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WALL-CROSSING FORMULAS, BOTT RESIDUE FORMULA AND THE
DONALDSON INVARIANTS OF RATIONAL SURFACES

GEIR ELLINGSRUD AND LOTHAR GÖTTSCHE

1. INTRODUCTION

The Donaldson invariants of a smooth 4 manifolcl M depend by definition on the choice of a

Riemannian metric. In case b+(M) > 1 they however turn out, to be independent of the metric as

long as it is generic, and thus they give Coo-invariants of M. In case b+(M) =1 the invariants have

been introeluceel and studied by Kotschick in [Ko]. It turns out that the positive cone of M has a

chamber structure , anel Kotschick and Morgan show in [K-M] that the invariants only elepenel on

the chamber of the perioel point of the metric.

Now let S be a smooth algebraic surface with geometric genus pg(5) = 0, irregularity q(S) = 0,

anel let H be an ample divisor on 5. Let M~ (Cl 1 C2) be the 1l10duli space of H -Gieseker semistable

rank 2 sheaves on S with ehern classes Cl and C2. In the recent paper [E-G] we studied the variation

of M ~ (Cl 1 C2) anel that of the corresponding Donaldson invarian ts under change of the ampie divisor

H. For the Donalelson invariants this corresponels to restricting our attention from the positive

cone of S to the subcone of ample classea. We imposed a suitable additional conelition on the walls

between two charnbers anel called walls satisfying this condition gooel walls.

We showed that if the polarisation H passes through a gooel wall W defined by a cohomology class

€ E H2(S, Z), then M~ (Cl l C2) changes by a number of flips. Following [K-M] we wrote the change

of the elegree N Donaldson invariant as a surn of contributions J{,N with ~ running through the set

of cohomology classes defining W. Vve then used Ollr flip description to cornpute J{ ,N in terms of

Segre classes of certain standard bundles V{,N over a Hilbert scheme of points Hilbd~,N(5 U 5) on

two disjoint copies of S (here deN = (N +3+~2)/4). We proceeded to compute the leading terms of

J{,N explicitely and formulated a conjecture about the precise shape of JeN, related to a conjecture

from [K-M]. We will in future refer to any formula for J€lN as a wall-crossing formula.

Most of the results of [E-G] were also obtained inelependently in [F-QL anel a flip description of

the change of the moeluli spaces was obtained independently for varieties of arbitrary dimension and

sheaves of arbitrary rank in [M-W]. In [H-P] a Feynman path integral aproach to this problem is

developed , and some of the leading terms of the wall-crossing formulas are determined.

The current paper is a continuation of [E-G]. \Ve specialize to the case that the surface S is

rational. The first advantage is that now almost always all walls are good anel so the forrntilas from

[E-G] almost always apply.

K ey word3 and phra3e3. Moduli spaces, Donaldson in ....ariants, Hilbert scheme of points.



The main reason for restricting our attention to rational surfaces is that they allow us to use

an additional powerful tool: the Bott residue formula. A rational surface ean always be deformed

to a surfaee admitting an action of a two-dimensional algebraie torus r with only a finite number

of fixpoints. As the Donaldson invariants are in partieular deformation invariants, we ean assurne

that S admits such an action of r. It is easy to see timt this action will lift to the Hilbert sehemes

Hilbd~,N(S U 5L and that the standard bundles V{,N are equivariant for the indueed action. Fur­

thermore also the indueed action will only have a finite number of fixpoints, and the same is true

for a general I-parameter subgroup T of r. The weights of the action of T on the tangent 8paces

of Hilbd(,N (S U 5) and on the fibres of Ve,N at the fixpoints ean be determined explieitely from the

eorresponding weights on S. So we ean apply the Bott residue formula to this situation and, given

N and €and the weights on S, we always have an algorithm to eompute the change 6e,N explieitely.

This algorithm involves very many eomputations, so we use a suitable Maple program.

Now let 5 be a rational ruled surface with projection t : S ----7 PI. Let F be the class of a fibre

of t and assurne that the interseetion number cI.F is 1. Then [Q2] shows that, given C2 E f{2{S, 2),

there always exists a special ehamber Co such that for H in Co the moduli space M~ (Cl, C2) is empty.

In partieular the corresponding 50(3)-invariant is zero on Co. This al ready gives us an algorithm

for eomputing aH the SO(3)-invariants corresponding to first ehern dasses Cl with cI.F = 1 on S.

Given achamber C we obtain the value of the invariant by just summing up alt the ehanges for all

the walls between C and Co.

At this point we ean eombine our methods with an additional ingredient: The blowup formulas,

whieh relate the Donaldson invariants of an algebraie surface S with those of thc blowup § of 5 in a

point. In the case of the projeetive plane P2 we obtain an algorithm for eomputing a11 the 50(3) and

SU(2)-invariants. Let p : IP 2 --+ P2 be the blow up oflF2 in a point, let H) Fand E be the hyperplane

dass, the fibre of the projection P2 ---+ ~l and the exeeptional divisor respectively. We obtain the

SO(3)-invariants of JIP 2 by first computing the invariants on lF 2 eorresponding to Cl = p. (H) and

applying the 5U (2)-blowup form ulas. Similarly we obtain the the SU (2)- invariants of I? 2 by first

eomputing those on IP 2 eorresponding to Cl = E and applying the SO(3)-blowup formulas. Notice

that in both cases cI.F = 1 on TID 21 so that the algorithm or the previous paragraph applies. Using

a suitable Maple program we have computed aH the 50(3)- and SU (2)-invariants of ~2 of degree

sm aller then 50.

SO(3)- alld SU(2)-invariants of P2 and rational ruled surfaces had al ready been computed by

several authors (see e.g. [L-Q] [E-LP-S] and [K-L]) using a variety of methods. In [1(-1] Kotschick

and Lisca have al ready made use of the blowup formulas in combination with the wall-crossing

formulas. Their computations also involve for the first time the 4-dimensional dass. Their results

agree with ours up to diffenent eonventions. Our paper is partially motivated by and built on [K-L].

In particular we found there the correct formulation and the referenees for the blowup formulas in

the ease b+ = 1.

\Ve then go back to the wall-erossing formulas. Assuming the eonjeetllre from [E-G] about the

shape of 6f"N we are able to determine (again with a suitable Maple program) the first 5 leading

2



terms of O€'N and using an additional eonjeeture even the first 7 leading terms. Furthermore, again

using the conjecture l we determine O€,N on a rational mIed surface for d€,N :5 8. By explicitely

determining the corresponding 0eN we show that on a rational ruled surfaee the eonjeeture and aB

the formulas are correct fer aH walls ~ and aH N with N :5 40 and d~,N :5 8.

Now we compute the Donaldson invariants for rational ruled surfaces S by again combining

the wall-cr08sing formulas with the blowup formulas. We apply this algorithm to compute all the

invariants on S of degree at most 35. The result shows that the special chamber Co, where the

invariants corresponding to first ehern cl ass Cl with Cl. F = 1 vanish I is also special for aB other Cl.

We obtain that in the ehamber Co the Donaldson invariants can be expressed as a polynomial in the

linear form L p defined by Fand the quadratie form qs. This polynomial is independent of 5, and

there is a simple relationship between the polynomials for different Cl.

Finally we observe that by combining the results obtained so far with the blowup formulas, we

obtain an algorithm for eomputing aH the 50(3) and SU(2)-invariants for all rational surfaces 5 for

aH polarisations in a reasonably big part of the ample cone of 5. This ean be seen as a generalization

of the result of [K-L} that the Donaldson invariants of lF 2 and lF l x lF l are determined by the wall­

crossing formulas on some blowups.

The explieit eomputations of the wall-crossing formulas and the Donaldson invariants of rational

surfaces gives us a lot of empirical data about the shape of these invariants. We have therefore tried

to find some patterns in the results and so the paper also eontains a nnmber of eonjeetures and

questions. Several of these can already be motivated by the re<>ults of (K-L].

We would like to thank Dieter Kotschick for sending us the preprint [K-LL which was quite

important for our work, and also for some useful comments. Purthermore the second author would

like to thank S.A. Str~mme for a sampie Maple program for eomputations on Hilbert sehemes of

points.

2. BACKGROUND MATERIAL

In this paper let S be a rational surface over C. For such a surface the natural map from thc

group of divisors modulo rational equivalenee to H 2(S, Z) is an isomorphism. So, for ~ E H2 (5,7L.L

we will often write LJs(~) for the line bundle assoeiated to a divisor with c1ass ~.

For a polarization H of S we denote by M ~ (Cl, C2) the mod uli space of torsion-free sheaves E on

5 whieh are H-semistable (in the sense of Gieseker and Maruyama) of rank 2 with cdE) = Cl and

c2(E) = C2.

Notation 2.1. For a sheaf F on a scheme X and a divisor D let F(D) := F 0 LJx(D). Ir X is a

smooth variety of dimension n, we denote the cup produd of two elements a and ß in H* (X, 7L.) by

a . ß and the degree of a class a E H 2n (X, Z) by Ix a. For 0, ß E JI2(S, 71..) let (a . ß) := Is a . ß·
We write 0'2 for (a· a) and, for I E H 2 (5, 71..), we put (O','""{) := (0'. i), where i is the Poincare dual

of '""{. We denote by qs the quadratic form on }]2 (S, Z) ancl, for a class 1] E H2 (5, Q) by L'I the

eorresponding linear form on H2(S, Q).
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Convelltion 2.2. When we are considering surfaces Sand X with a morphism f : X -r S, that

is ei ther canon ical or eIear from the context, then for a cohomology eIass Q E I/'" (Y, Z) (or a !ine

bundle L on Y) we will very often also denote the pull-back via f by a (resp. L). (Very orten f
will be a sequence of blowups. In particular if X is a surface which is obtained by JID 2 by a number

of blowups, then we denote by H the pullback of the hyperplane class. Similarlyon PI x PI or a

variety obtained from PI X IF I by a number of blowups, we denote by Fand G the classes of the

fibres of the projections to the two factors.)

2.1. Walls and chambers. (see [Q1], [Q2], [Gö], [K-M] and [E-G].)

Definition 2.3. Let Cs be the ample cone in H 2 (S, IR). For ~ E H 2(S, Z) let

w€ := Cs n {x E H 2 (S, IR) I (x .~) = O}.

We shail eall W€ a wall of type (Cl, C2), and say that it is defi ned by ~ if the following conditions

are satisfied:

(1) ~ + Cl is divisible by 2 in N 5(S),

(2) cr - 4C2 $ ~2 < 0,

(3) there is a polarisation H with (H . €) = o.
In particular d€, N := (4C2 - cr + ~ 2) /4 is a nonnegative integer. An ampIe divisor H is said to lie

in the wall W if [H] EH'. If Dis a divisor with [D] = €, we will also say that D defines the wall W.

Achamber of type (Cl, C2) or simply achamber, is a eonnected component of the eomplement of

the union of all the walls of type (Cl, C2)' We will eall a wall W good, if D + Ks is not effective for

any divisor D defining the wall W. Ir (Cl, C2) are given, we call a pol arization L of S generic if it

does not lie on a wall of type (Cl, C2)'

On a rational surface S we will eall a divisor L good if (L . J(s) < 0, and we denote by CS,g the

real cone of a11 good ample divisors. We see that any wall IV intersecting CS,g is a good wall.

Let L_ and L+ be t.wo divisors on S. We denote by W(cl,c:l)(L_, L+) the set of aU € E H2(S, Z)

defining a wall of type (Cl, C2) and satisfying (€ . L_) < 0 < (~ . L+). \Ve notiee that for L_ and L+

good all the walls W€ defined by € E W( Cl,C:l) (L _,L+) are good.

2.2. The change of the Donaldson invariallts in ternlS of Hilbert schemes. In [1(0] the

Donaldson invariants have been introduced for 4-manifolds M with b+(M) =1. In (K-M] it has been

shown that in case b+(M) =1, b1 (M) =0 they depend only on the chamber of the period point of

the metric in the positive cone of H2(M, IR). We want to use conventions from algebraic geometry,

which differ by a sign from the uBual conventions for Donaldson invariants and furthermore by a

factor of apower of 2 from the conventions of [1<0].

N ota.t ion 2.4. Let S be a simply connected algebraic surface. wi th Pg (S) = O. Let N := 4C2 - cr - 3

be a nonnegative integer. We denote by AN(S) the set of polynomials of weight N on H 2 (S, Q) EB

Ho(S, Q), where we give weight 2-i to a class in H2i(S, Q). Let ':1,N'9 be the Donaldson polynomial

of degree N with respect to a generic Riemannian metric 9 associated to the principal SO(3)-bundle



P on S whose seeond Stiefel-\Vhitney dass W2(P) is the reduction of Cl mod 2 (in the conventions

of e.g. [F-S]). Then r;I,N,g is a linear map AN (5) --+ Q. Ir N is not congruent to -er - 3 modulo

4, then by definition i~ N 9 = O. If 9 is the Fubini-Studi metric assoeiated to generic ample divisor
I, ,

L on S we denote ib8 ,L := (_1)(c~+(cI·Ks))/2rS . We denote lf>S,L := L <,flS,L. We denote
cl,N cl,N,g CI N?:.O cI,N

by pt E Ho(S,71) the dass of a point. Sometimes we will eonsider the Donaldson invariants as

polynomials on H2(S, Q) by putting <I>:'~ r(O') := <P:'~(ptrO'N-2r) for 0' E H2(S, Q).
I, , 1,

If the modul i spaee M L (Cl I C2) fulfills certain properties (i n partiell lar there is a universal sheaf

U over 5 x MH (Cl, C2) L then for 0'1, ... O'r E H 2i (S, Q) we have

where v(O') = (C2(U) - ci(U)/4)/0' ([Mo], [Li]).)

We will use a result from [E-G] (also proved independently in [F-Q]) , We state it only for rational

surfaces. Note that there are some changes in notation.

Definition 2.5. Let ~ E H 2(S,71) be a dass defining a good wall of type (Cl I C2)' For N :=

4C2 - ci - 3 we denote dCN := (N + 3 + ~2)/4, e{,N := -(~ . (€ - J(s ))/2 + dCN + 1. Assurne now

that (Cl, C2) are fixed. Let

T{ := Hilbd(,N(SU5) = II Hilbn(S) x Hilbfn(S).
n+m;;;;d(,N

be the Hilbert seheme of d points on 2 disjoint copies of S. Let q : S xT{ --+ T~ and p : Sx T{ --+ T{

be the projections. Let V{ be t,he sheaf p. (0S(-€) EB CJs (-~ + f(s )) on S x T~. Let 2 1 (resp. Z2) be

the subscheme of S x Te which restricted to each componel1t S x Hilb" (5) x Hilbm (5) is the pullback

of the universal snbscheme Zn (S) (resp. Zm (S)) from the first and second (resp. first and third)

factor. Let 'Lz1 , Iz'J be the corresponding ideal shcaves and [Ztl and [Z2] thcir cohomology dasses.

For 0' E Hi(S,Q) let Ci:= ([Zd + [22])/0' E H4-i(T~,Q) Then for 0' = 0'1· ... · O'N_2rptr E AN(S)

(with aj E H 2 (5, Q)) we put,

where s(·) denotes the total Segre dass. We denote o{ := LN>O O{,N. \Ve will also denote for

Cl' E H2 (5,Q) by Ot,N,r(a):= O{,N(pt r a N
-

2r
).

Theorem 2.6. [E-GL [F-Q] Let S be (J rational surface. Let Cl E H 2 (5) 7l) and C2 E ;Z:;. Let H _ and

H+ be ample divisors on 5, such that all the walls defined by elements ofH!(Cl,C'J)(H_,H+) are good.

Then for all Q' E AN (5) we haue

<l>fJ+,N(O') -lf>~_,N(O') = L: (-1)e(,N6{(0').
eEH'{"1 '''::1) (lL,H+)
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2.3. Blowup formulas. We briefly recall the blowup formllias in the contcxt of algebraic surfaces.

In the case b+ (S) > 1, when the invariants da not depend on the chamber structu re, they have

been shown e.g. in [0], (L] and in the most general form in [F-S]. In the case b+(S) = 1 we

cite these results after [K-L]. By [T] the formulas of [F-S] also hold for S with b+(S) = 1, if the

chamber structure is properly taken irrto account. Let S be an algebraic surface with b+ = 1 and

let c : 5 --+ 5 be the blowup in a point. Let E E H 2 (S, /Z) be the class of the exceptional divisor.

Let Cl E JI2(S,71) and C2 E H 4 (5, 7l) and put N = 4C2 - CI - 3. Let C C es be achamber of type

(Cl, C2), let CE C Csbe achamber of type (Cl +E, C2), and let Co C Csbe achamber of type (Cl, C2)'

Following [Ko] we say that the chambers C and CE (resp. C and Co) are related chambers if c- (C) is

eontained in the closure CE (resp in Co).

Theorem 2.7. There are universal polynomials 5k (x) ami Bk (x) such that lor all related chambers

C and CE (resp, C and Co) as above, all k :::; N and all 0' E AN - k (5) we have

(2.7.1)

(2.7.2)

<t>s,Cg (EkO') = _<I>s,c E (Eko)
cI-E Ct+E

~~CO(Eko)

eJ>:;C (Sk (pt)O'),

<I>~;c (Bk (pt)O').

(Note the different sign convention). The Sk(X) and Bk(X) can be given in terms 0/ the coefficients

0101 the q-development 01 certain u-/unctions.

We refer to (2.7.1) as SO(3)-blowup formulas and to 2.7.2 as SU(2)-blowup formulas. We will

use that the Sk (x) and the Bk (x) are determ ined by reeursive relations: (aI) S2k (x) = 0 for all k,

(bI) 5t{x) = 1, 53 (x) = -x, S5(X) = x 2 + 2, S7(X) = _x3
- 6x, (a2) B 2k+dx) =°for all k, (b2)

Bo(x) = 1, B2 (x) = 0, B-1(x) = -2 and, in both cases, the recursive relation

t (~) (Uh+4-iUi - 4Uh+3-iUi+l + 6Uh+2-iU,+2 - 4Uh+l-,Ui+3 + Uh-iUi+4)
1=0

= -4t (~)(XUh+2-i Ui + XUh- iUi+2 - 2XUh+l-iU,+1 + Uh-iUi) ,
1=0

with either Ui = Sdx) or Uj = Bj(x) (see e.g. [F-S],[I(-L]).

2.4. The walls for rational surfaces. Now let S be a rational surface. We want to collect some

information about the set of walls in the ample cone Cs. The following is easy to see:

Renlark 2.8. (1) If S is a rational ruled su rface then es = Cs,9' i.e. all walls are good.

(2) If S is obtai ned from iIlJ 2 by a sequence of blow ups with exceptional divisors EI, .. ' , Er

then CS,g = Cs n {a(H - alEI - ... - arEr) la > 0, aj > 0, Li aj < 3}.

Lemma 2.9. For any pair (H _, H+) 0/ ample divisors on a mtional stJrjace 5 and all Cl E Pic(5)

and C2 E H2 (5, /Z) the set W(Cl ,CJ) (H_, H+) is finite.

Proof The set {tH_ + (l-t)H+ It E [0, I]) is a compact subset of Cs. Therefore by [F-M] corollary

1.6 it intersects only finitely many walls of type (Cl, C2) . 0
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We now give a list of aH walls for S :;:: llD 2 and S :;:: IIl'I X IIl'I which will be used. repeatedly in our

computations. \Ve denote by F :;:: H - E the dass of a fibre of I?2 --+ 1F1. We also denote by F the

fibre of the projection to the first factor of I?I x IF1 and by G the class of the fibre of the projection

to the second factor. The verifications are elementary.

ReUlark 2.10.

Wt~:!(F,H - oE)

W~~C:!(F, H - oE)

wt~c:! (F, H - oE)

W~,~:!(F, H - oE)

vv.I"I X l"l(F F + oG)
o,C:! '

wP1X l"t(F F + oG)F,c:! '
wP,XPt(F F + oG)e,C:! '

WPIXP t (F F + oG)F+G,c:! '

{2aH - 2bE Ib > a > ob, b2
- a2 ~ C2},

{2aH - (2b - l)E Ib> a > o(b - 1/2), b(b -1) - a2 ~ cd,

{(2a - I)H - 2bE Ib;::: a > ob + 1/2, b2- a(a - 1) ~ C2},

{(2a - 1)1I - (2b - l)E Ib> a > o(b - 1/2) + 1/2, b(b -1) - a(a -1) ~ C2},

{2aF - 2bG I0 < b < ao, 2ab ~ C2},

{(2a - I)F - 2bG I0 < b < (a - 1/2)0, (2a - l)b ~ C2},

{2aF - (2b - 1)G I0 < b < ao + 1/2, (2b - 1)a ~ C2},

{(2a-1)F- (2b-1)G 10< b< (a -1/2)0+ 1/2,2ab- a - b ~ C2}'

2.5. Botts forillula. Now we recaIl the Bott residue formula(see e.g. [B], [A-B], [E-S2], [C-L1], [C-L2]).

Let X be a smooth projective variety of dimension n with an algebraic action of the multiplicative

grollp C'" such that the fixpoint set F is finite. Differentiation of the action induces a global vector

field ~ E HO(X, Tx), and F is precisely the zero locus of~. Hence the J(oszul complex on the map

~v : Ox ---+ Ox is a locally free resolution of Op. For i ;::: 0 denote by Bi the cokernel of the Koszul

map 011 --+ O~. Tt is weil known that Hi (X, O~) :;:: 0 for i :f. j. So there are natural exact

sequences for all i:

In particular there are natural maps qi =ri-l 0 ... 0 ro : HD(F, (JF) ---+ Hi(X, Bd.

D efilli tion 2.11. Let f : F ---+ C be a funetion and c E H i (X, O~ ). We say that f represents c if

qi+t{J) = 0 and qi(J) =pi(C).

If ft represents alE H i (X, O~) and 12 represents a2 E Hi (X I oix ), then fl12 represents al . a2 E

Hi+i(X,Oiji).

The following result enables us to compllte the degree of polynomials of weight in the ehern

dasses of equivariant vector bundles on X. Let E be an equ ivari ant vector bu ndle of rank r on X.

At each fixpoint :z: E F the fibre E(x) splits as a direct sum of one-dimensional representations of

tC"'. Let TI( E, :z:), ... Tr (E , x) denote thc corresponcl ing weigh ts, and for alt k ;::: 0 let (J"k (E, :z:) E Z be

the k- th elementary symmetrie function in the Ti (& , x).

Theorenl 2.12. (1) The k-th ehern class edE) E f{k(X, n~) 01 E can be represented by the

Iunction x 1--)0 (J"k(E, x).

(2) The composition JIO(OF) ---+ Hn(x,Ox)~C maps I: F --+ C to ~~Epf(:Z:)/(J"n(Tx,x).
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3. ApPLICATION OF THE BOTT RESIDUE FORMULA

In this section we want to see how the Bott residue formula ean be used to eompute O{,N for a

class ~ defining a wall on a rational surfaee X. Let r = e x C be an algebraie 2-torus and let A

and J..l be two independent primitive eharacters of r. We identify the representation ring of r with

the ring of Laurent polynomials in >. and J..l. For a variety Y with an action of r we will denote by

Fy the set of fixpoints.

3.1. Actions of a torus on rational surfaees. We are going to define actions with finitely

many fixpoints of r on X = 1?2, X = PI X PI and inductively on surfaces X = X r , where X o = W2

or X 0 = JID I X IID 1 and Xi is the blowup of a fixpoint of the r -action on Xi -1' We also define a lift of

the action of r to all line bundles on X. These actions will have the following properties:

(1) Each fixpoint p E Fx has an invariant neighbourhood Ap isomorphie to A2 = spec([k[x, yD
on which r acts by t . x = apx, t . y = ßpY for two independent characters a p and ßp of r,
and the Ap cover X.

(2) For each line bundle L E Pic(X) the restriction LIA
p

has a nowhere vanishing seetion SL,p,

with t . SL,p = 'YL,pSL,p for /L,p a character of r.

(a) The case O/l?2. Let To, Tb T2 be homogeneous coordinates on l?2. Let r act on IID 2 by t ·To =To,

t .Tl = ATI , t· T2 = JlT2. The act.ion of r has 3 fixpoints Po := (1:0:0), Pi := (0:1:0) and P2 := (0:0:1).

The sets A pi := D(7i) (i.e. the locus where Ti t 0) are affine invariant neighbourhoods. In

appropriate coordinates x, y on Apo (resp. AP1,Ap~), the induced action of r is t . (Xl y) = (AX, IlY)

(resp. t· (xly) = (A-1X,J..lA-1y), t· (x,y) = (J..l-1X,AJ..l-ly)). FlIrthermore on Ap; the monomial rr
defines a trivializing section of Or~(n) with t . TQ = Tg, t . Tin = >.n~, t . Tf = Jlnrr.

(b) The case 01 IIDl X IID 1. Let X o,Xl and Yo, Y1 be homogeneous coordinates on the two factors.

Let r aet on IF1 x UD 1 by t· X o =X o, t· Xl =AX1, t· Yo = Yo and t· Y1 = J..lYl. This action has

4 fixpoints Pij := 'V(X1-d n V(Y1-j) (i.e. the 10clIs where X 1-i = Y1-j = 0), which have affine

neightbourhoods APii = D(X;) n D(Yj). ]n the appropriate coordinates x, Y on APii the action is

given by t· (x, y) = (>.1-2i X ,J..l 1- 2j y) (i and j E {Oll}). Finally a trivializing seetion of O(n, m) on

A .. is x~y.m with t . (x~y.m) = >.in,dmx~y·m.
p') 1 I 1 J r t J

(c) The blowup. Now assurne that Y is a surface obtained from W1 x W1 or W2 by successively

blowing up fixpoints of the action of r, and assUlnc tImt. the action is extended to Y, so that it

still has finitely many fixpoints, and that the assumptions (1) and (2) above are satisfied. Let

p E Fy be a fixpoint. Let Ap be an affine neighbourhood of p with coordinates x, y on which r
acts by t . (x, y) = (O'x, ßy) for two independent eh aracters Q', ß of r. Let X be the blowup of Y

in p, and denote by E the exceptional divisor and by A the blow up of Ap at p. We can idelltify

E = W( (x, y)vL and t,he induced action of r on E has 2 fixpoints qo := (1 :0) and q1 := (0:1), which are

the fixpoints of r on X over p. There are affine neighbourhoods Aqo = An D (x) and A q1 = An D (y)
of qo ancl ql in Xl with coordinates (x, y/x) and (y, x/y). The action t . (x, y/x) = (ax, ßo:- 1y/x),

t . (y, x / y) = (ßy, aß- 1x / y) extends the action of r on Y \ {p} to X. Let L be a linebundle on Y

with a trivializing seetion SL,q Ilear each q E Fy with t . SL,q = /L,PiSL,q' Then L 0 O(kE) has for

B



i#-O still SL,q as a trivializing section near q (with q #- p), and near qo (resp. qI) such a section is

So = SL,p lZI y-k (resp. 81 = SL,p ® x-k ) with t· So = 'YL,pß- k So (resp. t· SI = 'YL,pO'-k SI).

3.2. The induced fletion on the Hilbert scheule. We assllme that S is a surface obtained by

blowing up JID 2 or IF I X IF 1 repeatedly, with an action of r as above. We fix a positive integer d and

want to study the induced action of r on the Hilbert scheme Hilbd(S U S) and on certain "standard

bundles" on Hilbd(S U S), which appear in the wall-crossing formula 2.5. The induced action on

Hilbd(S U S) is given by t . (Y, Z) = (t . Y, t . Z), where for a subscheme Z C S we denote by t . Z the

subscheme with ideal t . I z /s := {t . f I f E I z/ s }.

Now let Fs := {PI, ... ,Pm} be the set of fixpoint.s on 8, and, far all i, let Ai be the invariant

affine neighbourhood of Pi with coordinates Xi, Yi, such that t . Xi = O'iXi, t . Yi = ßiYi for two

independent characters O'i and ßi. As the characters O'i and ßi are independent, it is easy to see that

a subscheme Z E Bilb" (S) is fixed by the induced action of r if and on Iy if supp(Z) C Fsand if, for

all i , denoting by Zi the part of Z with support Pi, all the ideals IZ;fA; are generated by monomials

in Xi and Yj. We denote by FHi1bd(SUS) {,he fixpoints on Hilbd(S U S).

Definition 3.1. A partition of a nonnegative integer n is a sequence 0' = (00, ... or) with 0'0 ~

... ~ Or-l ~ Or = 0 and L: Oj = n. We identify (00,'" ar ) and (00,'" ar , 0). Let P2m (d) be

the set of sequences (Pl , ... ,Pm, Ql, ... Qm) where the Pi and Qi are all partitions of numbers

ni and mj with L:(nj + md = d. We see thaI. P2m(d) and FHi1bd(SUS) are in one-one correspon­

dence, with (Pl , ... , Pm, Q11 ... Qm) corresponding 1.0 (Yl U ... U Ym, ZI U ... U Zm), where for

Pi = (UO,'" I Ur), Qi = (boI ' •• ,br) the subschemes Yi alld Zi are su pported at Pi and defined by

I - (ao . al ß a, ß+l) d I _ (bo . b1 r b.. r+l)
Vi/Ai - Yi ,XI Yi ," ,XiYi , X an Zi/Ai - Yj l X'Yi , ... Xi Yi ,x .

3.3. The action on sOlne standard bundles. \Ve now want to determine the action of r on

some standard bundles on Hilbd(SUS) which appear in the wall-crossing formula 2.5. Let ~ define a

good wall. \Ve denote by V the vector bundle ()5 (-0 $ 0 S(-€ + f{5). Then by the resuIts of (E-G]

and (F-Q] Ext~(Izl' IZ:J CO p. V) is a locally free sheaf on Hilbd(SU S), which is compatibel with base

change, i.e. i ts fi bre over (Y, Z) E Hilbd (S US) is Ext1 (.1y, I Z lZI \I). Furthermore the r-li nearisation

of ()S (€) from 3.1 determines in a canonical way ar-Iinearisation of Ext~(I2 : , I2:J ® p. V). It also

induces an action of r on fil (S, \I). Now let (Y, Z) E FUi1bd(SUS) be a point corresponding to

(PI, ... I Pm, Ql, ... Qm). We will determine the action on the fibre Ext l (Iy I Iz lZI V). We denote

by V(pd the fibre of \I over the fixpoint Pi considered as a representation of r.

Lemlna 3.2. For partitions P := (ao, ... , ur), Q := (bo, ... ,br) we denole

E () '""' (aj~lxi-i-lybi-l-,-1 + bj~l Xi_iy,_ai_l)
P,Q x, y:= L..J L..J L..J

l:5i$i:5r ß=aj ,=bj

9



Then in the representation ring 0/ r we have the identities
m

(3.2.1) THilbd (SuS) (Y, Z) L(Ep;,p; (O'i, ßi) + EQ;,Q;(O'i, ßi)),
i=O

(3.2.2)
m

Ext 1 {1:1"Iz0V) = H 1(S,V)+ LV(pd·Epi,Q;(O'i,ßd).
i=O

Proof (3.2.1) follows directly from [E-Sl].

Claim: In the representation ring of r we have the identity

Ext 1(Il' ,Iz0V) = H 1 (SJ V)+Ho(S, Ext 1(Il'J I z)<9V)+Ho(S, Oz0V)-Ho(S, 1-lom(Ol', Oz)0V).

Pro%/ the Claim: As ~ defines a good wall, we have H 2 (S,1-lom(Iy , I z )0V) = HO (S,1-lom(Iz, I l' )0

VV (Ks)) = 0 and IJO(S, 1-lom('Lz , Iv) 0 V) = O. Therefore the low-term exact sequence of the local

to global spectral sequence HP(Extq(Iy,Iz 0 V)) => ExtP+q(Ly ,LZ 0 V) gives in the representation

ring of r

We have an exact sequence

So, tensoring by V, taking the long exact sequence of cohomology anel using the vanishing of

HO (1l om(Iy, I z) <9 V) and H 1(1-lom (Oy ,0 z) <9 V), we get in the representation ring of r the

identity

H 1('1iom(lv,lz)@V) = H 1(S,Iz 0 V) - HO(1l0m(Oy,Oz) 0 V).

Finally we use the sequence 0 -----+ I z <9 V -----+ V -----+ Oz <9 V -----+ 0 and the vanishing of 1I0(S, V)

and H 1 (S, Oz <9 V) to replace H 1 (S, I z (9 V) by HO(S, Oz €I V) + H 1 (SJ V). This shows the claim.

We denote by :F the virtual ['-sheaf Ext 1(Iy, Iz) + 0 z - 'Horn(Oy, 0 z). We have to show that

HO(S,:F <9 V) = 2:;:0 V(Pi) . Ep;,Q; (ai, ßi)' Ir we denote by:Fi the part of :F with support Pi, then

HO (S,:F 0 V) =2:;:1 HO(S,:Fi 0 V). We can therefore assume that Stipp(Y) =Stipp(Z) is one fix­

point p. Let x and y be coordinates near pas before and R := C[x, V]. Let J := (yao , xya 1
, ••• 1 xr +1

)

(resp. 1:= (ybo , xyb1J • •• J x r+1)) be the ideal of Y (resp. Z). We denote by F the virtual R-r­

module corresponding to :F. In the representation ring of r we have

So we finally have to show that in the representation ring off we have F = E(ao, ... ,a,.),(bo,,,.b,.)(A , J-L).

The exact sequences

o---+ I ---+ HomR(J, I) ---+ 1-lorn(RfJ, Hf 1) ---+ 0

o---+ I -----+ R ---+ R / I -----+ 0

give F = Extk(JJ I) - HomR (J, 1) + R in the representation ring of r.
Following [E-S 1] we denote by R(Cl', ß] the ring R wi th r -operation defined by t (xivi) := xi - a vi -ß.

We put Ao := EB;=o R[i, (li], Bo := EBj=o R[j, bjL Al := EB;=l R[i, (li-I], BI := EBj=l R[j, aj-d·

10



Then we have r-eqllivariant free resolutions 0~ Al ~ A o ---+ J ~ 0 and 0~ BI ~ Ba ~

J ----+ O. So the total complex

A~ 0B1~Ai0 BI EBA~ 0 Bo~ Ai 0 Ba

associated LO the double complex HomR(A., B.) complites the Extk(J, J), hence F = R + Ai <9

BI + A6' 0 Ba - A6' <9 B1 - Ai <9 Ba.

Again following [E-Sl] we write ni := (i, ai-I), di := (i , ad, mj := (j, bj-tl and ej := (j, bj ).

Then a calculation analogous to [E-Sl] shows

Putting

Ki,j R[mj - di-d - R[mj - nd - R[cj - di-d + R[ej - nd,
Li,j R[mi - dj ] - R[mi - nj] - R[ei-l - dj ] + R[ei-l - nj],

a calculation analogous to [E-Sl] gives

a;-l bj_l

F = L (J{i,j + Li,j), J(iJ = L >.i- j -l,l;-t- 6
-

1 and Li,j = L J\j-iJ-l,-a i - 1 ,

l::5i:$j:$r 6=a; 6=bj

and the result folIows. 0

We want to use the easy fact that representation of cohomology classes is compatible with equiv­

ariant pullback: Let X aod Y be smooth projective varieties with an action of C'" with finitely many

fixpoints and let J1 : X -t Y be an equivariant surjective morphism. Then J-l induces a morphism

J-lIFx : Fx ----+ Fy.

LemolR 3.3. f E OPy represents a cohomology dass c E Hi (Y, n{,) if (md only if (J-llpx)· f repre­

sents 'l- c.

Lellllua 3.4. Let Q E Hk(S, Z) be a dass rep1'esented by f Fs ----+ C. Then Ci (see 2.5) on

Hilbd(S U S) is represented by

m

J: P2m (d) ----+ C, ((Pd, (Qd) ~ ll(ni + mdf(pd,
i=l

where Pi E P(nd and Qi E P(md·

Proof. Let

Hilbd- 1,d(S U S) := {(Zd-Il Zd) E Hilbd
-

I (S U S) X Hilbd(S U S) IZd-l C Zd}

with the reduced induced structure. Then Hilbd- 1,d(S U S) is smooth and wc have a diagram

Hilbd(S U S)~Hilbd-l,d(S U S)~(S u S) X Hilbd
-

I (S U S)~S X Hilbd
-

1 (S U S)

Here t/J is the blowup along the universal family Zd(S U S) [E] and '1 is induced by the identity map

on Sand Hilbd(SU S). It is easy to see from thc definitions that 'P.a: = t/J. 1;t (pi a + P2ö), where PI

11



and P2 are the projections of S x Hilbd
-

1 (SU S) onto its two factors and a is the dass corresponding

to ;; if we replace d by d - 1. It is easy to see that Y', 1j; and 1] are equivariant for the natural lifts of

the action of r on S, furthermore the fixpoint sets FHilbd (su S), FHi1bd-l ,d (SUS) and FS xHilbd - 1 (su S)

are aB finite. In fact we can identify

where for partitions P = (al, ... , ar ), Q = (bi,'" br ) we denote by P ;::: Q that aj ;::: bi for aH i.

Obviously FSXHilbd-l(SUS) =Fs X P2m (d-l) and with this identification Y' and TJo7/J are the obvious

maps. Now, applying lemma 3.3 to cp and 7] 0 1/J, the result follows by easy induction. 0

We ean now put our rcsults together:

Notation 3.5. Fix a one-parameter subgroup T of r. Let € define a good wall on S. For any line

bundle L on S denote by Wi (L) the weight of the induced action of T on the fibre L (pd. Let LI and

L 2 be two line bundles with (LI' L 2 ) = pt (e.g. if S is a blow IIp of P2 then we take LI = L 2 =H).

Furthermore denote by w( xd, w(yd the weight of the action of T on Xi, Yi. We denote for partitions

P = (ao, .. .ar ) and Q = (bo , ... br ) of numbers n and m

Fp,Q(u,v,t) .-

aj_l-l bj-l-I

II II (( i - j - 1)u + (bi -1 - S - 1) v) II ((j - i) u + (8 - ai -I)u)
l~i~j~r ~=aj I=bj

aj_l-1

II II (1 + z ((i - j - l) tl + (bi - 1 - S - 1)v + t))
l:$i$j$r 8=aj

bj_l-l

II (1 + z ((j - i) u + (s - ai -1 ) v + t))
8=bj

By lemma 3.2, when putting the correct weights Fp,Q(u, v) will represent the top Chern dass of

Hilbd (S U S) and Fp,Q( tl, v, t) the total Chern dass of Ext~(Izl'Iz~ 0 p. V).

TheoreIll 3.6. Let 0'1, ... , O'N-2r E H 2(S,71). 1fT is sufficiently general, then

SdO'l0'2 ... CtN_2rpt
r

) =CoeJJ:.'Jd ( L
((Pi),(Qi))EP'Jm (ri)

(

N-2r m mg ((e, "k)/2 +~ w'("k)(n, + m,)z)( - 1/4 +~ w,(LI!w, (L2)(n, + m,)z2)' .

(TI (F (P"P;) (w(x,), w(y,) )Fq"q, (w(x,), w(y,ll .

Fp"q, (w(x;), w(y;), -w,(O) Fp"q, (w(x,), w(y,), -w;(O) + W,(f{S»)) -) .

Proof. The Chern classes of V{ = Ext~ (Iz 1 , Iz'J 0 p* V) are the same as those of the virtual bundle

V{ - H 1 (S, V) 0 CJT (. Therefore the result just follows by putting together lemma 3.2, lemma 3.4

12



and applying the Bott residue formula 2.12. Notiee that T is sufficiently general if none of the

denominators vanish. D

This formula ean be implemented as a Maple program.

4. THE DONALDsoN INVARIANTS OF THE PROJECTIVE PLANE

In this section we want to eompute the SU (2)- and thc SO(3)-invariants of the projective plane

TIJ'2 by first eomputing on the blowup IF2 and then lIsing the blowup formulas.

In order to get started we lleed the following easy result of [Q2]:

LemnlR 4.1. Let S be 0 rational ruled surface, F the dass of a fibre and E the dass of a seetion.

Fix (Cl,C2) E H 2 (S,Z) x H4(S,Z) with (Cl' F) = I. Then, for oll € > 0 which are sufficiently smalI,

we haue MF+tE (Cl, C2) = 0. In particular we get 101' N := 4C2 - cI - 3 that 4>~'FJtE = o.
1,

\Ve will denote by E the exceptional divisor on llD2 alld by H the (pullback of) the hyperplane

dass on 1f1'2.

4.1. The SU (2 )-case. We first consicler the SO (3)- invari an1,s on IPi 2 wi th respect 1,0 ehern dasses

(E, C2) anel put N := 4C2 - 3. For 0 < € « 1 the polarisation L t := 11 - cE of llP 2 lies in achamber

of type (E, C2) which is related to the polarisation H of IF 2 . Thus (2.7.1) gives

<I>r~,1J (H N- 2r ptr ) =<pr~,L~ (SiIN-2rptr).
O,N E,N+l

Oll the other hand we know by lemma 4.1 that <I>~~~~1~ = 0, for L l _( := H - (1- c)E. Thus we get

cI>~,~NH (H N- 2r ptr ) = 2:: (-ltcN+1 0E,N+l (EfI N- 2r ptr ),

{EWE·~ (H-E,//)
,C:l

where ~V~~c~(H - E, H) is known by remark 2.10. Now we compute t,he O€'N+l (EHN -2rpt r ) with

a maple program using thc Bott residlle theorem (i.e. theorem 3.6). Par N := 4i + 1 we denotc

2N

AN := E<I>~,~;;J{IIN-2jptj)hN-2jpi.

j;;;;;O

Then our resulL is:
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A = 2780195996868h33 +293334321858 h31 + 07261095005 p:lh:l
9 + 67539891519 p

J
h:l

7 + 37460404303 p4h:l~ +
33 P 2 16 64

1455758501 p~h:lJ + 258640401 p 05 h:l 1 + 14239101477 p7hl~ + 1427'1421501 p S h l7 + 7420640919 p~hll'i + 7179481275 eO h I3 +
16 16 4096 16384 32768 131072

10830752675 pll h Il 218792349 pl:l h \I 8125524651 P IJ h 7 34310453891 pI4 hl'i 561608698989 pll'i h J 3135392459541 pi II h
1048516 4194304 U 94304 16111216 268435456 1073741824'

A37 = 1253558847090600h37 + 114049802084088ph35 + 11151310348527p2 h33 + 235605343~119 pJ h
JI +

4330241481231 p 4 h:l\l + 136302640305pl'ih:l7 + 19010805303p6 h:ll\ + 5969251539p7 h:l J + 560820990153p8 h:l 1 +
32 8 8 16 8192

120608801397 p9 h 19 + 227818311585 plOh 17 + 108448319625 pli h llS + 3M576939595 pl:lh lJ + 30600598425 plJh ll

8192 05536 131072 2097152 1048576
24269489295 pH h 9 128245327215 pll'ih 7 3958008534873 p I6 hl'i 3928400321367 p17 h 3 43427017514031 plSh

8388608 16717216 536810912 536810912 4294961296'

A 41 =739328941273642584h41 + 59025071651407086ph39 + 10043994491~91141 p:lh
J7 + 36576097079

8
34141 pJhJl'i +

1431815545315851 p4 h JJ + 605936823128685 pl'ihJI + 219056393051655 pllh:l9 + 141081414g74709 p7 h :l7 +
32 128 512 2048

792180761111247 plSh:ll'i + 50186721051147 p~h:lJ + 31120541142561 plOh:l 1 + 3162\)175641351 pllhl~ + 28182330195381 pl:lh17 +
8192 32768 131072 524288 2097152

24970918823121 e iJ h IlS + 20134.588411731 eH h IJ + 108291168897921 P1l'i h 11 _ 9966981184020 eil! h 9 63772382356485 p17 h 7
8388608 33554432 134217728 536870912 2141483648

2301091864571187 pU h l'i 891115248823257 pi ~ h J 4881669lle1801723 e:lOh
8589934592 34359138368 137438953412

A.oI5 = 554 I 942952946798799&4 h45 +39362965900726633056ph43 + 2959973227900487391 p2 h41 +
.0112190595509415927 pJ h 3~ + 321971149339669671 p4 h J7 + 29333848336377675 plS h Jl'i + 45985006658693145 pli h JJ +

2 16 16 256
914650685.01402795 p7 h J1 + 9002198684193561 pa h:l';l + 285870961148823 p~ h:l7 + 2602166222135403 piO h:ll'i +

512 4096 1024 65536
8.014639104181119 plI h:l J + 1247.'128861118057 pl:l h:l l + 25290884063182.5 plJ h I9 + 8.55800427325917 pH h I7 +

131072 1048576 10411576 16111210
35611090114455699 pll'ihll'i + 532554096813723 pIllhl.!l + 28716&35828749 p17 h" 398090966021613 pll'ih~

335g4 432 268435.01.56 134 21 7728 - 4294967296 -
983201250012705 P 19 h 7 6735895639287969 p:lO h l'i 51089630811025563 p:ll h 3 1110.523027325938473 p:l:l h

8589934592 68719416736 5497.558131188 8196093022208

A 49 =515844680321852815028832h49 +32961783591325975299120ph47 + 2217961739175425919036 p2 h45 +
3151338185836116626003 p.!lh 40 .!l + 94814.'i.!S1.'i.!S0640933921 p40 h 401 + 31816232118898211115 pl'i h.!l9 + 6452120077423111605 p6 h 37 +

2 8 4 8
37652822180911101935 p7 h.!ll'i + 1477.'131861110819915 pli h.!lJ + 313794615563382465 p~ h 31 + 1454201386643612111 plOh:l~+

512 20411 4096 16384
148925406295325835 p l1 h:l7 + 85668471069217551 pl:lh:ll\ + 13954513249092609 plJh:l J + 10148990043310311 pHh:l1 +

131072 5242$8 524288 2097152
31811088804006807 pilS h I~ + 25711943256475155 e6hI7 + 10168014410124383 pl7 h lI'i + 1042.540335021723 pU h iJ +

33554432 134211728 268.ol35456 1073141824
44887.013637561879 pi ~ h 11 1.01409338464147941 p:lO h';l 30196613342204865 p:lI h 7 198302485810791933 pn h l'i

8589934592 34359738368 68719476736 54915.5813888

5911762450029857199 p:lJ h 3 31891120592767324251 p:l4 h
11592186044416 70368144177664

RCluark 4.3. Note timt the coeffieients of the monomial hN -2j pi or AN are not well-defined ror

j > (N - 5)/4 because they do not lie in the stable range. \Ve would like to thank Dieter Kotschick

for pointing this out. Olle might however view the above rormulas as adefinition of these addititonal

terms. One also sees that many of the invariants out of the stable range are negative whereas all

those inside the stable range are positive (this was also pointed out to us by Dieter Kotschick).

4.2. Thc SO(3)-casc. We consider first the SOU~)-invariant.son I?2 with respect to ehern classes

(JI, C2), and we put N := 4C2 - 4. For 0 < E « 1 the polarisation L( := H - EE of F2 lies III a

chamber of type (JI, C2) related to the polarisation H of F 2. Thus (2.7.2) giv~s

~~'f: (fI N - 2r ptr) = ept~,~< (lIN-2rptr).

Putting L 1-(:= H - (I - E)E we obtain <I>~:l,Ll-·(ftN-2rptr)=O. Thus we get

and, using lemma 2.10, we can again carry out the computation with Botts formula. For N := 4i

we denote
2i

BN := 22i L <1J~:l,H (jjN-2jpti)hN-2ipi.

j=O



Then we obtain:

Theorenl 4.4. The SO(3)-Donaldson invarianls 0/ Ylz are
Bo =1 , B4 =3 h4 + 5 h2p + 19 p2, B" /8 =29 h8 + 19 hep + 17 h4p2 + 23 h2p3 +85 p4,

B1'J = 69525 h 12 + 26907 hlOp + 12853h8 p'J + 7803h6p3 +6357 h4p4 + 8155h2p.5 + 29557 p6,

B 16 /8 =6231285 h 16 + 1659915h14 p + 519777 h1'Jp'J + 194439h10 p3 + 88701 h8p4 + 51027 h 6 p5 +39753h4p6 +

49519 h'J p7 + 176837 p8,

B20 =68081556995h20 + 13571675125h18 p + 3084569555h l6 p2 +808382629h14 p3 + 247407779h1'J p4 +
89811541 h 10 p.5 +39553139h8 p6 + 21987589h6p7 + 16652099 h4p8 + 20329653h2p9 + 71741715 p lo,

B24 /8 = 19355926872345h24 +3046788353175h'J'J p + 535206161485h20 p2 + 105824308635h18 p3 +
23774344785h1e p4 + 6132120911h I4 p.5 + 183833296Sh 12 p6 + 651103923h 10 p7 + 279395017h8 p8 + 151590087h6p9 +

112496445 h4plO + 135266955h2pli + 472659585 p 12,

B'J8 = 536625215902182969h28 + 69259301021976999h26 p + 9817859613586809h24 p2 + 1538955926660199h'J'J p3 +
268722697637049h'J° p4 + 52689438785319h I8 p.5 + 11702994789369hJOp6 + 29743'10336103h14 p7 +
875889126201 h 12 p8 + 304140743847h 10 p9 + 127923966585h8p 10 +68135251815h6p ll + 49776298425h4p l'J +
59127015975h2p l3 + 204876497145 p I4.

B3'J /8 =3324657774881 76686045 h32 +36176961518799287203 h30 P +4270943660527526777 h28 p2 +
550013108311246927 h 'J6 p3 + 77722220365607813 h'J4 p4 + 12129004922528395 h 'J'J p.5 + 2104879834580993 h'JO p6 +

4092942505<14727h 18 p7 + 899346579S0957h l6 p8 + 22556396083123h14 p9 + 6542216760905h12 p 10 +
223517285033Sh 10pil + 925169690645h8 p1'J + 485534741275 h6p l3 + 350230091345h4pl4 + 41183393309S h2p l.5 +

1416634092797p 16,

B36 =17982292064097834276691197 h36 + 1685376850354867108198203h34 P + 169728914674713290425549h32 p'J +
18446964561578451602667 h30 p3 + 2174127485943121961373h28 p4 + 279319741333450241435h26 p.5 +

39339602087475090285 h24 pe + 6111138005878747467 h 22 P7 + 1054025359144892989 h20 p8 +

203321142108471291 h 1"p9 + 44233113780975117h 16 p 10 + 10964566444466603h14 p ll + 3139014782527197 h l2 p l2 +
1058019835991643 h 10 pl3 + 432158763674797 h8 P14 + 22404277859S923h6 pi,'; + 159901382125437h4pl6 +
186411458197691 h'J p l7 + 637107121682253 pI8,

B40/8 =199838315931508302S8093037499 h40 + 164069853203241721-1980201941 h38 P+
143617787626796457582947271 h36 p2 + 13451663520190902994423761 h34 p3 + 1353428584063925323593987 h3'J p4 +
146907352128976242766365 h30 p.5 + 17282999997688436388975 h'J8 p6 + 2214864601846913417145h'J6 p7 +

310874334747308389131 h 24 p8 + 48070219333713236901 h 'J2 p9 +82,11 254396581767639 h 'JO pi0 +
1577751227160324321 h 18 pli +340134212696649171 h l6 p12 +83440287229631085 h l4 pl3 +

23620292992955391 h l2 p14 + 7869891016663881 h10plS +3178622918644059h8 p 16 + 1630875748081269h6p l7 +

1153440155417319h4p18 + 1334613223327473h'J pl9 + 4535236702668195 p20,

B44 /8 =226901192268100530686926956861797 h44 + 16542462134525153318253326085835h42 p+

1277706977403778580365852666661 h40 p2 + 104862798979925329727378003659 h38 p3 +

9174416297780080293761973989 h36 p4 + 858689743856030000767365835 h34 ps +
86310585758<169215596920485 h32 pO + 9355633875773319246298315 h30P7 + 1098557533992391977544805 h 'J8 p8 +

140418552503311458801355 h'J6 p9 + 19640467303990766625317 h 24 plO +3023185118099492260555h22 p ll +
515310612119604105701 h'J0 p I2 + 97958161753205469659h 18 pl3 + 20943663715791 766949h 16 p l4 +
5090445779293122763 h 14 p 1.5 + 1426864216020459365h I 'J P16 + 470672723850968779h I0pI 7 +
188268529044707621 h8pl8 + 95733138877112011 h6 pl9 + 67173305015551205 h4p'Jo + 77210866621686475 h2p21 +

261019726029655205 p'J'J,

8 48 /64 = -tQ 162352446367 I 616144253869033873677 h48 + 26294009028509419866433950400817907ph46 +

1814139310232228402229320933713849 p'Jh44 + 132233743700306798807714195145903p3h42 +

102105021~196186665S190088128661p4h40 +837650587235973991054920612155p6 h38 +

73245138148540706205679224225p6h36 + 6850202117661264825075213975p7h34 +

687815006512629065815415005 p8h32 +74447573563889724907246275 p9h30 +8724562938113746968261705 plO h28 +
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1112238016349638764497855 pli h26 + 155030522200663787180517p 12 h'J.4 + 23757432754397656762251 pl3 h'J.'J. +
4027259666817871766449 p14 h'J.o + 760537452815695217703 pIS h III + 161380994483655259053p 16 h 16 +
38900268404198860691 pl1 h14 + 10809116358008226777p 18h12 + 3534337177551658959p 19 h lo +

1401766305125084725p20 h8 + 707191549935960795 p'J.I h6 +492754565374149825 p22 h4 +563040363143655095 p'J.3 h'J. +
1894476461608956285 p24.

Conjecture 4.5. Ji'br all Tl there is a nonnegative integer l(n) such thclt B4n /21(n) is a polynomial

in hand p all of whose coefficients are odd positive integers.

Renuu'k 4.6. Ba to B16 were already computed in [K-L] also l1sing blowup and wall-crossing for­

mulas, showing that TIJ'2 is not of simple type. Apart from slightly different conventions their results

agree wi th ours. Their resu1ts and the computations of the SU (2) invari ants by various other authora

have been quite useful to check the correctness of our programs - and thus of the computations in

section 3 - in earlier stages of our work. The conjecture above could already have been made on the

basis of their result.

5. WALL-CROSSING FORMULAS

In our paper [E-G] we formulated a conjeeturc about the shape of the wall-crossing formula,

compatible with the conjecture of Kotschick and Morgan [K-MJ. Here we state a slightly strenger

form of the conjecture which is also supported by the computations in (E-G].

Conjecture 5.1. In the polynomial ring on H 2(S, Q) we have

6 - ( 4)-r~ (N - 2r)! Q (N I . y2)LN-2r-2d+2k d-k
{,N,r- - ~(N-27'-2d+2k)!(d-k)! k ,C,I, \5 €/2 qs,

where QdN, d, r, ]{~) is a polynomial of degree k in N, cl, 1", f{~, which is independent of S and~.

We now will show, that, assuming the conjecture, we can compute several of the Qk(N, d, r, f{~).

This camputation will also give acheck af the conjecture in many specific cases.

For all i 2: 0 we put

.( d "2) ._ (-2d + 2N + 2K
2

- 24r + 13i 3i) ('>N-288') (-2d + 2N + 2J(2 - 24r + 7t3i)
PI N, ,r, 1\ .- . + a 7 • 2 .

1 t-

Proposition 5.2. 1f conjecture 5.1 is tTue, then f07' i = 0,1 , 2,3 , 4 we can write Q;(N, d, T, /(2) =
P;(N, d, T, ](2) +~ (N, d l T, f{2), where ~(N, d, r, J(2) = 0 for i < 2 and

R 2 (N, d, T, J(2) = ~,

Ra(N, d, r , j(2) =: -13d+ 29 N + 17 /(2 - 5452T + 91,

~(N, d, T, j(2) = 35/'J _ 99;N _ 51 d~K'J) + 10802 d1' + 1814N'J + 115~(K'J) _ 12050 N1' + 67(~'J)'J

10898 (l{2) r + 169836 r 2 - 53: d + 282i N + 761 iK'J) - 146495 r + 7i~~5.
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Proof. \Ve assume eonjecture 5.1. Let X = 1F t X JIl't or a blow up of Pt x PI in finitely many points.

We denote by Fand G the pullbacks of the fibres of the two projections from ~1 x IF 1 to IF1. For

a dass ~ = F - sC in H2 (X, Z) defining a wall and an integer d ;::: 0 , let N := 4d + 28 - 3. Then

on X we ean determine the eoeffieients ax of LfJ;2r-2d+2kqf-k in Qf"N,r as folIows: We ean assume

that X has an action of C with finitely many fixpoints as in 3.1. For x an indeterminant we put

a := -xF + C and eompute the polynomiaI8f"N,r(aN - 2r ) in x using the Bott residue formula on

Hilbd(X U X), from whieh we ean eompute the ak.

Now we ean eompute the polynomials Qk(N, d, r , J(}) as follows: \Ve eonsider all nonnegative

integers d , w , b, r with d ~ k and d + w + b + r ~ 2k. Let X be the blow up of IIJi 1 x JID 1 in b points.

With the method of the last paragraph we eompute the eoeffieient Cd,w,b,r of Lft;2r-2d+2k qi-X in

Q€,N,r on X, where N := 4d + 2w + 1 and ~ = F - (w + 2)C. Using all the Cd,w,b,r we obtain a

system of (X ~4) linear equations for the coeffieients of the N j di r t (J{'§ ) ~ (wi th 0 ~ i + j + t + s ~ k)

in Qk(N, d, r, f{~). Solving this system of equations we obtain our resuit. All the eomputations are

again carried out using a suitable Maple program. 0

The formulas suggest the following conjecture:

Conjecture 5.3. (1) For all i the polynomial Qi(N, d, r , J(2) is of the form Qi(N , d, T, J(2) =

Pj(N, d, r, J{2)+J4(N , d, T, J{2), where J4(N, d, T, 1(2) is a polynomial in N, d, r, f{2 of degree

i - 2.

(2) /f we view J4 (N, d, 7', K 2) as a polynomial in N, -d, - r 1 f{2, th CTI all its coefficients are

positive and the same is true for Qi (N, d, r, f{2).

Proposition 5.4. 1f conjecture 5.1 and part (1) of conjectw'€ 5.3 are true then

R 5(N , d, r, K 2) = 11 (J{2)3 + 57 (J(2)2 N - 25 (K 2)2 d - 10892 (/{2)2 T + 90 (/<2) N 2 - 98 (J(2) Nd ­

24088 (1<2) NT + 17 (1(2) d2 + 21592 (1(2) dT + 339600 (I{2) r 2 + 44 N 3 - 82 N 2d - 13304 N2T +

41 N d2 + 23896 N dr + 363792 NT2 - 3 d3 - 10700 d2r - 338448 dr2 - 2525760 T3 + 198 (K2)2 +

744 (K 2) N - 276 (1(2) d - 303600 (J{2) r + 618 N 2 - 612 Nd - 333888 N r + 78 d2 + 301008 dr +

5457888 r 2 + 1213 (K2) + 2506 N - 729 d - 3101884 r + 2490,
R (N d J(2) = 65 (K~)~ + 113 (K~)3 N _ 49 (K~)3 d _ 21772 (K:J)3 r + 179 (K~):J N:J _ 97 (J<2)2 Nd _

6 1 ,T, 12 3 3 3 2

24076 (J{2)2 Nr + 33(K2~)~d~ + 21580 (J<2)2 dT + 3:~9528 (J<2)2 7,2 + 263(~~)N3 - 163 (I(2) N 2d-

26596 (1<2) N2 r + 81 (1<2) N d2 + 47768 (K 2) N dr + 727440 (1<2) N r 2 _ 17(~:J) d
3

- 21388 (K 2) d2r ­

676752 (J( 2) dr2-5050944 (f{2) T3+ 365 N~ _ 247 N3d_ 29332 N3
r + 147N~ d~ +26404 N 2dr+389208 N 2r2_

12 3 3 2
65 Nd

3
_ 23692 N d2r _ 7251~6 N dr2 - 5327424 N r 3 + d~ + 21196d

3
r + 337224 d2r2 + 5041728 dT3 +3 .. 12 3

24147648 r 4 + 821 (:~)3 + 3127(:~)~N _ fi65(~~)~d _ 314198 (I{2)2 r + 1306 (I<2) N2 _ 2567(~~) Nd _

691258 (f{2) NT+ 309(~:J) d~ +623020 (K 2) dr+11250984 (J{2) 7'2+ 798172N
3

-1154 N 2d-380192 N 2r+

2007 Nd~ +685594 N dr+ 12076284 N r2_ 53 d
3

-308822 d2r-11204904 dr2-93985056 r3+ 249499 (K~ )~ +
4 6 .. 192

529411 (K:J) N 48265 (K~) d 156136081 (K~) r+ 944107 N:J 134657Nd 170651209 Nr + 41627 d~ + 154931089dr +
96 32 24 192 32 24 192 24

538005841 r:J + 1027343(K~) + 5033035 N _ 406799d _ 1032193219r + 7872921
4. 192 384 192 16 1024 .

Proof. The method of the proof is very aimilar to that of proposition 5.2. Using conjeeture 5.3 we

ean reduee the nllmbcr of equations of the linear system we have to solve. For the eomplltation of
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Rk we have in the notations of the proof of proposition 5.2 onIy to consider d, w, b, 7' with d 2: k and

d + w + b + l' ::; 2k - 2. 0

Proposition 5.5. Assume conjecture 5.1. Then fOT d ~ 8 und f{2 = 8 also conjecture 5.3 holds.

Furthermore we haue

R 7 (N, 7, 1', 8) = 24it'& - 1613~N"'r + 277280 N 3 1' 2 - 5613696 N 21'3 + 50448384 N1'4 _ 84315~408r& +

584 N 4 - 926104 N
3 r + 14133648 N 21'2 _ 215219520 N 1'3 + 1068715008 1'4 + 49259 N

3
_ 27036430N~ r +

3 6 3

327411912 N 1'2 - 28341147841'3+ 55637 N 2 - 49171~972Nr +34531703681,2 + 5432
3
7
0
31N _ 76078;1522r +

226878,

R7(N,8, 7',8) = 24i{& - 1613~N4r + 277280 N 31'2 - 5613696 N2 1'3 + 50448384 N1'4 _ 84315~408r& +

526 N 4 - 867848 N
3

r + 13357680 N 21'2 _ 204584256 N 1'3 + 1020478464 1'4 + 40547 N
3

_ 24608014 N"J r +
3 6 3

30] 879416 N 1'2 - 2636445408 1'3+ 85365 N"J _ 444885076 N r + 3161672456 1'2 + 1989263N _ 6895690692 r +
2 3 • . 15 5

162324,

R (N 8 l' 8) - 69N
6

- 35428N&r + 147976 N 41'2 - 3940224 N 31'3 + 52663680 N 21'4 _ 1749924864Nr& +
8 '" - 10 15 ~ 5

4618156032rCi +17993N& 164166 N 41'+9819288 N 31'2 -222171264 N 21'3+2] 93801408 N 1'4_ 39855794688r& +
5 60 5

342159N"' 75235799N
3

r + 675173309N"Jr"J 5810679060 N 1'3+320067975961'4+ 9540439N
3

678142435N"J r +
64 12 2 ~ 192 4

28388710281 N r"J _ 68700098862 1'3 + 646487951 N"J _ 602240211743 N r + 11796298005871 r"J + 10191068747 N _
4 2560 192 160 15360

19195182347591r + 23061793325
640 32768 .

Proof. The method is again similar to that of the proof of proposition 5.2. Now we carry out our

computations on X = UD 1 X UD 1. In the notation of the proof of proposition 5.2 we have therefore

b = O. For the computation of Rk we cOllsider nonnegative integers d, w, l' with d + w + l' ::; 2k and

k ~ d ::; 8. D

Proposition 5.6. Let S Oe a rational ruled surface, then for N ::; 40 and d ::; 8 the conjectures 5.1

and 5.3 are correct (and therefore also all the formttl(ls above).

Proof. Any rational mied surface X is adegeneration of either or UD I X Pt or W2, and under the

degeneration the ampIe cone of X corresponds to a SlI bcone of t.he ampIe cone of UD 1 x lF 1 (resp. iP 2) ,

Therefore it is enough to prove the result for UD 1 X UD 1 and IF2 . \Ve let Cl run through 0, F, C, F + C

on UD 1 x UD I and through 0, H, E, Fon W2 (F = 1I - E). For 5' =Pl X UD 1 alld 5' =P2 we consider for

aB integers d w ith 0 ~ d ~ 8 the set Ws ,d of all classes ~, whieh define a wall of type (Cl, C2), such

that N := 4d - ~2 - 3 ::; 40 and (~ . F) < O. It is easy to see that

{~ = aF - bG Ia > 0, b > 0, 2ab ~ 40 - 4d +3} J

{~ = bH - aE I a > b > 0, (12 - &2 ~ 40 - 4d + 3}.

Für aH d ~ 8 and all ~ E WS,d we again compute all the eoefficients of L~;2r-2d+2kq~-k with the

method of the first paragraph of the proof of proposition 5.2. D
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6. THE DONALDsoN INVARIANTS OF BIRATIONALLY RULED SURFACES.

In this section we will show that our algorithm for eompllting the wall-erossing formula O{,N and

the blowup formulas enable us to eompute all the Donaldson invariants of all rational surfaces X

for aB generic polarisations Iying in a suitable subeone of the ample eone of X.

6.1. The ease of rational ruled surfaees. In this ease we ean indeed determine the Donaldson

invariants for aH generic polarisations. For simplieity we will only compute t.he restriction of the

Donaldson invariants to SymN (H2(S, Q)). In [K-L] some invariants of PI x PI have been eomputed

also using bloWllP and wall-crossing formulas. Their results show c.g. that there is no chamber, for

which PI x IF1 is of simple type. Our results again agree with theirs and earlier results e.g. in [L-Q].

Theorelll 6.1. Let 5 be a rational ruled surface, F the dass of a fibre (md qs the quadmtic form on

JJ2 (S,71). We denote by F( the polarisation F+€E, where E is the dass of a section with nonpositive

selfinterseetion.

(1) FOT € > 0 sujJiciently small we have 4>~',~ =0 aud <P~':F,N = o.
(2) FOT € > 0 sujJiciently small we have for E N := q.g:~~o:

Es = -L~ + 5/2L}qs - 5/2LFq~,

Eg = 40L~ - l08L~qs + ]08L}q~ - 42L~q~,

E 13 =-9345L~3 + 26949L~lqS - 31590L~q~ + 18018L~q~ - 4290L}q~,

EI1 = 73G9656L}l - 22136040L~qs +28474320L~q; - 19734960L}Jq1 + 7'125600L~,q~ - 1225224L~q1,

E21 =-14772820744L}I + 45586042992L~qs - 62181472500L},?q; + 482311 75860L~q1­

22562971200L~q~+ 607'1'120688L~lq1- 740703600L~~,

~5 = 63124363433664LW - 198545836440000LVqS + 281925714232800L};Iq1- 235199340734400L~q1+

125056219068000LVq~- 42588214875360LVq~ +8649138960000LVq~ - 813136737600L}iq1,

~g =-509894102555251905L}9 + 1626742370158553130L]7qs - 2378321090933081112L~q;+

2087846466793743600L~q1- 1207966082767844400L~}q~ + 473530658232013200L};,9q1­

123363365393268oooL}1q~ + 19623703009790880L~q1- 14673264245G4000L~q~,

E33 :::: 7135482220088837442520 LV - 23016295766978863295760 LV q5 +34404291587748659734080 L7.? q1­

31360607908598315276160L]7 q1 + 19266231547036209415680D2Jq1- 8299005150626510918400L1tqi+

2515398487826672448000 L~l q~ - 519339581441771650560L~q1+ 66567414222758592000 LVq~­

4055565288690115200L~ q~.

(3) For € > 0 sujJiciently small and all N ::; 33 we have, w7'iting <I>g:~~o as a polynomial EN (Lp I qs)

in LF and qS,

Proof. (1) is j ust lemma 4.1.

(2) and (3): We fix N :::;; 4C2 - 3 with C2 > 1. We will just. compute the corresponding Donaldson

invariants expl ici tely. As any pair (5, L) consisting ef a ~Iirzebruch sluface S = .En and L ::;;

aF + bE E Pic(S) (where E is a sectien with selfintersection -Tl :5 0) can be deformed to either

(lF t x IIJI 1,aF + b(E - nF/2)) or (P2,aF + b(E - (n - 1)F/2)) we see that we ean assurne that

5 = IIJI 1 X Pi or 5 = lF2 and Cl = F er Cl ::;; O.
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(a) S = lP'1 X TIt'll Cl = F (we will always denot.e by F aud G the fibres of the projeetions to the

two factors). By (1) we have for € > 0 sufficiently small <t>~I~rl,G+t:F = O. Therefore we get,

So the invariants ean be computed llsing proposition 5.6 and remark 2.10.

(b) S = lF21 Cl = F. Let € > 0 be sufficiently smalI. By the SO(3)-blow up formula we have for

aH Q' E AN_dIF 2):

~~~:-t:E(Ea)= ~~/,H (Sdpt)aL

and the SO(3)-invariants of IF2 have been determined in theorem 4.4. Therefore

'"
{EWF~:l (F,H)

,e:l

So the sum can be eompllted using proposition 5.6 and relilark 2.1 O.

(c) 5 = iF 21 Cl = O. Let iP2 be the blowup of IF2 in two points with exeeptional divisors EI and

E 2 . Then JFl2 is also the blow up of IF I X TIt'1 in a point. \Ve dellote the exceptional divisor by E.

We denote by F the pllllback of F = H - E 1 from F2 (whieh coincides with the pullback of F from

1F1 x 1Ft}. We have F = E 2 + E. We also denote by G the pullback of G from 1FI x 1F t and have

G = EI +E. For 1» €» jJ > 0 1 let H 1 := F+€G-p,E ancl H2 := F+€G- (€-jJ)E. Then

H2 is a polarisation of P2 whieh lies in a (E21 c2)-chamber related t.o the (0, c2)-chamber of F +€EI

on I?2' Thus by the SO(3)-blowup formula we have

<IlP:I,F+t:E1 (pi EN- i ) - _cf>P:l,H:I (E fti(G _ B)N-i) - _<pr :l,lI:1 ((I:" _ E)pi(G _ E)N-i)G,N 1 - E:I,N+l 2 - F-E,N+1 .

We have - ~

ffif''J,H\ if',P:I,H:I _
'J'F-E,N+l - 'J'F-E,N+l - -

{EW;:s,e:i (l/:i,Ht}

and for € suffieiently small is is easy to see that

So ~~~~l,N+l - <l>~:l~~N+l ean be eomputed by the Bott residlle formlIla. Finally BI lies in a

(F - E l c2)-ehamber on IF2 rclated to the (Fl c2)-ehamber of F + €O on IF 1 x UD I . SOl by the 50(3)­

blowup formlIla (with exeeptional divisor EL we get for Cl' E AN+1-i(IF I X Pt}

cf>t:l,,:,~l,N+l (aBi) = cf>~IXIl"t,F+cE (aSi(pt)L

and the last is eomputed by the method of (a). Now we puf. everything f.ogether to get our result.

(cl) S = PI X TIt'll Cl = O. This case is very similar to (cL only with the role of 1FI x JII\ and iP2

exchanged. 'Ne use the same notations as in (c). Now BI is a polarisation of P2 which lies in a

(E, c2)-ehamber related to the (0 , c2)-chamber of F + €G on 1F t x IF I . Thus by the SO(3)-blowup

formula we have

<t>P1XF1,F+t:G(pie
W

N-i) _ _ <t>P:I,H 1 (EFi(;N-i) - _~i:l,JI, ((F _ E )pi(F + E _ E )N-i)
O,N - E,N+l - F-E:I,N+l 2 1 2 .
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We have

-
EEWE

F2 (/1'J,H 1 )
,C'J

and for € sufficiently small is is easy to see that

So <t>~~~+l - <I>~~:~l can be computed by the Bott residue formula. Finally H2 lies in a (E, C2)­

chamber on iF 2 related to the (P, c2)-charnber of F + €E I on IF2. SO, by the SO(3)-blowup forrnula

(with exceptional divisor E 2 ), we get for Cl' E AN +I - i (IF2)

....r-'J,H'J ( E~i) - cf>P'J,F+t:E( S·( t))
'YE,N+I 0' 2 - F 0' I P ,

and the last is cornputed by the method of (b), 0

Conjecture 6.2. Por 5 a rational mIed surface we have zn the notation of theorem 6.1 for all

N = 4C2 - 3 with C2 ~ 2:

(1) <Jlg:~:o and <I>~',~,o are polynomials EO,N(Lpl qs) and Ep,N(Lpl qs) in L p and qs/ which are

independent of S.

(2) EO,N(Lpl qs) (md Ep,N(Lpl qs) are divisible by L!J.- 2C
2.

(3) Ep,N(Lp, qs) = EO,N(Lp, qs) - EO,N(Lp/2, qs),

Remark 6.3. \Ve keep the notation of theorem 6.1. Notice that theorem 6.1 and proposition 5.6

deterrnines all the SU (2)- and 50(3)- Donaldson invariants of a rational ruled surface 5 of degree

at most 35 for aB generic polarisations: Fix (Cl, C2) and put N := 4C2 - ci - 3. Ir L is a generic

polarisation then

<t>L,S = <t>p. ,S + ~ (-1 )ee,N <5 •
cl,N cl,N L E,N

EEW'; ,c'J(P,L)

This surn is given for N :S 35 by theorem 6.1, rcmark 2.10 eLUd proposition 5.6.

6.2. Thc DOl1aJdson invariants of blowups of lF2• We want to finish by showing that our

methods give an algorithm for computing all the Donaldson invariants for all rational surfaces X at

least for polarisations lying in a reasonably big subcone C9 of the ample cone Cx of X. In [K-L] it

is shown that the Donaldson invariants of /Pl 2 and Jl1'1 X 1FI cau be determined from the wall-crossing

formulas on some blowups, and our results can be seen as a generalization of this.

A rational surrace X, which is neither Jl1'2 nor mied can be deformed to a a blowup 1F2(Xl' ... x r )

of P2 in finitely many general points. Under this deformation Cx corresponds to a (in general strict)

sn bcone of the ample cone CP:l(x 1 , •..x r ). We can therefore restrict our attention to X = P2(Xl, ... X r ).

TheoreUl 6.4. There exists an algorithm computt'ng all the SU(2)- and SO(3)-Donaldson invari­

ants of 1F2(Xl' ... x r ) with 1'eSpect to all generic polarisations in a nonempl.y open subcone C9 of the

ample cone 0/ Jl1'2( Xl, ... Xr ).
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Proof. Let S :::;:; Yr , where Yo :::: JI1I 2 and Yi is obtained from }'i-l by blowing up a point such that

each}i carries an action of an algebraic 2-torus with finitcly many fixpoints satisfying conditions (1)

and (2) of section 3.1. This just means that each Yi is obtained from Yj-l by blowing up a fixpoint.

We can deform S to JI1'2(X1, ... X r ), but under this deformation the good ample cone C~ of S will in

general correspond to a proper subcone Cg of Cp'~(;l:I,...Xr)' Note thai Cg contains a neighbourhood

of the hyperplane dass H. It is enough io prove that there is such an algorithm computing the

Donaldson invariants of S for aH generic polarisations in C~.

Fix Cl E Pic(S) and C2 E H 2 (S, ~). Let N ::::: 4C2 - cr - 3. Let H I alld H2 be two good generie

polarisations of S. Then by lemma 2.9 the set 111cl,c~(HI,H2 ) is finite anel consists only of good

walls. Therefore

and a11 thc O{,N can be determined explicitely by applying the Bott residue formula. So it is enough

to determine <fl;:~ for one good polarisation Ho. \Ve will denote by EI,'" ,Er the exeeption al

divisors of S over If1'2.

First case Cl ::f O. Denote Cl :::: aH + blEI + ... + brEr1 with each of G, bl , ... ,br lying in {O,l}.

We denote D j ::::: aH + blEI + ... bi + Ei

Sy reordering the Ei we can assurne a ::f 0 or bl '# O. Let F ::::: H - EI. Then for 1 >> f >> 02 >>
... >> or the cl ivisors Hi ::::: F+fE 1 - (62 E2+...+Oi Ei) are pol arisations on Yi lying in achamber of

type (Di,C2) related to the ehamber oftype (Di- I ,C2) of Hi - 1 ::::: F+eE1-(o2E2+ ... 0i-1Ei-d on
. }'", H - - . }'"' 1/. . Y. H - .

Yi - 1. So the blowup formulas glve <I> D'i' '(erEn:::: (f> D'i--\' ,-I (erSj (pt)) If bi == 1 (resp. <I>D'i' • (aEf) ==

<I>~\__ll,Hi-l (aBj(pl)) if bi == 0) for all a E AN-j(}'i-I). The proof of theorem 6.1 gives an algorithm

for computing <I>~\,Hl (a) for aU a E A.(Yt}. Thus by induction we get the desired algorithm.

Second case Cl == O. Let 5 be the blow up of S in a point and let E be the e~ceptionaldivisor. Sy

the first ease we have an algorithm for computing the Donaldson invariant CP~',~' for a polarisation

He = Ho - fE on S Iying in a related chamber ~o timt of a generic good polarisation Ho of S. Then

the SO (3)-blowu p form ula gives <l>g 1Ho(a) = <I>~,H. (Ea), and the result folIows. 0
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