a certain subset E, is small enough (i.e., if $\varphi_{\mid E}$ is sufficiently close to the inclusion map $\left.E \hookrightarrow \mathbb{C}^{n}\right)$, then the multiplicities ν_{f} and ν_{g} are the same. We do not require the homeomorphism φ to be close to the identity on the whole open set $W \subset \mathbb{C}^{n}$. The meaning of 'sufficiently close' differs according to the subset E we consider.

We may already notice the following first corollary.
Corollary 3.1. If $|\varphi(z)-z|<\operatorname{dist}\left(\dot{D}, V_{f}\right)$, for any $z \in \dot{D}$, then the multiplicities ν_{f} and ν_{g} are equal. (Here, $\operatorname{dist}\left(\dot{D}, V_{f}\right)$ is the usual distance between \dot{D} and V_{f}.)

Indeed, by Theorem 2.1, we know that if the embeddings j and $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$ are homotopic, then the multiplicities ν_{f} and ν_{g} are equal. On the other hand, under the hypothesis of the corollary, it is clear that the image of the straight homotopy $(z, t) \in \dot{D} \times[0,1] \mapsto(1-t) z+t \varphi(z)$ from j to $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$ is contained in $B_{\varepsilon} \backslash V_{f}$.

Remark 3.2. Corollary 3.1 still holds if we replace $\operatorname{dist}\left(\dot{D}, V_{f}\right)$ with $\operatorname{dist}\left(\varphi(\dot{D}), V_{f}\right)$.
In this corollary, the subset E where the homeomorphism φ is required to be not too far from the identity is equal to the circle \dot{D} and the expression 'sufficiently close' has a precise meaning described in terms of the distance dist (\dot{D}, V_{f}) (respectively $\operatorname{dist}\left(\varphi(\dot{D}), V_{f}\right)$). However, the most interesting case is when E is just a finite set. This is the object of Theorems 3.3 and 3.4 below in which the terms 'sufficiently close' have a different meaning. Informally, these theorems assert that if the homeomorphism φ does not move too much the vertices of an appropriate finite simplicial complex triangulating \dot{D}, then the multiplicities ν_{f} and ν_{g} are equal.

More precisely, let $\mathcal{O}=\left\{O_{k}\right\}$ be an open cover of $B_{\varepsilon} \backslash V_{f}$ such that any two \mathcal{O}-close continuous maps $u, v: \dot{D} \rightarrow B_{\varepsilon} \backslash V_{f}$ are always homotopic (we recall that u and v are said to be \mathcal{O}-close if, for any $z \in \dot{D}, u(z)$ and $v(z)$ belong to the same O_{k}). By Cauty [2, Lemme 1.4], such a cover always exists as $B_{\varepsilon} \backslash V_{f}$ is an absolute neighbourhood retract (stratifiable). Notice that if the inclusion map $j: \dot{D} \hookrightarrow B_{\varepsilon} \backslash V_{f}$ and the embedding $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$ are \mathcal{O}-close, then the multiplicities ν_{f} and ν_{g} are equal (this follows immediately from Theorem 2.1). Next, consider a triangulation $((K, L), \phi)$ of the smooth pair $\left(B_{\varepsilon} \backslash V_{f}, \dot{D}\right)$, that is, a simplicial pair (K, L) together with a homeomorphism

$$
\phi:(|K|,|L|) \rightarrow\left(B_{\varepsilon} \backslash V_{f}, \dot{D}\right)
$$

As usual $(|K|,|L|)$ is the pair of underlying spaces (polytopes) of the simplicial pair (K, L). Such a triangulation always exists by Munkres [6, Problem 10.14]. Notice that L is a finite subcomplex (cf. Munkres [7, Lemma 2.5]). Hereafter we identify the pairs $\left(B_{\varepsilon} \backslash V_{f}, \dot{D}\right)$ and $(|K|,|L|)$ by means of the homeomorphism ϕ. By subdividing we can assume that the simplicial pair (K, L) is so that, for any vertex v of L, there exists an open set $O_{k(v)} \in \mathcal{O}$ such that

$$
\begin{equation*}
\operatorname{st}(v, K) \subset O_{k(v)} \tag{3.1}
\end{equation*}
$$

where $\operatorname{st}(v, K)$ is the closed star of v in K (cf. [7, Theorem 16.4]). Notice that $\operatorname{st}(v, K)$ is the underlying space of a subcomplex $s t(v, K)$ of K which is not necessarily a full subcomplex of K. However if we consider the first barycentric subdivision (denoted by $\left.\operatorname{sd}^{1}(\cdot)\right)$, then $\operatorname{sd}^{1}(s t(v, K))$ is always a full subcomplex of $\operatorname{sd}^{1} K(c f .[7, \S 70])$. Of course $\left|\operatorname{sd}^{1}(s t(v, K))\right|=|s t(v, K)|=\operatorname{st}(v, K)$ as topological spaces (cf. [7, §15]). In addition, by [7, Theorem 16.1], there exists an integer m
such that the map $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$ has a simplicial approximation

$$
\psi: \operatorname{sd}^{m} L \rightarrow \operatorname{sd}^{1} K
$$

where $\mathrm{sd}^{m} L$ is the m-th iterated barycentric subdivision of L. Notice that $\mathrm{sd}^{m} L$ is also a finite complex.

Theorem 3.3. Suppose that, for any vertex v of $\operatorname{sd}^{m} L$, one has $\varphi(v) \in \operatorname{st}\left(v, \operatorname{sd}^{m} K\right)$. Then the multiplicities ν_{f} and ν_{g} are equal. (Of course $\mathrm{sd}^{m} K$ is the m-th iterated barycentric subdivision of K.)

Let v be a vertex of $\operatorname{sd}^{m} L$. If v is also a vertex of L, then $\operatorname{st}\left(v, \mathrm{sd}^{m} K\right) \subset$ $\operatorname{st}(v, K)$. If v is not a vertex of L, let $\sigma(v)$ be the carrier of v in L, that is, the unique 1-simplex $\sigma(v)$ of L such that v belongs to int $\sigma(v)$ (we denote by int $\sigma(v)$ the interior of $\sigma(v)$). Let $w_{1}(v)$ and $w_{2}(v)$ be the vertices of $\sigma(v)$. By Munkres [7, Lemma 15.1], $\operatorname{st}\left(v, \operatorname{sd}^{m} K\right) \subset \operatorname{st}\left(w_{i}(v), K\right)(1 \leq i \leq 2)$. Then Theorem 3.3 follows from the next result.

Theorem 3.4. Suppose that, for any vertex v of $\mathrm{sd}^{m} L$, one has:

$$
\left\{\begin{array}{l}
\varphi(v) \in \operatorname{st}(v, K) \text { if } v \text { is a vertex of } L, \\
\varphi(v) \in \operatorname{st}\left(w_{1}(v), K\right) \cup \operatorname{st}\left(w_{2}(v), K\right) \text { otherwise, }
\end{array}\right.
$$

where $w_{1}(v)$ and $w_{2}(v)$ are the vertices of the carrier $\sigma(v)$ of v in L. Then the multiplicities ν_{f} and ν_{g} are equal.

Notice that, although we will prove that the simplicial map $\psi: \dot{D} \rightarrow B_{\varepsilon} \backslash V_{f}$ is \mathcal{O}-close to the inclusion $\operatorname{map} j: \dot{D} \hookrightarrow B_{\varepsilon} \backslash V_{f}$, we do not assume in Theorems 3.3 and 3.4 that the embeddings $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$ and j are \mathcal{O}-close. Indeed, the hypotheses of these theorems do not imply a priori that, given a point $z \in \dot{D}$, its image $\varphi(z)$ belongs to the closed star in K of a vertex of $\operatorname{sd}^{m} L$. Hence the points z and $\varphi(z)$ do not necessarily belong to the same open set $O_{k} \in \mathcal{O}$.
Proof of Theorem 3.4. By Theorem 2.1, it suffices to show that $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$ and j are homotopic maps. In addition, by Munkres [7, Theorem 19.4], we know that $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$ is homotopic to ψ. Therefore it is enough to prove that ψ and j are homotopic. To do that it suffices to show that ψ and j are \mathcal{O}-close, that is, for any $z \in \dot{D}$ the points z and $\psi(z)$ belong to the same open set $O_{k} \in \mathcal{O}$.

First suppose that $z \in \dot{D}$ is a vertex v of both $\operatorname{sd}^{m} L$ and L. By (3.1), there exists an open set $O_{k(v)} \in \mathcal{O}$ such that

$$
v \in \operatorname{st}(v, K) \subset O_{k(v)}
$$

By the hypothesis, $\varphi(v) \in \operatorname{st}(v, K)=\left|\operatorname{sd}^{1}(s t(v, K))\right|$. In particular, there is an unique simplex s of $\operatorname{sd}^{1} K$, contained in $\operatorname{st}(v, K)$, such that $\varphi(v) \in$ int s. Since ψ is a simplicial approximation of $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$, it follows that $\psi(v) \in s$ (cf. [7, Lemma 14.2]). Hence $\psi(v) \in O_{k(v)}$.

Now suppose that $z \in \dot{D}$ is a vertex v of $\operatorname{sd}^{m} L$ but not a vertex of L. Let $\sigma(v)$ be the carrier of v in L, and $w_{1}(v), w_{2}(v)$ its vertices. By (3.1), there exist two open sets $O_{k\left(w_{1}(v)\right)}$ and $O_{k\left(w_{2}(v)\right)}$ in \mathcal{O} such that

$$
\operatorname{st}\left(w_{i}(v), K\right) \subset O_{k\left(w_{i}(v)\right)} \quad(1 \leq i \leq 2)
$$

Combined with [7, Lemma 15.1], this gives:

$$
v \in \operatorname{st}\left(v, \operatorname{sd}^{m} K\right) \subset \operatorname{st}\left(w_{i}(v), K\right) \subset O_{k\left(w_{i}(v)\right)} \quad(1 \leq i \leq 2) .
$$

By the hypothesis, $\varphi(v)$ belongs to $\operatorname{st}\left(w_{1}(v), K\right) \cup \operatorname{st}\left(w_{2}(v), K\right)$ which is nothing but the underlying space of the full subcomplex

$$
\operatorname{sd}^{1}\left(s t\left(w_{1}(v), K\right) \cup s t\left(w_{2}(v), K\right)\right)
$$

of $\operatorname{sd}^{1} K$. In particular, there is an unique simplex s of $\operatorname{sd}^{1} K$, contained in $\operatorname{st}\left(w_{1}(v), K\right) \cup \operatorname{st}\left(w_{2}(v), K\right)$, such that $\varphi(v) \in \operatorname{int} s$. Now, as above, since ψ is a simplicial approximation of $\varphi_{\mid \dot{D}, B_{\varepsilon} \backslash V_{f}}$, it follows that $\psi(v) \in s$. Hence

$$
\psi(v) \in O_{k\left(w_{1}(v)\right)} \cup O_{k\left(w_{2}(v)\right)} .
$$

Finally suppose that $z \in \dot{D}$ is not a vertex of $\mathrm{sd}^{m} L$. Let $\varsigma(z)$ be the carrier of z in $\operatorname{sd}^{m} L$, that is, the unique simplex $\varsigma(z)$ of $\operatorname{sd}^{m} L$ such that $z \in \operatorname{int} \varsigma(z)$. Let v_{1}, v_{2} be the vertices of $\varsigma(z)$. There are three cases:
(1) v_{1} and v_{2} are vertices of L;
(2) v_{1} is a vertex of L but v_{2} is not a vertex of $L ;^{2}$
(3) v_{1} and v_{2} are not vertices of L.

In case (1), there exist open sets $O_{k\left(v_{1}\right)}$ and $O_{k\left(v_{2}\right)}$ in \mathcal{O} such that

$$
z \in \operatorname{st}\left(v_{i}, K\right) \subset O_{k\left(v_{i}\right)} \quad(1 \leq i \leq 2)
$$

By the hypothesis, $\varphi\left(v_{i}\right) \in \operatorname{st}\left(v_{i}, K\right)$. As above, this implies $\psi\left(v_{i}\right) \in \operatorname{st}\left(v_{i}, K\right)$. In addition, the simpliciality of ψ also implies that $\psi(\varsigma(z))$ is a simplex of $\operatorname{sd}^{1} K$. Since its vertices $\psi\left(v_{i}\right)$ are contained in the full subcomplex

$$
\operatorname{sd}^{1}\left(s t\left(v_{1}, K\right) \cup s t\left(v_{2}, K\right)\right),
$$

$\psi(\varsigma(z))$ is also a simplex of it. Then

$$
\psi(\varsigma(z)) \subset\left|\operatorname{sd}^{1}\left(s t\left(v_{1}, K\right) \cup s t\left(v_{2}, K\right)\right)\right|=\operatorname{st}\left(v_{1}, K\right) \cup \operatorname{st}\left(v_{2}, K\right)
$$

Therefore the point $\psi(z)$ (which lies in $\psi(\varsigma(z))$) belongs to

$$
O_{k\left(v_{1}\right)} \cup O_{k\left(v_{2}\right)} .
$$

In case (2), consider the carrier $\sigma\left(v_{2}\right)$ of v_{2} in L. Necessarily one of its vertices $w_{1}\left(v_{2}\right)$ or $w_{2}\left(v_{2}\right)$ is equal to v_{1}. Suppose for example $w_{1}\left(v_{2}\right)=v_{1}$. There exist

[^2]open sets $O_{k\left(w_{1}\left(v_{2}\right)\right)}=O_{k\left(v_{1}\right)}$ and $O_{k\left(w_{2}\left(v_{2}\right)\right)}$ in \mathcal{O} such that
\[

\left\{$$
\begin{array}{l}
z \in \operatorname{st}\left(v_{1}, K\right)=\operatorname{st}\left(w_{1}\left(v_{2}\right), K\right) \subset O_{k\left(w_{1}\left(v_{2}\right)\right)} \quad \text { and } \\
z \in \operatorname{st}\left(v_{2}, \operatorname{sd}^{m} K\right) \subset \operatorname{st}\left(w_{i}\left(v_{2}\right), K\right) \subset O_{k\left(w_{i}\left(v_{2}\right)\right)} \quad(1 \leq i \leq 2) .
\end{array}
$$\right.
\]

By the hypothesis, $\varphi\left(v_{1}\right)=\varphi\left(w_{1}\left(v_{2}\right)\right) \in \operatorname{st}\left(w_{1}\left(v_{2}\right), K\right)$ and $\varphi\left(v_{2}\right) \in \operatorname{st}\left(w_{1}\left(v_{2}\right), K\right) \cup$ st $\left(w_{2}\left(v_{2}\right), K\right)$. The same argument as before shows that $\psi\left(v_{1}\right)$ and $\psi\left(v_{2}\right)$ are vertices of the full subcomplex $\operatorname{sd}^{1}\left(s t\left(w_{1}\left(v_{2}\right), K\right) \cup s t\left(w_{2}\left(v_{2}\right), K\right)\right)$ of $\operatorname{sd}^{1} K$, and $\psi(\varsigma(z))$ is a simplex of it, that is,

$$
\psi(\varsigma(z)) \subset \operatorname{st}\left(w_{1}\left(v_{2}\right), K\right) \cup \operatorname{st}\left(w_{2}\left(v_{2}\right), K\right)
$$

One deduces

$$
\psi(z) \in O_{k\left(w_{1}\left(v_{2}\right)\right)} \cup O_{k\left(w_{2}\left(v_{2}\right)\right)} .
$$

As for case (3), we have $\sigma\left(v_{1}\right)=\sigma\left(v_{2}\right)=\sigma\left(\varsigma(z)\right.$), where $\sigma\left(v_{i}\right)$ (respectively $\sigma(\varsigma(z))$) is the carrier of v_{i} in L (respectively the carrier of $\varsigma(z)$ in L, that is, the unique simplex of L containing $\varsigma(z)$ in its interior). Let $w_{1}(\varsigma(z)), w_{2}(\varsigma(z))$ be the vertices of $\sigma(\varsigma(z))$. There exist open sets $O_{k\left(w_{1}(\varsigma(z))\right)}$ and $O_{k\left(w_{2}(\varsigma(z))\right)}$ in \mathcal{O} such that

$$
z \in \operatorname{st}\left(v_{i}, \operatorname{sd}^{m} K\right) \subset \operatorname{st}\left(w_{i^{\prime}}(\varsigma(z)), K\right) \subset O_{k\left(w_{i^{\prime}}(\varsigma(z))\right)} \quad\left(1 \leq i, i^{\prime} \leq 2\right)
$$

By the hypothesis, $\varphi\left(v_{1}\right)$ and $\varphi\left(v_{2}\right)$ belong to $\operatorname{st}\left(w_{1}(\varsigma(z)), K\right) \cup \operatorname{st}\left(w_{2}(\varsigma(z)), K\right)$. One concludes, by the same argument as above, that

$$
\psi(z) \in O_{k\left(w_{1}(\varsigma(z))\right)} \cup O_{k\left(w_{2}(\varsigma(z))\right)} .
$$

References

1. D. Burghelea and A. Verona, Local homological properties of analytic sets, Manuscripta Math. 7 (1972) 55-66.
2. R. Cauty, Rétractions dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974) 129-149.
3. R. Ephraim, C^{1} preservation of multiplicity, Duke Math. J. 43 (1976) 797-803.
4. C. Eyral, Zariski's multiplicity question - A survey (Preprint, Max-Planck Inst. Math., 2005).
5. J. Milnor, Singular points of complex hypersurfaces (Ann. Math. Studies 61, Princeton Univ. Press, Princeton, N.J., 1968).
6. J. Munkres, Elementary differential topology (Ann. Math. Studies 54, Princeton Univ. Press, Princeton, N.J., 1966).
7. J. Munkres, Elements of algebraic topology (Addison-Wesley Publishing Company, Menlo Park, CA, 1984).
8. D. Trotman, Multiplicity as a C^{1} invariant, in: Real analytic and algebraic singularities (Nagoya/Sapporo/Hachioji, 1996), Pitman Res. Notes Math. 381 (Longman, Harlow, 1998) 215-221. See also: D. Trotman, Multiplicity is a C^{1} invariant (Preprint, Univ. Paris 11, 1977).
9. O. Zariski, Open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971) 481-491.

Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: eyralchr@yahoo.com

[^0]: 1991 Mathematics Subject Classification. 32S15.
 Key words and phrases. Complex hypersurface singularities, multiplicity.
 This research was supported by the Alexander von Humboldt Foundation and the MaxPlanck Institute for Mathematics in Bonn.

[^1]: ${ }^{1}$ As a general notation, if (X, A) and (Y, B) are pairs of topological spaces with $A \subset X$ and $B \subset Y$ and if $u: X \rightarrow Y$ is a continuous map such that $u(A) \subset B$, then we denote by $u_{\mid A, B}: A \rightarrow B$ the restriction of u to A (at the source) and B (at the target).

[^2]: ${ }^{2}$ The case where v_{2} is a vertex of L and v_{1} is not a vertex of L is similar.

