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Abstract

In this paper we consider the adiabatic approximation of the atomic collision
problem. We show that the computation of transmission probabilities in this
approximation can be done by means of the resurgent analysis method. We
present a computational algorythm for transmission probabilities and give the
mathematical verification of this algorythm. All considerations are carried out on
the simple but representative example of two-level Zener model. The preliminary
knowledge of the atomic physics and the resurgent analysis is not supposed.

Introduction

The role of motion invariants of dinamic systems in classical mechanics seems quite
evident. It is well-known that for conservative systems, that is, for the systems whose
Hamiltonians do not depend on the time explicitely, one of such invatiants is the Cartan



integral invariant

1=j{pdz. (1)

At the same time, for nonconservative systems the question of motion invariants is
significantly more complicated. An important step in the solution of this problem was
done in remarkable papers [1], [2] by Paul Ehrenfest who introduced there the notion
of an adiabatic invariant - one of the fundamental notions of mechanics.

To illustrate the above mentioned notion we consider an one-dimensional time-
dependent Schrodinger equation with the Hamiltonian of the form

'I'J"l.‘U2

H = —2— +V(I,at),
a being a small parameter. In the latter equation the potential V' can depend on the
time ¢ only via the variable 7 = ot which can be called a slow time.
Then, as it was shown by Ehrenfest, integral 1 is preserved in the adiabatic approx-

imation, that is the relation

fpd:c = const + O (a)

takes place.

For multidimensional problems the similar result is easily obtained from the one-
dimensional one provided that the variables can be divided in the corresponding Schro-
dinger equation, since in this case the multidimensional problem can be reduced to
several one-dimensional ones. However, it can be shown that for general multidimen-
sional problems the similar result fails (this can be demonstrated by the well-known
Fermi example).

The next result in this direction was obtained by A. N. Vasilliev in early eightees.

He has shown that the expression for adiabatic invariants can be improved by adding
lower-order terms in h:

I:fpd:c-i—hfl-l—hzlg‘f'

such that the quantity I will be preserved in the evolution. Thus, the notion of adiabatic
invariants was introduced in the most general situation.

Further, the adiabatic invariants were a predmet of investigation in a lot of physical
and mathematical papers. We mention here the papers (3], [4], [5], [6], [7].

So, there arises a problem of investigation of Schrédinger equations in the adiabatic
approximation. This means that one has to investigate the asymptotic behavior of



solutions to the time-dependent Schrédinger equation

. O h?

t a = —%A-i-V(:c,at) '(I) (2)
as @ — 0. The first result in this direction was obtained by M. Born and V. Fock
[4]. They have proved that the quantum states are preserved in the main term of
the adiabatic aproximation, that is, that if the solution to (2) satisfies the ‘initial
conditions’ of the form

lim ¢ =y,

t—r—o00

for some eigenfunction %, of the Hamiltonian
h2
—%—A +V(z,—o0),
then )
lim § = . (z, ) exp [;} f E.(R) dR]
where ¥, (z, R) is an eigenfunction of the instanteneous Hamiltonian

h2
—2—mA -|- V (.‘E, T)

corresponding to the eigenvalues F, (R) (these are called adiabatic potential curves),
and T is the above mentioned slow time.

We remark also that, due to the well-known Wigner theorem adiabatic potential
curves do not intersect one another.

The further investigation of the problem was done for different models. We mention
here the Zener model (see [8]) for which the Hamiltonian is a two-dimensional operator

aat b
b aayt |-

The Schrodinger equation for this model can be solved explicitely and then the asymp-

with the matrix

totics as « — 0 can be computed from the explicit expression for the solution. It
occurs that the transitions between the two states involved in this problems are of
exponential order O (e=4/*), where A (the so-called Massey parameter) has the sense
of the shortest distance between the two adiabatic potential curves in question.



The next model which is worth mentioning is the so-called Rosen-Zener-Demkov
model [9], [10]. This is also a two-level model admitting the explicit solutions, and the
corresponding Hamiltonian 1s given by the matrix

0 el—df
e~97 A !

where a and A are some positive parameters. The asymptotic analysis of the exact
solution gives us the following value of the transition probability

P = ie'%’.

n=1

The next step in the investigation of the finite-level models was done in the paper
[11] by E. C. G. Stueckelberg. In this paper the two-level model

iai u\ [ a(r) b(7) u

dr\ v/ \ b(r) ¢(7) v
was considered. The asymptotic expansion involving exponentially decreasing terms
(such as the transition probabilities are) was obtained in this paper with the help of

continuation of the solution to the complex plane and using the technique of model
equations in a neighbourhood of the (complex) turning point.

Finally, let us turn our attention to the general problem of atomic collisions. To be
short, we shall consider here the problem which involves one electron and two nuclei.
The time-dependent Schrodinger equation for such a problem is

AN [ |_, <8

ot 7 - Ri| A

where 7= (z,y,2) is the electron radius-vector, Ry and R; are radius-vectors of the
nuclei with charges Z, and Z,, and A is the Laplace operator with respect to the
electrone variables (z,y, z) (see Figure 1). It is supposed that the two nuclei in question
are moving with respect to each other with the relative velocity v which is exactly the
small parameter of the adiabatic approximation. Such problems were considered from
physical point of view by E. Solov’ev (see [12]). The analysis of this problem can
be divided into two parts: the computation of the corresponding adiabatic potential
curves E; (1) (7 = vt, as above), and the construction of the adiabatic asymptotics in
the problem with known E;.
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Figure 1: The simplest atomic collision.

The present paper is aimed at the investigation of the second of the two problems
listed above by means of the resurgent analysis.
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1 Statement of the problem

To begin with, we recall shortly the general statement of the problem.

Consider a proton and some atom (hydrogen, for example) moving with respect to
each other with the relative velocity v. Then, in the adiabatic approximation one can
treat the motion of the heavy particles as a classical one, and the motion of the electron
as a quantum one. Thus, the transitions between electronic states in this system are
described with the help of the following Schrédinger equation:

0¢(z,t)

i——2= = H(R)(z,1). (3)



Here FI(R) is the electronic Hamiltonian of the diatomic quasimolecule (the exact form
of the Hamiltonian H (R) is not of importance for us), z = (z',z?,2°) are electronic

coordinates, and R is the internuclear distance, which can be written down in the form
R = Vd? + v¥1?,

d being an impact parameter! (see Figure 1; we neglect the curvature of the classical
trajectories of the heavy particles).

We recall that the adiabatic approzimation is exactly the asymptotic expansion of
the unknown function ¥(z,t) with respect to the small parameter v.

Further, we are mostly interested in the computation of probabilities of transitions
between different electronic states occurring as a result of the described collision. From
this viewpoint it seems natural to pass to the population of the atomic states® represen-
tation, that is, to expand the electron wave function ¥(z,t) over the basis {r,[)/i (z,R)}
consisting of the eigenfunctions of the instantaneous electronic Hamiltonian H(R):

Wla,t) = 3 ey (=, R(Y)), (4)
where

H(RY; (z,R) = E; (R) ¢ (z,R).

The eigenvalues E; (R) playing the role of effective potential are called adigbatic po-
tential curves in the adiabatic approximation. The functions ¢;(¢) on the right in (4)
describe the evolution of the population of the j-th electronic state during the collision;
clearly, these functions depend on the parameter v.

The naturality of representation (4) is confirmed by the Born-Fock theorem [4]
which claims that the population numbers |¢;(t)| do not change during a collision in
the limit v — 0, that is,

li'_r.r(]) lc;(t)| = const.

The above stated problem prescribes also the ‘initial conditions’ for the functions
¢;(t) in question. Namely, if we investigate probabilities of the transitions from the
state jo to all other states, it is natural to put

. 11 j=j0
lim ¢;(t) = .,
t——00 J() { 0) J #]0

Here and below we use atomic units for which A =1, m = 1.
2In physics the probability for an electron to be in the given atomic space is called a population of
this state.




Then the probabilities of the transition from the state jo to the state ; are given by

2
lim ¢; ()

Dijoi = t—+o0

Substituting expression (4) into equation (3) and expanding the result of the substitu-
tion over the basis {#; (z, R)}, we obtain the following (infinite) system of differential
equations for the functions ¢; (¢):

2att =¥ Hi a0, (5)

where the (infinite) matrix || Hjx (£)|] is the expression of the Hamiltonian H (t) in the
considered representation. To separate the small parameter v explicitely, we introduce
the new variable 7 = vt (‘slow’ time), thus rewriting (5) in the form

acJ (T v) ZHJI&‘ rv), (6)

where the functions Hjx (7) depend on the variable 7 in a regular way.

Now we shall introduce the finite-level approximation, which is based on the follow-
ing facts. First of all, as it was already mentioned {(Born-Fock theorem), the principal
term of the adiabatic approximation corresponds to the absence of the transitions
between different electronic states. Moreover, as it was already mentioned in the In-
troduction, the probabilities of the transitions p;,; and, hence, the subsequent terms of
the asymptotics of the functions ¢; (¢) in the adiabatic approximation decrease expo-
nentially as v — 0 with the exponential factor e=2/¥, where A is the shortest distance
between the corresponding adiabatic potential curves (see Figure 2; one can see that
the transitions between different states can occur in the region in which the distance
between the curves is minimal - the so-called region of quasiintersection). This means
that, if we are intended to investigate the asymptotic behavior of ¢; () in the variable v
modulo exponential terms with some fixed type, we can include into consideration only
a finite number of components cx (t) corresponding to energy levels Ej (R) closest to
the given potential curve E; (R). Therefore we arrive at the finile-dimensional model
which coincides in form with (6) but with a finite matrix || H;x (7).

Now we can formulate the corresponding mathematical problem.
Consider the system

i a“" ) ZH,k ), j=1,2...,n (7)
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Figure 2: Quasiintersection.

of ordinary differential equations with the ‘initial data’

Jim_ (o) ={ g S ®

with respect to the n unknowns

{¢; (1,v), 7=1,2,...,n}.

The problem is to investigate the asymptotic behavior of solution to this system as
v — 0 with exponential accuracy of arbitrary exponential type.

The above formulated problem will be solved in this paper with the help of the
resurgent analysis (see, for example [13]). To be short and clear, we shall present all
the calculations for the simplest Zener model, though all the computational procedure
can be applied to general problem of the type (7), (8). We recall that for Zener model
the matrix H (r) = ||H,x ()| has the form

QT bl b'z
= _ b[ asT 0 NN
H(r)= b 0 a7 ... |’

so that for the corresponding two-level model the matrix H (7) is given by

0= o)



with some real values of the constants a, b, A. To be definite, we shall choose a; = -2,
b = —1, a; = 0, thus considering the {ollowing system of two ordinary differential
equations:

. de
—1v =271c1 + ¢

In accordance with the resurgent analysis method, we search for solutions to system
(9) in the form
a(rv)=L[Ci(rs)],
ez (r,v) = L[Cy(r,8)],
where C; (7,s), j = 1,2 are endlessly-continuable® analytic functions in the variable s

and L£[C;] is the Laplace transform® of the function C; (7, s) in the variable s, taken
at some of its ramification point s = S (7):

¢cj(r,v) = L[C;(r,s)] = / eé’C_,- (r,3) ds. (11)

F{r)

(10)

In the latter formula I () is a standard contour encircling the singularity point s =
S (7) of the function Cj;(r,s) (see Figure 3). Clearly, as it is usual in the resurgent
analysis, we have to investigate the asymptotic behavior of the functions in question
not only for real but for complex values of . In general, to do this one have to
require that the coefficients of the considered system of ordinary differential equation
has entire coefficient; in our model example this requirement is obviously fulfilled. Now,
substituting expressions (11) for the components c; (7, v) of the solution into the system
(9) we obtain the following system for the unknowns C; (7, s):

ac, _ oc, _ oC
T =7 T B
aC, _ _0C
o =" gs
Later on, as we shall see below, one can suppose that the solution {C; (7,s)} of the
latter system has simple singularities, that is, the singularities of the form

(12)

Gire) = 72w =s @) L e

3=0

3An endlessly-continuable function is, roughly speaking, an analytic function having a discrete set
of singularities on its Riemannian surface (for exact definitions see, for example, [14], [13]).

*In the sequel we shall see that the functons ¢; will be represented as a sum of Laplace transforms
of the functions C; taken in different points of ramification of these functions {see formula (21) below).
At present this fact is not of importance for us.
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Figure 3: The standard integration contour.

near each its singular point 8 = S (7) (see [13]). In this case expression (11) can be
considered as a result of resummation of the corresponding WKB-series

es5() Zvja_,- (). (14)

1=0

However, as it is known, the asymptotics of the solution can involve different num-
ber of WKB-terms for diﬂ'erent\points x (the so-called Stokes phenomenon). So, to
investigate the solution with the help of the resurgent analysis, one has to:

— investigate the resurgent structure of the solution, that is, to determine the val-
ues of actions for all WKB-terms which can be possibly involved in the asymptotic
expansion;

— investigate the Stokes phenomenon, that is to determine which singularities of the
type (13) will contribute to the asymptotic expansion for different values of z.

This program will be realized in the subsequent Sections.

2 Resurgent structure of solutions

Our first goal is the computation of the resurgent structure of the functions ¢; (7, v),
that is, of the structure of set of singularities of the functions C; (,s). As follows from
formulas (13), (14) above, the resurgent structure of a solution plays an important
role in investigation of its WKB-expansion. Namely, if s = S(7) is an equation of the

10



set of singularities of the solution and {$;(7)} are different branches of (ramifying,
in general) function S(7), then S;(7) play the role of actions in WKB-terms of the
asymptotic expansion of the solution.

Clearly, the question whether there exists a resurgent solution to a system of the
form (7) is not a simple one. In our book [13] we prove the existence of the full
system of resurgent solutions to an ordinary differential equation of arbitrary order with
polynomial coeflicients. The results obtained there can be generalized to the systems
of ordinary differential equations, and we can prove the existence of an endlessly-
continuable solution with simple singularities to problem (7), (8) (in the case of system
of equations with polynomial coefficients) with singularities at points

s=5;(r),

where S; (7) are different branches of (ramifying, in general) solution of the corre-
sponding Hamilton-Jacobi equation. For system (12) the Hamilton-Jacobi equation

reads
2r — §' (1) 1

L s [T P s @ -1=0 (15)

We remark that for the particular system (9) the existence of resurgent solutions with simple
singularities can be proved directly. To do this, we shall search for the solution to this system in the
form of a Laplace integral

e1(r,v) = [exp [Lpr] Ai(p,v) dp,

ez (r,v) = }exp [%p‘r] Az (p,v) dp,

where the functions A4; (p, v) and Az (p, v), as well as the integration contour -, are unknowns. Sub-
stituting the latter relations to the system (9), we obtain for A, (p,v), Az (p, v) the following system

of equations:
{ pA; = 2;:;% + Ay,
pAz = A]_.
The solution to the obtained system is given by
o =exn {3 -2+ 41 3]).
. r
Az(p,v) =p~lexp {& [—24— +3ln p]} ,

a0 that the corresponding solution (e1, ¢3) to (9) has the form

€1 (f,v)=fexD{§ [pr—— g2 +1n p]} dp,

¥
cz(r,v) = fexp{;; [PT— ":—n +%ln p]} p~tdp. (16)
b

In the latter integrals one have to choose the integration contour 7 in such a way that these integrals
converge. The example of such a contour is drawn on Figure 4; one can choose any contour coming to

i1



Figure 4: The choice of the contour ~.

infinity in regions of exponential decrease of the integrang (marked on the Figure) and avoiding the
polar singularity p = 0 of the integrand.

Let us now rewrite the obtained expressions for solutions in the form of resurgent functions. To
do this, we perform the variable change

2
Py L
s=pr 4+2|np (17

in (16), thus reducing the expression for the solutions to the form
i 1d
e1(r,v) = fexp [;s] HE (r,s) dp,
&
i - d,
ez (r,v) = fexp [Ls] p~ (r,8) Go (7, 6) dbp,
¥

where p (7, 8) is a solution to equation (17) with respect to p.
Now it is evident that the singularities of the functions

Cy(r,8) = gg (7,8),
Ca(r,8) = p7 (r,0) L (r,9),

are posited at those points where the variable change given by (17) degenerates. These points can be
found from (17) together with

/) P 1 _ p, 1 _
EE{pr—T+§lnp}_r—5+2_p“0
and are given by
1 2
s:S(r):—Z+%+%r ‘r?+1+%ln(r+\/‘rz+1). (18)

12



One can immediately verify that the function S(r) determined by the latter relation is a solution to
the Hamilton-Jacobi equation (15).

The constructed solution is not a solution with simple singularities in the above sense. However,
it is easy to construct a solution with simple singularities applying the operator (8/83)-1/ ? to both
of the functions C, (7,5) and C; (7, s) (the definition of this operator one can find in {15}, [16], [13]).

Let us continue the investigation of the resurgent structure of a solution to (12).
Deriving S’ (r) from the Hamilton-Jacobi equation (15) we obtain the expression for
the corresponding adiabatic potential curves

E(t)=S8'(n)=1+Vr2 +1 (19)

(the two different determinations of the square root correspond to the two adiabatic
potential curves in question). Now, integrating the obtained result along paths in the
complex 7-plane from the origin to the arbitrary point 7, we obtain the equation of
the singularity set of the solution (C, (7,s), C,(7,3)) to system (12) in the form®

s=5(r )=—+ ‘r\/‘r2_+ ln(r-l-\/‘JT) (20)

The obtained set of singularities is drawn on Figure 5 a) — c) for three different
values of the variable 7. Namely, Figure 5 a) corresponds to some real negative value
of 7, Figure 5 b) corresponds to 7 = 0, and Figure 5 c) corresponds to some positive
real value of 7.

One can see that for any 7 the singularity set of the solution consists of two different
lattices with step iw. For any real value of 7 the first from these two lattices, corre-
sponding to the positive determination of the square root in expression (20), contains
one real point, and the other contains no real point at all. When the variable 7 changes
from —oo to 0, these two lattices are moving one to another in the direction of the real
axis. Then (at the value 7 = 0) they go through each other and continue their motion
as 7 varies from 0 to 400 such that the distance between them infinitely increases.

Let us denote by S, (correspondingly, S_) the real value of the function given by
(20) for positive determination of v/72 4+ 1 (correspondingly, the value of the function
S (1) having the imaginary part equal to iw/2 for negative determination of /72 + 1).
It is clear that the solution (¢ (1,v), ¢z (7,v)) to system (9) which is given by expression
(11) with the integration contour I' (7) encircling the point S () (or any other point of
the first lattice) corresponds to the adiabatic potential curve E4 (7) (with the positive
value of v/72 + 1) whereas the same expression with I' (1) encircling the point S_ () (or

57This expression differ from the expression (18) obtained above up to an additive constant —1/4.
Since the choice of the arbitrary constant in the action function 1s inessential, we use below the most
simple normalization.

13
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Figure 5: Resurgent structure of the solution.

any other point of the second lattice) gives us a solution corresponding to the adiabatic
potential curve E_ (1) (with the negative value of v/72 4 1). Thus, to satisfy the ‘initial
conditions’ of the considered problem one has to choose for 7 < 0 the solution given
by (11) with the integration contour I' (7) drawn on Figure 5 a).

Now we must continue the obtained solution to all real values of T and calculate
this solution for sufficiently large positive 7. However, as it is clear from Figure 5,
when 7 goes across the value 7 = 0, the integration contour will be intersected by
infinitely many points from the second lattice of singularities. Clearly, as a result of
this intersection the topology of the integration contour will be changed, since the
singularity point which intersects the integration contour can extract from it one or
two contours of the same type but encircling this new point of singularity. Such a
phenomenon is known in the resurgent analysis as the Stokes phenomenon and, hence,
to investigate the continuation of the solution to positive values of 7 one have to include
the Stokes phenomenon into consideration. This will be done in the following Section.

3 Investigation of the Stokes phenomenon

Up to the moment we have constructed a solution to equation (9) in the region 7 < 0.
This solution is represented in a form of the integral (11) with the integration contour
['(r) drawn on Figure 5 a). However, as it was already mentioned in the end of
the previous Section, the topology of the integration contour can be changed during

14



the continuation of the constructed solution to all real values of 7. This topological
rebuilding happens at 7 = 0 when the integration contour is intersected by singularities
of the integrand different from that encircling by the considered contour.

The mentioned topological rebuilding is due to the fact that any singular point
intersecting the integration contour can extract from it some another contour of the
same type. However, we do not know a priori how many contours of this kind (if
any) will be extracted from the integration contour as a result of the intersection. The
number of extracted contours depends on which branches of the integration contour
(which is posited on the Riemannian surface of the integrand) are really intersected
by the considered point of singularity. For example (see Figure 5 b)), the point A of
singularity of the integrand can intersect both branches I'y and I'; of the integration
contour (in this case two additional contours will be extracted from I' (7) as a result of
the intersection). It can happen also that this point will intersect one of the branches
I'; and I'; (in this case only one new integration contour will be originated during
the intersection process). Finally, one can imagine that the point A comes along a
sheet of the Riemannian surface which does not contain both I'; and I'; (in this case
the intersection process does not lead to the appearance of new integration contours).
Thus, we see that, generally speaking, the integral representation of the solution in
different regions of the real axis 7 will be of the form

¢ (m,v) = Z L, [Ci(r,s8)] = Z / eé’Cj (r,8) ds (21)

Tx{7)

rather than of the form (11). Here the sum is taken over some subset® of the set of
points s; of singularities of the integrands C; (7, s) and the contour I'x (7) is a standard
contours encircling the point s;. The sum on the right in (21) can be infinite, but must
contain only a finite number of points of support in any half-plane Ims < A for
arbitrary real value of A.

From the above considerations it is clear that to compute directly the number of
contours extracted it is necessary to know the global structure of the Riemannian
surface of the integrand. Clearly, this task is not so simple in the general case.

Further, as we have seen above (see formulas (13) and (14)), each point s; of
singularity of the integrand in (21) corresponds to some WKB-term which might be
included into the asymptotic expansion of the constructed solution (though can not be
included in it). Actually, the WKB-term (14) is involved into the asymptotic expansion
of the solution if and only if the corresponding point of singularity of the integrand

5This subset is called a support of the resurgent function in question. The notion of a support of
a resurgent function is strongly connected with different physical and mathematical notions; see, for
example, the paper [17] on complex rays method.

15



is encircled by some integration contour in the integral representation of this solution,
that is, if this point corresponds to one of the terms on the right in (21). We shall refer
points of singularities included into representation (21) as active points and all other
points of singularity as passive points for the given value of the variable 7. As it is clear
from the above considerations the property of the point to be passive or active can be
changed exactly at those points 7 at which one point of singularity of the integrand
in (21) intersects the integration contour encircling the another point of singularity.
For the considered example it can happen only for such values of T for which the real
part of the action S, (7) coincides with the real part of the action S_ (r), that is, in
the case, when the two lattices in question lay on one and the same vertical line in
the complex plane s. The set of such points is called a Stokes set of the functions in
question.

Later on, the Stokes set divides all the complex plane C, into a number of regions
which will be referred below as the Stokes regions.

Finally, there are points in the complex plane C, which are ramification points of
the adiabatic potential curves (and, consequently, the ramification points of the action
function). In the resurgent analysis such points are called focal points of the resurgent
function in question and we denote by F the set of focal points. As we shall see below,
these points play a crucial role in the investigation of the asymptotic expansions of
the solutions to the considered equations. In our example we have two focal points
T = #i at which two lattices of singularities of the functions C) (7, 3) and Ca(7,s)
coincide with each other. The difference between the set of focal points and the Stokes
set of the given resurgent function is that the first one has complez codimension 1 in
the complex plane C, whereas the second one has in this plane the real codimension
1. Hence, the Stokes set divides the plane C, into Stokes regions, and the set of focal
points does not divide C, at all.

Thus, to give the full description of the Stokes phenomenon one has to determine
the set of active points of singularity in each Stokes region.

One can present more exact description of the Stokes phenomenon using the notion of micro-
functions. To come to this notion we remark that each integral on the right in (21) will not be
changed if we add to the integrand some endlessly-continuable analytic function which is holomorphic
in a neighbourhood of the corresponding point s; of singularity. Thus, the value of the term in the
representation (21) depends not on the functions C; and C; themselves but on the equivalence class
of these functions modulo functions regular near the point 8;. Such equivalence classes are called
(endlessly-continnable) microfunctions supported at the point s; and are none more than singular
parts of C), and C; at the point s¢. The space of microfunctions supported at the point s, we shall
denote by M,,.

Further, as we have seen above, each term of the {(exponential) WKB-expansion of the solution
corresponds to exactly one term of the representation on the right in (21), that is, to exactly one

16



microfunction supported at somne point of singularity of the integrands C; and C;. Therefore, we can
represent the asymptotic expansion of the functions in question as (infinite, in general) vectors

Cl'., C?,n
( Cl.!z ) 1} ( CZ,J; ) y (22)

where Cj,, are some elements of the space M,, for some point 8 of singularity of the function
C;j (r,5). We denote by M the space of vectors (22), so that the asymptotic expansion of the solution
can be represented as an element from M x M.

Now the change of the asymptotic expansion at points of the Stokes set can be treated as a
homomorphism

‘ T MxXM o MxM

which is called a connection homomorphism in the resurgent analysis.

Thus, the computation of the Stokes phenomenon is exactly the computation of the Stokes homo-

morphism at each point on the Stokes set.

So, to compute the asymptotic expansion of the solution with the exponential ac-
curacy, one has to solve the following two problems.

1. To compute WKB asymptotic expansions corresponding to each point of singu-
larity.
2. To select the set of active points of singularity for each value of .

Then the asymptotic expansion of the solution will be simply the sum of WKB-
expansions (or, more exactly, of the resums of these expansions since the corresponding
asymptotic series diverge) computed at each active point for any value of 7.

We claim that both these problems can be solved with the help of complexification
in the variable 7. As it was already mentioned, the solution of both problems strongly
depends on the position of the ramification points of the adiabatic potential curves, or,
in other words, of the focal points for the constructed solution.

Let us describe first the computation of the WKB-expansions. To do this, we first
investigate the behavior of points of singularities of the functions C, (,s) and C; (7, s)
when the point 7 is tracing a path /; in the complex plane C; shown on Figure 6. This
path having the origin at the point 7 = 0 goes along the imaginary axis to the point
T = 1, encircles this point counterclockwise and then comes back to the origin.

It is easy to verify that when 7 moves along the imaginary axis from the origin
to the point 7 = 7, the singular points of the functions C;(r,s) will move along the
trajectories shown on Figure 7 b) (on Figures 7 a) and c) the initial and the final states
of this motion is shown, the points of the first lattice are shown on this Figure by
crosses whereas the points of the second lattice are shown by points; in the situation
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Figure 6: Paths of analytic continuation.

of Figure 7 c) these two lattices coincide with each other since 7 = ¢ is a focal point).
Actually, we have

S+(i9)=—%2-+i[zg—\/1-92+%arctgﬁ ,

S_ (10) = —%L: +2 [g— -_— g-VI - 02 - %arcthI-g_—of} 5

and one can easily verify that the real and imaginary parts of the two latter functions
are monotonic when 0 < § < 1.
Later on, when 7 is at point a (see Figure 6), that is, § = 1 —¢ for some small positive
g, the two points S, (i0) and S_ (i0) are both close to the point s = —~1/2+4i7 /4. When
T encircles the small loop around the focal point 7 = 7, these two points will rotate
to the angle 3= and, hence, these two points will be exchanged during this rotation.
Actually, one has
1

Seli+ed®)=—g+ 7+

3v2i 3/2 e
2 £

1 e +O(e).

The stated assertion is a direct consequence of the latter formula.

Finally, if the point 7 goes back from the value 7 = i (1 — €) to the origin, the two
considered points will be moving back along the trajectories shown on Figure 7 b) to
the initial position. Thus, as a result of tracing the path !; shown on Figure 6, the two
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Figure 7: Dynamics of the resurgent structure along /;.

points A and B shown on Figure 7 a) will be interchanged (as well as all other pairs
of points obtained from A and B with shifting by 7).

The loop I, determines an element I} of the fundamental group =, (C,\F) of the
complement C,\F of the set F of focal points in the plane C,;. As we have shown
above, the action of this element on the Riemannian surface of solutions C; and C;
to system (12) interchanges the points of singularity A and B. Hence, the analytic
continuation of these functions considered in a neighbourhood of the point A along the
path [; gives the value of the same functions in a neighbourhood of the point B. Since
the correspondence between expansions (13) and (14) is one-to-one, we can claim that
the WKB-element corresponding to the point B is a result of the analytic continuation
of the WKB-element corresponding to the point A.

The action of the element I, of the fundamental group 7, (C,\F) corresponding to
the path /; drawn on Figure 6 can be investigated in the similar way. However, this
element interchanges the points of singularity A and C (see Figure 7 a)), not A and B.

Let us now pass to the solution of the second problem listed above. The matter
is that there exists a method of computation of the Stokes phenomenon based on
the so-called resurgent equations. This method is based on the fact that the solution
(c1(1yv),c2(7,v)) to system (9) is clearly an entire function of the variable 7 whereas
the asymptotic series given by WKB-elements ramifies around singular points of the
adiabatic potential curves. Hence, the variation of the WKB expansions originated by
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R

ramification of the action §(7) and of the amplitude

a(r,v) = E va;(7)

3=0

must be cancelled out with the additional terms appearing in the asymptotics due to the
Stokes phenomenon. One can write down the corresponding relations and try to obtain
the information about the change of asymptotic expansions from these relations. This
program can be fulfilled with the help of the so-called alient derivative. Unfortunately,
the presentation of the theory of alient derivatives is far out of the framework of the
present paper; the reader can find the detailed explanations of all this theory in [18],
[14], [19], [20], [21], [13]. Here we shall mention only that the computation of changes
in asymptotic expansions when intersecting Stokes lines with the help of the alient
differential calculus is possible only in a neighbourhood of some focal points and only in
the case when both the point defining the integration contour and the point intersecting
this contour are those coinciding with one another when 7 approaches this focal point.
So the question arises: how can one compute the change of asymptotic expansion when
one point intersect the integration contour determined by the other point if these two
points are posited on some nonvanishing distance from each other? Such a situation,
typical for the problems of the considered type, is shown, for example, on Figure 5 b)
where the point A of singularity intersects the integration contour apart from its origin

B.
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The answer to this question can be obtained again with the help of the analytic
continuation along paths {; and l; drawn on Figure 6 together with the corresponding
Stokes lines. Namely, instead of continuation along the segment of the real axis from
the point 7 = —¢ to the point 7 = ¢ for some € > 0 (this segment intersects one of
the Stokes lines, see Figure 8) one can use the continuation along the path [, (drawn
on the same Figure) along which the intersections with all the Stokes lines in question
occurs in a neighbourhood of the focal point 7 = . We have chosen the path {; since,
as it can be seen from Figure 7 the two points A and B in question (see Figure 5 b))
are close to each other in a neighbourhood of the focal point 7 = 1.

The result of computations of the Stokes phenomenon for the considered example
is shown on Figure 5 c). Here one can see that all points of the lattice born by S_ (7)
lying above the real axis in the complex plane C, are active for 7 > 0 and, hence,
all these points determine nontrivial contributions to the asymptotic expansion of the
solution in this region.

4 Formulation of the computational algorythm

In the previous Section we have obtained that the asymptotic expansion of the solution
to (9) for 7 > 0 (in particular, for large real values of ) consists of the WKB element
corresponding to the adiabatic potential curve E, (1) and of all analytic continuations
of this WKB element along paths [}, li13l;, li12l1131;, ..., each corresponding to the
adiabatic potential curve E_ (7).

Similar one can obtain the following result valid for general problems of the form
(7), (8).

The asymptotic expansion of the solution to the problem (7), (8) for sufficiently
large positive values of the variable T consists of the WKB-element corresponding to
the adiabatic potential curve Ej, (1) and of all continuations of this element along all
elements of the basis of the fundamental group m, (C,\F) taken with coefficients arising
due to the Stokes phenomenon.

We shall not present here the proof of the stated assertion since it goes more or less
similar to the consideration of the above example. The reader can construct this proof
by himself or herself.

In conclusion we remark that just the same computations lead to the asymptotic
investigation of the overbarrier reflection phenomenon in quantum mechanics (see, for
example, [22]). What is more, numerical computations in the simplest case of quadratic
potential coincide exactly with the above computations for the two-level Zener model.
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