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In this note, we introduce two polynomials associated with a finite poset P , study their
properties, and then compute these polynomials in the case, where P is one of the posets
considered in [13].

Consider two statistics κ and ι on P . By definition, κ(x), x ∈ P , is the number of
elements of P that are covered by x, and ι(x) is the number of elements that covers x.
The generating function associated with κ (resp. ι) is the upper (resp. lower) covering
polynomial of P . That is, K̂P(q) =

∑
x∈P qκ(x) and ǨP(q) =

∑
x∈P qι(x). The upper covering

polynomial, K̂P , has briefly been considered, without adjective ‘upper’, in [13, Section 5].
It immediately follows from the definition that K̂P(1) = ǨP(1) and K̂′

P(1) = Ǩ′
P(1). The

last equality follows from the observation that both values equal the number of edges in
the Hasse diagram of P . Hence K̂P(q) − ǨP(q) = (q − 1)2DP(q) for some polynomial DP ,
which is said to be the deviation polynomial of P .

We begin with a simple observation that K̂P ≡ ǨP whenever P is a distributive lattice
or admits an order-reversing involution.

Let ∆ be an irreducible root system, ∆+ a subset of positive roots, and Π ⊂ ∆+ is the
set of simple roots. If ∆ is reduced, then g denotes the respective simple Lie algebra,
with fixed Borel subalgebra b corresponding to ∆+. We determine K̂P , ǨP , and DP in the
following three cases:

1) P = ∆+;
2) P = J∗(∆+), the poset of dual order ideals in ∆+, or P = J∗(∆+\Π), the poset of dual

order ideals in ∆+ \Π. In the Lie algebra case, these posets are isomorphic to the poset of
all and strictly positive ad-nilpotent ideals in b. These two posets are also denoted by Ad

and Ad0, respectively;
3) P is the poset of Abelian ideal in J∗(∆+), denoted Ab.

Let us briefly describe our results. For ∆+, it is shown that deg K̂∆+ = deg Ǩ∆+ 6 3 and
the coefficients of q3 in K̂∆+ and Ǩ∆+ are equal. This readily implies that the deviation
polynomial is quite simple; namely, D∆+(q) ≡ rk ∆ − 1.
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Since Ad is a distributive lattice, K̂Ad ≡ ǨAd. This common polynomial appeared ear-
lier under various guises in different theories in [1, 2, 12, 15]. Although it is known a
posteriori that K̂Ad is palindromic, no explanation of this phenomenon is available in the
context of ad-nilpotent ideals. The common covering polynomial for Ad0 is not palin-
dromic. However, the ratio K̂′(1)/K̂(1) is determined by similar rules in both cases. We
notice that

K′
Ad(1)

KAd(1)
=

n

2
=

#(∆+)

h
and

K′
Ad0

(1)

KAd0
(1)

=
n

2
·
h − 2

h − 1
=

#(∆+ \ Π)

h − 1
,

where h is the Coxeter number and n is the rank of ∆. (The computation for series Dn and
En in case of Ad0 is based on the conjectural identification of the coefficients of KAd0

(q)

with certain numbers computed by F. Chapoton [6].) The first equality stems from the fact
that KAd is palindromic of degree n (although it is not clear why KAd is palindromic!). The
reason for the validity of the second one is totally unclear.

The most interesting case is that of Abelian ideals. Here the upper and lower covering
polynomials are usually different. The reason is that although Ab is a meet semilattice,
it is a distributive lattice if and only if ∆ is of type Cn or G2. We develop some general
theory for computing covering polynomials, which is based on a connection between the
Abelian ideals and the minuscule elements of the affine Weyl group of ∆. Let I ⊂ ∆+

be an Abelian ideal. Making use of the minuscule element of I , one constructs the shift
vector kI = (k0, k1, . . . , kn) with ki ∈ {−1, 0, 1, 2}. We prove that κ(I) = #{i | ki = −1} and
ι(I) = #{j | kj = 1}, and describe an inductive procedure for computing all kI starting
from I = ∅. The procedure basically asserts that if ki = 1, then kI can be replaced with
kI − (the i-th row of the extended Cartan matrix of ∆), see Section 4 for details.

We also present a method of calculation of ǨAb, which exploits the canonical mapping
of Ab\{∅} to the set of long positive roots [11]. For explicit computations with exceptional
root systems, we use the general equalities K̂Ab(1) = 2n [4, 9] and K̂′

Ab(1) = (n + 1)2n−2

[13]; whereas our calculations in the classical cases exploit standard matrix presentations
of these Lie algebras and counting certain Ferrers diagrams.

Our computations show that, for many natural posets, the coefficients of DP are of the
same sign. This includes Ab, ∆+, ∆+ ∪ {0}, ∆+ \Π. It is likely that there could exist some
general condition on P guaranteeing that DP has the coefficients of the same sign.

Acknowledgements. This work was done during my visit to the Max-Planck-Institut für Math-
ematik (Bonn), and I thank the Institute for the hospitality and inspiring environment. I wish to
thank F. Chapoton for sending me his notes and R. Stanley for several helpful remarks.

1. DEFINITION AND BASIC PROPERTIES

Let (P, 4) be a finite poset. Write H(P) for the Hasse diagram of P and E(P) for the set of
edges of H(P). We regard H(P) as a digraph; if x covers y (x, y ∈ P), then the edge (x, y)

is depicted as y → x and we say that (x, y) originates in y and terminates in x.
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Let us define two polynomials that encode some properties of the covering relation in
P . For any x ∈ P , κ(x) is the number of y ∈ P such that y is covered by x, and ι(x) is the
number of y ∈ P such that y covers x.

1.1 Definition.
(i) The upper covering polynomial of P is K̂P(q) =

∑

x∈P

qκ(x);

(ii) The lower covering polynomial of P is ǨP(q) =
∑

x∈P

qι(x);

It follows that K̂P(0) (resp. ǨP(0)) is the number of the minimal (resp. maximal) elements
of P . In general, these polynomials are different; they may even have different degree.
However, one readily deduce from the definition that

K̂P(q)|q=1 = ǨP(q)|q=1 = #P and
d

dq
K̂P(q)|q=1 =

d

dq
ǨP(q)|q=1 = #E(P) .

Hence K̂P(q) − ǨP(q) = (q − 1)2DP(q) for some polynomial DP . We will say that DP is
the deviation polynomial of P . The following is obvious.

1.2 Lemma.

(i) If P = P1 + P2, then K̂P = K̂P1
+ K̂P2

, and likewise for Ǩ and D;
(ii) If P = P1 × P2, then K̂P = K̂P1

K̂P2
, ǨP = ǨP1

ǨP2
, and DP = K̂P1

DP2
+ ǨP2

DP1
=

ǨP1
DP2

+ K̂P2
DP1

.

We are going to investigate how properties of P are reflected in K̂P , ǨP , DP .

1.3 Theorem. Let P be a distributive lattice. Then K̂P = ǨP . More precisely, if P ' J(L),
then the coefficient of qk equals the number of k-element antichains in L.

Proof. By Birkhoff’s theorem for finite distributive lattices, P is isomorphic to the poset
of order ideals of a unique poset L, i.e., P ' J(L), see e.g. [18, Theorem 3.4.1]. If I is
an order ideal of L, then the set of maximal elements of I , max(I), is an antichain of L.
And the same is true for the set of minimal elements of L \ I , min(L \ I). It easily follows
from Definiton 1.1 that regarding I as an element of P we have ι(I) = # max(I) and
κ(I) = # min(L\I). Conversely, each antichain in L occurs as both max(I) and min(L\J)

for suitable order ideals I, J . This means that both covering polynomials essentially count
all the antichains of L with respect to their cardinality. �

Remark. More generally, the equality K̂P = ǨP holds if P is a modular lattice. This result
of Dilworth (Ann. Math. 60(1954), 359–364) can also be found in [18, Ex. 3.38.5]. This fact
was communicated to me by R. Stanley.

In the following sections, it will be more convenient for us to think of a distributive lattice
as the poset of dual order ideals. Given L, the poset of dual order ideals of L is denoted
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by J∗(L). Then L is restored as the set of meet-irreducibles in J ∗(L). If I ∈ J∗(L), then
κ(I) = # min(I) and ι(I) = # max(L \ I).

1.4 Proposition. If P admits an order-reversing bijection, then K̂P = ǨP .

Proof. If ω : P → P is an order-reversing bijection, then κ(x) = ι(ω(x)) for any x ∈ P .
�

1.5 Examples. 1. Let (W, S) be a finite Coxeter group. Consider W as poset under the
Bruhat-Chevalley ordering ‘6’. It is easily seen that W is not a lattice. But the mapping
w 7→ ww0, where w0 ∈ W is the longest element, yields an order-reversing bijection of
(W, 6). Hence K̂W (q) = ǨW (q). More generally, the equality also holds for W/WJ , where
J ⊂ S and WJ is the corresponding parabolic subgroup of W .

2. Let P be an arbitrary poset and Pop the opposite poset. Then K̂P = ǨPop and ǨP =

K̂Pop . Hence DP = −DPop . It then follows from Lemma 1.2 that DP×Pop = 0. One may
also notice that P × Pop admits an order-reversing involution.

To get acquainted with properties of the covering polynomials, let us look at the effect of
two simple transformations of a distributive lattice. As we’ve just shown, if P = J(L),
then DP = 0. Let 0̂ and 1̂ denote the maximal and minimal element of P , respectively. Set
P ′ = P \ {0̂} and P ′′ = P \ {1̂}. It is easy to recognise the effect of this procedure for K̂P

and ǨP . Let m (resp. l) be the number of maximal (resp. minimal) elements of L. Then

• K̂P ′ = KP −m(q− 1)− 1 and ǨP ′ = KP − qm. Hence K̂P ′ −ǨP ′ = qm −mq +(m− 1)

and DP ′ = qm−2 + 2qm−3 + . . . + (m − 2)q + (m − 1).
• K̂P ′′ = KP − ql and ǨP ′′ = KP − l(q − 1)− 1. Hence K̂P ′′ − ǨP ′′ = −ql + lq − (l − 1)

and DP ′′ = −
(
ql−2 + 2ql−3 + . . . + (l − 2)q + (l − 1)

)
.

In both cases, one obtains polynomials having all nonzero coefficients of the same sign.
Our goal in the following sections is to consider the polynomials K̂P , ǨP , and DP for
some posets associated with systems of positive roots.

2. COVERING POLYNOMIALS FOR THE ROOT SYSTEMS

Let ∆ be a root system in an n-dimensional real euclidean vector space V . Choose a sub-
system of positive roots ∆+ with the corresponding set of simple roots Π = {α1, . . . , αn}.
Write θ for the highest root in ∆+ and h for the Coxeter number.

We wish to compute the covering polynomials in case P = ∆+. The standard root order
‘4’ in ∆+ is determined by the condition that γ covers µ if and only if γ − µ ∈ Π. In view
of Lemma 1.2, it suffices to consider only irreducible root systems. In what follows, [qm]F

stands for the coefficient of qm in the polynomial F(q).

2.1 Theorem. Let ∆ be an irreducible root system of rank n. Then

(i) deg K̂∆+ 6 3 and deg Ǩ∆+ 6 3;
(ii) [q3]K̂∆+ = [q3]Ǩ∆+;
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(iii) if ∆ is simply-laced, then [q]K̂∆+ = [q3]K̂∆+;
(iv) D∆+(q) ≡ n − 1.

Proof. We provide a uniform proof for parts (i) and (ii) only in the simply-laced case.
The remaining cases (including the non-reduced root system BCn) can be handled in a
case-by-case fashion.

(i) For K̂∆+ , one has to show that there are at most 3 simple roots that can be subtracted
from a positive root. Suppose γ ∈ ∆+ and γ − αi ∈ ∆+ for αi ∈ Π and i = 1, 2, . . . , k.
If (α1, α2) 6= 0, then these two roots generate the root subsystem of type A2 and γ is the
highest weight in the adjoint A2-module. Therefore the weight γ−α1−α2 has multiplicity
two. This is only possible if γ = α1 + α2. Hence k = 2. It is thus proved that in case k > 3,
all simple roots that can be subtracted from γ are pairwise orthogonal. In this situation, it
was shown in [10, Corollary 3.3] that k 6 3.

The argument for Ǩ∆+ is similar.

(ii) Suppose κ(γ) = 3, and let α1, α2, α3 be the corresponding simple roots. As is shown
in part (i), these roots are pairwise orthogonal. Therefore γ − α1 − α2 − α3 ∈ ∆+ and the
mapping γ 7→ (γ − α1 − α2 − α3) sets up a bijection between {γ ∈ ∆+ | κ(γ) = 3} and
{γ ∈ ∆+ | ι(γ) = 3}.

(iii) As is well-known, the number of positive roots is K̂∆+(1) = nh/2, where h is the
Coxeter number of ∆. By [13, Theorem 1.1], the number of edges of H(∆+) equals n(h−2)

in the simply laced case. That is, K̂′
∆+(1) = n(h−2)/2. Writing K̂∆+(q) = n+aq + bq2 + cq3

and using the above two equalities, we obtain a = c.

(iv) By parts (i) and (ii), deg(K̂∆+−Ǩ∆+) 6 2. It is also clear that [q0](K̂∆+−Ǩ∆+) = n−1.
Since (q − 1)2 divides this polynomial, the quotient must be n − 1. �

Remark. The degree of polynomials K̂ and Ǩ equals 3 if and only if the Dynkin diagram
of ∆ has a branching node.

It is not hard to compute both covering polynomials for the posets ∆+, see Table 1.

Let ε1, . . . , εn be an orthonormal basis for V . Recall that the unique nonreduced irre-
ducible root system BCn consists of the roots ±εi±εj (1 6 i < j 6 n), ±εi, ±2εi (1 6 i 6 n).
The simple roots are αi = εi − εi+1, 1 6 i 6 n − 1, and αn = εn.

The following observation reduces many questions about BCn to Bn+1 or Cn+1.

2.2 Lemma. The poset of positive roots for BCn is isomorphic to the subposet of non-
simple positive roots for Bn+1 or Cn+1. The posets ∆+(Bn+1) and ∆+(Cn+1) are isomor-
phic.

5



∆ K̂∆+(q) Ǩ∆+(q)

An n +
(

n

2

)
q2 1 + (2n − 2)q +

(
n−1

2

)
q2

Bn, Cn n + (n − 1)q + (n − 1)2q2 1 + (3n − 3)q + (n − 1)(n − 2)q2

BCn n + nq + n(n − 1)q2 1 + (3n − 2)q + (n − 1)2q2

Dn n+(n−3)q+(
(

n

2

)
+

(
n−3

2

)
)q2+(n−3)q3 1+(3n−5)q+(

(
n−1

2

)
+

(
n−3

2

)
)q2+(n−3)q3

E6 6 + 5q + 20q2 + 5q3 1 + 15q + 15q2 + 5q3

E7 7 + 10q + 36q2 + 10q3 1 + 22q + 30q2 + 10q3

E8 8 + 21q + 70q2 + 21q3 1 + 35q + 63q2 + 21q3

F4 4 + 7q + 12q2 + q3 1 + 13q + 9q2 + q3

G2 2 + 3q + q2 1 + 5q

TABLE 1. The upper and lower covering polynomials for the root systems

Proof. An order-preserving bijection between ∆+(BCn) and either ∆+(Bn+1) \ Π or
∆+(Cn+1) \ Π is given as follows:

Cn+1 BCn Bn+1

εi − εj+1
�

oo εi − εj
//

� εi − εj+1 (1 6 i < j 6 n)

εi + εj
�

oo εi + εj
//

� εi + εj+1 (1 6 i < j 6 n)

εi + εn+1
�

oo εi
//

� εi (1 6 i 6 n)

2εi
�

oo 2εi
//

� εi + εi+1 (1 6 i 6 n)

It is easily seen that this extends to an isomorphism between ∆+(Bn+1) and ∆+(Cn+1). �

2.3 Example. Consider two modifications of ∆+.

1. Replace ∆+ with ∆̃+ = ∆+ ∪ {0}, where {0} is regarded as the unique minimal
element in this new poset. Hence H(∆̃+) gains n new edges connecting {0} with the
simple roots. It is easy to describe the effect of this extension for the covering polynomials.
We have

K̂e∆+(q) = K̂∆+(q) + n(q − 1) + 1

Ǩe∆+(q) = Ǩ∆+(q) + qn .

It follows that

De∆+ = D∆+ −
qn − nq + n − 1

(q − 1)2
= −(qn−2 + 2qn−3 + . . . + (n − 2)q) .

2. Assume that n > 2 and consider ∆+ \ Π as subposet of ∆+. Then the minimal
elements of ∆+ \ Π are the roots of height 2. Here we obtain K̂∆+\Π(q) = K̂∆+(q) − (n −

1)q2 − 1. But formulae for Ǩ depends on the presence of a branching node in the Dynkin
diagram, i.e., on the presence of a simple root which is covered by three roots. More
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precisely,

Ǩ∆+\Π(q) = Ǩ∆+(q) −

{
(n − 2)q2 + 2q, if ∆+ does not have a branching node;

q3 + (n − 4)q2 + 3q, if ∆+ has a branching node .

Then

D∆+\Π(q) =

{
n − 2, if ∆+ does not have a branching node;

q + n − 2, if ∆+ has a branching node .
Thus, the deviation polynomial of ∆+, ∆+ ∪ {0}, and ∆+ \ Π always has the nonzero
coefficients of the same sign.

3. COVERING POLYNOMIALS FOR THE POSET OF ad-NILPOTENT IDEALS

Let g be the simple complex Lie algebra corresponding to ∆ (if ∆ is reduced). Fix a
triangular decomposition g = u+ ⊕ t ⊕ u−, where t is a Cartan subalgebra and the set
of t-roots in u+ is ∆+. Then b = t ⊕ u+ is the fixed Borel subalgebra.

An ad-nilpotent ideal of b is a subspace c ⊂ u+ such that [b, c] ⊂ c. Combinatorially,
the poset of ad-nilpotent ideals in b can be defined as the poset of dual order (or upper)
ideals of ∆+. It will be denoted by Ad or Ad(g). If I ∈ Ad is considered as a subset of
∆+, then κ(I) = # min(I) and ι(I) = # max(∆+ \ I). The elements of min(I) are called
generators of I . For γ ∈ max(∆+ \ I), the passage I 7→ I ∪ {γ} is called an extension of I .
Thus, κ(I) (resp. ι(I)) is the number of generators (resp. extensions) of I . By Theorem 1.3,
K̂Ad = ǨAd and the coefficient of qk equals the number of k-element antichains in ∆+. This
common polynomial is said to be the covering polynomial, denoted merely KAd. Here
degKAd = rk ∆ = n. The polynomial KAd appears in different contexts, see [1, 2, 12, 15].
It is worth mentioning that there is a uniform expression (and proof) for the number of
all ad-nilpotent ideals, i.e., KAd(1), see [5]. Since KAd is palindromic, K′

Ad(1) = n
2
KAd(1),

which yields the expression for the number of edges in H(Ad), see [13]. But no uniform
description for (the coefficients of) KAd is known. For future use, we record the following
relation between the number of vertices and edges in H(Ad):

(3.1)
#E(Ad)

#Ad
=

K′
Ad(1)

KAd(1)
=

n

2
=

#(∆+)

h
.

Although there is no Lie algebra associated with the root system BCn, one can still con-
sider the poset of dual order ideals in ∆+(BCn), denoted Ad(BCn). In view of Lemma 2.2,
#(Ad(BCn)) is equal to the number of dual order ideals in ∆+(Bn+1) \ Π. The latter is
known to be equal to

(
2n+1

n

)
[17].

3.2 Proposition. The covering polynomial of Ad(BCn) equals
∑

k>0

(
n

k

)(
n+1

k

)
qk.

Proof. We use a result of Stembridge on trapezoidal antichains [19]. Since the poset
∆+(BCn) is isomorphic to the trapezoidal poset T (n, n + 1), the coefficient of qk in the
covering polynomial of Ad(BCn) equals the number of k-element antichains in T (n, n+1).
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By Theorem 5.4 in [19], the latter is the same as the number of k-element antichains in the
rectangular poset R(n, n + 1). It is easily seen that the number of k-element antichains in
R(n, n + 1) is

(
n

k

)(
n+1

k

)
. �

Unlike the covering polynomial for the upper ideals in a reduced root system, this poly-
nomial is not palindromic.

3.3 Corollary. The number of edges of H(Ad(BCn)) is equal to (n + 1)
(

2n

n+1

)
= n

(
2n

n

)
.

Proof.
d

dq

(∑

k>0

(
n

k

)(
n + 1

k

)
qk

)
|q=1 =

∑

k>0

k

(
n

k

)(
n + 1

k

)
= (n + 1)

∑

k>0

(
n

k − 1

)(
n

k

)
=

(n + 1)

(
2n

n − 1

)
. �

In fact, the poset Ad(BCn) occurs as a particular case of the following natural series of
examples. An upper ideal I ⊂ ∆+ is said to be strictly positive, if I ∩Π = ∅. The sub-poset
of strictly positive ideals is denoted by Ad0 or Ad0(g). Clearly, Ad0 is a distributive lattice
whose poset of meet-irreducible elements is isomorphic to ∆+ \ Π.

In view of Lemma 2.2, Ad(BCn) ' Ad0(Bn+1) ' Ad0(Cn+1). This prompts a natural
question of what is happening for the other simple Lie algebras. A uniform expression
for #Ad0(g), i.e., for KAd0(g)(1), is found by Sommers [17]. In our recent context, we may
ask what are the covering polynomial for Ad0(g) and the number of edges of H(Ad0(g)) ?
The answer for Ad0(Bn) and Ad0(Cn) follows from Lemma 2.2, Proposition 3.2, and Corol-
lary 3.3. The case of sln+1 is trivial, because here ∆+(An) \ Π ' ∆+(An−1). Hence
KAd0(An) = KAd(An−1). The case of G2 and F4 is handled directly. For Dn and En, the
answer is not easy to obtain. It seems that the necessary information can be derived from
results on the F -triangle associated to generalised associahedra [6, 7]. The coefficients of
KAd0

(q) form ”the positive h-vector h+” in Chapoton’s terminology. He computed these
h-vectors using a conjectural relation between the F - and H-triangles. (Warning: h in
these “h-vectors” has nothing in common with the Coxeter number h used above and
below.)

The following formulae are conjectural in case of Dn and En. For Dn, one has

[qk]KAd0
=

1

n

(
n

k

)(
(k + 1)

(
n − 2

k + 1

)
+ (k + 2)

(
n − 2

k

)
+ (k − 1)

(
n − 2

k − 1

))
.

The information for the exceptional Lie algebras is gathered in Table 2.

Using these data and above information for classical series, we notice the following fact:

(3.4)
#E(Ad0)

#(Ad0)
=

K′
Ad0

(1)

KAd0
(1)

=
n

2
·
h − 2

h − 1
=

#(∆+ \ Π)

h − 1
.

This equality has a striking similarity with Eq. (3.1), and it would be interesting to find a
conceptual explanation for it.
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∆ KAd0
(q)

E6 1 + 30q + 135q2 + 175q3 + 70q4 + 7q5

E7 1 + 56q + 420q2 + 952q3 + 770q4 + 216q5 + 16q6

E8 1 + 112q + 1323q2 + 4774q3 + 6622q4 + 3696q5 + 770q6 + 44q7

F4 1 + 20q + 35q2 + 10q3

G2 1 + 4q

TABLE 2. The covering polynomials for Ad0(g), g being exceptional

4. COVERING POLYNOMIALS FOR THE POSET OF ABELIAN IDEALS

There is an interesting subposet of Ad, where the two covering polynomials are different.
An upper ideal I ⊂ ∆+ is said to be Abelian, if γ ′ + γ′′ 6∈ ∆+ for each pair γ′, γ′′ ∈ I . Let
Ab = Ab(g) be the subposet of Ad consisting of all Abelian ideals. Clearly Ab is a graded
meet-semilattice. It follows that Ab is a (distributive) lattice if and only if there is a unique
maximal Abelian ideal, which happens for Cn and G2 only. In all other cases the upper
and lower covering polynomials are different.

Our next results rely on the connection, due to D. Peterson, between the Abelian ideals
and the so-called minuscule elements of the affine Weyl group of g. Recall the necessary
setup.

We have V = tR = ⊕n
i=1Rαi and ( , ) a W -invariant inner product on V . As usual,

µ∨ = 2µ/(µ, µ) is the coroot for µ ∈ ∆. Then Q∨ = ⊕n
i=1Zα∨

i is the coroot lattice in V .

Letting V̂ = V ⊕Rδ ⊕ Rλ, we extend the inner product ( , ) on V̂ so that (δ, V ) = (λ, V ) =

(δ, δ) = (λ, λ) = 0 and (δ, λ) = 1. Then

∆̂ = {∆ + kδ | k ∈ Z} is the set of affine (real) roots;
∆̂+ = ∆+ ∪ {∆ + kδ | k > 1} is the set of positive affine roots;
Π̂ = Π ∪ {α0} is the corresponding set of affine simple roots.

Here α0 = δ − θ. For αi (0 6 i 6 n), let si denote the corresponding reflection in GL(V̂ ).
That is, si(x) = x−2(x, αi)α

∨
i for any x ∈ V̂ . The affine Weyl group, Ŵ , is the subgroup of

GL(V̂ ) generated by the reflections si, i = 0, 1, . . . , n. If the index of α ∈ Π̂ is not specified,
then we merely write sα. The inner product ( , ) on V̂ is Ŵ -invariant. The notation β > 0

(resp. β < 0) is a shorthand for β ∈ ∆̂+ (resp. β ∈ −∆̂+). The length function on Ŵ with
respect to s0, s1, . . . , sp is denoted by `. For w ∈ Ŵ , we set N(w) = {ν ∈ ∆̂+ | w(ν) < 0}.
Then #N(w) = `(w).

4.1 Definition (Peterson). An element w ∈ Ŵ is said to be minuscule, if N(w) = {δ − γ |

γ ∈ I} for some subset I ⊂ ∆.

Then one can easily show that I ⊂ ∆+, I is an Abelian ideal, and this correspondence
yields a bijection between the minuscule elements of Ŵ and the Abelian ideals. Further-
more, if w is minuscule and w−1(α) = −µ + kδ (α ∈ Π̂, µ ∈ ∆), then k > −1. (More

9



generally, this holds for elements of Ŵ corresponding to arbitrary ad-nilpotent ideals, see
[4]). If w is minuscule, then Iw denotes the corresponding Abelian ideal. Conversely,
given I ∈ Ab, then wI stands for the corresponding minuscule element. If I ∈ Ab and
γ ∈ max(∆+ \ I), then the ideal I ′ = I ∪ {γ} is not necessarily Abelian. In this section, we
are interested only in Abelian extensions, i.e., those with Abelian I ′.

4.2 Lemma. Suppose w ∈ Ŵ is minuscule and w−1(α) = −µ + 2δ, where α ∈ Π̂ and
µ ∈ ∆. Then µ = θ.

Proof. We have α = w(2δ−µ) = w(2δ−θ)+w(θ−µ). Here θ−µ ∈ Q+. Hence both 2δ−θ

and θ−µ do not belong to N(w). Therefore if θ 6= µ, then one obtains a contradiction with
the fact that α is simple. �

For a minuscule w, consider the vector k = kw = (k0, k1, . . . , kn), where ki is defined by
the equality w−1(αi) = −µi + kiδ (µi ∈ ∆). Recall that ki > −1 for each i.

4.3 Proposition.

(i) ki 6 2 for each i;
(ii) There is at most one index i such that ki = 2. The corresponding simple root αi is

necessarily long.
(iii) k0 6 1, that is, k0 6= 2.

Proof. (i) If w−1(αi) = −µi + kiδ and ki > 3, then w(2δ − µi) = −(ki − 2)δ − αi < 0.
Hence w is not minuscule.

(ii) If w−1(αi) = −µi + 2δ, then µi = θ by Lemma 4.2. Hence such i is unique and
‖αi‖ = ‖θ‖, i.e., αi is long.

(iii) Suppose w−1(α0) = −µ0 + 2δ. Then µ0 = θ and w(2δ − θ) = δ − θ. However, it is
shown in [11, Prop. 2.5] that w(2δ − θ) ∈ ∆+ for any non-trivial minuscule element w. �

We shall say that kw is the shift vector of w or Iw. If w = wI , then we also use the notation
kI for this vector.

4.4 Theorem. Let (k0, k1, . . . , kn) be the shift vector of I ∈ Ab. Then κ(I) = #{i | ki = −1}

and ι(I) = #{i | ki = 1}.

Proof. 1. It is shown in [11, Theorem 2.2] that γ ∈ I is a generator if and only if wI(δ −

γ) = −αi ∈ Π̂. That is, ki = −1 for the corresponding coordinate i.
2. If w−1(αi) = −µi + δ, i.e., ki = 1, then one easily sees that µi ∈ ∆+, siwI is again

minuscule, and the corresponding Abelian ideal is Ĩ = I∪{µi}. Conversely, if I → I∪{γ}

is an Abelian extension of I , then wĨ = siwI for some i ∈ {0, 1, . . . , n} and wĨ(γ) = −αi

[11, Theorem 2.4]. Then wI(δ − γ) = αi, i.e., ki = 1. �

As a consequence of this theorem, one obtains a method for inductive computing the
shift vector. The minuscule elements (∼ Abelian ideals) can be constructed recursively.
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One starts with the minuscule element 1 ∈ Ŵ (or the empty ideal). The corresponding
shift vector is (1, 0, . . . , 0). The inductive step consists in replacing w = wI with siw for
some i. However one have to be careful while choosing si, otherwise siw may fail to be
minuscule.

4.5 Proposition. Suppose w ∈ Ŵ is minuscule. Then siw is again minuscule if and only
if (kw)i = 1. In this case,

ksiw = kw − (the i-th row of the extended Cartan matrix of ∆).

Proof. The first claim is essentially proved in the second part of the above theorem. The
second claim follows from the assumption (kw)i = 1 and the equalities:

(siw)−1(αj) = w−1(αj) − (αj, α
∨
i )w−1(αi); j = 0, 1, . . . , n.

Recall that the extended Cartan matrix is the (n+1) × (n+1) matrix with the entries cji =

(αj, α
∨
i ), 0 6 i, j 6 n. �

Remark. Let θ =
∑

i>1 ciαi. Set also c0 = 1. Then
∑

i>0 ciαi = δ. Since δ is Ŵ -invariant,
the definition of ki’s implies that

∑
i>0 ciki = 1 for any shift vector. Hence kI is fully

determined by k1, . . . , kn. Let z = zI ∈ V be the unique point such that (zI , αi) = ki,
i = 1, . . . , n. Then z ∈ Q∨. (Again, this is true in the context of arbitrary ad-nilpotent
ideals, see [5]). Note that k0 = 1 − (z, θ). The constraints of Proposition 4.3 show that
−1 6 (z, αi) 6 2 for i = 1, . . . , n and 0 6 (z, θ) 6 2. However, a stronger result is valid. It
was shown by Kostant [9] that the mapping I ∈ Ab 7→ zI ∈ V sets up a bijection between
the Abelian ideals and the points z ∈ Q∨ such that −1 6 (z, γ) 6 2 for each γ ∈ ∆+.

Let ∆+
l denote the set of long positive roots and Πl := ∆+

l ∩ Π. In [11], we constructed

a disjoint partition of
o

Ab := Ab \ {∅} parametrised by ∆+
l . In other words, there is a

natural surjective mapping τ :
o

Ab → ∆+
l . Given I ∈

o

Ab and the corresponding minuscule
element w ∈ Ŵ , we set τ(I) = w(2δ − θ). By [11, Prop. 2.5], it is an element of ∆+

l . Then
Abµ = τ−1(µ).

Remark. Using the above definition of the shift vector of an Abelian ideal and Lemma 4.2,
one observes that ki = 2 if and only if I ∈ Abαi

.

One of the main results of [11] is that each Abµ has a unique maximal and unique
minimal element, and that the maximal elements of Ab are exactly the maximal elements

of Abα, α ∈ Πl. Let I ∈
o

Ab and τ(I) = µ. By [11, Prop. 3.2], if I → I ′ is an extension,
then τ(I ′) 4 τ(I). Hence I has an extension outside Abµ only if µ 6∈ Π. Now we make
that analysis more precise by showing that the number of possible Abelian extensions of
I → I ′ such that I ′ 6∈ Abµ depend only on µ and not on I .

4.6 Theorem. For any µ ∈ ∆+
l \ Π and any I ∈ Abµ, the number of Abelian extensions

I → I ′ such that I ′ 6∈ Abµ equals the number of α ∈ Π such that (µ, α) > 0. In particular,
this number does not depend on I , and if ∆ is simply laced, then it is equal to κ(µ).
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Proof. 1. Suppose (α, µ) > 0 and µ′ := sα(µ) = µ − nαα. Here nα ∈ N and nα = 1 if
and only if α is long. Anyway, µ′′ := µ−α is again a root, and we will work with the sum
µ = α + µ′′. Then w−1

I (µ′′ + α) = 2δ − θ and, as shown in the proof of Theorem 2.6 in [11],
one has w−1

I (µ′′) = δ − γ′′ and w−1
I (α) = δ − γ′ for some γ′, γ′′ such that γ′ + γ′′ = θ. This

shows that w = sαwI is minuscule, Iw = I ∪ {γ′}, and τ(Iw) = sαwI(2δ − θ) = sα(µ) = µ′.
2. Conversely, suppose I ∈ Abµ and I → I ′ is an extension. Then I ′ = I ∪ {γ} for some

γ ∈ ∆+ and wI′ = sαwI , where α ∈ Π is determined by the equality wI(δ − γ) = α. The
condition τ(I ′) 6= µ means sα(µ) 6= µ, i.e., (α, µ) 6= 0. To compute the sign, we notice that
(α, µ) = (w−1

I (α), w−1
I (µ)) = (δ − γ, 2δ − θ) = (γ, θ), which cannot be negative. �

4.7 Corollary. The ideals having a unique Abelian extension are the following:
(a) ∅;
(b) The minimal elements of posets Abµ, where µ 6∈ Π and the inequality (α, µ) > 0

holds for a unique α ∈ Π;
(c) The ideals having a unique Abelian extension inside Abα, α ∈ Πl.

It was noticed in [11] that each Abµ is a minuscule poset, i.e., there is a simple Lie algebra
l and a parabolic subalgebra p ⊂ l with Abelian nilpotent radical pu such that Abµ is
isomorphic to the poset of Abelian p-ideals in pu. The construction of l as a subalgebra
of g is given in [11, Section 5]. Since the structure of the minuscule posets is well known,
Theorem 4.6 provides an effective tool for computing the lower covering polynomial in
the small rank cases, e.g. for the exceptional Lie algebras.
We say that γ ∈ ∆+ is commutative, if the upper ideal generated by γ is Abelian. Clearly,
the set of commutative roots forms an upper ideal. A uniform description of this ideal
(and its cardinality) is given in [13, Theorem 4.4]. In particular, if the Dynkin diagram has
no branching node then the number of commutative roots is n(n + 1)/2.

In the following assertion, we gather some information that is helpful in practical com-
putations of the covering polynomials.

4.8 Proposition.

(i) [q0]K̂Ab = 1, [q0]ǨAb = #(Πl);
(ii) [q]K̂Ab = the number of commutative roots;
(iii) deg K̂Ab 6 deg ǨAb. If these degrees are equal, say to m, then [qm]K̂Ab 6 [qm]ǨAb;
(iv) K̂Ab(1) = ǨAb(1) = 2n;
(v) K̂′

Ab(1) = Ǩ′
Ab(1) = (n + 1)2n−2.

Proof. (i) These are the numbers of minimal and maximal elements of Ab.
(ii) Obvious.
(iii) Let I be an Abelian ideal with m generators, say {γ1, . . . , γm}. Then I \ {γ1, . . . , γm}

has at least m extensions. Then take m = deg K̂Ab.
(iv) This is Peterson’s theorem on #(Ab), see e.g. [4, Theorem 2.9];
(v) This is the number of edges of H(Ab), which is computed in [13, Theorem 4.1]. �
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Let m be the maximal size of an antichain of commutative elements. Then deg ǨAb 6 m.
But this bound may not be sharp, since the ideal having a prescribed antichain as the set of
either generators or minimal elements in the complement can be non-Abelian. However,
in case E7 and E8 this bound does give the precise value for both degrees, and we obtain
degKAb(E7) = degKAb(E8) = 4, where K is either K̂ or Ǩ.

Also, it follows from a result of Sommers [17, Theorem 6.4] that the number of genera-
tors of an Abelian ideal is at most the maximal number of mutually orthogonal roots in
Π. This provides an upper bound for deg K̂Ab. Since it is easy to find an Abelian ideal
with such a number of generators, one actually obtains the exact value of the degree. For
instance, deg K̂Ab(Dn) =

[
n
2

]
+ 1 and deg K̂Ab(E6) = 3. If deg ǨAb 6 3, then both covering

polynomials can be computed using Proposition 4.8. This applies to F4 and E6. For E7 and
E8, it suffices to determine one more value (or coefficient) of K̂Ab and ǨAb.

4.9 Example. g = E8.

(1) We use Corollary 4.7 to compute the coefficient [q]ǨAb(E8). Here the number of
roots µ such that κ(µ) = 1 is 21 (see Section 2). The posets Abαi

, αi ∈ Π, have the cardi-
nalities 1,2,3,4,5,6,8,6. Furthermore, for E8, each poset Abµ is totally ordered. Hence the
contribution from part (c) of the corollary is 0 + 1 + 2 + 3 + 4 + 5 + 7 + 5 = 27. Thus,
[q]ǨAb(E8) = 1 + 21 + 27 = 49.

(2) Since each Abµ is a chain, any ideal I has at most one extension inside its own poset
Abµ. Because κ(µ) 6 3 for all µ ∈ ∆+, Theorem 4.6 shows that

[q4]ǨAb(E8) =
∑

κ(µ)=3

#(Abµ) − 1 .

We have #{µ ∈ ∆+ | κ(µ) = 3} = [q3]K̂∆+(E8) = 21. Of these 21 roots, there are

11 roots with #(Abµ) = 1 (these are exactly the roots µ with (θ, µ) 6= 0, see [11, 5.1];

5 roots with #(Abµ) = 2;
3 roots with #(Abµ) = 3;

2 roots with #(Abµ) = 4.

Hence [q4]ǨAb(E8) = 17.

(3) Then using Proposition 4.8(iv),(v), we compute ǨAb(E8)(q) = 8 + 49q + 87q2 + 95q3 +

17q4.

5. COMPUTING THE COVERING POLYNOMIALS FOR Ab(g), g BEING CLASSICAL

In this section, we prove 4 theorems for all classical series. All proofs are based on an
explicit presentation of the upper ideal of commutative roots and understanding which
ideals inside it are really Abelian. To this end, one has to know the generators of all
maximal Abelian ideals, which are determined in [16] (see also [14, Table 1]).
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5.1 Theorem. If g = sln+1, then

(i) K̂Ab(q) =
∑

k>0

(
n+1
2k

)
qk;

(ii) ǨAb(q) =
∑

k>0

((
n

2k+1

)
+

(
n

2k−2

))
qk;

(iii) DAb(q) = −
∑

k>0

(
n−1
2k+1

)
qk.

Proof. The formula for K̂ (but not for Ǩ!) is implicit in [14, Section 3]. We recall the
necessary setup and then deduce the expressions (i) and (ii). Then part (iii) is obtained
via formal manipulations.

For g = sln+1, each positive root is commutative. The root εi − εj ∈ ∆+(sln+1) is identi-
fied with the pair (i, j). Suppose a ∈ Ab(sln+1) and κ(a) = k. That is, a has k generators
(minimal roots). If min(a) = {(a1, b1), . . . , (ak, bk)}, where a1 < a2 < . . . < ak, then we
actually have 1 6 a1 < a2 < . . . < ak < b1 < . . . < bk 6 n + 1. Thus, any 2k-element subset
of [1, n + 1] gives rise to an Abelian ideal with κ(a) = k and vice versa. This yields (i).

The edges of H(Ab) originating in a bijectively correspond to the maximal roots γ in
∆+ \ a such that {γ} ∪ a is again an Abelian ideal. The set of these maximal roots always
contains {(a1 + 1, b2 − 1), . . . , (ak−1 + 1, bk − 1)}; furthermore, if ak + 1 < b1, then two more
roots are required: (1, b1 − 1), (ak +1, n+1). From this we deduce that ι(a) = k if and only
if one of the following two conditions hold:

(31) # min(a) = k + 1 and ak+1 + 1 = b1.
(32) # min(a) = k − 1 and ak−1 + 1 < b1.

In case (31) the ideal is determined by a sequence of 2k + 1 integers
1 6 a1 < . . . < ak < ak+1 = b1 − 1 < b2 − 1 < . . . < bk+1 − 1 6 n.

Hence there are
(

n

2k+1

)
such possibilities.

In case (32) the ideal is determined by a sequence of 2k − 2 integers
1 6 a1 < . . . < ak−1 < b1 − 1 < b2 − 1 < . . . < bk−1 − 1 6 n.

Hence there are
(

n

2k−2

)
such possibilities. This proves (ii).

(iii) It follows from parts (i) and (ii) that

K̂Ab(q) − ǨAb(q) =

−
∑

k>0

((
n

2k+1

)
−

(
n+1
2k

)
+

(
n

2k−2

))
qk = −

∑
k>0

((
n−1
2k+1

)
− 2

(
n−1
2k−1

)
+

(
n−1
2k−3

))
qk =

− (q − 1)2
∑

k>0

(
n−1
2k+1

)
qk. �

5.2 Theorem. If g = sp2n, then K̂Ab(q) = ǨAb(q) =
∑

k>0

(
n+1
2k

)
qk.

Proof. The commutative roots are {εi + εj | 1 6 i 6 j 6 n}. Since these roots form the
unique maximal Abelian ideal, the poset Ab(sp2n) is a distributive lattice whose subset of
meet-irreducibles is isomorphic to the set of commutative roots. Hence K̂Ab(q) = ǨAb(q).
The explicit form of this polynomials stems from the description given in [14, Section 3]:
the ideals with k generators (or with k extensions) are in a bijection with the the sequences
1 6 a1 < a2 < . . . < ak 6 b1 < . . . < bk 6 n. Hence there are

(
n+1
2k

)
possibilities for them. �
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The poset of commutative roots for sp2n is represented by the triangular Ferrers diagram
with row lengths (n, n − 1, . . . , 1) (= triangle ‘of size n’). In the following two theorems,
a subposet of the poset of commutative roots for so2n+1 and so2n appears to be such a
triangle, which allows us to exploit the formula of Theorem 5.2.

5.3 Theorem. If g = so2n+1, then

(i) K̂Ab(q) =
∑

k>0

(
n+1
2k

)
qk;

(ii) ǨAb(q) =
∑

k>0

((
n−1
2k+1

)
+

(
n

2k−1

)
+

(
n−1
2k−2

))
qk;

(iii) DAb(q) = −
∑

k>0

(
n−2
2k+1

)
qk.

Proof. Here the commutative roots are {εi + εj | 1 6 i < j 6 n} ∪ {ε1 − εi | 2 6 i 6

n} ∪ {ε1}.
Graphically, this set is represented by the skew Ferrers diagram with row lengths (2n −

1, n − 2, n − 3, . . . , 1), see the sample Figure for so13, where the leftmost (resp. rightmost)
box is α1 = ε1 − ε2 (resp. θ = ε1 + ε2). The central box in the upper row is ε1, and lowest
box is εn−1 + εn.

FIGURE 1. The (po)set of commutative roots for so13

We have used the convention that the largest element appears in the northeast corner and
the smaller elements appear to the south and west. This Ferrers diagram consists of the
tail of length n and the triangle ‘of size n − 1’. The triangle itself represents an Abelian
ideal, and the structure of the set of ideals sitting inside this triangle is the same as for
sp2n−2.

(i) We wish to compute the number of Abelian ideals with k generators.

• The number of such ideals inside the triangle is equal to
(

n

2k

)
.

• Suppose that a has the tail of length m, m > 1, i.e., a has the generator ε1 − εn+2−m

in the upper row. Then the rest of this row (to the right) is also in the ideal, and the ideal
is determined by its part lying in the triangle of size n − 2, in the rows from 2 to n − 1.
The condition of being Abelian means that a cannot have elements from m − 1 leftmost
columns of the triangle. (Formally: if ε1 − εn+2−m ∈ a, then for all other roots εi + εj ∈ a,
2 6 i 6 j, we must have j 6 n + 1 − m.) Hence as a degree of freedom for further
constructing a we have a triangle of size n − 1 − m, where an ideal with k − 1 generators
have to be chosen. The symplectic case shows that the number of such possibilities equals(

n−m

2k−2

)
.
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Thus, the total number of Abelian ideals with k generators equals
(

n

2k

)
+

∑

m>1

(
n − m

2k − 2

)
=

(
n

2k

)
+

(
n

2k − 1

)
=

(
n + 1

2k

)
.

(ii) We wish to compute the number of all Abelian ideals with k extensions. Here the
argument is similar in the spirit, but more tedious.

• Suppose a lies in the triangle. The difficulty here is that a may have an extension that
does not fit in the triangle (namely, if the length of the first row equals n − 1). Therefore
the symplectic formula does not immediately apply.

Let p 6 n − 1 be the length of the first row of a. Then a certainly have the extension in
the first row. The rest of a (in the second row and below) sits in the triangle of size p − 1

and must have k − 1 extensions. By the symplectic formula, the number of possibilities
here is

(
p

2k−2

)
. Hence, the total number of possibilities for the ideals inside the triangle

equals
∑

p6n−1

(
p

2k−2

)
=

(
n

2k−1

)
.

• Suppose an Abelian ideal a has the tail of length m, m > 1. Let s be the length of the
second row of a. Then, as explained in the proof of part (i), s 6 n − m − 1. Here one has
to distinguish two cases.

(1) If s = n−m−1, then a has no extensions in the first two rows. Hence all k extensions
must occur in row no. 3 and below. This part of a sits in the triangle of size n − m − 2.
Therefore one has

(
n−m−1

2k

)
possibilities for constructing an ideal.

(2) If s < n − m − 1, then a has extensions in both the first and second row. Hence
the lower part of a, in row no. 3 and below, must have k − 2 extensions. Since this lower
part sits inside the triangle of size s− 1, one has

(
s

2k−4

)
possibilities. Altogether, we obtain∑

s6n−m−2

(
s

2k−4

)
=

(
n−m−1
2k−3

)
variants.

Thus, the total number of Abelian ideals with k extensions equals
(

n

2k − 1

)
+

∑

m>1

(
n − m − 1

2k

)
+

∑

m>1

(
n − m − 1

2k − 3

)
=

(
n

2k − 1

)
+

(
n − 1

2k + 1

)
+

(
n − 1

2k − 2

)
.

(iii) This follows from (i) and (ii) via a straightforward calculation. �

5.4 Theorem. If g = so2n, then

(i) K̂Ab(q) =
∑

k>0

((
n+2
2k

)
− 4

(
n−1
2k−2

))
qk =

∑
k>0

((
n

2k

)
+

(
n−1
2k−1

)
+

(
n−2
2k−1

)
+

(
n−2
2k−4

))
qk;

(ii) ǨAb(q) =
∑

k>0

((
n

2k+1

)
+

(
n

2k−2

))
qk;

(iii) DAb(q) = −
∑

k>0

((
n−2
2k+1

)
+

(
n−3
2k

))
qk.

Proof. Here the commutative roots are
{εi+εj | 1 6 i < j 6 n}∪{ε1−εi | 2 6 i 6 n}∪{εi−εn | 2 6 i 6 n−1}. Graphically, this

set is represented by the skew Ferrers diagram with row lengths (2n−2, n−1, n−2, . . . , 2),
see the sample Figure for so12, where the leftmost (resp. rightmost) box is α1 = ε1 − ε2

(resp. θ = ε1+ε2). The two boxes in the lowest row are αi−1 = εn−1−εn and αi = εn−1+εn,
respectively. The roots ε1 − ε2, . . . , ε1 − εn−1 form the tail of this diagram.
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FIGURE 2. The (po)set of commutative roots for so12

We follow here the same convention as in the proof of Theorem 5.3. However, the
notable distinction of this diagram from Figure 1 is that here the roots in the two central
columns are incomparable.

(i) We wish to compute the number of Abelian ideals with k generators.

(♥1) Suppose that a has the tail of length m, m > 1, i.e., a has the generator ε1 − εn−m

in the upper row. Then the rest of this row (to the right) is also in the ideal, and the
ideal is determined by its part lying in rows from 2 to n − 1. The condition of being
Abelian means that a cannot have elements from m + 2 leftmost columns in this lower
part. (Formally: if ε1 − εn−m ∈ a, then for all other roots εi + εj ∈ a, 2 6 i 6 j, we must
have j 6 n − 1 − m.) Hence as a degree of freedom for further constructing a we obtain
a triangle of size n − 3 − m, where an ideal with k − 1 generators have to be chosen. The
symplectic case shows that the number of possibilities equals

(
n−m−2
2k−2

)
. Thus, in this case

we have
∑

m>1

(
n−m−2
2k−2

)
=

(
n−2
2k−1

)
possibilities.

(♥2) Suppose that an ideal a has no tail, i.e., ε1 − εn−1 6∈ a. Consider all the relevant
variants.

(1) ε1 − εn, ε1 + εn ∈ a. These two roots are generators of a, so that we have to
choose an ideal with k−2 generators in the triangle of size n−3. This yields

(
n−2
2k−4

)

possibilities.
(2) ε1 − εn 6∈ a. Then have to choose an ideal with k generators in the triangle of size

n − 1. This yields
(

n

2k

)
possibilities.

(3) ε1 + εn 6∈ a. This part is the same as previous one, and we obtain
(

n

2k

)
possibilities.

(4) In items (2) and (3), we have counted twice the ideals that contain neither ε1 − εn

nor ε1 + εn, i.e., the ideals with k generators that fit in the triangle of size n − 2.
Therefore

(
n−1
2k

)
must be subtracted.

Thus, if a has no tail, one obtains the sum
(

n−2
2k−4

)
+

(
n

2k

)
+

(
n−1
2k−1

)
.

Combining (♥1) and (♥2) yields the coefficients of qk presented as the sum of four sum-
mands. It is a good exercise to transform this sum into the second expression in the
formulation.

(ii) Counting the ideals with k extensions is even more tedious. Our method yields here
10 terms, which sum luckily up to the two summands in the formulation. We only list all
the possibilities for the Ferrers diagram and the corresponding number of ideals:
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• the length of the first row is 6n−3 −
(

n−2
2k−1

)

• the length of the first row is n−2 −
(

n−2
2k−4

)

• ε1 − εn 6∈ a, ε1 + εn ∈ a −
(

n−2
2k

)
+

(
n−2
2k−3

)

• ε1 − εn ∈ a, ε1 + εn 6∈ a −
(

n−2
2k

)
+

(
n−2
2k−3

)

• ε1 ± εn ∈ a −
(

n−3
2k

)
+

(
n−3
2k−3

)

• The ideal has the tail (of length >1) −
(

n−3
2k+1

)
+

(
n−3
2k−2

)
.

(iii) This follows from (i) and (ii) via a straightforward calculation. �

Finally, we present the table with complete information about the covering and deviation
polynomials for Ab(g).

g K̂Ab(g) ǨAb(g) −DAb(g)

An

∑
k>0

(
n+1
2k

)
qk

∑
k>0

((
n

2k+1

)
+

(
n

2k−2

))
qk

∑
k>0

(
n−1
2k+1

)
qk

Bn

∑
k>0

(
n+1
2k

)
qk

∑
k>0

((
n−1
2k+1

)
+

(
n

2k−1

)
+

(
n−1
2k−2

))
qk

∑
k>0

(
n−2
2k+1

)
qk

Cn

∑
k>0

(
n+1
2k

)
qk

∑
k>0

(
n+1
2k

)
qk 0

Dn

∑
k>0

((
n+2
2k

)
− 4

(
n−1
2k−2

))
qk

∑
k>0

((
n

2k+1

)
+

(
n

2k−2

))
qk

∑
k>0

((
n−2
2k+1

)
+

(
n−3
2k

))
qk

E6 1+25q+ 27q2+11q3 6+21q+20q2+17q3 5+ 6q

E7 1+34q+ 60q2+30q3+ 3q4 7+35q+40q2+43q3+ 3q4 6+13q

E8 1+44q+118q2+76q3+17q4 8+49q+87q2+95q3+17q4 7+19q

F4 1+10q+ 5q2 2+ 8q+ 6q2 1

G2 1+ 3q 1+ 3q 0

TABLE 3. The covering and deviation polynomials for Ab(g)

Some observations related to Table 3

1. For A2n, we have deg ǨAb − deg K̂Ab = 1. For all other cases the degrees are equal.

2. One may observe that there are several regularities in Table 3. For all classical series,
both the covering polynomials satisfy the recurrence relation

(5.5) KAb(Xn)(q) = 2KAb(Xn−1)(q) + (q − 1)KAb(Xn−2)(q) ,

where X ∈ {A,B,C,D} and K is either K̂ or Ǩ. Furthermore, the sequence E3 = A2 × A1,
E4 = A4, E5 = D5, E6, E7, E8 can be regarded as the ‘exceptional’ series, and for this series
the same recurrence relation is satisfied for K̂ (but not for Ǩ). It follows from Eq. 5.5 that
KAb(Xn)(1) = 2KAb(Xn−1)(1), which ”explains” the equality #Ab(Xn) = 2n.
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3. The upper covering polynomials for An, Bn, Cn are the same. But the lower covering
polynomial distinguishs these series. Furthermore, if the Dynkin diagram has no branch-
ing nodes, then K̂Ab(g) depends only on n. That is, the upper covering polynomial for F4

(resp. G2) is equal to that for A4 (resp. A2).

On the other hand, the lower covering polynomials are equal for An and Dn, and the
deviation polynomial for Bn is equal to that for An−1.

It would be interesting to find an explanation of these coincidences.

Remark. For the non-reduced root system BCn, one can also consider combinatorial
Abelian ideals. However, these are exactly the same as in the symplectic case.

6. SOME SPECULATIONS

1o. Is there a combinatorial interpretation of K̂P(−1) and ǨP(−1)? (At least, if P is a
modular or distributive lattice.)

2o. Various examples considered in the paper show that in many cases the deviation
polynomial of a poset has the nonzero coefficients of the same sign. It would interesting
to find a general pattern for this phenomenon. Of course, it is not always the case. For
instance, if DP1

(resp. DP2
) has positive (resp. negative) coefficients, then Lemma 1.2(ii)

shows that the deviation polynomial of P1 × P2 may have coefficients of both signs. It is
not hard to produce a concrete example. However, I conjecture that the following is true:

Suppose P = J(L) and P(6m) is the subposet of ideals of cardinality at most m. Then DP(6m)

has non-positive coefficients.

In the special case of J(L) \ {1̂} this is verified in Section 1.

3o. From the definition of DP , it follows that DP(1) = 1
2
(K̂′′

P(1) − Ǩ′′
P(1)). Therefore

DP(1) =
#{(x, y1, y2) ∈ P3 | y1→x, y2→x} − #{(x1, x2, y) ∈ P3 | y→x1, y→x2}

2
,

where y1 6= y2 and x1 6= x2. In other words,

2DP(1) = #

{
c

c c@@I���

}
− #

{
c

c c

@@I ���

}
,

the difference between the number of two types of configurations in H(P). These config-
urations are said to be ∧-triples and ∨-triples, respectively. Using this interpretation, one
obtains the following result.

6.1 Proposition. Suppose P̃ is a distributive lattice and P ⊂ P̃ a subposet such that if
I ∈ P and I ′ 4 I (I ′ ∈ P̃), then I ′ ∈ P . Then DP(1) 6 0. Furthermore, DP(1) = 0 if and
only if P is a distributive lattice if and only if DP ≡ 0.

Proof. Here each ∧-triple can be completed to a diamond inside P , i.e., the configuration
of the form ‘3’. This provides an injection of the set of ∧-triples to the set of ∨-triples. If
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this is a bijection, i.e., each ∨-triple can be included in a diamond, then P has a unique
maximal element. Hence P is a distributive lattice and DP = 0. �

4o. Using Table 3, one can compute the values −DAb(1). In the serial cases, these values
are quite simple:

2n−2 for An, n > 2; 2n−3 for Bn, n > 3; 0 for Cn, n > 1; 2n−3 + 2n−4 for Dn, n > 4.
Hopefully, there could be a uniform general description for them. One may notice that if
the Dynkin diagram has no branching nodes, then this value equals 2m with m = #(Πl)−

2; or 0, if #(Πl) = 1. (The case of G2 and F4 is included here.) But I have no idea how to
explain the values for series D and E.
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