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WALL-CROSSING FORMULAS, BOTT RESIDUE FORMULA AND THE
DONALDSON INVARIANTS OF RATIONAL SURFACES

CEIR ELLINGSRUD AND LOTHAR GOTTSCHE

1. INTRODUCTION

The Donaldson invariants of a smooth 4 manifold M depend by definition on the choice of a
Riemannian metric. In case b*(M) > 1 they however turn out to be independent of the metric as
long as it is generic, and thus they give C®-invariants of M. In case by (M) = 1 the invariants have
been introduced and studied by Kotschick in {Ko]. It turns out that the positive cone of M has a
chamber structure, and Kotschick and Morgan show in [K-M] that the invariants only depend on
the chamber of the period point of the metric.

Now let S be a smooth algebraic surface with geometric genus pg(S) = 0, irregularity ¢(S) =0,
and let H be an ample divisor on S. Let M (c1, c2) be the moduli space of H-Gieseker semistable
rank 2 sheaves on S with Chern classes ¢; and ¢;. In the recent paper [E-G] we studied the variation
of M3 (c1,c2) and that of the corresponding Donaldson invariants under change of the ample divisor
H. For the Donaldson invariants this corresponds to restricting our attention from the positive
cone of 5 to the subcone of ample classes. We imposed a suitable additional condition on the walls
between two chambers and called walls satisfying this condition good walls.

We showed that if the polarisation H passes through a good wall W defined by a cohomology class
¢ € H*(S8,Z), then Mj(c1,cz) changes by a number of flips. Following [K-M] we wrote the change
of the degree N Donaldson invariant as a sum of contributions ¢ » with £ running through the set
of cohomology classes defining W. We then used our flip description to compute ¢ 5 in terms of
Segre classes of certain standard bundles Vg n over a Hilbert scheme of points Hilb®™¥(SU S) on
two disjoint copies of S (here d¢ v = (N +3+4£2)/4). We proceeded to compute the leading terms of
3¢ n explicitely and formulated a conjecture about the precise shape of & n, related to a conjecture
from [K-M). We will in future refer to any formula for §¢ y as a wall-crossing formula.

Most of the results of [E-G] were also obtained independently in [F-Q], and a flip description of
the change of the moduli spaces was obtained independently for varieties of arbitrary dimension and
sheaves of arbitrary rank in [M-W]. In {H-P] a Feynman path integral aproach to this problem is
developed, and some of the leading terms of the wall-crossing formulas are determined.

The current paper is a continuation of [E-G}. We specialize to the case that the surface S is
rational. The first advantage is that now almost always all walls are good and so the formulas from

[E-G] almost always apply.
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The main reason for restricting our attention to rational surfaces is that they allow us to use
an additional powerful tool: the Bott residue formula. A rational surface can always be deformed
to a surface admitting an action of a two-dimensional algebraic torus I' with only a finite number
of fixpoints. As the Donaldson invariants are in particular deformation invariants, we can assume
that § admits such an action of I'. It is easy to see that this action will lift to the Hilbert schemes
Hilb%~ (S L1 S), and that the standard bundles Vg n are equivariant for the induced action. Fur-
thermore also the induced action will only have a finite number of fixpoints, and the same is true
for a general 1-parameter subgroup 7 of I'. The weights of the action of T on the tangent spaces
of Hilbd"”'(S U S) and on the fibres of V; » at the fixpoints can be determined explicitely from the
corresponding weights on S. So we can apply the Bott residue formula to this situation and, given
N and £ and the weights on S, we always have an algorithm to compute the change 6 x explicitely.

This algorithm involves very many computations, so we use a suitable Maple program.

Now let S be a rational ruled surface with projection ¢t : S — P;. Let F be the class of a fibre
of t and assume that the intersection number ¢;.F is 1. Then [Q2] shows that, given ¢; € H%(S,Z),
there always exists a special chamber Cy such that for H in Cy the moduli space M7, (c;, cz) is empty.
In particular the corresponding SO(3)-invariant is zero on Cp. This already gives us an algorithm
for computing all the SO(3)-invariants corresponding to first Chern classes ¢; with ¢;.F =1 on §.
Given a chamber C we obtain the value of the invariant by just summing up all the changes for all

the walls between € and Cg.

At this point we can combine our methods with an additional ingredient: The blowup formulas,
which relate the Donaldson invariants of an algebraic surface S with those of the blowup SofSina
point. In the case of the projective plane P; we obtain an algorithm for computing all the SO(3) and
SU(2)-invariants. Let p : @2 — P3 be the blow up of P5 in a point, let H, F and £ be the hyperplane
class, the fibre of the projection P, — P, and the exceptional divisor respectively. We obtain the
SO(3)-invariants of Py by first computing the invariants on P, corresponding to ¢; = p*(H) and
applying the SU(2)-blowup formulas. Similarly we obtain the the SU(2)-invariants of Py by first
computing those on @2 corresponding to ¢; = E and applying the SO(3)-blowup formulas. Notice
that in both cases ¢;.F =1 on I’[‘\Dz, so that the algorithm of the previous paragraph applies. Using
a suitable Maple program we have computed all the SO(3)- and SU(2)-invariants of P; of degree

smaller then 50.

S0(3)- and SU(2)-invariants of Py and rational ruled surfaces had already been computed by
several authors (see e.g. [[-Q] [E-LP-S] and [K-L]) using a variety of methods. In [K{-L] Kotschick
and Lisca have already made use of the blowup formulas in combination with the wall-crossing
formulas. Their computations also involve for the first time the 4-dimensional class. Their results
agree with ours up to diffenent conventions. Our paper is partially motivated by and built on [K-L].
In particular we found there the correct formulation and the references for the blowup formulas in

the case by = 1.

We then go back to the wall-crossing formulas. Assuming the conjecture from [E-G] about the

shape of & n we are able to determine (again with a suitable Maple program} the first 5 leading



terms of ¢ v and using an additional conjecture even the first 7 leading terms. Furthermore, again
using the conjecture, we determine ¢ » on a rational ruled surface for d¢ v < 8. By explicitely
determining the corresponding é; y we show that on a rational ruled surface the conjecture and all
the formulas are correct for all walls £ and all N with ¥ <40 and d¢ v < 8.

Now we compute the Donaldson invariants for rational ruled surfaces S by again combining
the wall-crossing formulas with the blowup formulas. We apply this algorithm to compute all the
invariants on S of degree at most 35. The result shows that the special chamber Cp, where the
invariants corresponding to first Chern class ¢; with ¢;.F = | vanish, is also special for all other c;.
We obtain that in the chamber Cy the Donaldson invariants can be expressed as a polynomial in the
linear form Lp defined by F and the quadratic form gg. This polynomial is independent of S, and
there is a simple relationship between the polynomials for different ¢;.

Finally we observe that by combining the results obtained so far with the blowup formulas, we
obtain an algorithm for computing all the SO(3) and SU(2)-invariants for all rational surfaces S for
all polarisations in a reasonably big part of the ample cone of §. This can be seen as a generalization
of the result of [K-L] that the Donaldson invariants of P2 and [Py X [Py are determined by the wall-

crossing formulas on some blowups.

The explicit computations of the wall-crossing formulas and the Donaldson invariants of rational
surfaces gives us a lot of empirical data about the shape of these invariants. We have therefore tried
to find some patterns in the results and so the paper also contains a number of conjectures and
questions. Several of these can already be motivated by the results of [K-L].

We would like to thank Dieter Kotschick for sending us the preprint [K-L], which was quite
important for our work, and also for some useful comments. Furthermore the second author would
like to thank S.A. Strgmme for a sample Maple program for computations on Hilbert schemes of

points.

2. BACKGROUND MATERIAL

In this paper let S be a rational surface over C. For such a surface the natural map from the
group of divisors modulo rational equivalence to H?($,Z) is an isomorphism. So, for £ € H?(S,Z),
we will often write Os(£) for the line bundle associated to a divisor with class €.

For a polarization H of S we denote by M} (c1,¢z2) the moduli space of torsion-free sheaves E on
S which are H-semistable (in the sense of Gieseker and Maruyama) of rank 2 with ¢;(F) = ¢; and
c2(E) = ¢a.

Notation 2.1. For a sheaf F on a scheme X and a divisor D let F(D) .= F@O0x(D). f X is a
smooth variety of dimension n, we denote the cup product of two elements o and 8 in H*(X,Z) by
a - B and the degree of a class a € H*"(X,Z) by [, a. For o, € H*(S,Z) let (o - ) := [ - B.
We write o2 for (a - @) and, for v € H?*(S,Z), we put {a,v) := (@ - ¥), where ¥ is the Poincaré dual
of 4. We denote by ¢s the quadratic form on Hy(S,Z) and, for a class n € H?(S,Q) by L, the

corresponding linear form on Hy(S, Q).



Convention 2.2. When we are considering surfaces S and X with a morphism f: X — S, that
is either canonical or clear from the context, then for a cohomology class a € H*(Y,Z) (or a line
bundle L on Y) we will very often also denote the pull-back via f by o (resp. L). (Very often f
will be a sequence of blowups. In particular if X is a surface which is obtained by P, by a number
of blowups, then we denote by H the pullback of the hyperplane class. Similarly on P; x P; or a
variety obtained from P; x P; by a number of blowups, we denote by F and G the classes of the

fibres of the projections to the two factors.)

2.1. Walls and chambers. (see [Q1], [Q2], [Gd], [K-M] and [E-G].)
Definition 2.3. Let Cs be the ample cone in H*(S,R). For £ € H(S,Z) let
Wé:=Csn{ze H*(S,R) | (z &) =0}.

We shall call W& a wall of type (c1,c3), and say that it is defined by & if the following conditions
are satisfied:
(1) € + c1 is divisible by 2 in N S(S),
(2) ¢f —4e2 < €2 <0,
(3) there is a polarisation H with (H - £) = 0.
In particular d¢ v 1= (4c2 — cf + £%)/4 is a nonnegative integer. An ample divisor H is said to lie
in the wall W if [H] € W. If D is a divisor with [D] = £, we will also say that D defines the wall W.
A chamber of type (c1,¢g) or simply a chamber, is a connected component of the complement of
the union of all the walls of type (c1,¢2). We will call a wall W good, if D 4+ Kg is not effective for
any divisor D defining the wall W. If {(c1,c3) are given, we call a polarization L of S generic if it
does not lie on a wall of type (c1, c2).
On a rational surface .S we will call a divisor L good if (L - Ks) < 0, and we denote by Cs,g the
real cone of all good ample divisors. We see that any wall W intersecting Cs,q is a good wall.
Let L. and Ly be two divisors on S. We denote by Wi, c,)(L—, Ly) the set of all £ € H*(S,Z)
defining a wall of type (c1,c2) and satisfying (€ - L_) < 0 < (£ - Ly). We notice that for L_ and L4
good all the walls W¢ defined by € € Wi, ea)(L—, L) are good.

2.2. The change of the Donaldson invariants in terms of Hilbert schemes. In [Ko] the
Donaldson invariants have been introduced for 4-manifolds M with b+ (M) = 1. In [K-M] it has been
shown that in case b4 (M) = 1, b;(M) = 0 they depend only on the chamber of the period point of
the metric in the positive cone of H2(M,R). We want to use conventions from algebraic geometry,
which differ by a sign from the usual conventions for Donaldson invariants and furthermore by &

factor of a power of 2 from the conventions of [Ko].

Notation 2.4. Let S be a simply connected algebraic surface with pg(S) = 0. Let N :=4cp—c?—3
be a nonnegative integer. We denote by An(S) the set of polynomials of weight N on H3(S, Q) ®
Ho(S,Q), where we give weight 2—1 to a class in H;(S, Q). Let 7-:31,1\’.3 be the Donaldson polynomial

of degree N with respect to a generic Riemannian metric g associated to the principal SO(3)-bundle



P on S whose second Stiefel-Whitney class w3(P) is the reduction of ¢; mod 2 (in the conventions
of e.g. [F-S]). Then v, y , is a linear map Ay (S) — Q. If N is not congruent to —c ~ 3 modulo
4, then by definition 'rth,g = 0. If g is the Fubini-Studi metric associated to generic ample divisor
L on S we denote ‘I’fl’fN = (_1)(C?+(Cl'KS))/Q‘thng‘ We denote ®F:% := ZNZG ¢'f;.I}V We denote
by pt € Ho(S,Z) the class of a point. Sometimes we will consider the Donaldson invariants as

S”l‘Nlr(a) = ¢f;,l’N(pt’aN‘2') for « € Hy(S,Q).

€1

polynomials on H3(S,Q) by putting &

If the moduli space My (c1,cq) fulfills certain properties (in particular there is a universal sheaf
U over S x Mpy(cy,cq)), then for ap,...a € Hyi(S,Q) we have

(pf;fN(Ql"'ar):/ l/(al)-...-u(n’r)
My(c1,¢3)

where v(a) = (e2(U) — ¢} (U)/4)/ e ([Mo), [Li]).)
We will use a result from [E-G] (also proved independently in [F-Q]), We state it only for rational

surfaces. Note that there are some changes in notation.

Definition 2.5. Let £ € H?(S,Z) be a class defining a good wall of type (c1,¢2). For N :=
4cy — ¢ — 3 we denote de v := (N + 3+ £2)/4, eg v = —(€ - (€ — Ks))/2+ deg,n + 1. Assume now
that (c1,cz) are fixed. Let

T ;= Hilb*~(SuS)y=  J[ Hib*(S) x Hilb™(S).
nt+m=de N

be the Hilbert scheme of d points on 2 disjoint copies of 5. Let ¢ : SxTy — Ty andp: SxTpz — T
be the projections. Let V¢ be the sheaf p*(Os(—€) ® Os(—€ + Ks5)) on S x T¢. Let Z, (resp.Z3) be
the subscheme of S x T which restricted to each component S x Hilb"™ (S) x Hilb™(S) is the pullback
of the universal subscheme Z,(S) (resp. Z,(S)) from the first and second (resp. first and third)
factor. Let Zz,, Zz, be the corresponding ideal sheaves and [2,] and [Z5] their cohomology classes.
For o € Hi(S,Q) let & := ([2] +[22]))/a € H*/(T¢,Q) Then for @ = a1 - ...  an_2,pt" € An(S)
(with a; € Ha(S,Q)) we put

N-2r
J&N(Q) = f (( H ((01)5/2)_"&:)) (_1/4+ﬁ)rs(EXt’;(IZnIZQ® Vf)) )

T i=1

where s(-) denotes the total Segre class. We denote §¢ := Y nyo0e,~. We will also denote for
a € Hy(S,Q) by 8¢ Nr () == 8¢ (pt7aN =),

Theorem 2.6. [E-G),[F-Q] Let S be a rational surface. Let ¢; € H*(S,Z) and ¢y € Z. Let H_ and
Hy be ample divisors on S, such that all the walls defined by elements of Wi, ¢,)(H-, Hy) are good.
Then for all @ € An(S) we have

¢ISI+,N(Q) - q’f{-,N(O’) = Z (=1)¢N 5 ().
eeu’(ul,og) ("{-:H'F)



2.3. Blowup formulas. We briefly recall the blowup formulas in the context of algebraic surfaces.
In the case b4(5) > 1, when the invariants do not depend on the chamber structure, they have
been shown e.g. in [O], (L] and in the most general form in [F-S]. In the case 6,.(S) = 1 we
cite these results after [K-L]. By [T] the formulas of [F-S] also hold for S with b4(S) = 1, if the
chamber structure is properly taken into account. Let S be an algebraic surface with b, = 1 and
let €: S — S be the blowup in a point. Let £ € H%(S,Z) be the class of the exceptional divisor.
Let ¢; € H%(5,Z) and ¢ € H*(S,Z) and put N = 4c; — ¢ — 3. Let C C Cs be a chamber of type
(e1,¢2), let Cg C Cg be a chamber of type (¢y + E, ¢3), and let £y C Cg be a chamber of type (cy, ¢a2).
Following [Ko| we say that the chambers C and Cg (resp. € and Cqo) are related chambers if €*(C) is
contained in the closure Cg (resp in Cyp).

Theorem 2.7. There are universal polynomials S (x) and Bi(z) such that for all related chambers
C and Cg (resp, C and Cy) as above, allk < N and all o € An_i(S) we have
(2.7.1) @] 5% (Bra) = —07 55 (B a) = @I(Sk(pt)a),

(2.7.2) &7 (EF o) ®7C( By (pt)ar).

(Note the different sign convention). The Si(z) and Bi(z) can be given in terms of the coefficients

of of the q-development of certain o-functions.

We refer to (2.7.1) as SO(3)-blowup formulas and to 2.7.2 as SU(2)-blowup formulas. We will
use that the Si(z) and the By (z) are determined by recursive relations: (al) Sax(z) = 0 for all &,
(b1) Si(z) = 1, Sa(z) = —=z, Ss(x) = 22 + 2, S7(z) = —2® — 62, (a2) Bax41(z) = 0 for all k, (b2)
Bo(z) =1, Ba(z) =0, Bs(z) = —2 and, in both cases, the recursive relation

A
h
) (Unga—iUs — AUny3—iUip1 4 6Uns2-iUiss — 4Unt1-iUits + Un—iUits)
i
i=0
A
h
=—4 Z (1> (2Uny2-iUi + zUn—iUiy2 = 22Uni1-iUip1 + Un—iU),
i=0

with either U; = S;(2) or U; = Bi{z) (see e.g. [F-S],[K-L]).

2.4. The walls for rational surfaces. Now let S be a rational surface. We want to collect some

information about the set of walls in the ample cone Cs. The following 1s easy to see:

Remark 2.8. (1) If S is a rational ruled surface then Cg = Cg g4, i.e. all walls are good.
(2) If S is obtained from [P, by a sequence of blow ups with exceptional divisors E,..., E,
then Cg g =CsnN {a(H —a By~ ... ~a.F,) | a>0,a;,>0, Y ;a; < 3}.

Lemma 2.9. For any pair (H_, H}) of ample divisors on a rational surface S and all ¢; € Pic(S)
and ¢z € H*(S,Z) the set Wie, ) (H-, H,) is finite.

Proof. Theset {tH_+(1—t)H4 |t €[0,1]}is a compact subset of Cg. Therefore by [F-M] corollary
1.6 it intersects only finitely many walls of type (e1,e2). O



We now give a list of all walls for S = @2 and § = P; x P; which will be used repeatedly in our
computations. We denote by F = H — E the class of a fibre of @2 — P;. We also denote by F the
fibre of the projection to the first factor of P; x Py and by ( the class of the fibre of the projection

to the second factor. The verifications are elementary.

Remark 2.10.

WE:Q(F,H—-JE) = {2aH - 2E|b>a>6b, b* —a® < ¢},

WE (F,H —88) = {2aH - (2-1)E|b>a>d(b-1/2),b(b-1)—a? < e},
WE.?C’(F,H—JE) = {(Qa-1)H~BE|b>a>6b+1/2,b* —a(a—1) <o},
Wg’c:(F,H—éE) = {2a-D)H—-(-1)E|b>a>6b-1/2)+1/2,b(b—1)—a(a—1) < e},

Wei¥ (F,F+56G) = {2aF—2G|0<b<ad, 2ab< co},

WEXFPH R F4+6G) = {(2a—1)F—26G | 0<b< (a—1/2)8, (2a— 1)b < ca},

WEXFHF F+6G) = {2aF—(2b-1)G|0<b<ad+1/2, (2b—a< e},

WEEL (FF+38G) = {(2a-1)F—(26-1)G|0<b< (a—1/2)8+1/2,2ab—a—b < ).

2.5. Botts formula. Now we recall the Bott residue formula (see e.g. [B],[A-B],[E-52],[C-L1],[C-L2]).
Let X be a smooth projective variety of dimension n with an algebraic action of the multiplicative
group € such that the fixpoint set F is finite. Differentiation of the action induces a global vector
field € € H°(X,Tx), and F is precisely the zero locus of . Hence the Koszul complex on the map
£V Qx — Oy is a locally free resolution of Op. For i > 0 denote by B; the cokernel of the Koszul
map Q' — QY. It is well known that H7(X,Q%) = 0 for i # j. So there are natural exact

sequences for all #:
0 — HY(X, Q%) 2S5 HY (X, B) =S H (X, Biy1) — 0.
In particular there are natural maps ¢; = r;_y0...0r: HY(F,Of) — H'(X, B;).

Definition 2.11. Let f: F — C be a function and ¢ € H(X, % ). We say that f represents ¢ if
gi41(f) = 0 and ¢;(f) = pi(c).

If fi represents a; € H'(X, Q%) and f, represents a; € H7 (X, Q‘}\), then fy fo represents a; -as €
Hi% (X, Q).

The following result enables us to compute the degree of polynomials of weight in the Chern
classes of equivariant vector bundles on X. Let £ be an equivariant vector bundle of rank r on X.
At each fixpoint # € F the fibre £(z) splits as a direct sum of one-dimensional representations of
C*. Let m(E,z),...7(£,z) denote the corresponding weights, and for all k£ > 0 let 0% (£, ) € Z be

the k-th elementary symmetric function in the 7 (€, z).

Theorem 2.12. (1) The k-th Chern class cx(E) € H*(X, Q%) of £ can be represented by the
function z — o (€, z).
(2) The composition H°(Op) — H™(X, Q%) SC maps [ : F — Cto Y, f(2)/0n(Tx, z).

~1



3. APPLICATION OF THE BOTT RESIDUE FORMULA

In this section we want to see how the Bott residue formula can be used to compute §¢ y for a
class £ defining a wall on a rational surface X. Let ' = C* x C* be an algebraic 2-torus and let A
and g be two independent primitive characters of I'. We 1dentify the representation ring of T with
the ring of Laurent polynomials in A and p. For a variety Y with an action of T' we will denote by

Fy the set of fixpoints.

3.1. Actions of a torus on rational surfaces. We are going to define actions with finitely
many fixpoints of ' on X = P;, X = P; x P; and inductively on surfaces X = X,., where Xy = P,
or Xg =IP; x P; and X; is the blowup of a fixpoint of the I'-action on X;_;. We also define a lift of

the action of I to all line bundles on X. These actions will have the following properties:

(1) Each fixpoint p € Fx has an invariant neighbourhood A, isomorphic to A? = spec([k[z, y])
on which I acts by ¢ - 2 = ap2, t - y = Bpy for two independent characters ap and G, of I',
and the Ay cover X.

(2) For each line bundle L € Pic(X) the restriction L|4, has a nowhere vanishing section s p,

with t - s p = yL psLp for L p a character of T.

(a) The case of Py. Let Ty, Ti, T2 be homogeneous coordinates on IPy. Let I' act on P by ¢-Tp = T,
t-Ty = ATy, t- T = uTh. The action of [ has 3 fixpoints pg := (1:0:0), p1 := (0:1:0) and py := (0:0:1).
The sets Ap; := D(T;) (i.e. the locus where 7; # 0) are affine invariant neighbourhoods. 1In
appropriate coordinates &,y on Ay, (resp. Ap,,Ap,), the induced action of ' is ¢ - (2, y) = (Az, py)
(resp. t-(z,y) = (A 'z, A 1y), t - (z,y) = (™ 'z, An~'y)). Furthermore on A,; the monomial 77"
defines a trivializing section of Op,(n) with t - T3 =T¢, ¢ - I = A"T7, - T3 = p*T3.

(b} The case of P1 x P;. Let Xo, X and Y, Y7 be homogeneous coordinates on the two factors.
Let Tacton Py x Py by t- Xo = Xg, t- X, = XX, t- Yy =Yy and ¢ - Y] = u4Y;. This action has
4 fixpoints p;; := V(X1-;) NV (Y1~;) (i.e. the locus where X,_; = ¥;_; = 0), which have affine
neightbourhoods Ap,. = D(X;) N D(Y;). In the appropriate coordinates z,y on Ap,. the action is
given by t - (z,y) = (A "%z, u'~%y) (i and j € {0, 1}). Finally a trivializing section of O(n,m) on
Ap,; is XPY[™ with ¢ - (XPY/™) = Xinpdm XY™

{c) The blowup. Now assume that Y is a surface obtained from Py x Py or P; by successively
blowing up fixpoints of the action of I', and assume that the action is extended to Y, so that it
still has finitely many fixpoints, and that the assumptions (1) and (2) above are satisfied. Let
p € Fy be a fixpoint. Let A, be an affine neighbourhood of p with coordinates &,y on which I'
acts by t - (z,y) = (az, By) for two independent characters o, 3 of I'. Let X be the blowup of ¥
in p, and denote by E the exceptional divisor and by A the blow up of Ap at p. We can identify
E = P((z,y}V), and the induced action of I’ on E has 2 fixpoints ¢o := (1:0) and ¢, := (0:1), which are
the fixpoints of I on X over p. There are affine neighbourhoods Ag, = AN D(z) and Aq, = AN D(y)
of go and q; in X, with coordinates (z,y/z) and (y,z/y). The action t - (z,y/z) = (az, fa~ly/z),
t-(y,z/y) = (By, a8 'z /y) extends the action of I' on ¥ \ {p} to X. Let L be a linebundle on Y

with a trivializing section sy, ¢ near each ¢ € Fy with t-s;, ¢ = yL,p;5L,4. Then L ® O(kE) has for



i # 0 still 57, 4 as a trivializing section near g {with ¢ # p), and near go (resp. g¢) such a section is

k

50 =51, @Yy~ * (resp. 51 = s.p @z %) with - 50 = y1 , 8 %350 (resp. t- 51 = yL po~%s1).

3.2. The induced action on the Hilbert scheme. We assume that S is a surface obtained by
blowing up P; or Py x [P} repeatedly, with an action of T as above. We fix a positive integer d and
want to study the induced action of I' on the Hilbert scheme Hilb?(S1S) and on certain ”standard
bundles” on Hilbd(S U S), which appear in the wall-crossing formula 2.5. The induced action on
Hilb*(SUS) is given by ¢ - (Y, Z) = (¢t - Y, t- Z), where for a subscheme Z C S we denote by t - Z the
subscheme with ideal ¢ - Zz;5 :={t- f | f € Iz/s}.

Now let Fs := {p1,...,pm} be the set of fixpoints on S, and, for all ¢, let A; be the invariant
affine neighbourhood of p; with coordinates z;,y:, such that t - z; = oz, t -y = Biy for two
independent characters «; and §;. As the characters «; and f; are independent, it is easy to see that
a subscheme Z € Hilb"(S) is fixed by the induced action of I" if and only if supp(Z) C Fs and if, for
all 7, denoting by Z; the part of Z with support p;, all the ideals Zz,,4, are generated by monomials
in 2; and y;. We denote by Fyyjpa(sys) the fixpoints on Hilb4(S U S).

Definition 3.1. A partition of a nonnegative integer n is a sequence o = (ag,...a,) with ap >
.2 apy 2 ap, = 0 and Y a; = n. We identify (ap,...a,) and (ao,...a,,0). Let Pay(d) be
the set of sequences (Py,..., Pn,Gh,...Qm) where the P; and @; are all partitions of numbers
n; and m; with Y (n; +m;) = d. We see that Pyu(d) and Fye(sus) are in one-one correspon-
dence, with (Py,..., Pn,@1,...Qm) corresponding to (Yi U ... U¥y,Z, U...UZy,), where for
P,' = (au, ..

4,08,

b b b,
Tyya; = (W, @iyt . afyl, ') and Iz, = (4, ziwi™ - 2lym, 27 F1).

., 6r), @i = (bg,...,b,) the subschemes Y; and Z; are supported at p; and defined by

3.3. The action on some standard bundles. We now want to determine the action of I' on
some standard bundles on Hilbd(SUS) which appear in the wall-crossing formula 2.5. Let £ define a
good wall. We denote by V the vector bundle Og(—£) & Os{—& + Ks)}. Then by the results of [E-G]
and [F-Q] Exté(Igl,Iz,@)p‘ V) is a locally free sheaf on Hilbd(SLJS), which is compatibel with base
change, i.e. its fibre over (Y, Z) € Hilb*(SUS) is Ext'(Zy,Zz ® V). Furthermore the I-linearisation
of Og(€) from 3.1 determines in a canonical way a ['-linearisation of Ext;(Iz;,Iz, ®@p"V). It also
induces an action of T on H'(S,V). Now let (Y,2) € Fhiibe(sus) be a point corresponding to
(Pt,..., Pn,Q1,...Qm). We will determine the action on the fibre Ext'(Zy,Zz ® V). We denote
by V(p;) the fibre of ¥V over the fixpoint p; considered as a representation of T'.

Lemma 3.2. For partitions P := (aq, ... ,a,), @ := {bo,...,b,) we denote

ajo1-1 bju1—1
S S B D T
1<i<igr \ s=a; s=b;



Then in the representation ring of I' we have the identities

(3.2.1) Trasasusy(V, 2) = D (Ep,pi{@i, Bi) + Eqiqilei, B)),
i=0
(3.2.2) Ext'(Zy, Iz ® V) = HYS,V)+ > V(p): Erq.(ei, 5)).
i=0

Proof. (3.2.1) follows directly from [E-S1].

Claim: In the representation ring of I' we have the identity
Ext!(Zy,Zz2@V) = HY(S,V)+H(S, Ext (Ty, I2)@V)+H (S, 0z0V)—HY(S, Hom(Oy, 02)QV).
Proof of the Claim: As € defines a good wall, we have H2(S, Hom(Iy,Iz)®V) = HY(S, Hom(Zz,Iy)®
VVY(Ks)) = 0and H°(S,Hom(Zz,Zy)®V) = 0. Therefore the low-term exact sequence of the local
to global spectral sequence HP(£xt?(Ty,Iz®V)) = Ext?*9(Ty,Zz ® V) gives in the representation
ring of T’

Ext!(Zy,Zz(V)) = HYS,Ext' (Ty , I2) @ V) + HY(S, Hom(Iy,Iz) ® V).
We have an exact sequence

0— Iz — Hom(Iy ,Zz) — Hom(Oy,0z) — 0.

So, tensoring by V, taking the long exact sequence of cohomology and using the vanishing of
HY(Hom(Ty,Iz) ® V) and H'(Hom(Oy,0z) ® V), we get in the fepresentation ring of ' the
identity
HYHom(Ty,Iz) @ V) = HY(S, Iz @ V) — H (Hom(Oy,0z) @ V).

Finally we use the sequence 0 — Iz Q@ V — V — O ® V — ( and the vanishing of H°(S, V)
and H'(S,0z ® V) to replace H'(5,Zz @ V) by H(S,02 ® V}+ H'(S, V). This shows the claim.

We denote by F the virtual I-sheaf £xt'(Zy,Zz) + Oz — Hom(Oy,Oz). We have to show that
HYS, FQV)=5 2, V(pi) - Ep, q,(ai, ;). If we denote by F; the part of F with support p;, then
HYS,F@V)=51, H°(S,F; ® V). We can therefore assume that supp(Y) = supp(Z) is one fix-
point p. Let £ and y be coordinates near p as before and R := Clz,y]. Let J := (y%,zy%,...,z""})
(resp. I := (y*,zy>,...,z 1)) be the ideal of Y (resp. Z). We denote by F the virtual R-T-

module corresponding to F. In the representation ring of I' we have
HS,F@V)=F V(p).
So we finally have to show that in the representation ring of T we have F' = E(q, .. a,),(bo,...60}{As 1)
The exact sequences
0 — I — Hompg(J,I) — Hom(R/J,R/I) — 0
0—1—R— R/I—0
give FF = Extp(J, I} — Homg(J, 7) -+ R in the representation ring of T'.
“ollowing [E-S1] we denote by Re, ] the ring R with T-operation defined by ¢(z'y/) := o=y F.
We put Ag := @i, Rli,ai], Bo := Do Bl bj], A1 = Di- Rl ai-a], Br = @), R[j, aj-1].



Then we have I'-equivariant free resolutions 0 — A; — Ag — J — 0and 0 — B; — By —
f — 0. So the total complex

Al @ BI—AY © Bi® Ay ® B — A) ® Bo

associated to the double complex Hompg(A,, B,) computes the Exth(J, I}, hence F = R+ AY ®
B1+Ag®B{]—A5®Bl—A\{®BU.
Again following [E-S1] we write n; 1= (i,a;_1), di := (i,a;), m; = (7,b5-1) and e; = (j,b;).

Then a calculation analogous to [E-S1] shows

F=R+ Z R[Ej—ﬂ,']— Z R[m_,-—n,-]— Z R[Ej—d,']+ Z R[mj—dl'].

0353 1255 o%itr St
Putting
Kij; = R[m; —di-1]— R[m; — n;] = Rle; — di—1] + Rlej — ni),
Li; = R[mi—~d;] ~ R[m; — nj] - Rlei_y — dj] + Rlei-y — nj],
a calculation analogous to [E-S1] gives
Gi—1 b;‘—-x
F= Z (Kij+ Lij), Kij= E Xmi=lybimi=e=land [ o = Z Moo
1igisr 1=a; s=b;

and the result follows. O

We want to use the easy fact that representation of cohomology classes is compatible with equiv-
ariant pullback: Let X and Y be smooth projective varieties with an action of C* with finitely many
fixpoints and let u : X — Y be an equivariant surjective morphitsm. Then g induces a morphism

ulpy : Fx — Fy.

Lemma 3.3. f € Op, represents a cohomology class ¢ € HI(Y, QJ) tf and only if (ulF, )" f repre-

sents p*c.

Lemma 3.4. Let o« € H*(S,Z) be a class represented by f : Fs — C. Then & (see 2.5) on
Hilb*(S U S) is represented by

m

F i Pam(d) — C,((P), (@) = [T (mi + ma) (o),

i=1

where P; € P(n;) and Q; € P(my).
Proof. Let
Hilb* 4(S U S) i= {(Za=1, Za) € HilL*H(SUS) x HIlbY(SUS) | Za-1 C Za}
with the reduced induced structure. Then Hilb?~1¢(§'U S) is smooth and we have a diagram
Hilb%(S U §) 2 Hilbd24(S L §) (S U S) x Hilb* (S U S)-1>S x Hilb™ 1 (SU S)

Here v is the biowup along the universal family Z4(S US) [E] and 7 is induced by the identity map
on S and Hilbd(Sl_I S). 1t is easy to see from the definitions that ¢*& = ¥*5*(pia + p3&), where py
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and p; are the projections of $ x Hilb?~(SL1S) onto its two factors and & is the class corresponding
to @ if we replace d by d — 1. It is easy to see that ¢, ¥ and 5 are equivariant for the natural lifts of
the action of I on S, furthermore the fixpoint sets Figne(sus), Fribe-1.4(sus) and Fs y Hilbe—1(5U5)

are all finite. In fact we can identify
Fhipe-14(505) = {((S.-,T}), (Fi, Q%)) € Pan(d — 1} X Papu(d) | P > Si, Qi > T; for all i},

where for partitions P = (a1,...,a,), @ = (b1,...b;) we denote by P > @ that a; > b; for all 1.
Obviously Fgypipe-1(sus)y = Fs X Pam(d—1) and with this identification ¢ and 5ot are the obvious
maps. Now, applying lemma 3.3 to ¢ and 7 o 1, the result follows by easy induction. [

We can now put our results together:

Notation 3.5. Fix a one-parameter subgroup T of I'. Let £ define a good wall on S. For any line
bundle L on S denote by w;(L) the weight of the induced action of 7" on the fibre L(p;). Let L1 and
L3 be two line bundles with (L, - L) = pt (e.g. if S is a blow up of P; then we take L; = = H).
Furthermore denote by w(z;), w(y;) the weight of the action of T on z;, y;. We denote for partltlons
P = (ag,...a,) and @ = (bg,...b,) of numbers n and m

8j-1-1 bj—1-1
Fpg(u,v) = H H (i—J—1Du+(bicy —s—1)v) H ((F —Du+ (8 —aiz1)u)
1<i<jigr 2=a; s=b;
aj-1—1
Fpolwoty = [ J] Q+=(G-5-Du+(bicy—s—1v+1)
1<i<j<r s=a;5
bj_l—].
IT (0 2(G = Dust (s~ aim)v -+ 1)
s=bj

By lemma 3.2, when putting the correct weights ¥p g(u,v) will represent the top Chern class of
Hilb%(S U S) and F§ g(u, v,t) the total Chern class of Ext;(Iz,,Iz, Qp'V).

Theorem 3.6. Let ay,...,an_2r € H2(S,Z). If T is sufficiently general, then

55(0102 o .QN_erif) = Coeﬂ;:d ( Z
((P:),(Qi))EPIm (d)

(Nﬁr (<€, ag)/2+ i wi(one) (ni + mi)Z) ( - 1/4+ i wiLy)wi(La)(ni + m!_)zz)" '

k=1 i=1 i=1

(H (F(P.,P. zi), w(w)) Fq.,q. (w(@:), ww)) -

-1
Fg, qi(w(z:), w(wi), —wil§)) Fp, o, (w(zi), w(w), —wi(€)) + wi(f\’s))) ) :

Proof. The Chern classes of V¢ = Exté (Zz,,Zz,®p*V) are the same as those of the virtual bundle
Ve — H(S,V) ® Or,. Therefore the result just follows by putting together lemma 3.2, lemma 3.4

12



and applying the Bott residue formula 2.12. Notice that T is sufficiently general if none of the

denominators vanish. [J

This formula can be implemented as a Maple program.

4. THE DONALDSON INVARIANTS OF THE PROJECTIVE PLANE

In this section we want to compute the SU(2)- and the SO(3)-invariants of the projective plane
P5 by first computing on the blowup ﬂiz and then using the blowup formulas.
In order to get started we need the following easy result of [Q2]:

Lemma 4.1. Let § be a rational ruled surface, F' the cluss of a fibre und F the class of a section.
Fiz (c1,¢2) € H2(S,Z) x HY(S,Z) with {c1- F) = 1. Then, for all € > 0 which are sufficiently small,
we have Mpycgp(c1,ca) =#. In particular we get for N := 4¢y — c? — 3 that ‘I>S F+EE =0.

We will denote by E the exceptional divisor on @’g and by H the (pullback of) the hyperplane

class on 5.

4.1. The SU(2)-case. We first consider the SO(3)-invariants on P, with respect to Chern classes
(F,c2) and put N :=4cz —3. For 0 < € << 1 the polarisation L, := H — ¢F of @2 lies in a chamber
of type (E,cz) which is related to the polarisation H of Pa. Thus (2.7.1) gives

l’a,ll (HN -2r tr) = (I,E‘a,ﬁ;l(EHN-?rptr)'

On the other hand we know by lemma 4.1 that QE’){;Q_; =0,for L1 := H—(1-¢)E. Thus we get

S (HN T pt) = Y0 (<L) N (AN L),

Py _
EEWR (H—EH)

where PVE %, — B, H) is known by remark 2.10. Now we compute the 8¢ N1 (EHN=%pt") with

a maple program using the Bott residue theorem (i.c. theorem 3.6). For N := 4¢ ++ 1 we denote
An = Z@r””(HN ijt;p)hN ZJPJ

Then our result is:

Theorem 4.2. The SU(2)-invariants of P, are

3hn 13 p3h 15ph7 11 p7h% 141 57K 870 p%h
A1=—T,A5=h5—ph3——§—,.49=3h9+ f: ~ B - rd - 2;:,,,

16 64
2;9 Ip7 458 S 3 -3
A3 54 R13 24?’111 ; 159;: h slp°h 459 p*h 1515 p°h 6675 p~h

’

18 128 756 4006
2;13 3,11 4,9 B, 7 A, 8 Tpd ]
A7 = 2540417 4 694 ph!S 4 BT A0 | 2251p AT L 2711 pth 5pth 3355 ph 143725 p’ A 850265 p®h

2 16 64 I 256 8192 37768
Agy = 233208 K2 + 45912ph1® + 10626 p3A17 + 3036 p2A1% 4 1L102pIRT 4 1741 ptall | s619p%0° _ Z09TopTAT _
= 32 4 64 1024

784141 pB4% 904238 p®A? _ 10504593 p'%h
16384 16384 13167 ’
25 , 21975543 ph 15224337 p3pa! 12150687 p3h1® 11618625 p*hl7 15077511 pPhi®
Ags = 35825553h%° + +

1 4 256 024
19602561 p®hld | 20676279 p”h?l 11107665 E‘he _ 28437201 pahﬁ 169509159 p‘ohi 757633329 pll‘ h* 4334081031 p'?h

4096 18384 65538 262&[435 1048, 7523 41948‘0 - 16773211% 4
Agp = 8365418914]129 + 10473424101)}127 + 1157569671 p*h + 357034013 p*h + 499786308 p*h + 25508258 g7 h

8 e 128 32
423516455 pSh17 | 2455768651 p7H!S | 537423737 p*Al3 | 118590907 pPall 131286019 pl%h% 498848855 p11aT

2048 4006 32768 32768 524288 - 1048576 -
4800905323 p'T4% 2551074181 p'®A% 115237180987 p'ih
BIE8608 4194304 134217728 ’
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299 3,27 4,25
Ass = 2780195996868 133 + 293334321858;’}131 + 07261095005 p”h + 67530801519 p~h + 3748040483403)) h

2 16
1455758501 pS K33 - 258640401 p R 4 14239101477 p h'® 4 14274421501 pial? + 7430040919 p h!5 | 7179481275 p1OR13

16 16 4096 18384 32768 131072
10830752675 pl Al 218792340 p'?h® _ 8125524657 p' K7 _ 34310453867 p'*h® _ 561808608080 p!®h® 3135392459541 plth
1048576 4164304 4194304 16777216 268435456 1073741824 !

3
Asr = 1253558847090600h%7 + 114049802084088 ph®5 + 11151310348527p2 £33 + w +
4330247481231 p*hI? 4 136302640308 pPh7 + 19010808303 p9hr38 + 5989251539 p’ 33 + 560820060153 pih?! +

32 8 [ 16 8102
120608801387 p®Al1® 4 327818311885 ponlT | 108448319625 p'!hl® | 380576939595 pl34l3 | 30800598425 pl3nKll
8102 0553¢ + 131072 2007152 + 1048576 -
24269489295 p'h® _ 128245327218 p'%hT 3058008534873 p1®K® 3928400321367 plTad 43427017514031 p'th
8358608 16777216 536870012 - 536870912 - 4284967286 '

2,37 A, 25
Aqy = 739328941273642584 k%1 + 59025071651407086ph30  10043809491097141 p_h _ 4 365T600TOTOI4TATp h— 4
1431875545375857 pih®® 4 805936823728685 pSh! 4 279056393051655 poh2® 4 141081414974709 p h37 +

204

32 128 512
79278076181247 p® K0 4 0786721057147 p* R 4 3772084112561 plop3! 4 3162977564135 ptlal® 4 28182330798381 plial’? +

8192 32768 131072 524288 2007162
24970018823121 p?34l8 | 20134588411731 p!*h!3 | 10820868897921 p'5h!l 0000087184020 p'®h?  6377238235648%5 pl7HT
83BE608 + 33884432 139217728 - 536370912 - 2147483648 -
230109186457887 p'®h®  891115248823257 p'®h%  4881669867807723 p?°h
8589934592 - 34359738388 137438953472 !

Ags = 554194295294679879984 A1% 4 39362065900726633066ph*% + 2959973227900487391 p2At! 4
472790505509415927 p>h3® 4+ 321971749330669677 p*rd7 + 29333848336377675 p5Aa°>° 4+ 45985006658603745 phd3 +

2 T
9746506854402795 p' h 1

16 16 256,
9002198884193567 pdh3® 4 2858709611488323 p*h?7 4 2602166222135403 plPRI0 +

512 + 1098 1024 68536
844639104181119 p'1p23 4 1247328861 178067 plin3t 4 253908840831825 p!3R1? + 855800427325917 plial? +
131072 1048576 1048576 16777216,

358809084455699 pl%hlt + 532554096813723 pl&h!d + 28716335828749 p' 74!t 308090966021613 p'Ba®
33584432 268435456 134217728 - 4294967296 -

983201250012705 p'®h7 _ 6735895639287969 p2°h®  51089630811025563 A  1110523927325938473 p33n
8589934592 687194 36 549755813888 8796003022208 '
Aqg = 515844680321852815028832 k49 + 32961783591325975299120ph*7 + 2217961739175425919036 p2 h5 4+
3151338785838666826003 p>h*Y | 04814551550640933927 p*htl | 3787623211889821185 p®hd® | €45212007742318605 p® K37
+ + + 5 +

2 B Pl
3765282218097607935 pT A3S + 14775318681770819818 p®h32 + 313704615563382465 p®h3) + 145420138664361261 p"’h”_l_

512 2043 066 16334
148925406295325835 p'ial? 4 8566847106921755 pl3pdt + 13954513249092609 p'3n3® 4 10148090043310371 plin?t +
131072 524 524288 2097152

31811088804006807 p'Bh'® | 25711043256475155 plChl” 4 lp1680t44 10124383 p'Th1® | 7042540338027723 p' 8413
33554432 + 134217728 268435456 1073741824 +
4488743637561879 p'Phll  14409338464147941 p?0h°  30196613342204885 p31h7  198302485810791933 pIT4S
8589934592 34359738388 88710476736 - 549755813888
5D11762450020857199 p° A% 3189112050276732425t p *h
17592186044416 - 703687441 77664 :

Remark 4.3. Note that the coefficients of the monomial hN=%9pf of Ay are not weli-defined for
J > (N —5)/4 because they do not lie in the stable range. We would like to thank Dieter Kotschick
for pointing this out. One might however view the above formulas as a definition of these addititonal
terms. One also sees that many of the invariants out of the stable range are negative whereas all

those inside the stable range are positive (this was also pointed out to us by Dieter Kotschick).

4.2. The SO(3)-case. We consider first the SO(3)-invariants on P, with respect to Chern classes
(H,e3), and we put N := dey —4. For 0 < € << | the polarisation L, := H ~ ¢E of Py lies in a
chamber of type (H,cy) related to the polarisation H of Pa. Thus (2.7.2) gives

o5 (N2 ptT) = ofpe (AN pt").

Putting L;_¢ := H — (1 — €) E we obtain @?’L"'(HN_zrpt") = (. Thus we get
@E{:,H(E{N—%ptr) - Z (_l)eg_NéslN(gN—%pir)’
EEWA, (H-E,H)

and, using lemma 2.10, we can again carry out the computation with Botts formula. For N = 4i

we denote
2i

By 1= 2% Z fb:f’H(]"lN_ szij)hN_ Gl
i=0



Then we obtain:

Theorem 4.4. The SO(3)-Donaldson invariants of Py are

Bo=1,Bq=3h* +5h% + 19p?, By /8 =29h8 + 191%p + 17h1p? 4 23 h%p3 + 85 p*,

Bjya = 69525h12 4 26907 h10p + 12853 h3p? 4 7803 A% p3 + 6357 hip? + 8155 Ah2p® + 20557 p8,

Byg /8 = 6231285h18 4. 1659915h19p 4 519777 h12p2 4 194439110p% 4 88701 Afp* + 51027 h8p5 4 39763 A1 p8 +
495194%p7 + 1768378,

Bao = 68081556995h%0 + 1357167512548 p + 3084569555h!15p2 + 808382629A14p3 + 247407779h12p4 +

89811541 40p5 4+ 39553139A% p® 4 21987589A%p” + 16652099h1p® + 20329653h2p° + 71741715p10,

B4 /8 = 19355926872345h2% 4 3046788353175 h%p + 535206161485 h20p? + 105824308635A1%p° -
2377434478548 p* + 6132120911414 p® + 1838332965429 4+ 651103923 4!%p7 + 279395017h8p® + 151590087 h8p® 4
112496445 A%p'0 + 135266965 h2p!! + 472659585p!2,

Bas = 536625215902182969h2% 4 69259301021976999428 p 4+ 9817859613586809A2% p? + 1538955926660199h72p% 4
268722697637049 h20p4 + 52689438785319A18p3 + 117029947893694%p8 + 2974340336103A14p7 +

875889126201 A'2p8 4+ 304140743847Ah10p% 4 127923966585 h8p!0 + 68135251815 k8p!! + 49776298426 h1p12 +
§9127015975 A2 p!3 + 204876497145p!1,

B3z /8 = 332465777488176686045 h3? 4 36176961518799287203h%%p 4 4270043660627526777h28p? +
550013108311246927h%6 p3 4 77722220365607813h24 p? - 12129004922528395h22p5 -+ 2104879834580993430p% +
409294250644727 1857 4 BD934657950957h18p® 4 22556396083123414p? 6542216760905 112510 +
2235172850335A10p!! 4 925169690645Ah%p!2 4 485534741275 h%p!t2 4 350230091345h* ptt 4 411833933095 h2p!5 4
1416634092797p'6,

Bag = 17982292064097834276691197 h3® + 1685376850354867108198203 %4 p + 169728914674713290425549 h32p3 4-
18446964561578451602667 h30p3 + 2174127485943121961373 h28 p* + 279319741333450241435h28p5 +
39339602087475090285 h24p% + 6111138005878747467A22p7 + 1054025359144892989h20p8 4+
203321142108471291h13p® 4 44233113780975117A18p!® + 10964566444466603A14p!! + 3139014782527197h12p12 +
1058019835991643A10p13 4 432158763674797h8plt + 2240427785980234%p!% 4 159901382125437h4p18 4
186411458197691 A2pl7 4 637107121682253p!8,

Baio/8 = 19983831593150830258093037499h*0 4 1640698532032417214980201941 h38p +
143617787626796457582947271 438 p? + 13451663520190802994423761 h31 p® 4 1353428584063925323593987 h33p4 4
146907352128976242766365 h30p° 4 17282999997688436388975 h38 p® - 2214864601846913417145h20 p7 +
310874334747308389131 h%4p8 + 48070219333713236901 h%2p? 4 8241254396581 7676394%0p10 4
1577751227160324321 A8 p!! 4 340134212696649171 A18p12 | 83440287229631085Ah14p!3 +

23620202992955391 h!2p!1 + 7869891016663881410p1% + 3178622018644050h%p!9 4 1630875748081260k0p!7 +
1153440155417319A%p1% + 13346132233274734%p1% 4 4535236702668195p20,

Bys1/8 = 226001192268190530686926056861797 A** 4 16542462134525153318253326085835 h'2p+
1277706977403778580365852666661 A0 p? + 104862798979925329727378003659 h38 p +
9174416297780080293761973989 h30p?* 4 858689743856030000767365835h%4p° +
86310585758469215596920485 £32p° 4 9355633875773319246298315 A3 p7 + 1098557533992391977544805 h38p8
140418552503311458801355 h2%p® + 19640467303990766625317 124 p10 4 3023185118099492260555 k%% p!! +
515310612119604105701 A2°p12 4+ 97958161753206459659h 813 4 20043663715791766949A8p!1 4
5090445779293122763A14p!® 4+ 1426864216020459365A4'2p!% + 4706727238500687794!%p!7 +
188268520044707621 A% p18 4+ 95733138877112011A8p19 4+ 67173305015551205h1p20 4 77210866621686475 h2p?! 4
261019726029655205p%2,

Bys /64 = 401623524463671616144253869033873677 h18 4 26294000028509419866433950400817907ph16 1.
1814139310232228402229320933713849p2A14 + 132233743700306798807714195145903 p3 k12 4.
10210502184961866655190088128661 p? h4° 4 837650587235073991054920612155 p® h%8 4
73245138148540706205679224225 p® A3 + 6850202117661264825075213975p7 h34 4
687815006512629065815416005p% 432 + 74447573563889724907246275 p? h30 4 8724562938113746968261705p10h28 +



1112238016349638764497855 p' 1 h?® + 156030522200663787180517p'2 h34 . 23757432754397656762251 pl3 432 4
4027259666817871766449p4h%0 4 760537452815605217703p!5 A% 4 161380994483655259053p18 116 4

38900268404 1988606891 p! Th1t 4+ 10809116358008226777p 8 h12 - 3534337177561668959p 12 A10 +
1401766305125084725p2% h% + 707191549935960795 p?L h® + 492754565374149825p22 h* 4 563040363143655095 p23 A2 4
1894476461608956285p2%.

Conjecture 4.5. For all n there is a nonnegative integer I(n) such that By, /2'™) is a polynomial

tn h and p all of whose coefficients are odd positive integers.

Remark 4.6, By to Bis were already computed in [K-L] also using blowup and wall-crossing for-
mulas, showing that P; is not of simple type. Apart from slightly different conventions their results
agree with ours. Their results and the computations of the SU(2) invariants by various other authors
have been quite useful to check the correctness of our programs — and thus of the computations in
section 3 — in earlier stages of our work. The conjecture above could already have been made on the

basis of their result.

5. WALL-CROSSING FORMULAS

In our paper [E-G] we formulated a conjecture about the shape of the wall-crossing formula,
compatible with the conjecture of Kotschick and Morgan [K-M]. Here we state a slightly stronger

form of the conjecture which is also supported by the computations in {E-G].

Conjecture 5.1. In the polynomial ring on H*(S,Q) we have

d
N —2r)! -2y F N—2r—2d+2k _d—k
5,__f§: N,d,r K2 LY 2~
o — (N — 2:—2d+2k) a— o Ks)Lesy I

where Qx(N,d,r, K%} is a polynomial of degree k in N,d,r, K2, which is independent of S and €.

We now will show, that, assuming the conjecture, we can compute several of the Qx (N, d,r, K2).

This computation will also give a check of the conjecture in many specific cases.

For all ¢ > 0 we put

—2d + 2N + 2K? — 24r 4 13438 9d + 2N + 2K2? — 24p 4- TE3
P;(N,d,r,](z)::( N+ T el "+2).

2 k N
; )+(3N 288:)( i_ o

Proposition 5.2. If conjecture 5.1 is true, then for i = 0,1,2,3,4 we can write @Q;(N,d,r, K?) =
Pi(N,d,r, K*) + Ri(N,d,r, K*), where Ri(N,d,r, K?) =0 fori <2 and

Ry(N,d,r, K?) = 82

R;;Ndrh‘) —13d+29N+17K2—5452r+91,

2 2
Ra(N,d,r, K?) = 38& _ 904N _ 81d(K%) 4 10809 gy 4 J8LN | LSNIKE) _ 19050 yp 4 STUKD

?) =
10898 (K2)r+1 698‘%6 2 53;d+%+?6_1g<_’1 146495 +7?gg5.




Proof. We assume conjecture 5.1. Let X =[Py x P; or a blow up of Py x IP; in finitely many points.
We denote by F' and ¢ the pullbacks of the fibres of the two projections [rom P, x P; to [P;. For
aclass £ = F — sG in H%(X,Z) defining a wall and an integer d > 0, let N := 4d + 25 — 3. Then
on X we can determine the coefficients ax of Lg;z’""‘d*”‘qf\-‘k in é¢ n,r as follows: We can assume
that X has an action of C* with finitely many fixpoints as in 3.1. For z an indeterminant we put
a := —zF + G and compute the polynomial &g n . {a’¥=?")
H]lbd(X U X), from which we can compute the a.

Now we can compute the polynomials Qx(N,d,r, K%) as follows: We consider all nonnegative

integers d,w,b,r with d > k and d + w+ b+ r < 2k. Let X be the blow up of P; x Py in b points.
of Lg’;2r—2d+2kqld\'—k in

in z using the Bott residue formula on

With the method of the last paragraph we compute the coefficient cg.u 0 r
de Ny on X, where N :=4d+ 2w+ 1 and £ = F ~ (w+ 2)G. Using all the cq 4 5, we obtain a
system of (k1'4) linear equations for the coefficients of the Nidr*(K2)* (with 0 <i4j+t4+s5< k)
in Qx(N,d,r, K%). Solving this system of equations we obtain our result. All the computations are
again carried out using a suitable Maple program. O

The formulas suggest the following conjecture:

Conjecture 5.3. (1) For all i the polynomial Q;(N,d,r, K?) is of the form Q;(N,d,r, K?) =
Pi(N,d,r, K%+ R;(N,d,r, K?), where Ri(N,d, r, K?) is a polynomial in N,d, r, K? of degree
i—2.
(2) If we view Ri(N,d,r,K?) as a polynomial in N,—d,—r, K2, then all ils coefficients are
posttive and the same is true for Q;(N,d,r, K?).

Proposition 5.4. If conjecture 5.1 and part (1) of conjecture 5.3 are true then

Rs(N,d,r, K?) = 11 (K2 + 57 (K?)’N — 25 (K%)°d — 10892 (K2)*r + 90 (K2) N2 — 98 (K?) Nd —
24088 (K2) Nr + 17 (I2) d? -+ 21592 (K?) dr + 339600 (K2) r + 44 N3 — 82 N2d — 13304 N?r +

41 Nd? 4 23896 Ndr 4 363792 Nr? — 3d° — 10700 d*r — 338448 dr? — 2525760 3 + 198 (1"(2)2 -+
T44 (K?) N — 276 (K?) d — 303600 (K?) r + 618 N2 — 612 Nd — 333888 Nr + 78d? + 301008 dr +

5457888 r2 + 1213 (K%) + 2506 N — 729d — 3101884 r + 2490,
a4 23 I 3 2
Rs(N,d,r, 1{2) - 65(112) + 113(1; YN _ 49([(:; yd 21772:(:(’) r + 179(K2) N2 -97 (1{2)2Nd—

24076 (K 2)°Nr + BEDE 4 91580 (K2)2dr + 339528 (K2)?r? + 22EANY _ 163 (52) N2d-

26596 (/(2) N2r + 81 (K2) Nd? + 47768 (K2) Ndr + 727440 (K2) Nr? — KDL _ 91388 (K'2) d2r —
676752 (I(2) dri—5050044 ([2) r34 368N _ 24774 29332"’3’+147”"“’ +26404 N2dr+389208 N2r?—
85N> _ 93692 Nd2r — 725136 Ndr® — 5327424 Nr® 4 & 4 BUSSLr 4 337994 422 4 5041728 dr® +
24147648 r* + S2L(K%)] | UITCKPYN _ ses (KT _ 314198 (K?) r+ 1306 (f2) N2 — ZOTENd
691258 (K?) Nr+M—li-+623020 (K?) dr+11250984 (K?) r2 4 187N _ 1154 N2d—380192 N2+

2,3
207N | 685504 Ndr+12076284 Nr2— 54> 308892 dr — 11204904 dr2—93985056 r4 249K,
529411(1{ )N 48265(K )d 156135031(K’)r+944107N° 134657 Nd 1706a1209Nr+41627d’+154931089dr+

24 — 192 32 24 192 24
538005841r + 1027343(K’ + 5033035 N _ 4067994 _ 1032193219r + 7872921
4 192 384 192 16 1024 -

Proof. The method of the proof is very similar to that of proposition 5.2. Using conjecture 5.3 we

can reduce the number of equations of the linear system we have to solve. For the computation of



Ry we have in the notations of the proof of proposition 5.2 only to consider d, w, b, 7 with d > k and
d+w+b+r<2k-2. O

Proposition 5.5. Assume conjecture 5.1. Then for d < 8 and K% = 8 also conjecture 5.3 holds.
Furthermore we have

Rq(N,T,r,8) = H2N° _ 16136N 4 977980 N3r2 — 5613696 N2r3 + 50448384 Nr1 — 843153108r%
584 N — S28104N7r | 14133648 N2r? — 215219520 Nr® 4 1068715008 r* 4 £2289N° _ 27036430N"r
327411912 Nr?— 2834114784 r3+ 55637 N2 — 49LTLL9T2NY | 345317(368 -2 4 D432TSLN _ 7607891523y 4
226878,

Ry(N,8,r,8) = N> _ IS186N'r | 977980 N3r2 — 5613606 N2r® - 50448384 Nt — 84315340807
526 N4 — 86734;‘”“ + 13357680 Nr? — 204584256 Nr3 4 1020478464 r 4 4054TNT _ 24608014N7r
301879416 N.,,.Z__ 2636445408 ?.3_|_ 8536251'\3'2 _ 44438!53[]761\’:- 1 3161672456 1‘2+ 198912553N _ 68956206921" +
162324,

Rg(N,8,7,8) = S9N° _ 38428N%r 4 147976 N4r? — 3940224 N33 4 52663680 N2t — 174992486487 4
4618156002, +”993N 164166 N4r+9819288 N3r?—222171264 N2r-4+2193801408 N 308857946887

342165491'\:"‘ 75235799N°r+675173309N° - —5810679060 N r34+32006797596 r4+9540439N3_678142435N=r+

12 2 192 4
28388710281 Nr? 646487951 N2 602240211743 Nr 11796298005871 r2 10191068747
I S 68700098862 1‘ + 2860 - 192 + 160 + 18360 -

19195182347591r + 23061793325
640 32768

Proof. The method is again similar to that of the proof of proposition 5.2. Now we carry out our
computations on X = P; x P;. In the notation of the proof of proposition 5.2 we have therefore
b = 0. For the computation of Ry we consider nonnegative integers d, w, r with d+ w+ r < 2k and
k<d<8 O

Proposition 5.6. Let S be a rational ruled surface, then for N < 40 and d < 8 the conjectures 5.1

and 5.3 are correct (and therefore also all the formulas above).

Proof. Any rational ruled surface X is a degeneration of either or P} x Py or fﬁ’g, and under the
degeneration the ample cone of X corresponds to a subcone of the ample cone of Py x P; (resp. @1)
Therefore it is enough to prove the result for ') x [P} and ﬁ’z. We let ¢ run through 0, F, G, F+ G
on Py x P, and through 0, H, E, F on B, (F=H-FE). For S=P;xP,and § = ]']52 we consider for
all integers d with 0 < d < 8 the set W 4 of all classes £, which define a wall of type (c1, c2), such
that N :=4d — €2 — 3 < 40 and (£ - F) < 0. It is easy to see that

Weibrd = {.s:aF-bG|a>0,b>0,2ab540-4d+3},

Wea = {€=bH—aE|a>b>0,a2—62540—4d+3},

For all d < 8 and all £ € Ws 4 we again compute all the coefficients of LN 2"'2‘”2*(]3 ¥ with the

method of the first paragraph of the proof of proposition 5.2. 0O



6. THE DONALDSON INVARIANTS OF BIRATIONALLY RULED SURFACES.

In this section we will show that our algorithm for computing the wall-crossing formula & » and
the blowup formulas enable us to compute all the Donaldson invariants of all rational surfaces X

for all generic polarisations lying in a suitable subcone of the ample cone of X.

6.1. The case of rational ruled surfaces. In this case we can indeed determine the Donaldson
invariants for all generic polarisations. For simplicity we will only compute the restriction of the
Donaldson invariants to Sym®™ (H5(S,@Q)). In [K-L] some invarianis of Py x P; have been computed
also using blowup and wall-crossing formulas. Their results show ¢.g. that there is no chamber, for

which Py x Py is of simple type. Our results again agree with theirs and earlier results e.g. in [L-Q}.

Theorem 6.1. Let S be a rational ruled surface, F' the class of a fibre and qg the quadratic form on
Hy(S,Z). We denote by F, the polarisation F+¢E, where I is the class of a section with nonpositive
selfintersection.
(1) For e > 0 sufficiently small we have fbgf{, =0 and ‘I’%f%'.N =0.
(2) For € > 0 sufficiently small we have for Ex := ‘I'Os"ﬁ‘lo:
By = -L% +5/2L%qs — 5/2Lrq%,
Eg = 40L% — 108LL¢s + 108L3.9% — 42L%q3,
E13 = —9345L13 + 26949LY g5 — 31590L%¢% + 18018L%q3 ~ 4200L%.q%,
E|7 = 7369656 LT — 22136040L1%g5 + 28474320L1%¢% — 19734960L 1 ¢% + 7425600L% 4% — 1225224 LT3,
E2) = —14772820744L3! 4 45586042992L %95 — 62181472500L}7¢% + 48231175860L 5¢% —
22562971200L13¢% + 6071420688 LY ¢4, — 740703600L%.43,,
Es = 63124363433664L2%° — 198545836440000L %5 + 281925714232800L2 g2 — 235199340734400L %03+
125056219068000L 1% — 425882148756360L % + 8649138960000L 39 — 8131367376001 1147,
Egp = —509894102555251905L%° + 1626742370158553130L% g5 — 2378321090033081112L%%¢% +
2087846466793743600L% ¢ — 1207966082767844400L3) o} + 47353065823201 3200793 -
123363365393268000L17¢% + 19623703000790880L 130T — 1467326424564000L 3%,
Es3 = 7135482220088837442520 L3 — 23016295766978863295760 L} ¢ 5 + 34404291587748659734080 L3P ¢ —
31360607908598315276160 L 0% + 19266231547036209415680 L340 g% — 8299005150626510918400 L3 g% +
2515398487826672448000 L2 ¢ — 519339581441771650560 L1 g% + 66567414222758592000 L1 ¢ —
4055565288690115200L4% 2.
(3) For € > 0 sufficiently small and all N < 33 we have, writing (Dgl'ﬁ‘)o as a polynomial En(LF,qs)
in Lp and gg,

3N o = En(Lr,qs) — En(Lr/2,4s).

Proof. (1) 1s just lemma 4.1.

(2) and (3): We fix N :=4cp; — 3 with ¢; > 1. We will just compute the corresponding Donaldson
invariants explicitely. As any pair (S, L) consisting of a Hirzebruch surface § = X, and L =
aF + bF € Pic(S) (where E is a section with selfintersection —n < 0) can be deformed to either
(P, x Py, aF 4+ 6(FE — nF/2)) or Py, aF + b(E — (n — 1)F/2)) we see that we can assume that
S:ﬂ’;xﬂ”lorS:ﬁ\’zandcl:Forcl =0.
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(a) S =P, x Py, ¢; = F (we will always denoie by F and G the fibres of the projections to the

G+eF __ 0

two factors). By (1) we have for ¢ > 0 sufficiently small <1>,r,~:§,r" . Therefore we get

¢P1><P|. - _ Z (_1)86’N65,N~

EewEFI(RG)
So the invariants can be computed using proposition 5.6 and remark 2.10.
(b) $ =Py, ¢1 = F. Let € > 0 be sufficiently small. By the SO(3)-blow up formula we have for
all @ € Ay_i(P2): R
i~ F(Ela) = 03" (Sifpt)e),
and the SO(S)-invariants of IP; have been determined in theorem 4.4. Therefore

Yy (Bla) = i (Sifpt)e) = 31 (<) w(Ea),

o~

EeiV (F'H)

So the sum can be computed using proposition 5.6 and remark 2.10.

(c) S= lf’g, c) = 0. Let ﬁg be the blowup of P; in two points with exceptional divisors E; and
FE,. Then ﬁz 18 also the blow up of P} x PPy in a point. We denote the exceptional divisor by E.
We denote by F' the pullback of F = H — E| from B, (which coincides with the pullback of F from
Py x Py). We have F = E; + E. We also denote by G the pullback of G from Py x Py and have
G=E,+E Forl>>e>>u>0,let H:=F+eG—puE and Hy:= F+ eG— (e — u)E. Then
Hs is a polarisation of @2 which lies in a ( Ey, ca)-chamber related to the (0, ca)-chamber of F + ¢E)
on Py. Thus by the SO(3)-blowup formula we have

7 C '3‘ - —3 PQ, et ~ - -] Pg,}lg n - e = -‘
ERFTEFEN Ty = —@f R (EoFH (G - BNy = 2R L ((F = BYFH(G - YN,
We have

PhHl PJ.H: €4, N41
PRl E N — PR E N = Z (=1 8¢, N1,

wap B, cg(!,"’Hl)

and for ¢ sufficiently small is is easy to see that

WE? g oy (Ha, Hy) = {(2a = )F — (2b— 1)E

( —1)<Cz}

So @;"_’%’w“ @;”IE’NH can be computed by the Bott residue formula. Finally H; lies in a
(F — E, c3)-chamber on Py related to the (F, cg)-chamber of F + ¢G on Py x Py. So, by the SO(3)-
blowup formula (with exceptional divisor F), we get for a € Ayy41-i(P1 X Py)

PF (@B = ORI (0 (1)),

and the last is computed by the method of (a). Now we put everything together to get our result.
(d) S = IP; x Py, ¢y = 0. This case is very similar to (c), only with the role of PPy x IP; and @g

exchanged. We use the same notations as in (c). Now Hj is a polarisation of P, which lies in a

(E, e2)-chamber related to the (0, cz)-chamber of F + ¢G on Py x P;. Thus by the SO(3)-blowup

formula we have

B HO (GN) = et (B OV = 0Bl (P - B PP + By - B,
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We have

q,l'n,nx P, Hy _ (_1)35.N+1

ENt1—PENTL = d¢ N41,

EEWR?, (Ma,H))

and for € sufficiently small is is easy to see that

WEs (Ha, Hy) = {(2aF = (2= )E | b=1/2> a > 0,b(b— 1) < cs}.

So ‘b:jg}v”.h - CDE”J,{,{:_I can be computed by the Bott residue formula. Finally H; lies in a (E, ¢3)-

chamber on ﬁz related to the (F,cg)-chamber of F + €¢E; on ﬁ’z. So, by the SO(3)-blowup formula
(with exceptional divisor F3), we get for a € AN+1_;(@2)

Vi (@By) = O aSi(pr)),
and the last is computed by the method of (b). O

Conjecture 6.2. For S a rational ruled surface we have in the notation of theorem 6.1 for all
N =4cy — 3 withecg > 2:

(1) ¢g:§:0 and d>§."fv"‘0 are polynomials Eg n(Lp,qs) and Ep n(LF,qs) in Lp and qs, which are
independent of S.

(2) Eon(Lr,qs) and Ep n(Lp,gs) are divisible by LY.

(3) Fen(Lr,qs) = Eon(LF,q5) — Eon(LF/2,q5).

Remark 6.3. We keep the notation of theorem 6.1. Notice that theorem 6.1 and proposition 5.6
determines all the SU(2)- and SO(3)- Donaldson invariants of a rational ruled surface S of degree
at most 35 for all generic polarisations: Fix (cy,c2)} and put N := 4ey — ¢ — 3. If L is a generic
polarisation then
S S D W G D I
fvel .c,(F'L’)

This sum is given for N < 35 by theorem 6.1, remark 2.10 and proposition 5.6.

6.2. The Donaldson invariants of blowups of P,. We want to finish by showing that our
methods give an algorithm for computing all the Donaldson invariants for all rational surfaces X at
least for polarisations lying in a reasonably big subcone C? of the ample cone Cx of X. In [K-L] it
is shown that the Donaldson invariants of P; and P} x [P; can be determined from the wall-crossing
formulas on some blowups, and our results can be seen as a generalization of this.

A rational surface X, which is neither P; nor ruled can be deformed to a a blowup Pa(zy,...z,)
of Py in finitely many general points. Under this deformation Cx corresponds to a (in general strict)

subcone of the ample cone Cp,(z,,.. z,). We can therefore restrict our attention to X = Pa(z1,...2,).

Theorem 6.4. There erxists an algorithm computing all the SU(2)- and SO(3)-Donaldson invari-
ants of Pa(z1, .. .z,) with respect to all generic polarisations in a nonemply open subcone C9 of the

ample cone of Po(zy,...2,).
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Proof. Let S = Y;, where Yy = P; and Y; is obtained from Y;_, by blowing up a point such that
each Y; carries an action of an algebraic 2-torus with finitely many fixpoints satisfying conditions (1)
and (2) of section 3.1. This just means that each Y; is obtained from ¥;_, by blowing up a fixpoint.
We can deform S to Pa(z1,...2,), but under this deformation the good ample cone C% of S will in
general correspond to a proper subcone C9 of Cp(;,,  r,). Note that C?9 contains a neighbourhood
of the hyperplane class H. [t is enough to prove that there is such an algorithm computing the
Donaldson invariants of S for all generic polarisations in C.

Fix ¢; € Pic(S) and ¢z € H%(S,Z). Let N :=4cy —c? — 3. Let Hy and Hj be two good generic
polarisations of 5. Then by lemma 2.9 the set W, .. (H1, Hs) is finite and consists only of good
walls. Therefore
PIN=ON D (FUEew,

€eWS . (Hi,H3)
and all the ¢ x can be determined explicitely by applying the Bott residue formula. So it is enough
to determine <I’fl’i{.‘? for one good polarisation Hy. We will denote by E), ..., E,. the exceptional
divisors of S over Ps.

First case ¢; # 0. Denote ¢; = aH + b, E) + ...+ b E,, with each of @,b1,...,b, lying in {0, 1}.
We denote D; :=aH + 01 E1 +...b6; + E;

By reordering the E; we can assumea # Qorb; #0. Let F:= H—~FE;. Thenfor 1 >> ¢ >> d2 >>
... >> 6, the divisors H; := F+eE) —(§2E2+. . .+8; E;) are polarisations on ¥; lying in a chamber of
type (D;, c2) related to the chamber of type (D;_1,cp) of Hi_1 = F4eE1—(d3E2+.. . 6;—1 F;—1) on
Yi-1. So the blowup formulas give QB‘i’H‘(aEf) = ¢B‘f‘_‘;”‘"(aSj (pt)) il b; =1 (resp. @g‘i'H‘(aE';f) =
(I*:;"_“_ll'H“' (aB;(pt)) if b; = 0) for all @ € Any_;(Y;_1). The proof of theorem 6.1 gives an algorithm
for computing ¢B‘;H‘ (a) for all @ € A.(Y1). Thus by induction we get the desired algorithm.

Second case ¢c; = 0. Let S be the blow up of S in a point and let E be the efceptional divisor. By
the first case we have an algorithm for computing the Donaldson invariant Q'E'gf for a polarisation
H.=Hy—¢Eon$S lying in a related chamber to that of a generic good polarisation Hy of S. Then
the SO(3)-blowup formula gives ®;'%°(a) = @%’H‘(E‘a), and the result, follows. [
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