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Introduction

The weIl known poisson summation formula applies to a
co

lattiee r in JR and a funetion f E _Ce (JR) .. It can be

written

( 1 ) l: ar(Y)f(Y) =
yEJR

"r "L a (A)f(A)
AEE

"where f is the Fourier transform of f, while

and

(volume
I

=10 , if

(JR/ r), if

y e: r ,

Y Er,

=1
1, if. Ar c Z ,

~r (A)
. 0, otherwise

Netiee the general structure of the terms .. The functiens

f .. The Peisson summation forrnula

anä

and

,\

f(A)

~r (A)

are independent of

are independent of

r , while the coeffieients

f(y)

ra (y)

has a number of applieations .. They all involve playing some of

the terms off against the others ..

The Poisson summation formula has a generalization to a

discrete subgroup of a general locally compaet (unimodular) group

with compact quotient .. It is the Selberg traee formula .. For exarnple,
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suppose that G/~ is a semisimple algebraic group, which is

anisotropie. Then G(~) is a discrete subgroup of the

locally cornpact group

such that G(~)\GU\) 1s compact. The Selberg trace forrnula 15

(2 )
co

fEe (G ()\) ) ,
c

where (G(W)) 1s the set of conjugacy classes in G(W), IT(G)

is a set cf (equivalence classes of) irreducible unitary represen-

tat ions of G CA), and

a G (y ) = vo l-urne (G (W, y )\ G t~ , y )

-1f. . f (x Yx) dx ,

S~,Y)\G(h\}

IG(TI,f) = trace (f f (x) TI (x) dx) •
GtA)

Again, the terms have the same general structure. The functions

and IG(TI,f) are invariant distributions on G(~

which do not really depend on the discrete subgroup G(W). The

coefficients aG(y) and aG(TI) qepend strongly on G(~), but

but are independent ,cf f. The Selberg tr~ce formula also has

rnany applications. Again, one obtains information about one

set of terms from a knowledge of the others'.
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If G/W is not' anisotropie, the quotient

no longer eompact, and the situation ehanges rather drastieally.

The terms in (2) diverge (in several senses) and are in general

not defined. There are natural ways to truneate the integrals

that diverge, however, and one ends up with a trace formula

that appears quite eomplieated. In this paper and'the next

one [l(f)], we shall show that the general strueture of the

trace formula is rather simple. We shall establish an, identity

of the general form

(3 )

in whieh M ranges over a finite set of rational Levi subgroups

of G. The terms corresponding to M* G repre'sent eontributions

from the boundary. They are what is 1eft of the original ~ntegrals

that had to be truneated. The functions aM(y) and aM(~) depend

only on the group M, and not its embedding in G. Th~y are global

in nature, in that they depend on the rational structure of M.

The funetions IM(y,f) and IM(~,f) are invariant linear forms

in f. They are loeal objects whieh are essentially independent of

the diserete subgroup G(W) of G~). The applieations of the

general traee formula are only beginning. If they follow the

pattern of GL(2), one will be ahle to deduee information about

the diserete speetrum, which is apriori wrapped up in the

definition of the function aG(~), from the other terms in the

trace formula.

We shall leave the global theory of (3), and the proof of

the formula itself, for the next paper [1 (f)]. In this paper, we
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shall study the functions IM(y,f) and IM~n,f). These are

interesting objects in t:heir own right. If M = G" IM (y, f)

is just the orbital integral over y and IM(n,f) is the

character of TI. For general M they are more' complicated,

but they retain many of the essential properties of the special

case.

It is best to take G to be a connected reductive group over a

number field F. If S is a finite set of valuations of F,

one can define

and

TI E TI . t (M (F
S

) ) ,
un~

as invariant linear forms on the Hecke algebra of G(F S).

It is important to express them in terms of the local groups

G(F
V

). In §9, we shall prove splitting formulas for IM(y,f)

and IM,(TI, f.) in terms of the corresponding objects on the

grop,ps G (F ), v ES. A related question concerns the case thatv

the data y and TI come from a proper Levi subgroup M, of

M. In §8 we shall prove descent formulas for IM(y,f) and

IM(n,f) in terms of the corresponding objects for M,. Both

sets of results will be proved from proposition 7.1, which gives

a general descent property for (G ,M) - families. This in tu~n

is closely related to a similar property for convex polytopes,

which we will leave for the appendix.



-5-

It is perhaps helpful to think of the distributions

IM(y,f) and IM(TI,f) themselves in terms of convex polytopes.

Indeed, the chambers of the restricted "Wey-l group are dual to

a certain convex polytope TI O. The groups M. are parametrized

by hyperplanes' which intersect faces of U o ,orthogonally. If

we project II
O

ento such'a hyperplane, we obtain another cenvex

polytope TIM. The geometry of TIM then governs the' descent

and splitting properties of' the corresponding distributions.

The invariant distributions IM,(y,f) are obtained from

the weighted orbital integrals JM(y,f) studied in [1 (q)]. In

§2 we shall list the various properties that IM(y,f) inherits

from JM(y.,f). They all generalize weIl known properties of

ordinary orbital integrals. For example, the value of IM(y,f)

at a general point y E: M(F s) can be appoximated by its values

at G-regular points in. M(FS ). If S consists of one Archimedean

valuation, IM(y,f) satisfies a differential equation in y.

It also has a simple formula for the jump across the singular

hyperplane of areal root. If S consists of one discrete

valuation, IM(y,f) satisfies a germ expansion in y.

The distributions IM{n,f) are the values at X = 0

(and TI unitary) of a more general family of invariant distributions

IM (TI , X, f) ,

which we introduce in §3. These are defined in terms of the

weighted characters
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studied in [1 (e)]. It will follow from the definition.that

IM(TI,X,f) 1s trivial if· TI is tempered (Lemma 3.1). However,

for general TI, the distribution is more interesting. It turns

out to be closely related to the residues' (in TI A) of

JM(TIA,f). There are hints of this in Lemmas 3.2 and 3.3, but

a full explanation will have to await another paper.

It happens that the distributions IM(Y) and

are not independent of each other. This is fortunate,. because

in enhances the possibility of playing thern off against each

other in the trace formula. If y is restricted to a maximal

torus T(FS ) in M(FS)' the weighted orbital integral JM(Y'~)

is compactly supported in y. However, it turns ou~ that

IM(y,f) is not cornpactly supported in y. The distributions

IM(TI,X,f) may be viewed as the obstruction to this. In §4

we shall study various objects which arise naturally when one

tries to analize the asymptotic behaviour of IM(y,f). We

shall define new invariant distributions dIM(y,f) and

c IM(TI,X,f) by irnproving the suppo~t properties at the expense

of properties ofsmoothness. In particular, we shall show that

c'IM(y,f) is cornpactly supported if y lies in T(FS ) (Lemma 4.4.).

We shall also define certain rnaps SM and C SM that provide

expansions for IM and C1M in terms of each other. These rnaps

are in fact determined by the asymptotic behaviour of IM(y,f).

This sets the stage for Proposition 5.4. The result ~s an
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- c
important formula for IM(n,X,f) as a contour integral

involving CSM(f). It follows that the distributions

c IM(n,X,f} and I(n,X,f} may be determined, at least in

principle, -from the asymptotic behaviour of IM(y,f).

In §6 we shall give a simple example of how Proposition 5.4

can be applied in practice. It is not known in general that an

invariant distribution annihilatesfunctions whose orbital

integrals vanish. In Theorem 6.1 we shall show that this property

holds for IM(n,X) provided that it holds for IM(y). (We will

establish the property for IM(Y) in the next paper [1 (f)].)

We have already mentioned the descent and splitting formulas

that are proved in §7-9. To illustrate the descent formulas,

we shall end the pap~r by discussing the exam?le 'of GL(n).

We shall show that our-invariant distributions often vanish

on functions associated with base change or the comparison with

central simple algebras. These.vanishing formulas (Propositions;

10.2 and 10.3) will in fact be required for base change.

Together with global vanishing results in [1 (f),§ 8], theyare

the startlng point for a comparison of the full trace forrnula

of GL(n) with the twisted trace formula over a cyclic

extension.
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§ 1 Invariant harmonie analysis

Let G be a eonneeted eomponent of a reduetive algebraic

group over a field F. We assume that G (F) .* <p. We write G+

for the group generated by G, and GO for the identity

component of G+. A simple example to keep in mind is the

component

( 1 • 1 ) G* = (GL (n) x • • • x GL (n» ~ 8 * ,
l I )

9.,

when 8* is the permutation

(1, ••• ,~) ~ (2, ••• ,~,1).

Then (G*)+ is the semi-direet product of ~ copies of GL(n)

with the cyclic group of order· 9., gener.ated by 8*. 'A more

general example is that ~n which G is an inner twist of G*.

By this ·we mean that there is a morphism

(1 .2) n:G ~. G* ,

which extends to an isomorphism n from G+ to (G*)*, such

that for every T € Gal (F/F), n-1 n11 equals a conjugation by an

element in G+. If G 15 of this form it is essentially the

connected component obtained from a central simple algebra by

eyclic base change.

We assume that F is a loeal or a global field of

characteristic O. In this paper, S always stands for a finite

set of valuations of F with the cloaure property ([1 (el ],§1).
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This simply means that if S contains no Archimedean

valuations, it consists entirely of valuations which divide

a fixed rational prime p. We fix a maximal compact subgroup

of G(FS )' such that the group

is special for every non-Archimedean valuation. v ES'. Clearly,

K = Ir
v€S

Kv

is a maximal compact subgroup of GO(Fc ). Having fixed K, we......

can form the Hecke space H(G(F
S
». It consists of the smooth,

compactly supported functions on G(FS ) which are left and

right K-finite.

The Hecke space seems to be the correct space of test

functions to use in the trace formula. We are interested in

the continuous linear functionals or "distributions ll on

H(G (FS » .which make up the individual terms in the trace

formula. In the papers [1 (dl] and [1 (e)], we studied the

Ioeal properties of two such families of distributions. The

present artiele is a natural successor to [1 (cl)] and [1 (e1],

and in a sense unites these previous two papers. We shall

attaeh invariant distributions to each of the distributions in

the two families. By studying the parallel behaviour of these,

we shall find that the two families are reall~ guite closely related.
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We shall routinely adopt the notation of [1 (d)] and [1(e)],

especially that of §1: of each paper. In particular, the letter

M is always understood to be a Levi subset of Gwhich is in

good relative position with respect to K. More precisely, we

require that each Kv be admissible relative to MO in the

sense of § 1 of [1 (a)]. Recall that L(M) denotes the

collection of Levi subsets of Gwhich contain M, and F(M)

denotes the set of parabolic subsets

Mp E L (M) ,

which contain

space

M. Recall also that we have the real vector

a
M

= Horn (X (M) F ,'JR) ,

which we assume has been assigned a suitable Euclidean metric.

This, provides a Euclidean metric by restrietion on any

subspace of aM.

In § 11 of [1 (e)] we defined the Paley-Wiener space

I (G (F
S

).) of functions on

TI temp (G (Ps' » x aG , S •

There is a continuous map

_.
T: f -+- ~G'

with

f E H(G(Fs »'

= J. * _ Er(IT, (f) )e-A(X)dA,
l.aG,S· 1\

IT~rrt (G(F ') ,XEa G Semp S , ,

from H(G(FS » to I(G(FS». More generally, consider the function

f~I (IT ,X) = (fp)M(IT,X) = f tr(I (IT ,f) )e- A (X)dA EIl ((». * PA' ~ temp M FS ,XEaM,s'
~aM,S
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where for any PE:. P(m), f p is the function

m~ 0p(m) 1/2 J J f(k- 1rnnk)dndk
KNp(FS )

in H(M(F
S
»' and Ip(TI A) is the representation in

induced from rr
A

. Then

is a continuous linear map from H(G(F
S

.» to I(M(F
S
».

It is actually necessary to work with the 1arger spaces

Hac(G(FS » = l~rn Hac(G(FS.»r
r

and

Iac(G(Fs~.» = 11m lac(G(Fs~»r .
r

introduced also in § 11 of [1 (al]. (Recall,that r denotes

a finite subset of IT(K), and Hac(G(Fs.»r is the space of

functions r on G(F S ) such that for any b E c~(aG,S) 1 the

function

belongs to H(G(Fs)r· Simi1arly, Iac(Fs»r

of f.unctions q, on IT.·temp (G (Fs) x a G, S

every b, the function

q,b(TI,X) = q,(TI,X)b(X)

1s the space

such that for

belongs to . I(G(F ')r). For there is an important rnap q,M
S
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which sends H(G(Fs )) to aspace of functions on

TI temp (M (FS )) x aM, S

whieh is not contained in I(M(FS)). However, $M can be

defined on Hac (G (F s) ) , . and it does map this space. into

1 (M(F)) ([1 (e); Corollary 12.2]). Moreover, it follows
ac S

directly from the definition that f ~ f
M

extends to a

eontinuo,:!s map from Hac (G (F
S

)) into lac (M (F
S

) ). In particular,

maps H (G(FS )) continuously intoac ,- Iac(G(FS ))·

Proposition 1.1: Suppose that Geither equals GO or is

an inner twist of the component G* in (1.j). Then

is an open, surjeetive map from

fE H (G(FS ))'ac

H (G(F
S

)) onto
ac

Proof: It is enough to establish the resul t with the. spaces

Hac (G (F
S

)) and' l
ac

(G (FS )) replaeed by H(G (FS )) and 1 (G (FS ) ) ·

Indeed, the topologies on the larger spaces are defined so

that the openness assertion extends immediately. One extends

the surjectivity to the larger spaees by a partition of unity

argument on aG,S. It is also clear that the valuations in 5

may be treated separately. We shall therefore assume that S

consists of one valuation {v}, and that F is a Ioeal field.
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Suppose first that F is non-Archimedean. The

surjectivity of the map H(G(F)) ~ I(G(F)) follows

directly from the ,trace Paley-Wiener theorem of Bernstein,

Deligne and Kazhdan [J], and its extension to nonconnected

groups by Rogawski [8]. It holds without restriction on G.

The op~nness is trivial, since H (G (F) ) and J (G (F) ) are

topological direct limits of finite dimensional spaces.

Suppose next that F is Archimedean. In the case that

G = GO, the surjectivity has been proved by Clozel and Delorme

[5(a)], [5{b)]. In [5(b)], the authors note that the theorem

can be claimed only for connected Lie groups. However, the

results of Knapp and Zuckermann, which were the reason for the

restrietion, are known to hold in general [9]. The openness

assertion can also be extracted from the work of Clozel and

Delorme. For implicit in their proof of surjectivity 1s the

construction of a continuous sect10n

(See the appendix to [1 (f)].) If G 1s an inner twist of G*,

the trace Paley-Wiener theorem can be proved in the same way

as for connected groups. For the special case of base change

for GL(n) , see [2, Lemma 1.7.1]. The more general case

follows the same way. Again, the openness of the map is implicit

in the proof of its surjectivity.
o

For the rest of this paper and also the next one [1 (f)],

we shall assume that G satisfies the conditions of Lemma 1.1.
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That is, G equals GO or G is an inner twist of the

component G* in (1J1). This is only because of the

limitations of Lemma 1.1. We shall,. in fact, write the papers

as if they applied to general G. In the next.paper, there

will be one argument in Galois cohomology that relies on the

special nature of G ([ 1 (f) ]., Theorem 5. 1). However, it seems

likely that both this argument and Lemma 1.1 could soon be

strengthened to include all. ·G. The resul~of our two papers

would then apply without restriction.

Suppose that 6: is a: continuous linear map from

Hac-(G (F
S

) ) to another topological vector space V'. We shall say

that 6 is supported.on.characters if it vanishes on the kernel

of T. That is, if 8(f) = 0 for every function

such that f G = O. If 8 has this property, there is a uniq~e

continuous map

such that

This is an immediate consequence of Lemma 1.1. Consider the

special case that V = ~. Then 6 is supported on characters

if and only if it lies in the image of the transpose map

TI: I' (G (F » -~ H' (G (F ».
ac S ac S

A

The function 8 is then just equal to the inverse image of

8 under TI. As in [1 (e)], we shall often refer to elements
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in the dual spaces

distributions on

Any map

H' (G(FS »
ac

Hac (G (FS ) )

and

and

l' (G(Fs »ac

I (G (FS ) ) •
ac

as

8:H (G(FS » ~ Vac

which is supported on characters is also invariant. That is,

h € H (G
0

(Fs) 1 ), f € Hac (G (FS ) ) ,

in the notation of § 6 of [1 (e)]. Conversely, it is likely that

every map which is invariant is supported on characters.

However, we shall not try to prove this. We shall be content

simply to show that those invariant maps' and distributions which

arise from the trace formula are supported on characters. The

proof will be based on a long induction, and will not be

completed until the next paper [1 (f), Corollary 5.3.]; where

we will use a global argument introduced by Kazhdan. The proof

does not require that we keep track of which maps are invariant.

H~wever, we shall do so, in order to motivate our constructions.

In fact, the reader might find it easier to proceed as if it

were known that all invariant maps were supported on characters.



-17-

§ 2 The invariant distributions IM(y)

We shall introduce one of the two families of invariant

distributions which occur in the traee formula. These

distributions are parametrized by elements in M(FS )' and are

obtained from weighted orbital integrals. They were defined in

§ 10 of [1 (a)] in the Special ease that G = GO and the

element in M(f
S

) was G-regular. The definitions of [1 (a)]

relied on various hypotheses fram local harmonie analysis.

Suppose that y is an element in M(F
S

). In § 6 of [1 (d)]

we defined the.weighted orbital integral

f E C
OO

( G (F l)' •
e S

It is a distribution whieh depends only on the restriction of .

f to

for Z = HG(Y). The restriction of any funetion in

to this set eoincides with that of a function in

H (G(F
S

»ae

H(G(F
S
»·

Consequently, JM(y) may be regarded as a distribution on

Hac(G(Fs». Arguing as in the praof of Lemma 6.2 of [1 (e)],

we can transform the formula

established in Lemma 8.1 of [1 (a)], into

~QI J v (y, R
Q

hf),
QEF(M)-- ,
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A similar formula,

holds for the rnap

~M:H (G(F)) ~ I (M(F )).
ac S ac S

(See [1 (e), (12.2)].) This suggests that we define an invariant'

distribution

f E: H (G (FS ) ) ,
ac

inductively by setting

f € H (G(F)).
ac s·

However, we cannot say that IM(y) is supported on characters,
1\

so we do not know that IM(y) is defined. We roust proceed as

follows. Let La (M) denote the set of elements L € L (M) with

L * G. Assume inductively that for e.very L E La (M) (and for every

S) that the distributions I~ (y) are defined and are supported

on characters. We then define

(2 • 1 )

The invariance of IM(y) follows easily from the two forroulas

above. (See [1 (a), Proposition 4.1].) We shall carry this

induction assumption throughout the rest of this paper, and also

for rnuch of the next one. The argument will be cornpleted only

by Corollary 5.3 of [1 (f)], in which we shall show that
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1\

is also supported on characters. Only then will IM(Y)

be defined, and will we be able to write

In the paper [1 (d)] we investigated the loeal behaviour

of JM(y,f) as a function of y. It is easy to see that IM(y,f)

has similar properties. They can all be established inductively

from the corresponding properties of JM.(y,f). For example, if

y is a general element in M(FS )' JM(y,f) is given in

[1 (d) , (6. 5)] by a 1 imit

LJM(y,f) = 11m rM(y,a)JL(ay,f).
a-+-1

The functions ~~(y,a) here are defined in § 5 of [1 (d)] in

terms of a certain (G,M)- farnily, and the limit is taken over

a in ~,reg(Fs)' the set of points in ~(FS) whose

centralizer in G(F
S

) equals M(F
S

). Assume inductively that

M1 L M1IM (y,g) = 11m IM .rM(y,a)IL (ay,g),
a+1 L€ L 1 (M)

for any

holds if

M1: La (M) and gEr ac (:1 (FS ) ). A similar formula then
1 1\ 1

IM is rep1aced by IM. It follows from the

definition (2.1) that .IM(y,f) equals

L I\M 11im z: rM(y,a) (JL(ay,f) _.z: I
L

(ay,epM (f»).
a+1 LEL(M) M1€L a (L) 1

Applying the definition again, we see that

(2 .2) IM(y,f) = 1im l. r~(y,a)IL(ay,f),
a+1 LEL(M)
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with a E A..-A (FS·). More generally , suppose that L
1

E L (M) .
J.·.l,reg L

The induced space y 1 C L
1

(F
S

) was defined in § 6 of [1 (d)].

It is a finite union of L~(Fs,)-Orbits. In Cerollary 6.3 ef

[1 (d)] we found that

L
1J

L
(y ,f) = lim

1 a+1
L r·~ (y, a ) J L (ay , f) ,

LEL(L
1

) 1

with a E A._ 1FS ). The formula: -~,reg

L 1 L
(2.2*) I

L
(y ,f) = lim L r L (y,a)IL(ay,f),

1 . a -+ 1 LE L (L 1 ) 1

with a E A__ (F ), fellows inductively from this. In particular,
-~,reg S

the limit on the right exists.

Suppose that 0 E: M(FS.) is a semisimple element such that

Ga is contained ·in M. Then

in the notation of Lemma 2.2 of [1 (d)]. Recall that this means

that JM(y,f) coincides with the orbital integral of a smooth

function of compact support on M(F
S
)' for y near 0 in

oM (F ). It fellows inductively from (2.1) that that the same
o 5

property, narnely

(2.3) I (y f ) (M , a ) 0
M' .......-...-, Y E crM (Fe)'a .....

holds for the invariant distributions.

The distribution IM(Y) depends only on the MO (FS)-orbit of

y, since the same is true of JM(y). More generally suppose that y
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-1Y My is anather Levi subset

of G. If f belangs to H(G(F S ))' the function

Y -1f (x) = f(yxy )

belongs to the Hecke space w~th respect to the maximal

compact subgroup y-1 Ky . We have the formula

-1 Y
J -1 (Y yY, f ) = J M (y , f) •

Y My

(See the remark following the proof of Lemma 8.1 of [1(d)]).

It follows fram (2.1) that

(2.4) -1 YI -1 (y yy ,f ) = IM (y , f) ·
y My

Suppose that y belongs to

Then it is not hard to'show that

(2.4*) -1
I -1 (y yy,f) = IM(y,f),

Y My

since IM(Y) is invariant.

Consieer the case that S consists of one non-Archimedean

valuation v, and that F = F
v

= F
S

. Let 0 be a semisimple

element in M(F). In Proposition 9.1 of [1 (d)] we established

a germ expansion

J (y ,f)~ L
M LEL (M)
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(See [1 (d),§ 9] for an explanoation of the notation.) It

follows inductively from (2.1) that

(2.5) I (y ,f)~ L
M LEL (M)

Cons1der finally the case that F = Fv = FS is an

Archirnedean local field. S:uppose that T 1s a umaximal torusl!

of G over F, in the sense of § 1 of [1 (d)]. If z belongs

to the center of the associated universal enveloping algebra,

we have the differential equation

J (y,zf) =
M

for

T(F)

y in the open set Treg(F) of G-regular elements in

([1 (d), Proposition 11.1]). Using the definition (2.1)

inductively again, we convert this to a differential equation

(2.6) IM (Y,zf) = y ( T (F) ,
reg

for the invariant distributions.The behaviour of IM(y,f)·

as y approaches the singular set is also identical with

that of JM(y,f). In particular, the jurnp around a 5erni

regular point of noncompact type can be cornputed for any

derivative of JM(y,f). It is given by a formula

(2 .7) lim (a(U)I~(Yr.,f)-a(U)I~(Y_r,f»=n
ß

lirn(-d<u
1
)IM (8 ,f),

r-+O 5-+0 1 5

which is the analogue of Proposition 13.1 of [1 (d)].

Sirnilarly, Proposition 13.2 of [1 (d)] becornes
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(2.8)

These results follow once again inductively from the

definition (2.1).

We conclude the paragraph with a lemma which will be

needed for global applications.

LEMMA 2.1: Suppose that v 1s an unramified fini~e valuation

and that f is a function in H (G (F. ))
ac v which is bi-invariant

under K. Then·v

yEM(F ).v

PROOF: Suppose that L E LÜ(M). Then

in the notation of [1 (e) ,§7]. Here TI 1s a representation

onto P (L). Since

Z
10 (TIA,f) vanishes

o
TI is unramified.

KV ' the operator

is unramified. Suppose then that

IT
t

(L(F)), X 1s a point in a whose projectionemp v L ,v

a equals Z,·and 00 1s any· element inG,v

is bi-invariant underf

unless

in

Let ~ be a vector in the space on which b (TI A) acts which

is fixed by K
v

. By the condition (Ra) in P1 (e), Theorem 2.1],

the normalized intert~ining_ ope~ators

Q E P(L),

take values at ~ which are independent of A. Recalling

the definitions in [1 (e)], we see that
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= 0 •

It thus follows that the function <p (f) vani'shes . The
L

lemma is then an immediate consequence of the definition (2.1).

o
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§ 3 The invariant distributions IM(n,X)

Next we shall define the other family of invariant

distributions which occur in the trace forrnula. These

distributions are parametrized by pairs

(1T ,X) , 1T E TI (M (FS ) ), X E aM , S •

They are related to the weighted characters

JMhr,X,f) ,

studied in [1 (e)].

In § 70f [1 (e)] we observed that J
M

(1T,X,f) was

dependent only on the restrietion of f to G(FS)Z , for

Z = hG(X). Thus, as with the weighted orbital integrals, the

weighted characte~may ba regarded as distributions on

Hac(G(Fs )). It follows from Lemma 6.2 of [1 (e)] that

MOt J M (1T,X,RQ h f ) ,
QEF(M) ,

for any fEH (G(F
S

))ac and h E H (GO (Fs) 1 ). Since a similar

formula holds for the map ~M' we shall define an invariant

distribution

I M(1T,X,f) G= IM (TI" ,X,f) , fEH (G(F
S
))'ac

inductively by setting

( 3 • 1 ) I M(1T,X,f)
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Included in the definition iso the induction assumption that

is supported on characters. Observe that this

L E La (M) ,and any pair (n,X) I the distribution

induction hypothesis 1s our second. Before we are done , we

shall be forced to take on several.more of the same kind. All

but one of these will be resolved presently. We shall show

in §6 that our induction hypotheses are all contained in the

one of §2. But as we have already remarked , we shall carry the

hypthesis of § 2 into the next paper.

LEMMA 3.1: Suppose that n is tempered. Then

1f M = G,

if M * G.

?ROOF: If M = G, we have .

by def in i tion I even if Tr i s not tempered. I fM*, G I the

definitions alsoimply that

JM(TT/X/f) = 4>M(f / 'lT / X)

as long as TI is tempered. The lemma follows inductively

f rom (3. 1 ) •
o

At first glance , one rnight guess that the lemma holds

for arbitrary Tr. However , this is decidedly not the case.

If Tf 1s not tempered , and if M * Gi the difference
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is no longer O. For JM(n,X,f) is defined directly as

an integral over {nA}' whereas $M(f,n,X) is defined by

analytic continuation fra,rn such integrals taken over ternpered

representatians. One finds that the difference depends in a

cornplicated way on the residues discussed in §8 of [1 (e)].

We shall say more about this in another paper.

On the other hand IM(~,X~f) does not assurnetoo rnany

values. Set

and consider this expression as a function of J.L •

LEMMA 3.2: (a) As a function cf ~, IM, ~ (TI, X,f) ".1s locally

constant on the cornplement of a finite set of hypersurfaces of

the form

v
~(Ct ) = N,

for N E JR, and a a roet of (G,AM).

(b) For each ,p E .P(M), let E: p be a srnall point in

the chamber (ap)+. Then

IM (n, X , f ) = 1P (M) 1- 1 l. IM j.l+ E: (TI, X , f) •
,j.l PEP(M) , p

PROOF: The definition (3.1) may be rewritten
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. AL
= J M (TI,X,f) - I IM (TI,X,$L(f»,

~ ,J,L LEL (M) ,J,Lo

( X f) J ( TI X f)' e - J,L (X)
JM,J,L 'Tr" = M J,L' ,

The first·assertion (a:) of the lemma will follow inductiveiLy

from this if we can establish the corresponding statement

for JM,J,L(TI,X,f). We.may assume that f belongs to H(G(F S».
Then if J,L E aM 1s in general position, we have

J
M

(TI,X,f) = f J (TI ,f)e-A(X)dA
,J,L +'a* M A

J,L 1. M,S

The required assertion then follows fram the properties of

the function JM(TI.\,f). (See § 6 of [1 (e) J-.) This proves (a).

Assume inductively that (b) holds if G is replaced by

any element L E La (M). Then

I PL (M) I -1. \' AlL (X .+. ( f) )
I, L M TI, , '+'L •

REP (M) ,J,L+E R

If we apply the assertion (a) to L, we see that this rnay be

written as

-1 \' AL
I P (M) I L IM +€ (TI, X., $L (f) ) •

PEP(M) ,J,L P

But it is an· immediate consequence of the definition [1 (e) ,§7]

of that
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J
M

( Tf I X I f) = I P (M) I -1 Y J ('1T I X I f) •
I J.1 PE: P(M) M I J.1 + Ep

The second part (b) of the lemma follows from (3.1*).
o

REMARK: The reader rnight want to keep a special case in

rni nd . Suppose that F = ~ I '1T 1s tempered and M = AM"!' (so

in particular , G is connected Chevalley group). Then from

the reducibility properties of the representations I ('1T )
P jJ.'

one can see that the singular hyperplanes are all of the

form

j.J.(a.
V

) = n ,

Therefore,

cJlarnbers of

IM ( TI ,X , f )
,J.1

aM·

1s constant on the affine Weyl

LEMMA 3. 3-. Suppose that . '1T E: TI (M (FS) ) i s unitary. Then

the function

IM (TI , X , f) ,
,J.1

is constant for J.1 in a neighbourhood of the origin.

PROOF: First consider the function J
M

(n,X,f). As in the
,J.1

proof o~ the last lemma, we can assume that f belongs to

J
M

('1T , X , f ) ::
,J.1

( "

'\.
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By definition [1 (e) ,§6],

where RM(TI~,PO) is constructed from the normalized

interwining operators

Rp I P ( TI >..) : rP ( TI >..) --+- I p (TI >..) ,
o 0

P,POEP(M).

In particular, JM(TI>..,f) is regular at any point >.. where

the intertwining operators are all regular .. But by Theorem 2.1

of [1 (e)], the operators ~IP (TI>..) are unitary whenever ·TI>..
o

is ~nitary.·It follows that JM(TI>..,f) is regular if the real

part of A 15 near o. By changing\. the contour in the integral

above, we see that J M (n,X,f) is constant for ~ near O.
,~

The lemma then follows inductively from the formula" (3.1*).

o

For future reference; we state a variant of the last lemma.

Its proof is similar.

LEMMA 3.4 Suppose that TI E TI (M (FS) )

L E: L (M). Then

is unitary and that

is analytic for the ieal part of . >.. near o.
o

It is sometimes appropriate to take a standard represen-

tation p E E (M (Fs» ([ 1 (e) , §5]) instead of the irreducible TI.
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We noted in §7 of [1 (e)] that the distributions JM(p,X,f),

could be defined in the same way as JM(TI,X,f). We then

showed ([1 (e)], Proposition 7.1) that for any TI E II(M(FS »)'

JM(TI,X,f) had.an expansion

I P (M) 1-1
L
P

with P and p summed over P(M) and {E(M(FS))} respectively.

(The notation here follows [1 (e)]. In particular, r~(TIA'PA) is

a meromorphic function obtained fr9m the ratios,of the

normalizing factars for TI A and PA. As in Proposition 5.1 of

[1(e)], we write {E(M(FS»} and ;:""CII(M(FS ))} for the set

of orbits of the finite group

rr(M(~S) respectively.) Arguing as

in the proof of'Lemma 3.2(b), we obtain a similar expansion

(3.2) IM(TI,X,f)

::: I P (M) I -1 L L
P P

for the invariant distributionsdefined by the analogue of (3.1).
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§ 4 Some further maps and distributions

In this paragraph we shall study some supplementary

maps and distributions. These do not appear in the trace

formula, but they will be needed to relate. the two families

of distributions we have already described.

The function

x ~ epM(f,rr,X)

does not have compact support. Our first task will.be to

define a differen t map c
~M' with the property that for any

does have compact support. However, the latter function turns

out not to be smooth in X. In order to describe it properly,

we must first introduce' some larger function spaces.

Suppose that ~ .is a finite set of hyperplanes in an

Euclidean space a. The complement of ~ in a is a union

of a finite set C of open connected components. For any

X E a, let C (X) denote the 'set of cornponents in C, whose

closure contains X. If

(c ,X) ,

is any given pair, we set

cEC, XEa,

m(c,X) = yol(c n Bx ) (vol(B
X

) )-1 ,
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where BX is a small ball in a eentered at X. Then

L m(e,X) = 1.
eEC

As a funetion of X, m(e,X). is loeally ~onstant on the

strata of a defined by interseetions of planes in· ~.'

Suppose tha~ ~' 15 a subset of ~. Then any element Cl

in the corresponding set CI of co~ponents is a union of

elements in C together with a set bf measure O~ It is

obvious that

( 4 • 1 ) m(c' ,X) = 2. m(c,X).
{eEC:c~e'}

We take a to be aG. Far a given set ~, we define

H~(G(FS» to be the spaee of funetions f on G(F
S

) such

that

(4 .2)

where each funetion f c belangs to H(G(FS». Similarly, let

~
I (G(Fs » be the space of functions

x a --+
G

of the form

ep(TI,X) =

with <Pe E I (G(Fs». In the manner of §11 of [1 (e)'], we assign

topologies to the two spaces. For example, we take H~(G(FS»

to be a topological direct limit
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lim lim
-+ -+
r N

Here 4>
HN(G(Fs»r denotes the space of functions f such

that each f c :belongs to the space

in § 11 of [1 (e)]. The topology on

by the seminorms

defined

is defined

sup sup IOf (X) \
cEC {x€G(FS ) :HG(X)EC} c

with 0 a differential operator on G(fsns ). Now, the
00

collection of all 4> is a partially ordered set. Oefine

= 1 im H4> (G (Fs) ) "
-+

and

1.(G(FS » = 1im T~(G(FS»
-+

We point out that if S contains no Archimedeanvaluations,

aG,S is just a lattice in a G, and the spaces H(G(FS »

and I(G(Fs » equal H(G(F S » and T(G(FS ») respectively.

I.n general, lhowever, they are proper extensions.

We of course also have spac~s ~(L(FS» and I(L(Fs »

for each L E L (M). In a sirnilar fashion, we can def ine

extensions

H (L (F
S

) )
ac

~ac(L(Fs) and

and 1ac (L (F S) ) •

1 (L(F
S

))
ac of the spaces
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LEMMA 4.1: For L E L (M) , suppose that H is one of the

spaces HCP (L(F S»' H(L(FS » or 17ac(L(FS»' and 1 is

the corresponding space I~(L(FS» , I(L(Fs » or lac(L(Fs»· Then ,

gEH

is a continuous, open, surjective map fram H onta 1.

PROOF: As in Proposition 1.1, the lemma fellows easily

fram its analogue for H =H (G (FS) ) and 1 = I (G (Fs) ) •

c

In § 12 of [1.(e)] we defined a map

f -;... <P M ,~L (f) , f E: Hac (G (F S) ) ,

for each IL E a
M
*. We then established that cb rnaps

t . M, ~

Hac (G (Fs» continuously to I ac (M (FS» ([ 1 (e), Theorem 1 2.1] ) •

The values of the function are defined by

<P M (f ,1r ,X) = J
M

hr ,X', f .) ,
,~ , ~

h
G

(X)
The value depends only on f , so it follows that <PM,~

can be defined for any fEH (G (F
S

) ). The map sends: H (G (FS ) )ac ac

continuously to 1 (M(FS». This applies in partic~lar teac

·<P
M

' which is the case that ~ = O. It follows easily that the

distributions IM(TI,X) and IM(Y) can be defined on Hac(G(Fs».

The most familar set of hyperplanes in aM 1s the collection
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~ = {aL : i E L (M), d im (~/AL) = 1}.

The assoeiated eomponents are just the usual ehambers

Let P(M,X) denote the set of elements P E P(M) such that

X belongs to the elosure of
+ap • These chambers are all

congruent, so if
+

e = ap ' with P E P(M,X),

-1
m (e , X) = I P (M , X) I •

For each PEP (M), let v p be a point in the assoeiated

chamber (ap)+ in aM whose distance from the walls 1s

very large. The function

of v p . We def1ne

epM (f,rr,X)
, \J P

1s then independent

C<p (f,TI,X) = IP(M,X) 1- 1 l. <PM v (f,TI,X),
~i PEP (M, X ) , P

to11 (G(F
S

))
ac

TI E TItemp (M (Fs)) and X E aM, S. We have

tM,v
p

m~s ~acrGrFs)) continuously

follows easily from the definitions that

I"'J

f E: H (G (F
S

) ) ,
ac

to 1 (M(FS)). Itac

f ~ c~M(f) 1s a continuous map fram

already agreep that

for

The reason for introdueing is that it maps functions

of campact support to functions of compact support.

LEMMA 4.2: e"",
'fM maps ·continuously to T(M(F S )).

PROOF: We roust show that there is a positive integer N,
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depending only on the support of fEH (G (Fs) ), such that

is supported on the ball in of radius N.

Looking back at the definition of c~M' we see that it is

sufficient to show that for any PEP (M), and for X in the

closure of

of radius

+ap n aM",S,4>M,'J
p

(f,1T , X) is supported on the ball

N. Consider the decomposition (4.2) for f. We can

of course ~ssurne that the functions on the right hand side

of this formula are each supported on a set which depends only

on the support of f. We may therefore assume that fitself

belongs to H(G(F S )). Then

(4 .3)

We need only show that as a function of X E ~;, ('4.3)

is supported on a ball which depends only on the support of f.

The proof of this fact is straightforward and is similar to

an argument used in the derivation of T~eorem 12.1 of [1 (e)].

For we have

in the notation of [1 (e)]. There is a standard estimate

for the function

(See [1 (e) ,(12.7)].) Combined with the rationality properties

of RM and the classical Paley-Wiener theorem, it yields the

required assertion.

o
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The map C$M behaves the same way under conjugation as

LEMMA 4. 3 : I f f E 11ac (G (FS) ) a nd h E: H(G~ (FS) 1 ) ,

PROOF: According to [1 (e) , (1 2.2) ] ,

for each PEP (M)" Therefore

= I P (M , X)1- 1 L
QE: F (M)

Fix Q E: F (M), and set L = MQo.o If PEP (M), the point v p

certainly belongs to the chamber (atnp)+ and is far from the
~Q 0

walls. In particular, $ depends only on L n P. ItM,V p
follows from (4.1.) that

maps P(M,X) surjectively onto pL(M,X) with the inverse

image of any point containing

elements. Lemma 4.3 follows.

f 0

cBy the last lemma, ~M(f) and ~M(f) have the same

formal behaviour under commutation. We can therefore copy
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the eonstruetion of the distributions IM(Y) and IM(rr,X),

but with e~M playing of the role ~M. We obtain invariant

distributions

and

(4 .4)

and

(4.5)

for c:..ny f Ineluded in the definition are our third and

fourth induetion assumptions, namely, tha t f or any L E L0 (M) ,

the distributions eI~(Y) and e~~(rr,x) are supported on

charaeters. The significance of eIM(Y) 1s in the next lemma.

LEMMA 4.4: Suppose that T is a "maximal torus" of M over

FS (in the sense of § 1 of [1 (d)]). Then for any f E H(G(FS » ,

the funetion

e
Y --+ IM(y,f),

has eompaet support.
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PROOF: It follows fro~ ([1 (d), Lemma 2.1 and the definition

(6.5»)) that the function

y --+- JM(y,f) ,

has compact support. Assume inductively that the' lemma holds

if G 1s replaced by any L E: LO (M). By Lemma 4. 2, the function

c~L(f) belongs to 1(L(FS». Lemma 4.1 then teIls us that it is

the image of a function on H(L(F
S
». Applying the induction

assumption, we obtain the compact support of

The lemma then follows from (4.4).

[J

The distribution is to be regarded as a

companion of I~(TI,X). The two have some rather similar

properties. For example, if TI E II (M (Fs) ), X E a
M

, sand

f €. 'Fr (G (FS ) ) are fixed, the functionac

(4 .6) c r (X f) cI ('Tl" X f)e-~(X)
M TI" = 11", J.1 M }l

satisfies the analogue of Lemma 3.2. It is locally constant

on the complement of a finite set of hyperplanes defined by

roots, and it satisfies the mean value property

Moreover, when TI is tempered and X i5 in general position,

there is an open set on which (4.6) vanishes. However, for
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CI the open set is an infinite chamber which depends
M,~

on x.

LEMMA 4.5: Suppose that n is tempered,

and M *G. Then

·(a) IM(n,X,f) = 0,

and

f E: H (G (F
S

) ) ,
ac

(b)

PROOF: The assertion (a) is just Lemma 3.1. We have

included it here only for the sake of comparison.

For the second assertion (b), we begin by observing that

c
cf>M(f,n,X)

-1 \'= I P (M, X) I L . cf>M \) (f, n , X)
PEP (M,X) , P

= IP(~,X) 1-1 L e-vp(X)J (1T ,x,f).
PEP(M,X) M v p

Therefore, the given expression,

I P(M,X) 1- 1 I C IM . (n,X,f) ,
PEP(M,X) ,vp

is equa~ to the difference between and

I P(M, X) I-} l:
PEP(M,X)

l.
LELO(M)

A
C L C

IM (1T,X, epL(f»).,Vp
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cAL
Since IM depends only on the element R = P n L in

IV p
pL (M I X) I we can argue as in the proof of Lemma 4. 3. The

last expression becomes

\ L -1 \ c4L c
L I P (M,X) I LL iM (TI,X, 4>L (f)) •

LELO(M) REP (M,X) 'VR

We can assume inductively that the summand corresponding

to any L * M vanishes. B,ut' the summand corresponding to

L=M is just equal to c 4>M(f,TI,X). It follows that the

original expression vanishes.
[]

COROLLARY 4.6: Suppose that TI,f and Mare as in the

lemma,· and that X belongs to a charnber a;, PEP (M). Then

[]

rf we try to compare 4>M(f) and c4>M(f) directly,

we are lead to define invariant maps

We define them inductively by

(4.7)

and

(4 .8)
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f E 11 (G (F
S

) ). Once again, the definition includes
ac

induction assumptions, our fifth and sixth, that for any

L E LO(M), the maps 8~ and c8~ are supported on characters.

LEMMA 4.7: Suppose that TIEITternp(M(Fs})

Then

and fEH (G (F
S

) } •
ac

(4 .9 )

and

= IP(M,X} 1-1 L IM v (TI,X,f)
PEP(M,X} 'p

(4.10)

PROOF: Acording to the definition, 8M(f,TI,X} equals the

difference between C
<PM(f,TI,X} and

By induction, we can assurne" that

L -1 ~
= I P (M,X) 1 LI ~ (TI ,X,epL (f)) ,

REP (M,X) ,vR

for any LE LO(M}. The summand on the right is independent of

v R' as long as the point rernains highly regular in (aR)+. It

fellows fram (4.1) that

We rnust subtract the surn over L E La (M) of this expression
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from the function

= IP(M/X) 1- 1 L epM (f/'IT/X).
PEP (M,X) l'J p

Since'

the result is just

I P (M I X) 1 -1 I IM (TI I X I f)
PEP (M,X) l'J p

The equality of,this expression with 6
M

(f / 'IT / X) is the

required formula (4.9).

The second formula (4.10) follows by a similar inductive

argument from (4.5) and (4.8).
o

LEMMA 4.8: Suppose that .f E'Hac(G(Fs )) I Y EM(FS ) I 'IT E II(M(FS))'

and X E a
M

I S. Then the following formulas are valid.

(4.11,)

(4.12)

(4.13)

c
IM(y/f)

IM(Tr/X/f)

c
IM('IT/X/f)(4.14)

(4.15)

AL c
= IM ( 'IT I X I f ) + I- 'IM ('IT I X I eL (f) ).

LELO(M)

CeM(f) + I c~~(eL(f))=e (f)+ I ~L(ce (f))={~/M~GI
LELO(M) l'! L~Loni) ~1 L ""H*G.
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REMARK: We snould ke~p in mind what will eventually be proved,

namely that the distributions and maps above are all supported

on characters. Once we know this, we will be able to change the rigrt

hand side of each forrnula to a single surn over L E L (M) •

PROOF: We assume inductively that each formula holds when G

is replaced by a proper Levi subset. The formulas for Gare

then easily estabi~hed from the definitions. We shall prove

only (4 . 11 ) •

It follows from the definitions (2.1) and (4.4) that

=

IM(y,f) - c1M(y,f)

, c~L c AL 1L IM(y, <PL(f») - L IM (Y,<P L (f)).
LEL

O
(M) L

1
EL a (M) 1

By (4.7) the first of these sums equals

t
LELO(M)

Applying (4.11) inductively te each

Formula (4.11) then fellows for G.

L1 E La (M) , we ebtain

Cl
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§ ·5 A contour integral

The formulas (4~11) and (4.12) can be taken as motivation

for·the introduction of the maps and

formulas describe the asymptotic behaviaur ·of IM(y). Their

value .. lies in the fact that they consist entirely of invariant

distributions. Of course it is the compaGt support (Lemma 4.4)

of c1M(Y)' that 1s essential here. We point out that this

property has came at the expense of properties of smoothness.

The original distribution· IM(y,f) is not smooth in y , but

its singularities are not too bad •. For example, if F = m,

(2.7) provides a simple farmula for its jumps acrass singular
CA

hyperplanes. The singularities of IM(y,f) are more complicated.

c c c
The same sort of thing is true of ~M' IM(n,M) and SM.

Each of these objects has better support properties than the

original one, but has worse praperties of smoothness.

The distributions

maps {Ce~} are closely related. It turns out that

all of these objects can.be computed from each other. By

formula (4.15), either of the two sets of maps can be computed

from the other one. By Lemma 4.7, the rnaps can in turn be

computed fram either of the families of distributions.

The other family of distributions cauld then be obtained fram

(4.13) and (4.14). Ta camplete the picture, we need to

c cestablish a formula for IM{n,X) in terms of the map eM.

In this section we shall show how to write c1M(n,X) as a SUfi

of contour integrals of a certain meromorphic function. This
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meromorphic function is derived from

that the weighted character

in the same way

can be obtained from the map ~M. We shall review this latter

construction first.

Suppose that 1T E IItemp (M (FS) ), and let r be a finite

subset of IT(K). For the moment, take f to be a function in

H(G(Fs))r. The original definition of ~M(f) was given in

§ 70f [1 (e)]. Recall that

~M(f,1T,X)

where

in the notation of [1 (e)]. As a function of A, ~M(f,1TA) is

meromorphic. It has finitely many poles, which lie along

hypersurfaces of the form

q (A) - C = 0,
V,et

c € ([ ,

where Cl is a root of (G,~) and v is a valuation of F.

(As in [1(e)], qv.et (A) equals A(av ) if v is Archimedean,

and equals
-7\ ((lV)

if v 1s a discrete valuation withqv

residue field of order

product

q .) In fact, there is a finitev
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c Ea:v,o.

which depends only on TI and r, such that the function

belongs to the rapidly decreasing Paley-Wiener space on

aM+ iaM,s. (If aM,S = aM, the definition of the Paley-Wiener

space is standard. Otherwise aM,s is a lattice and ia~,s

is compact. In this case, the definition is similar, except

that we impose no growth condition in the imaginary direction.)

More generally, ~M(f,rrA) is meromorphic in TI. In ether words,

if M is a Levi subset cf M over FS ' and

in the notation of §'6 of [1 (e)], the resulting function of

~ extends to a meromorphic function on aM,a. "From the Fourier

inversion

Now, suppose that f belongs to the larger space ~(G(Fs)r.

Then f has compact support, and we can still define

and

TP (rr A ' f ) = J f ( x) 1p ( TI" A ' x ) dx ,
o G (Fs) 0

Po E P (M) ,
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Aga in , ~M(f,nA) is meromorphic in n. In particular, it

is meromorphic function of A. There is a function qTI,r(A)

of the form above such that

belongs to the slowing increasing Paley-Wiener space on

LEMMA 5.1: The function

~M(f,'7T,X), x€aM,s'

is rapfdly decreasing on aM,s' and we have

(5 • 1 ) f A (X)
= a_ q, M(f ,TI ,X) e dX.

M,S

PROOF: By definition [1 (e)"],

where hG(X) = Z is the projection of X ente a G , and

As in (4.2), we can write f(x) as a finite sum

L m (c ,HG (x) ) f
c

(x) ,
CEC(HG(x»
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where each function f c belongs to H(G(FS». Then

1. m(c,X)4>M(f ,1T,X).
cEC(X) c

Since each function 4>M(fc ,TI,X) is rapidly decreasing in X,

the same is true of 4>M(f,1T,X). To prove the second assertion

of the lemma, note that

since f has compact support. Cansequently

cf>M (f , TI A) = f tr ( RM( TI A' PO) I p ('IT A' f Z) ) dZ ·
aG,S 0

The required formula (5.1) then follows fram the Fourier

inversion formula on iaM,S/iaG,s
o

We continue to"assume that f€~(G(FS». Copying the

formula (5.1) ,·we shall define

(5 .2)

For the absolute convergence of the integral, we r~quire a

lemma.

LEMMA 5.2: The function

c eM (f , TI , X) , X c:: aM , S '

is rapidly decreasing on aM,S.
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PROOF: The definition (4.8) is

(5 • 3)
C
~M(f,1T,X)

Accordinq to Lemma 4.2, each function c$L(f) belongs to

1(L(F
S
). Lemma 5.2 then follows inductively from Lemmas 4.1

and 5.1.
o

For future reference, we record a corollary. It is proved

exactly the same way.

COROLLARY 5. 3: Suppose that M* G, and that T is a "maximal

torus" of M over FS . Then the function

is rapidly decreasing.
o

We can now take up the study of the function (5.2).

Suppos~ that f belongs to H(G(Fs)r. It follows

inductively from (5.3) and (5.1) that

cThis formula in turn teIls us that 8M(f,TI A) has properties

which are similar to those of ~M(f,TIA). In particular,

ceM(f,TI A) is analytic in TI, and therefore also in A.

Moreover, there is a function qTI,r(A) of the form above

such that

belongs to the slowly increasing Paley-Wiener space on
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aM + iaM,S. Observe that the functions ~M(f,TIX) and c 8M (f,TI X)

can be analytically continued in TI. They may therefore both

be defined, as meromorphic functions of A, if TI is replaced

by a standard representa tion .p E· .E(M (Fs) ) •

Let us now take TI to be any representation in

IT(M(FS)). Motivated by Lemma 6.1 of [1 (e)l, we define

(5.4)

and

(5 .5)

L
LE L (M)

L
LE L (M)

(The functions

[1 (e)l, °and were shown to be rational functions of

{q (A)}.) Then we havev,a.

(5.6)

Once more, ~M(f,rrX) and C8
M

(f,TI X) are meromorphic in X•

Again, there is a function qTI,r(X) of the form above whose

product with either of them belongs to the slowly increasing

Paley-Wiener space on a* + iaM,s .M

PROPOSITION 5.4: Suppose that TI E IT(M(FS)) and fEH(G(F S)).

Then

c IM(rr,X,f) = 1 im I P (M) I - 1 L
ß Pt:: P(M)

where X lies in the complement of a finite set of hyperplanes
co

and ß is a test function in cc(aM,s) which approaches the

Dirac measure at the origin.
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A

REMARKS 1: The function ß belongs to the rapidly decreasing

Paley-Wiener space on aM+ iaM,s' so the existence of the

integrals over Ep + iaM,s follows from the remarks above.

2. If none of the poles of ceM(f'~A) rneet iaM,s '

the right hand side of the formula simplifies to

lim
ß

3. Suppose that S consists of one diserete valuation.

Then is a lattiee in ß may be taken to be the

Dirac rneasure. It ean be removed from the formula. The formula

in this ease holds for all values of x.

PROOF: We shall aetually show that

for any' XE aM,S

and Lemma 4.2 that

(5.7)

co
and ß E Ce (aM, s). It follows easily from (4.5)

e
IM(~,X,f) is a piecewise smooth function

of X, whose singularities lie along a finite set of hyperplanes.

The required formula of the lemma would then hold for X in

the complement of these hyperplanes.

Ws shall first derive an analogue of (5.7) for

JM(~,X,f). Sinee f has compact support, the function

:= tr (RM (TI A' PO) rP ( ~ A' f) )
o
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exists. It in fact equals the function ~M(f,TIA) introduced

above. This is just the definition if TI is tempered, and

the general case fellows frem analytic continuation, Lemma 6.1

of [1 (e)], and the formula' (5.4). Consequently

~M(f,TIA) = f JM(TIA,fZ)dZ,
aG,S

where

By definition,

JM(TI,X,f) = I P (M) 1-1 L
PEP (M)

Combined with the Fourier inversion formula in iaM,s' these

facts lead without difficulty to the formula

(5 . .3) J
*i!M,s

ß (Y) J
M

(TI ,X-Y ,f) dY= IP (H) 1-1 L
Pr::P (H)

'We shall prove (5.7). According te (4.5), the left hand

side of (5.~) equals the difference between the left hand side

of (5.8) and

L
LE La (M)

Assume inductively that (5.7) holds for L. Then the last

expression can be written as



-55-

Since C$L(f) belangs to I(L(FS))' the function

is entire. We can therefore translate the contour of integration

by any vector in at. The expression may consequently be written

as

In particular, the surr~ over over L can be taken inside the integral

over A. Thus, the left ~and side of (5.7) equals the product. 

of IP(M) 1- 1 with

L
p

By (5.6), this is just the required right hand side of (5.7).

The proposition is proved.
[J

Let 61 be a funetion in which is symmetrie

about the origin, and set

E: > 0, Y E aM , S

It is not hard to show frorn our definitions that
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c I M(1T,X,f) = lirn f
e:-+Q a

M,S

cß (Y) I M(1T,X-Y,f)dY
e: '

for any XE aM,s. It follows frorn (5.8) that

for any X. In particular, we can determine

c SM for all values of x.
frorn
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§ 6. Reduction of induction hypotheses

The"distributions IM(Y) do not have compact support

in y. This circumstance is behind the existence of the

distributions IM(TI,X). It is also the reason we have defined

the supplementary distributions and the maps e
M

and

The implication is that these objects could all be computed from

an adequate knowledge of the asymptotic behaviour of IM(y).

This will be the role of the integral formula in Proposition 5.4.

The formula i~ actually more suited to cornparing distributions

on different groups than to evaluating them on a single group.

The same is of course true of the trace formula itself. However,

we can give one illustration here of how the integral formula

c c
may be applied. We shall show that IM(y), IM(TI,X), IM(TI,X), 6M

and C eM" are all supported on characters, provided that the

same 1s true of IM(y). In other words, we shall show that

induction hypotheses of § 3 and § 4 may be .subsurned in those of

§ 2.

THEOREM 6. 1: Fix a Levi subset M and a function f ~ 11ac (G (Fs) )

such that fc; = o. Assume that

I
L

(0 , f) = 0

for each LE L(M) and 0 E L(F
S

). Then

(a)

(b)

c '
IM (y ,f) = 0,
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and

(c) c
IM ( 11' I X I f) = 0 I

In particular , the induction hY90theses of § 3 and § 4 are all

implied by original induction assumption on § 2.

PROOF: If M = G, the 'definitions imply that

IM(rr/X/f}
c f

G
(1T / X} o I= I M(1T / X/ f) = =

c
IM (y I f) IIM(y/f} =

and

~M (f) = c SM (f) = f G = o•

we" may therefore assume that M * G. We may also take f" to be" a

function in H(G(F S». For if Z equals either hG(X) , or

HG(Y) I the restrietion of any given function in ~ac(G(Fs» to

the set G(FS)Z coincides with that of some function in H(G(F S».

Assume inductively that the theorem has been proved if M

1s replaced by any L E: L (M) with L * M. By (4.12) we have

c IM(y/f)
AL c

= IM (y I f ) + ~ IM (y I SL (f) ) I

LE La U1}

Our latest induction assumption then implies that cSL(f) = 0

if L * M. Combining this wi th the hypothesis of the theorem I

we obtain
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( 6 • 1 )

Since f belongs to H(G(F S))' Lenuna 4.4 teIls us that the

left hand side has bounded support as a function of y in

the space of MO (FS)-orbits in M(F S). The same is therefore

true of the right hand s1de. For a given XE aM,S ' the ricrht

hand side 15 the orbital integral in

of a function defined on

this function are just

c e
M

(f / 1T / X) I

xM(F
S

) • The tempered character5 of

1T r: II
t

(M(FS )).emp

Therefore , this last expression is compactly supported in

XE aM,S. It follows. that

f c eM (f ITT ,X) e A (X) dA

aM,S

is an entire function of A Z aM,0:

Take a representation TT E II t (M (F
S

) ) ,and a pointemp -

l.l€ aM,S in general position. Apply Proposition 5.4 to the

representation TT • We obtain
l.l

c"
IM (TT I X I f ) =

, ~
1im

ß

= e~ (X) lim

ß
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Remember that ß is allowed to be any test function

which approaches the Dirac measure at the origin. But

A
A --+ ß (A - ~L)

is the Fourier-Laplace transform of a function

which &lso approaches the Dirac measure at the origin. We
f\ 1\

may therefore replace ß (A - 1.J.) by ß (A). We obtain

11m
ß

~ c -A(X)f. ß(A) 8
M

(f,'IT A)e dA.
Jl,+~a*M,S

Now, the integrand. ,. on the right is entire in A~ It follows

tha t the integral over ~ + iaM,S can be deformed to any

other translate of iaM,S. The outcome is that the function

c IM (n,X,f)
,~

is independent of ~. At least, this is true for almost

all ~ and X. But by the formulas in § 4, the value of

this function at any ~ and X can be expressed in terms

of its values at nearly points in general position. It follows

that the function is independent of ~, without exception.

Deforming ~ to each of the points

PEP(M,X),
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we ebtain

It thus fellows fram Lemma 4.5 that

c
IM (TI , X , f ) = O.

,~

Set ~ = 0, and combine the last formula with that of

Lemma 4.7. The result is

for any TI E TI temp (M (F S) ) and X E aM", s. Therefore, the

function C eM (f) vanishes ~." The assertions of the theorem can

now be easily proved. The required formula (a) follows

immediately from (6.1). The formula (b) fellows from (4.15)

and the fact that the functions ceL(f), LE L(M), all vanish.

To establish (c), fix an arbitrary representation TI in

TI(M(F S»' and consider ,the function cSM(f,TI A). The vanishing

of cSM(f) means that the function in zero if TI is tempered.

By analytic centinuation fram the tempered case, it follows

that

for any standard representation p E E (M (F s) ). A similar

formula 1s of course valid if M is replaced by any element

L E L (M). Consequently, the expansion (5.5) implies that
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in general. Apply Proposition 5.4. The formula

c IM (TI ,X, f) = 0,

follows. But with what has already been proved, the formula

(4'.14) simplifies to

c
IM (TI ,X, f) = IM (TI ,X ,f) •

This gives the final assertion (c) .

CI
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§ 7 A property of (G,M)-families

We would like to investigate the deseent and split~ing

properties of our distributions. We shall establish

splitting formulas in § 9. They reduce.questions about the

distributions to the ease that S contains one valuation. ,

The deseent forroulas, which we ~hall prove in § 8, reduee such

question further to the case that the data which parametrize

the distributions are elliptic. Both properties were studied

in the earlier paper ([1 (a)],§ 10, § 11), but under quite limited

cireumstances. Only the distributions IM(y) were diseussed

there , and only for y regular. Moreover , we need to generalize

the formulas in another sense. For example, it is important

to be able to rewrite the distributions in whieh M i5 given

over aglobaI field, in terms of distributions indexed by Levi

sets defined over loeal fields. We roust introduce new rnethods.

In this paragraph, we shall discuss a general deseent formula

for (G ,M) - families. The formula, whose .verification.. we will

postpone until the Appendix, will make the behaviour of our

distributions appear more transparent. In particular, it'will

provide a simple interpretation of the coefficients that appear

in the expansions of the distributions.

Suppose that

PEP(M), AEiaM ,

isa (G ,M) - f amily ( [1 (a) I § 6], [1 (d) I § 1 ] ). Then
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is a smooth function whose value at A= 0 we generally denote

c M ([ 1 (a), Lemma 6. 3 ] ). Recall that for each L E L (M): there

is an associated (G,L)- family

c o()..)' QEP(L), AEiat,

and for every Q E F (M), there is an associated (MQ ,.M) -family

M
R € P Q(M),' A E iaM .

For each of these we have the corresponding functions

CL(A) and C~(A). We shall find a formula for CL(A) iri

terms of the functians C~(A).

We shall actually study a family of functians derived from

{Cp(A)} which is larger than the collection

This comes fram a class of subspaces of aM which was introduced

in [7, §2). Suppose first that h 'is any vector subspace of

aM. Then

where a~ and hG stand for the respective orthogonal

complements of h and "G in aM and a. By a roet ß of h, we

mean the restriction to h ef a raet of (G,~) • For any such

B, let E (ß) be the set of roets of (G,AM) whose restriction

te ·b equals ß . We say that h is special if for every
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such ß, the linear function

L a
aE L (ß)

vanishes on
h

aM. Assurne that this is the case. The

roets partition b into a finite set of chambers, and to

each of these corresponds a system of positive roots. We shall

write P(h) for the collectien of such systems of positive

roots, and we shall write

h+ pEP (h ) ,p

for the corresponding chambers in b • According to Lerruna 2.2

of [ 7 ] , every positive system p in P (b ) has a uniquely

determined subset ßp which has the usual properties of simple

roots. Namely, ßp is linearly independent, and every element

in p can be represented as a nonnegative integral combination

of roots in ß p • Suppose that p € P (b). -Then there is a uni'que

element Q E F (M) such that the' chamber b'+ is contained inp
+a Q• The restr~ction to t of any roöt of (Q,AM ) belongs to

Q
p. It follows easily that ß p is the restrietion to h of a

subset of the simple roots 6Q.

Many of the eonstruetions for the space a
M

can be

earried over to b·. Far exarnple, if pEP (h ), ene can define

lIeo-roets"

t::.

V =p
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and one can then set

AE:ib* .

One can also introduce the notion of an (aG,b) -family

of functions

pEP{h), AEill* ,

by copying the definition of a ,( G, M) - fami ly. For any such

family, the number

= 1 im, c'b (A )
A-+O

= 1im
A-+O

\ -1
L c,p (A) ep (A )

pEP{b r

is defined. Pursuing the analogy further, we let L{b) denote

the finite co1lection of subspaces of b of the form

=ß (H) = O}
~

I

for roots ß1, ••• ,ß~ of h. Any such b1 is also a special

subspace of aM. We write F(h), for the set of positive systems

q E P (b 1 ), where b 1 = b
ll

ranges over the spaces in L(h) ·

For any (aG,b) - family, and elements b
1

E L{b) and q E F{b) I

there is associated an (aG i 0'1) - family and a (b q' b) - family.

Suppose that

is a (G,M)-family. If b i5 a special subspace of aM'

we 5hall write Mb for the maximal element in L{M) such

that aM contains b. Then Mh 1s the Levi subset defined
b
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f (G, ~-) which vanish on h. Consider theby the roots 0 -~

associated (G,Mh )- family

{ C Q (v ) : Q E: P (Mb)' v E: iaMb }

For any pEP (h), there is a unique element Q € P (Mb) such

that is contained in + f'a
Q

. De l.ne

for v restricted to the subspace i~'* of ia
M
*. Then
b

pEP(h), vEih* ,

is an (aG,h) - family.

Our main result will be an expansion for c h in terms of

{c~:Q E F (M)} •

The coefficients will be certain constants

GdM(h,L) , L E L (M) ,

which we define as follows. For a given element L E L (M) ,

consider" the natural rnap

If the map is not an isomorphism,. dG<.h,L) is defined to be
M

O. If the rnap is an isomorphism, we set d~Ch,L) equal to

the volume in a; of the parallelogram generated by orthonormal

bases of a~ and a~. Notice that in this case, the natural

map from a~ to hG is also an isomorphism. If r is any

bounded measurable subset of a~, and r is its image in cG,

then
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G= dMfb/L) vol(f).

In the special case that

we shall write

M1 E L (M) I

.Fix a small point

L E L (M) with

in .b"aM' and consider an element

Assume that ~ is in general position in 1.1 Then theaM~

affine space ~ + hG does not intersect aG unless
L

aG = ab EB aL
IM M M

or equivalently, unless

~ + c·,G and

GdM(b/L) * O. In this case , the spaces

intersect at one point. The point is nonsingular ,

and so belangs to achamber a~ I for a unique element Q = Q
Q L

in P(L). Thus , ~ determines a section

fram the set

{L E L (M) :d~ ('b/L) * O}

inta the fibres P(L).

PROPOSITION 7.1: Suppose that

C (A) I

P
P E: P(M) I A E: iaM I

is a (G I M) - family. Then for any \l E: Lh* I we have
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The proof of this proposition requires a study of

convex polytopes. In order not to interrupt the discussion,

we shall postpone the proof until the appendix. In the rest

of this paragraph, we shall derive sorne simple consequences

of the proposition.

Most of the applications of the proposition concern only

the case that v = 0, so we state this separately.

COROLLARY 7.2: c·,U =

o

For certain natural (G,M)-families, Corollary 7.2 provides

a formula which is independent of the section L ~ QL .

COROLLARY 7.3: Suppose that for any L E L (M), the number

is independent of Q. Then

L d~(h,L)C~
LE L (M)

Q E P (L) ,

o

Another special case of Corollary 7.2 pertains to products

of (G,M)- families. Instead of (G,M), we take the pair
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(G,M) ;:: (G x G,M xM).

Then

and L(M) consists of the set of pairs

Li E L (M) •

Take 1l, to be the space a
M

, embedded diagonally in aM •

It is a special subspace. In order to apply the proposition,

we must f~x a small point

- = (H,-H),

in general position in the orthogonal complement of b.

For any pair L = (L1 ,L2 ) in L(M), it is clear that

If this number is nonzero, we have

and we can write
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H. is a point in general position in
~

aG , and belongs to achamber
L.
~

Q. E: P (L.. ). Then
~ ~

+a
Q

, for a uniq.ue element
i

is the section determined by the point _. Suppose that

{~(A)} and {~(A)} are two (G,M)- families. Then

p. E: P (M), A E: i aM '

is a (G,M) - family, where

and

Its restriction to b is just

(cd) ( A) = c. (A) d· (A) ,
p p p

PE P(M),A E: iaM

the product (G,M) - family. Corollary 7.2 in this case

becomes

COROLLARY 7.4:

where (Q1,Q2) stands for the value of the section at (L
1

,L
2
).

Cl
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Corollary 7.4 is reminiscent of earlier preduct

formulas for (G,M) - families, and in particular, Lemma 6.3

of [1 (a)]. It seems to be independent of this result, but

it does imply Corollary 6.5 of [1 (a)], which. is a special

case. Suppose that {Cp(A)} satisfies the condition of

Corollary 7.3. The formula in Corollary 7.4 contains a sum

over pairs (L 1 , LZ)' with Li E P (M), such that

to interpret .the remaining sums over LZ . Take

Weshall fix L = L 1
and use Corollary 7.3 with h = aL 1

to be the

projection of

Gin aM• Then

(-ZH) ento the orthogonal complernent of

~ + b = -ZH + a
L

- H + a
'? - Z L

1 1

This intersects aG in the unique point HZ. But for a
L 2

given L2 , Q2 is the unique element in P(L 2 ) . such that

belongs to

obtain.

+
a Q . Cornbining Corollaries 7.3 and 7.4, we

2

This corollary 6.5 of [1 (a)].

We shall conclude this paragraph with sorne supplernentary

Grernarks on the Jacobians d
M

( U, L). Suppose that M
1

E: L (M)

is fixed, and that b is a specialsubspace of aM .
1
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Suppose that {Cp(A)} is a (G,M) - family that satisfies

the condition of Corollary 7.3. We can apply Corollary 7.3

in·two stages, first with M, as the base, and then with

Mitself. We obtain

=

Let us agree to set if does not contain

botq M, and L. Then

On the other hand, the direct application of Corollary 7.3

gives

We can. choose {Cp(A)} so as tri compare the coefficients

of these two expressions. Fix an element LE L(M) with

and set

A E iilM' PEP (M) ,
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r
where L

p
stands for the set of reduced roots of (G,~) /

and

z__ fe / if a vanishes on aL ,
c (z)

a l1, otherwise.

Then {c (A)} is a (G,M)- family which satisfies the
p

condition of Corollary 7.3. It is easy to see that if LI

i5 any element in L(M) with

then vanishes unless LI = L. It follows that L gives

the only nonvanishing summand in the two expansions for c
h

•

We obtain

(7 • 1 )

Corollary 7.4 provides a slight variant of this formula.

Fix a specialsubspace of hc:aM. Let {Cp(A)} and {Op(A)} be

(G,M)- families which both satisfy the condition of-Corollary 7.3.

The discussion following Corollary 7.4 can clearly be applied

to the resulting (aG/a) families. We obtain

h 1L c. db '.
bEL (h) b 1

1

Applying Corollary 7.3 to the left hand side gives
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(cd) b = L d~ (b , L) (cd) ~
LEL (M)

= L
LE L (M)

We can also apply Corollary 7.3 to the right hand side. If
h1b, is contained in a~,we define dM (h,M1 ) exactly as we

defined d~(b,M,), but with a G replaced by b,. If b
1

is
b 1 .

not contained in aM ' we simply set d M (ü,M 1 )= O. Note that
1

if G 15 replaced by ti =M , then&· ll·T a becomes a distinguished
1 ~1 G1

subspace of a, and one-has· --M _. -... -.---._:. _

b
1

G
1

dM ( b_ ' M1) = d M (b + a G ' M1 ) •,
Appl1ed in this context, Corollary 7.3 is easily converted to the

formula

=

Therefore, the right hand side equals

1.
°1 EL (b)

L (
LE L (M, )

Arguing as above, one can see without rnuch trouble how to

choose {cp(~)} and {dp(~)} so as to isolate any given pair

of coefficients. Equating the coefficients, one obtains

(7 • 2) G
dM(h,L) =
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§ 8 Descent

We want to establish descent formulas for our various

distributions. For example, if M1 E L (M), and y is aG-regular

element in M(FS )' then Lemma 10.3 of [1 (a)] provides a formula

"Lfor IM (y,f) in terms of the distributions IM(y,fL). This
1

formula, however, does not apply to arbitrary elements in M(FS ).

The correct generalization must be stated in terms of induced
M

1conjugacy classes. For any y E M(FS)' recall that y denotes

the induced space in M1 (FS ). If Y 1s such that M = M ,
M

1 ,y Y
1 0then y is just the "M1 (FS)-orbit of y. In general, however,

M1 0"
y is a finite union of M1 (FS)-orbits {Yi} in M

1
(FS )."

We shall prove a formula for

L IM (y., f)
i 1 ].

in terms of the distributions

We shall in fact establish a more general result. Suppose

that b is a special subspace of aM. In § 7 we de"fined the

Levi set Mb E L(M). If Yl belongs to Mb(FS )"' we can define

the distribution J
b

(Y1,f) on Hac(G(Fs » exactly as in the

special case that b = aM. (See' [1(d), (2.1) and (6.5)].)

We need only replace the volume vM(x) in [1 (d), (2.1)]

by vb(x), the volume in hG of the convex hull of

Similarly, copying the definition of ~M ([1 (e), § 7]), we

can introduce a map
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The constructions bei~gidentical to the special case that

h = a
M

' we shall adopt obvious analogues of notation and

results that apply to the special case. In particular, we

define an invariant distribution I h (Y1)

inductively by

on H (G(F
S

»ac

(8 • 1 )

H (M.h (F
S

»
ac 1

is supported on cha~acters. The next theorem will provide a

Included in the Definition is the induction assumption that
b 1for any b 1 E La (h), the distr ibution I
b

(Y 1 ) on

formula which resolves this new induction hypothesis in terms

of the original one.

The space ~" i5 always contained in aM • If the two
L"

spaces are the same, then I h (Y1,f) i5 just equal. to

IM (y 1 ,f). However, this need not always be so. For example,
b

Mb could be defined over a subfield F1 of F, and h

could be the split component of MU over F1 . This might

ofweIl be a proper subspace of the split component a
M

b
F, in which case I t (Y1,f) would not be equal toM

h
over

IM (y 1 ' f) •
b

If Y belangs to M(Fs )' write

yb = yMb

for the induced clas5 in ML(Fs )' and set



-78-

THEOREM 8. 1: Given y € M (FS), we have

PROOF: Both sides depend only op theo:values of f on

Since the restriction of f to this subset coincides with

that of some function in H(G(FS))' we can assurne that f

itself belongs to H(G(FS )). We shall also assurne for the

moment that y € M(FS ) is such that M = G • Then yb
y Y

equals y, and Jb(y,f) equals

1

jDG(y) l~ I - f(X-1yx)vb(~)dx.
Gy (-Fs) '.G

O
(F"S)

Applying Corollary 7.2 to the (G,M)- family

{ v (x ) = e- fi. (~.p ~ x) ): : PEP (M) }
P

we write

L
\' G Q
L. dM(h,L)VM (x)

L€ L (M)

This allows us to make a standard change of variables in the

integralover Gy(FS)\GO(FS )

find that Jb(y,f) equals

( [ 1 (d) , (8. 1 1 ) ] ), and we
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Our distribution Ib(y,f) equals the difference between

(8.2) and the expression

(8 .3)

We can assume inductively that the theorem holds for each of
h

the distributions "Ib ' (y). Then (8.3) may be written

Now ~h1 (f)M, is a function in Iac(M, (FS)). Its value at

any representation TI, 'E TI temp (M 1 (FS) ) equals

I"

Here, QO 1s a fixed element in P(~), and

is obtained from the restrietion to b of the

iJ
Rb (TI 1 ,00 )

(G,~) - family

o E P (~) , v E iaM '
b

described in §6 of [1 (e)]. It follows easily from Corollary 7.2

that

(See also the formula (7.8) of [1 (a) ].) Therefore (8.3) equals
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L
LE L (M, )

The section L ~ QL is defined in (8.4) with respect
h

to some point ~, E a t in general posit~on, while in (8.2)M,
bit is defined with respect to a point ~ E aM • However, it

turns out that the notation is consi~tent. For we need only
h,

consider elements M, such that dM (h ,M,) * o. This rneans

that

and so there is a natural isornorphism

11-
h

. Qt.

aM I' b 1

,
aM

.. aM/c- ----;:.. -= aM ., ,
We take ~, to be the image of ~. Then if L is any

element in L(M,) with d~' Ch, ,L) * 0, we have,

and ~, + 'h, and ~ + b both intersect a~ at the same point.

Consequently, for any given L, the parabolic QL in (8.4)

is the same as that in (8.2). In particular, QL 1s independent

of h,. Thus, the only part of th~ expression (8.4) which

depends on h, is the sum
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This can be simplified. If L *M1 ' we can replace La (h)

by L (h) , for the term corresponding to h) = a
G

, vanishes.

(7.2) , the is equal to
G .

If L = M
1

,By sum d M(b , L) ·

since h1* a G, so in this case the sumrnands are all zero.

It follows that (8.4), which on the one hand equals the

original expression (8.3), also equals

~
LE L (M)

This is easily combined with (8.2). From the inductive

definition of I~(Y) we see that the difference between (8.2)

and (8.3) equals

Since (fa)L equals f L , this becomes
L

the required forrnula for I-lJ(Y , f) .

Now, suppose that Y is an arbitrary element in M(F S).

As in (2.2*), we can write
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lim
a-+1

where a approaches 1 through the regular points in ~(FS).

The theorem will be established by arguing as in the
11,1

derivation of (7.2). For the function r.
b

(y,a) comes from

a (G,M) - family

rp(A,y,a) , PEP (M), A E iaM '

which satisfies the condition of Corollary 7.3.(See I1 (d) ,

Lemma 5.1]4 Moreover, we are assuming that a E~ (FS) . is

regular, so that M = G • Applying Corollary 7.3 and whatay ay

we have just proved, we obtain

b
I . r b 1 (y , a) I Q' (a y ,. f )

h
1

EL (h) 1

b
1

M
1L d

M
(~,M1)rM (y,a)Ib (ay,f)

M
1

EL (M) 1

= L
11 1

=

The last step follows from (7.2). But

M1 AL· AL
lim L L r M (y,a)IM (ay,f

L
) = IM (y , f L) ,

a-+1 M
1

EL (M) 1

by (2.2) . Taking the limits in a thus gives us
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This completes the proof.

o

We are of course interested in the special case that

h = aM ' for some element M1 E L (M) •
1

COROLLARY 8.2: Given y E M (FS), we have

f € H (G(F
S
».ac

o

COROLLARY 8. 3 ~ Suppose that y €: M (FS) is such that

My = M1 . Then. , y

IM (y , f) =
o

There is a similar descent property of IM(n,X,f).

Once again, it is important to work in a slight broader

context. Suppose again that J: is a special subspace of

aM· If 71"1 E IT(Mh(FS ) j and X1 €-a
M1

/8 ' we can define the

distributions Jb(71"1/X1,f) on Hac(G(F S » exactly the

same way as in the special case that 'h = a M. (See [1 (e) , §6 , §7] . )



-84-

We can also define an invariant distribution

on H (G(F
S

))
ac inductively by

(8.5)

Included in the definition is the induction assumption that
b

1Ib' (n 1 ,x1 ) is supported on characters. This will be resolved

in terms of our original induction hypothesis by the next

theorem (together with Theorem 6.1).

Suppose· that iT E' II (M (FS) ) and X E aM, S. We shall write

J (TI,x,f) =
b

for any fEHac (G (FS) ). (Here hll 0<;) is the proj ection of

X onto h • As in [1 (e)], we shall often write ~A when we

really mean the {nduced representation n~ = (iTA)Mb.) The

integral clearly depends only.on the restrietion of f to

z
G(FS )) , Z = hG(X). Since this is compactly supported, we

can always replace fitself by a compactly supported function.

It follows from standard estimates ([1 (e), (12.7)]) that the

integral over A is absolutely convergent. Define an invariant

distribution Ih(iT,X) on Hac(G(FS )) inductively by

J. (TI, X , f ) 
b

It then follows that
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with the integral converging absolutely.

THEOREM' 8.4:' Given 71" E II (M (FS) ) and X E: aM, S ' we have

I'
h

(71" , X I f ) = fEH (G (Fs ) ) .
ac

PROOF: As above, we can assurne that f actually belongs to

H(G(FS )). It also happens that we can restriet 71". For as in

Lemma 3.2(b), we have

-E (X)
= I P(b) 1- 1 L I. ('IT

E
,X,f)e P

pEP(b)b p..

where for each p , Ep denotes a small regular point in the

dual chamber (b*)+. Suppose that LE L(M) is such thatp
Gd M(h ,L) * o. 'Then the canonical map

is an isomorphism. The chambers in the second space each contain

a fixed number of images of chambers (h*)·;. Moreover, for

any small regular point E in a*
M

the nurnber

IM (TI , X, f)
,E

depends only on the charnber in

, Consequently

a* which contains . E.
M
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It follows that if the theorem holds with n replaced by

n , it then holds for n itself. We may therefore assume
Ep

that n is in general position, as a point in SQme

a*-orbit in IT(M(F S».
M.

The general position of TI implies that the function

is analytic for A E iaM. Recall that °0 is a fixed element

in P (M~ ) , and
h

is obtained fram the restrictian~(TIA,QO)
tI

to h of a (G,~) - family

QEP(~),VEia~ •

As in [1 (a), (7. 8)] we have

for any fixed element Po E P (M). It follows that
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J'b (1T ,X , f )

=

=

If we apply Corollary 7.2 to the (G,M)- family

we find that Jb(n,X,f) equals

The argument used to prove Lemma 7.1 of [1 (al] then allows

us to write this la~~ expression as

It follows that J~{TI,X,f) equals

(8. 6)

Our distribution Ih(TI,X,f) equals the difference between

(8.6) and the expression



-88-

(8 .7)

The proof is now identical to that of Theorem 8.1. Assuming

inductively that Theorem 8.4 holds for' the distributions
"h 1 '

I
h

(n,X), we are lead to an expansion of (8.7) into

It follows that the difference between (8.6) and (8.7) equals

the required formula for I~(n,X,f).

o

Consider the special case that b = aM ,for some
1

element M1 C L (M). Then the distribution

equals

an absolutely convergent integral.

COROLLARY 8.5: Given and X E: aM,S ' we have
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fEH (G(F
S

)).·
ac

o

Suppose that b is a proper subspace of aM • Then

Gd
M

Ch, L) is nonzero only when L * G, in which case the
AL

distributions IM are all weIl defined. Strictly speaking,

the two theorems are only valid for such h. However, until

we complete the induction in the next paper [1 (f)], it will
A

be understood that I(fG) really means I(f), for any given

invariant distribution I on Hac(G(Fs )). With this

temporary abuse of notation, the theorem and corollaries of

this paragraph are all valid as stated.



-90-

§ 9. Splitting

The splitting properties are essentially special cases

of Theorems 8 . 1 and 8.4. However, they are importan t enough

to discuss separatelyon their own. To state them, we take

S to be the disjoint union of two sets S1 and S2 . We

assume that both S1 and S2 have the closure property.

Theorem 11.1 of [1 (a)] provides a splitting formula for

IM(y) that applies to elements y ~ M(FS ) whibh are

-G-regular. We must generalize it to arbitrary elements in

M (PS) •

PROPOSITION 9.1: Suppose that

y. E M(FS )
~ i

is any element in M (FS) • Then for any function f E Hac (G (F
S

) )

of the form

f. E H (G (F
S

»
1. ac .

~

we have

PROOF: This is essentially a special case of Theorem 8.1. We

say essentially because we must in fact replace (G,M) by
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the pair

(G,M) = (G x G, M x M) I

in which the products are regarded as varieties over the ring

F x F . However , the definitions of § 8 extend in a straight

forward way to this setting. We take h to be the space aM I

embedded diagonally in

Notice that

G (FS-) = (G x G) (FS x FS )
1 2.

= G( (F x F)
S1 x S )

2

It follows without difficulty that

Obviously

Mb = M x M = M I

so that
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As we noted in the discussion prior to Corollary 7.4, L(M)

is the set of pairs

L = (L l' L 2 ) ,

Clearly

Since

Theorem 8.1 gives the required formula for IM(y,f) ..

o

REMARKS: 1. If ,we combine. Proposition 9.1 with Corollary

8.2, we obtain the formula

IM (y, f) =

This was actually the splitting formula derived in Theorem 11.1

of [1 (a)] in the special case of y regular.

2. According to the induction assumption of § 2, the
1\ L.

1.Fourier·transforrn IM (Yi) is defined if Li ~ G . However,

G G
d

M
(M, G) = d

M
(G , M) = 1 ,
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so there are terms in the formula of the proposition with

L. = G . For these terms, it is understood that
~

as we agreed at the end of § 8.

It is sometimes useful to combine the splitting and

descent properties into one formula. 5uppose that for each

v E 5, Mv 1s a Levi sub~et of M which is defined over

Fv · We can of course apply all our earlier definitions with

F replaced by F . In particular, we have the real vectorv

space aM ' and the map
v

M (F ) --> a
Mv v v

We should point out that even -if Mv equals M , the spaces

a
M

and a
M

need not be equal, for they are defined relative
v

to the different fields F and F . Setv

and

M = lT
v € 5

e
vES

Mv

If we think of M as a Levi subset of M defined over FS '
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it will be clear how to .extend our earlier definitions. For

example , L(M) will denote the set of

L:.·lI L
vES v

Given such an

L
IM(y) I

L I we can define the distribution

on H (L(FS )) I and the map
ac

f --> f .
L

from Hac(G(FS )) to l ac (L(FS )) • We also have a constant

d~(MIL) • It is defined to be zero unless the natural map

of the parallelogram generated by orthonormal bases of

and a L
M

G
an isomorphism , in wh~ch case dM (M/L) is the volume in

COROLLARY 9. 2 : Suppose that y = n yv is a point in
vES
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1s the induced space in M(Fs ) . Then

for any funct10n fEH (G (F
S

» •ac

PROOF: It is easy to see how to extend Theorem 8.1 in a

formal way so that it includes Corollary 9.2 as weIl as

Proposition 9.1 as special cases. Alternatively, the

corollary follows by l!e..peatedly applying Theorem 8. 1

and Proposition 9.1 directly.

c

REMARKS: In the special case that y 1s regular, a

similar formula was stated in [1 (a), Corollary 11.3] .

However, the proof there does not apply in the generality

claimed. For in [1 (a)] we failed to account for the fact

that the space GM depends on the ground field over which

M is taken. Theorem 12.1 of [1 (a)] is likewise aff~cted,

for it depends on Corollary 11.3. As established in [1 (a)-]

these results are only valid if G 1s an inner twist of ,a

split group. We hasten to add, however, that § 11 and

§ 12 of [1 (a)] have since been subsumed in other results,

and are no longer~needed. For example, Theorem 12.1 of

[1 (a)] can be replaced by the assertion that ~M maps

continuously to I (M(FS » • This was establishedac

as Theorem 12.1 of [1 (a)] . It can also be proved quite
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sirnply by applying Corollary 7.2 directly to the (G,M)-

family from which ~M(f,n,X) is defined. However, the

proof in [1 (e)] has the advantage of providing an

obstruction, in terms of residues, for a function ~M(f)

to lie in I(M(FS » •

COROLLARY 9.3: For each v ES., set Mv = M , and suppose

that the distributions

are supported on characters. Then the corresponding distri-

butions

L E L(M), y E M(F
S

) ,

for F
S

are'also supported on characters. In particular,

the induction assurnption of § 2 is valid for (G/F,S) ,

provided that it holds for each (G/Fv ' {v}) .

PROOF: We need only consider the case that L = G . Fix

Y E· M(FS) • We rnust show that IM(y) annihilates the

functions f E H(G(FS » such that f
G

= 0 • We leave the

reader to check that any such function can be approxirnated

by one of the form
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nf ,
vES v

in which f = 0 for some valuation. w in S. Corollaryw,G
9.2 teIls us that ,IM(y) vanishes on this latter functien.

c

The splitting formula for the dual distributions is

similar. Let

~ = ~1 @ ~2 ' ~i E IT(M(FS ,))
~

be an arbitrary representation in IT(M(FS)) , and consider,

a point

x. E aM S
~ , i

For each fEH (G (F
S
)) , we shall write

ac

and

*where each integral is taken over the direct sum of iaM S

* ' 1
an~ iaM'S2' module the diagonally ernbedded image of

iaM,s · Both integrals converge absolutely, and we have
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Specializing Theorem 8.4, we obtain

PROPOSITION 9.4: Let TI = TI, 0 TI 2 and X = (X 1 , X2 ) be

as above. Then for any function

f = ~ ~ ,

we have

. f. € H (G (F
S

))
~ ac i

o

REMARK: Proposition 9.4, and also the results Theorem 8.4

and Corollary 8.5 of the last paragraph, have obvious

analogues' if TI is replaced bya standard representation
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§ 10. The example of GL(n). Local vanishing"properties

Let us look at an example. We shall show that for

GL(n), the irivariant distributions sometimes vanish. These

vanishing results, which extend those of § 14 of [1 (a)],

demonstrate how the descent formula of §8 can be usefully

applied. They will also be needed in the study of base change

for GL (n) .

The first lemma is a companion to Lemma 14.1 of [1 (a)].

Together, the two results summarize the algebraic properties

of GL(n) that are behind the vanishing. results.

LEMMA 10.1: Suppose that G ~ GL(n). Let L,L
1

, and L2 be

Levi subgroups of G over F I with L1 c Land L1 c L2 , such

that

Then the natural rnap

is surjective.

PROOF: Fix an isornorphism

If

......
)i GL (n 1 ) x ••• x GL (n

r
) .

......
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xx
r

is an arbitrary point in L1 , set

Then

{x. l~i:Sir}
1.

1 :;; i ~ r.

1s a basis of X(L1 )F. Once the isomorphism above is fixed,

the group LE L(L1 ) corresponds canonically to a partition of

the set {1, .•. ,r} into disjoint subsets, 5 1., ... ,5p . The

characters

TI
iE5.

J

x· ,1.
1 :Si j ~ p,

,form a basis of X(L)F. Similarly, L2 corresponds to a

partition of {1, •.. ,r} into disjoint subsets T1 , ... ,Tq .

We must show that each x·1.
belongs to

property that

The nonvanishing of

a* ~ a* ~ a
L
* ,

L L 2 1

is equivalent to the

is a surjective, with 1-dirnensional kernel

The reader can check that this irnplies (a) that p + q = r + 1,
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and (b), that no proper"nonempty subset of {l, •.• ,r} is a

simultaneous union of sets or Tk . According to the

condition (a), one of the .two partitions contains a set

consisting of one element. To be definite, we can assume that

Sp = {r} . Then the character Xr belongs to X(L)F ~ X{L2 )F.

The element r also belongs to a unique set Tk ' and the

condition (b) implies that Tk contains more than one element.

In other words, Tk = Tk '{r} is not emptY. We obtain two

disjoint partitions Sl, ... ,Sp_1 and T1 , ... ,Tk, ... ,T
q

of the

set {1, ..• ,r-1}j which also satisfy the conditions {al and (b).

Since the character

X·
~

belongs to X{L)F ~ X{L 2 )F' the lemma follows by induction on r.

a

For the rest of this paragraph we shall assume that we have

been given an inner twist

n G --+- G* = (GL (n) x •• • x GL (n) ) >4 8 * ,

as in (1.2). We shall let E denote the smallest extension of

F over which the image of the cocycle

cr -1n n , a EGal (F/F)

in G+/GO splits. Then E is a cyclic extension of- F whose

degree ~E over F divides 2. This is just the setup for base

change of a central simple algebra. One can show that



-102-

where d is a divisor of n, and D is a division algebra of

d d 2 Fegree over.

We shall write GI for the group GL(n), embedded diagonally

in (G*)O. We are going to show that our invariant distributions

on G' vanish on certain data related to "G, in a sense that

depends only on the integer d and the field E. Suppose that L

is a Levi subgroup of GI (defined over F). As in [1 (a)], we

write

Jl,(L) = (n 1 ,···,nr ), n 1 ~ n2 '= ,=n
r

for the unique partition of n such that

L :ii GL (n,) x ••• x GL(nr )

We shall say that L comes from G if d divides each of the

integers n
i

. This means that there is a Levi subset M of G

such that L = M'. In other" words, L is ernbedded diagonally in (M*) ~ ,

where r·1* is a product of cornponents of the form ('.') which 1s related

to M by inner twisting. Suppose that L, c L2 are two other

Levi subgroups of G' with

GI
d

L
(M', L 2) :1= O.,

Then if L2 comes from G, Lemma 14.1 of [1 (a)] asserts that

L1 also comes from G.
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Recall that an element - 8 E G' (F) is F-elliptic if it lies

in a maximal torus of GI which is anisotropie over F,

module AG. We shall write G' (F)ell for the set of such

elements. By the theory of elementary divisors every conjugacy

class in G' (F) is induced. from an elliptic class. In other

words, for any 8 E G' (F) there is a Levi subgroup L 1 of

G', and an element. T E L1 (F) eIl' such that 8 belongs to the

G'induced conjugacy class T • The pair (L
1

,T) is uniquely

determined by 8 up to G' (F) -conjugacy. We shall say that 8

comes from G if the group L1 comes from G, and if for every

character C;:1 E X(L 1 )F' the element ~ 1 (T) belongs to N
Ek

(E*) ,

the image of the norm from E*. We shall write GI (If) for. G

the set of such elements. We shall also write GI (F) G simply

for the set of elements 8 E GI (F) such that C;: (8) belongs to

NE/FIE*) for any C;: E X(G)F. Then GI (F)G is a sub~et of

GI (F)G. Observe that if MI is a Levi subset of GI which comes

from G, we can also define the subsets MI (F)M C M' (F)M of

M' (F) •

Suppose now that F is a loeal field, and that S = {v},

so that F = Fv = FS . Let fl be a fixed function in H(G' (F»

such that

(10.1)

for a~y G'-regular element ~ E GI (F) whieh does not belong

to GI (F) G.

PROPOSITION 10.2: Suppose that MI is a Levi subgroup of GI



-104-

which comes from G, and that 0 belongs to MI (F)M. Then

IM I (0 I f ') = 0 I

unless 0 lies in MI (F)M

REMARK: If M' = G' I the proposition is essentially a

restatement of the definition of f'. It is of course the case

MI * G' that 1s interesting.

PROOF: Assurne that IM.'·. (0 I f') * o. Fix. a pair

'T E L 1 (F) eIl I Ö E 'TM I

and a character ~ 1 E X (~1 ) F. We must show that L
1

comes from

M and that ~1 (T) belongs to NE/F(E*).

The situation is made to order for our descent formula.

Far Corollary 8.2 immediately yields an expansion

IM I (0 I f I) =

and hence the existence of same L2 E L (L
1

) wi th

The nonvanishing of

We obtain

GI
dL (M I

/ L2 ) allows us to apply Lemma 10.1.
1
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L
Now the distribution 1

L
2 (T",fL ) belongs to the closed linear
1 2

span of

where ~ ranges over the G-regular points in L2 (F) with

But

with

does not vanish, so there exists such a

It follows fram the definition of f' that L2 comes from G,

and that ~2(T) belangs to NE/F(E*). Applying"~ernma 14.1 of

[1 (a) ], we see that L1 also comes from G. This obviously implies

comes fram M, our first required condition. Moreover,
I

by assurnption, the element

E;(T) =E;(8)

belangs to NE/F(E*). Therefore, the element

also belongs to NE/F(E*). This 1s the second required condition.

[]

There is a parallel vanishing property for the distributions

IM I (TI , Y, f 1 ) , TI E IT(M ' (F», Y E aMI •,v
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We shall only deal with the first half of it here. ,The other

half will appear as Lemma II. 8 . 1 ,of [2].

PROPOSITION 10.3: Suppose that MI is a Levi subgroup of GI

which comes from G and that °L
1

15 a Levi"subgroup of MI.

Then

IM' (Tf I Y, f I) = 0 I

for any Y E aMI , and. any induced representation
,V

unless L1 comes from M.

PROOF: The proof is similar to that of the last proposition.

It is enough to show that if L1 does not come from M., I then

the Fourier trans form

J M' -;\ (Y )
IM' (Tf 1 ,;\ I Y1 I f I ) e 1 dA

iaL1 Iv/iat!; ,v

vanishes I for every point Y1 E aL whose proj ection onto
1 ' V

aMI equals Y. The descent formula, Corollary 8.5, yields
,V

The proposition then follows as above fram ['1 (a) I Lemma 14.1].

o
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REMARK: Obivously, a similar vanishing property holds if TI

and TI 1 are rep"laced by standard representations p E E (M' (F) )

and P1 E E(L1 (F».

The function f' is intended to come fram a function on

G(F) by a transfer of'orbital integrals. To,make this more

plausible, we shall describe the set GI (F)'G in terms of

the norm mapping ·from G(F) to GI (F) . This discussion is

not really needed here, but will be used .in the article [ 2 ]

(in combination with§I.2 of -that paper).

We shall first recall some elementary facts, for which

F can be a general field. Any element

in G* is (G*)O-conjugate to the point

(1, ••• ,1'Y1 ••. y R,) >4 8*.

C tl Yi 1sonsequen y, (G*)?-conjugate to an element in G',

which is uniquely determined up to GI-conjugacy. We obtain a

bijection from the (G*)O-orbits in G* onto the conjugacy

classes in GI. A given orbit in G* rneets G*(F) if and

only if the corresponding conjuga~y class in G' meets GI (F) .

Suppose that y belongs to G(F). For any 0 E Gal(F/F) ,

we have
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is an inner automorphism of (G*)+.

Since the centralizer of n(y) intersects G*, the points

00-n(y) and n(Y) are (G*) -conjugate. Thus, Gal(F/F)

° "-preserves the (G*) -orbit of n(y). Equivalently, Gal(F/F)

preserves the GI-orbit of (n(y))~. It follows from the theory

of elemen~ary divisors that the GI-conjugacy class of n(y)l

has a representative in G' (F). The same is therefore true of

the (G*)O-arbit of n(y). In other words, there is an element

c y in (G~)O such that the point

y * = c n ,( y) c -1y y

belongs to G*(F). One'can, in fact, assume that y* is of the

form

(10.2) (1, ••• ,yl) >t 8* , Y' E GLn (F) •

Then the element

1 Q. -1
Y' = (y*) = e

y
n (y)" c

y
'= (y I , ••• , Y I )

belongs to GI (F), and is uniquely determined up to GI (F)-conju

gacy. The correspondence y ~ yl gives a map from GO(F)-orbits

in G(F) into G' (F)-conjugacy classes, which is easily seen to

be injective. This is the norm fram G(F) ta GI (F). The symbol

y' can denote either a conjugacy class ar same element in the

class.
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If Y is"as above, the function

n (x) = c n(x)c- 1
.y y y

+xEG ,

maps Gy onto G~* . But y* is of the form (10.2) , and one

sees inunediately that Gy*. equals G' I • Therefore, ny is any

isomorphism fram Gy onto GI . It follows easily from theyl

definitions that it is actually an inner twist. Now, suppose

that a E G(F) 1s semisimple. Then the group Ga' together

with the inner twist,

satisfies our original conditions on G (with ~ = 1). We shall

denote the corresponding norm mapping from. conjugacy class.es

-1
{~} in Ga(F) to conjugacy classes {c~na(~)C~} in G~, (F)

by

If

y = 01J ,

one can take

c = c c
y ~ a

and one obtains

(10.3)
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We return to the case that F is a local field.

LBMMA 10.4: The image of the norm map is G' (F)G. In other

words, G' (F)G is the union over all y EG(F) of the conjugacy

classes y'.

PROOF: Suppose that 0 is an arbitrary element in G' (F) .

Then oE T
G , where T E L1 (F) e11 for a Levi subgroup L1 of

G'. This means that 0 lies in the conjugacy class of T\i ,

where \i belongs to the Richardson orbit in G'
T

corresponding

to the Levi subgroup L
1

• Suppose that
,T

equals the norm

of an element Y E G(F) with Jordan decomposition y =ou.

Then (10.3) yields

y' = OlU~
0'

,

which is just the Jordan

assume that T = 0' and

decomposition of

~ ~
\i = u o ,. Now u o '

y'. We can therefore

is conjugate in G~, (F)

to the element UO" On other words, the inner twist

n : G ~ G' = G'o 0 0' T

maps u to the Richardson orbit in G'
T

corresponding to L
1

.•
,T

It follows that L1 ,T is the image of a Levi subgroup of Go

ovar F. But any such subgroup will necessarily be of the form

M1 ,O' where M1 is a Levi subset of G over F which contains

o . Moreover
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is an inner "twist, with respect to .which T is. the norm of o.

Conversely I given Ö = T\.l, suppose that L1 comes from a Levi

subset ~1 of G and that T is the norm of an element

o E M1 (F). Working backwards I we see that 0 iso the norm of

an· element y =ou in G (F) •

We have obtained a reduction of .the.proof. We have only ta

element TEL, (F), that T

establish, for any L = MI
1 1 which comes fram G, and any elliptic

M
belongs to L~(F)' if and only

if T = cr I for sorne ·elment cr E: M, (F). We may assurne that

L, = G' and M, = G.

One way is quite formal. Let Gab' be the quotient of G

by the derived subgroup of GO. Then Gab is a cornponent which

satisfies the same hypothesis as G. Writing {G(F)} in general

for the set of GO (F)-orbits i~ G(F) I we embed the norm map

{G(F)} ~ {GI (F)} in a commutative diagram

{G(F)} ): {GI (F) } = {GL (F)}
n

! !det
{Gab(F)} ) {G~b(F)} = F*

The subset GI (F)G of GI (F) consists of those elements whose

image in F* lies in the subgroup NE/F(E*). But

(E* x ••• x E*) >f 8, ,
l y j

Q.,
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where 8
1

is an automorphism

Yi E E* ,

for a fixed generator 0 of Gal(E/F). The lower horizontal

a,rrow in the diagram ean be identified with the map

'...'.. E E* •. ~

It follows that any element in GI (F) whieh is a norm from

G (F ) 1 ie5 in G I (F) G.

Conversely, suppose that T is an F-elliptic element

(relative to G) in G' (F) G. Then T E TI (F), where TI is a

maxi~al torus in GI over F which is anisotropie module

AG. Fix an isomorphism T' (F) ~ Fi ' where F1/F 1s an

extension of degree n. Then the restrietion of the determinant

to TI (F) is identified with ~ /F • The theory of simple
1.0 0

algebras attaches a maximal torus T of G . to the algebra

E 1 = E '~F F 1 •

In fact, there is a subgroup T+ of G+ over F, such that

T(F) = T+ (F) n G(F) ;; (Ei x x Ei) )Q e1 '
l y' )

~1

where· e1 is an automorphism

(u
1

, ••• ,uQ, ) --;a..

1
(U2 ' • • • , u ~ , (J (u 1 ) ) I

1
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Here 0 i5 the automorphi5m of E1 /F 1 determined by a generator

of

that

Gal(E/F). It follows that there is an element c c:: G
T

such

t ~ C
T

2, -1
n(t) c

T
' TE T(F),

the restriction of the norm to T(F), corresponds to the map

. It is an exercise in Iocal class field theory to show that the

image of this map 1s the subgroup

NF /F(Y) ENE/F(E*)}
1

of Fr. (See Lemma I.1.4 of [2].) It follows that T equals

0 1
, for same element 0 € G(F). This completes the proof of the

lemma.

o
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Appendix. Convex polytopes

Let a be a rinite dimensional Euclidean space. A

convex polytope TI in a is the convex hull of a finite

set of points. Fix such a TI, and let F(TI) denote the

finite set of closed faces.of TI. Then F(TI) is a partially

ordered set whose elements are convex polytopes in their own

right. The maximal element is just TI, while the minimal

elements form the subset P(TI) of faces which are just

points. The faces in P(TI) are of course called the vertices

of TI. Suppose that F i5 a face in F(TI) • The (open)

dual cone is defined as foliows. Choose a point Xp

in P which does not lie on any proper subface of F , and

the cone- generated by Then + is the relativeform TI - Xp . a· '
F

of the corresponding dual ·,cone. That is, + i5 theinterior aF

intersection, over all points X in the complement of F

in TI, of the half open spaces

{y E a < Y, X- X
F

> < O}

Let aF denote the subspace of a spanned by . F-XF ' and

let aF be the orthogonal complement of aF in a. Then

+a
F

is an open convex cone in aF which i5 independent of

It is a basic fact that a is the disjoint union of

the cones +aF · Let us recall how this 1s proved. The dual

cones consist of cosets of and are invariant under
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translation of IT. We may therefore assume that IT contains

the origin as an interior point. Let "IT be the polar set of

IT([4, § 6, § 9]) . "More precisely, IT is the intersection,

over all points X E IT , of the closed half spaces

{y E a < Y,X > :> 1} .

"Then IT is another convex polytope, whose interior contains

the origin. There is an incidence reversing bijection

" "F <---> F between the proper faces of IT and rr, and

+aF is just the cone genera ted by the relative interior of

"F . But any half line through the origin will intersect the

relative interior of a unique .proper face

is indeed a disjoint union of the cones

"F . Therefore, a

Suppose that b is a vector subspace of a , and let

IT b be the projection of IT onto b . Then IT b is also a
,

convex polytope. We shall construct a section from ITb into

IT • We must first fix a point ~ in ab, the orthogonal

complement of b in a , which lS in general position. Let

F(IT,~) denote the set of faces F E F(IT) for which the set

+= (~ + b) n a
F

is not empty. Then (~+ b) is a disjoint union over

F(IT,~) of the sets b~,F' Define

IT(O = U F
F E F(IT,~)
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The general position of ~ implies that if F belongs to

F(rr,~) and if F 1 E F(IT) is a face which is contained in

F , then F
1

also belongs to F(IT,~) • It follows that

IT(~) is a subcomplex of IT.,

LEMMA A.1: The orthogonal projection of a onto h maps

rr(~) bijectively onto IT b •

Proof: Let n be a point in ITb • The fibre at n is the

set

rrn = II n (n + ab) •

We must show that ITn intersccts IT(~) at precisely one

point.

The faces of IT(~) are the elements in F(IT,~) . Observe

that F(IT,~) is the subset of faces F € F(IT) such that

~ belongs to (a; + b) • On the other hand, IT n is also a

convex polytope, and its faces are of the forre

F,n = F n IT n F E: F(IT)

'Many of these intersections will be empty. Moreover, if n

is not in general position, different F will give the

same intersection. However, let us define fn(IT) to be the

set of elements F E F(IT) such that Fn contains a point

xi in the relative interior of F. Any such F will be

minimal among those faces which have the same intersection
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with IIo n • Clearly F --> Fon 15 a bijection fram Fn(II)

onto the set of faces ,of Wn •

Suppose that F E Fn(II) and that F 1 E F(II) is some

other face such that pi = Fn. Then

Taking orthogonal complements, we obtain

+ h .

However, F is minimal, so it is actually a face of F
1

. This

means that
. + is contained in the closure of + It followsaF a

F
.

1
easily that

+ h .

Thus, in studying the intersection of II(~) with II D , we
I

need only consider thos~ faces of II(~) which belong tQ

Fn, (II) •

Suppose again that F E Fn(II) • We shall find the dual

cone a+ of pn Set
Fn

t ~ 0 , X E II}

and
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n
~ 0, X

n
E Ir ,}

But CF and ab are ~oth polyhedral cones. As is weIl

known, the dual cone of their intersection equals the surn

+of their dual cones. It follows that the closure of a
Fn

+equals the surn of the closure of aF with b. Taking

the relative interior o~ these closed cones, we obtain

+ +
a n = ap

F
+ b •

We know that a is the disjoint union of the cones

+an. We can therefore express a as the disjoint union,
F',l

over F E Fn(IT), of the cones +ap + b • In particular,

~ lies in precisely one such cone. But ~ is in general

position, so we can assume that the cone in which it lies

is open, and corresponds to a vertex of TIn. We have thus

shown that there i5 precisely one face ef TI'n which meets

rr(~) , and that this face is a vertex. In ether words, nn

meets rr(~) in precisely one P9int, as required:

c

Our purpose in di5cu5sing convex polytopes has of

course been for their connection with (G,M)- families.
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Let us consider a typical example. For each Q E F (M)

let €
+ be the usual vector defined by thePQ aQ square

root of the modular function. Let TIM denote the convex

hull of the finite set

{ Pp P € P (M)} •

Then TIM is a convex polytope, which lies in

is an order preserving bijection

Q -> rr
Q

M

aG
. There

M

from F(M) onto the set of faces of TIM. Moreover, the

dual cone of rr~ is just the charnber a;. Thus, the face

rr~ and the charnber a; are of complementary dimensions,

and they intersect orthogonally at the point PQ . Consider

the (G,M)- family given by

(A.1 )
A (p.. )

= e P , *p € P(M), A E ia
M

-A (H)
Then c

M
()..) is just the integral of e over TIM.

(See § 6 of [1 (a)] .) More generally, suppose that

Q € F(M) . Then rr~ lies in the affine space PQ + a~ ,
Q

and inherits a Euclidean measure dH from that on aM .

We have

(A. 2) c·Q (A)
M
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In particular, Q is just the volume in Pa + aQ of thec'M M

face rr Q .
M

Now, as in § 7, suppose that h is a special subspace

of aM . Let TIM,h be the projection of TIM

claim that the - (a
G

_, b) - family associated to

also the one attached to the polytope TIM,b.

onto b • We

{C·p (A)} is

If p is

any element in P(b) , let Q be the unique element in

P(Mb ) such that b+
p

to be the projection

c
p

(v) =
v(p p )

e ,

+is contained in a Q , and define Pp

of Pa onte b . Then

*JJ E: P(b), v E: ib

is the associated (aG,b)- family. ?n the ether hand, ITM,b

is the convex hull in b of the set

{pp pE: P(b)}

For it is trivial that rrM,b contains the convex hull. The

converse is a m1nor extension of Lemma 3.1 of [1 (b)] , and

15 proved the same way. Dur claim, then, i5 jU5tif~ed. In

particular, as in § 6 of [1 (a)] , we can write

f -V(H) .-.J *(A. 3) cb(v) = e dH v E ib ,,

IIM,b

where dil i5 the Euclidean measure on b

We shall want to apply Lemma A. 1 • As before, let c.; be
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ba
M

in general position, and write F(M,F;} for

the set of elements Q E F(M) such that the set

+
b~,Q = (~+b) n aQ

is not ernpty. Then

is a decomposition of ~+b into a polyhedral complex. The

vertices correspond to the parabolics QL introduced in

§ 7. The max±mal cells correspond to the set

We note that P(M,~) is just the set of P E P(M) which

are contained in one of the parabolics O~. Of particular

interest are the cells which are translates.in ~+b of the

charnbers in b Let us write 1?ext(M,~)· for the

subset of elements P E P(M,~) such that the closure of

+ap intersects b in an open set. This intersection roust

necessarily be the closure of achamber b;(Pl) , for a

uniquely determined element p(P) in P (b) . We claim

that the map P --> P (P) 15 a bijection from Pext (M,~)

onto P(b) .,Far 5upp05e that p is an arbitrary.element

in P(b) . Let Q be the unique element in p(Mb ) such
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+ contains + and let be the unique elementthat aQ a p , R

r'\ (M) belongs + Then = Q (R)in such that !; to aR . P

is the unique element in pext(M,!;) with p: (P) = p: . We

point out that Pp:(P) is just the projection of Pp onto

h •

We will use Lemma A.1 to study the function

*v € ih

Observe that the maximal cells in the complex

u TIQ
M

Q € F(M,!;)

* 0 . Let

a set of measure 0 . It follows from

ranges over the
Q

TIML be the

L

A.1 asserts that
",QL
TIM ' together

(A.3) that

, where

TIM, h

with

elements in L(M)
QL

projection of TIM onto h . Then Lemma

is the disjoint union of the sets

correspond to the parabolics QL

Gwith dM(h,L)

L for the moment,

ch(V) = f e-V(H)dH

TIM,h

Fix

= L f e-V(H)dH

L ~QL

TIM

and let H ---> H denote the

orthogonal projection of a~ onto hG . We are assuming

that
G .

dM(h,L) * 0 , so that this map is an isomorphism,

and
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Moreover,

*since v belongs to ib . It follows that

-v (11) -e dH =

Combining these formulas with (A.2) , we obtain

Q
cb(v) = I d~(b,L)CML(V)

L E L (M)

On the other hand, we have

*v E ib

P E

from our correspondence between Pext(M,~) and P(b) . It

thus follows that

(A. 4)

L E

*for any point v E ib , and for {Sp(A)} the (G,M)--family

given by (A. 1) .

Our ultimate purpose has been to prove proposition 7.1.
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We can at last do this. Suppose that {Cp(A)} is an

arbitrary (G,M) - family. The expression

equals

GL dM(h,L)

LEL(M) {pEP(M)

Let

with

denote the sum, over all elements L E F(M)

* 0 and with QL:::> P, of the terI!'.s

Then

(A. S)

L E

*Set A equal to a point v in ih , and for the moment

take {cp (v)} to be the (G,M) - family defined by (A.1)

Then we can combine (A.S) with (A.4) . We obtain

-1
The functions {Bp(p) (v) } and

in v. Furthermore, by Lemma

{rp,~(v)} are all rational

A.1 , the projection of the set
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onto 0 is injective. Therefore the exponential

functions

PEP (M, E;:) ,

are linearly independent over the field of rational functions.

Setting the coefficients"equa"l to 0 , we find that

o , otherwise.

-1
6p (P) (v)

{"

=
, if PEP t (M, E;:) ,ex

Returning to the case that {Cp(A)} is arbitrary, we substitute

the formula for rp,E;:(v) into the right hand side of (A.5) .

We obtain

=

=

=

\ -1
L. Cp(V)6 p (l?) (v)

p E ,p t (M, E;:)ex

\ -1
L Cp (V)6 p (V)

ip E P (b) "

This completes the proof of Proposition 7.1.

o
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