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o. Introduction.

0.1. From the geometrie point of view, the Kadom-uev·Petvituhvili (KP) equation$ are
best understood as a set of eommuting veetor ßelds, or fiow$, defined on an infinite­
dimensional Grassmannian [S]. The Grassmannian Grl (J.L) is the set of veetor subspaces
W of the field L = C((z)) of fonnal Laurent senes in z such that the projection W --+

C((z))jC[[z]]z is a Fredholm map of index J.L. The commutative algebra C[z-l] aets
on L by multiplieation, and henee it induees eommuting flows on the Grassmannian.
This very simple pieture is nothing but the KP system wntten in the language of
infinite-dimensional geometry. A striking fact is that every finite-dimensional orbit (or
integral manifold) of these flows is eanonieally isomorphie to the Jaeobian variety of
an algebraie eurve, and eonversely, every Jaeobian variety ean be realized as a finite­
dimensional orbit of the KP flows (MI]. Trus statement is equivalent to the claim that
the KP equations characterize the Riemann theta funetions associated with J acobian
varieties [AD].

If oue generalizes the above Grassmannian to the Grassmannian Grn (p) eonsisting
of veetor subspaces of Lffm with a Fredholm eondition, then the formal loop algebra
gl(n, L) acts on it. In particular, the Borel subalgebra (one of the maximal cornmutative
subalgebras) of the Heisenberg algebra acts on Grn (J.L) with the center acting trivially.
Let us call the system of vector fields coming from this action the HeiJenberg fiows on
Grn(J.L). Now one ean ask a question: what are the finite-dimensional orbits of these
Heisenberg flows, and what kind of geometrie objeets do they represent? AetuallYI this
question was asked to one of the authors by Professor H. Morikawa as early as in 1984.
In trus paper, we give a complete answer to this question. Indeed, we shall prove (see
5.1 and 5.8)

THEOREM A. A fülite-dimensional orbit oE the Heisenberg ßows defined on the Grass­
mannian oE vector valued Eunctions corresponds to a covering morphism oE algebraic
curves, and the orbit itself is canonically isomorpmc to the Jacobian variety oE the curve
upstairs. Moreover, the action oE the traceless elements oE tbe Borel subalgebra (the
traeeless Heisenberg Bows) produces the Prym variety associated with this eovering
morpbism as an orbit.

REMARK: The relation between the Heisenherg algebras and the covering morphisms
of algebraic eurves has been pointed out in [AB).

0.2. Right after the publieation of works ((AD], [MI], [ShI]) on eharacterization of
Jaeobian varieties by means of integrable systems, it has heeome an important problem
to seek for a similar charaeterization of Prym varieties. We establish in this paper a
simple solution of this problem in terms of the multi.component KP system defined on
a certain quotient space of the Grassmannian of veetor valued functions.

Classically, the Prym varieties associated with degree two coverings of algebraie
curves were introduced by Sehottky and Jung in their approach to the Schottky prob­
lem [SJ). The modern interests in Prym varieties were revived in [Muml]. It promoted
further studies of Prym varieties in the modern algebraic geometry setting [Be], [DS].
Reeently, the Prym varieties of higher degree eoverings have been used in the study
of the generalized theta divisors on the moduli spaces of stahle veetor bundles over
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an algebraie eurve [BNR]. A formula of [BNR] about the dimensions of the linear
system of the generalized theta divisors provides a matbematieal proof of tbe Verlinde
formula in the level one ease [Bo], whieh has an origin in eonformal field theory. In
this direetion, an inequality generalizing the fonnula of [BNR] has been established
in [L]. In the eontext of integrable systems, it has been diseovered that Prym varieties
of ramified double sheeted eoverings of eurves appear as solutions of the BKP sys­
tem [DJKM]. Independently, a Prym variety of degree two covering with exactly two
ramification points has been observed in the deformation theory of two-dimensional
Schrödinger operators [No], [NV]. As far as the authors know, the only Prym vaneties
so far considered in the context of integrable systems are associated with ramified, dou­
ble sheeted coverings of algebraic curves. Consequently, the attempts ([Sh2], [Tl) of
characterizing Prym varieties in terms of integrable systems are all restricted to these
special Prym varieties.

Let us define the quotient Gra3~mannian Zn(O) as the quotient spaee of Grn(O) by the

diagonal action of (1 +C[[z]]z) xn. The tracele~~ n.component KP ~Y3tem is defined by
the action of the traeeless diagonal matriees with entries in C[z-I] on Zn(O). Since this
system is a special ease of the traeeless Heisenberg flows, every finite-dimensional orbit
of this system is a Prym variety. Conversely, an arbitrary Prym variety assoeiated with
a degree n eovering morphism of algebraie eurves ean be realized as a finite-dimensional
orbit. Thus a charaeterization theorem of Prym varieties follows (see 5.14):

THEOREM B. An algebraie variety is isomorphie to tbe Prym variety assoeiated with
a degree n eovering oE an algebraie eurve if and only il it ean be realized as a finite­
dimensional orbit 01 tbe traceless n-eomponent KP system defined on tbe quotient
Grassmannian Zn(O).

0.3. An unexpeeted eonneetion between moduli theory of algebraie eurves and repre­
sentation theory of Virasoro algebras has emerged through the study of the Grassman­
nian Grl (0) of sealar valued funetions of index 0 [ADKP], [BS], [KNTY], [Wl]. The
relation between algebraie geometry and the Grassmannian comes from the Krichever
map of [SW], which assigns injeet~vely a point of Grl (0) to a set of geometrie data
consisting of an algebraie curve and a line bundle together with some loeal infonnation.
The Krichever eorrespondence was enlarged in [M3] to include arbitrary veetor bundles
on curves. The Grassmannian Grl (0) appeared onee again quite recently in eonnection
with the mysterious interplay of matrix models and the KP system (see for example,
[Ko], [W2l). In particular, it has been diseovered that the partition funetion of the
size N x N matrix model is a T-function of the KP system, and hence it determines a
unique point of Grl (0) [KM]. Even though the question "why KP, and why the Grass­
mannian?" is not answered in the eontext of matrix models, one can speculate that
the Grassmannian Grn(O) of vector valued functions should play an important role in
understanding the moduli spaees of eovering morphisms of algebraic curves. We note
here that the framework of Grn(O) gives us all algebraic curves with i-marked points
(1 ~ P. ~ n), while the old Grl (0) provides curves with only one marked point.

In this paper, we generalize the Kriehever functor of [M3] so that we ean deal with
arbitrary covering morphisms of algebraic curves. Let n = (nI,'" ,nt) denote an
integral vector consisting of positive integers satisfying that n = nl +... +nt.
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THEOREM C. For each D, tbe Eollowing two eategories are equiva1ent:

(1) Tbe eategory C(n). An objeet oE this eategory eonsists oE an arbitrary degree n
morpmsm f : Cn ~ Co oE algebraie eurves and an arbitrary vector bundle :F on
Cn. Tbe curve Co has a smootb rnarked point p with a Ioeal eoordinate y Mound
it. The curve Cn bas e(1 ~ f ~ n) smooth marked points {Pb'" ,Pl} = f-l(p)
with rammcation index nj at eaeh point pj. Tbe eurve On is Eurtber endowed
witb a Ioeal eoordinate Yj and a Ioeal trivialization oE :F around Pj.

(2) The category Sen). An object oE this eategory is a tripie (Ao, An, W) consisting
oE a point W E UpEz Grn(/-L), a "Iarge" subalgebra Ao C C((y)) Eor some Y E
C[[z]], and another "Iarge" subalgebra

l l

An C EB C((y1
/
nj

)) "'J EB C((Yj)) .
j=l j=l

In a certain matrix representation as subalgebras oE the Eorma1loop algebra
gl(n, C((y))) aeting on the Grassmannian, tbey satisEy Ao C An and An . W C
W.

The precise statement of this theorem is given in Seetion 3, and its proof is completed
in Seetion 4. One of the motivations of introducing a category rather than just a set
is beeause we need not only a set-theoretieal bijeetion of objeets but also a eanonieal
eorrespondenee of the morprnsms in the proof of the claim that every Prym variety can
be realized as a finite-dimensional orbit of the traeeless multi-eomponent KP system
on the quotient Grassmannian.

0.4. The motivation of extending the framework of the original Kriehever map to in­
c1ude arbitrary veetor bundles on curves of [M3] was to establish a eomplete geometrie
classifieation of all the eommutative algebras eonsisting of ordinary differential opera­
tors with eoefficients in sealar valued funetions. H we apply the funetor of Theorem C
in this direetion, then we obtain (6.14), (6.15):

THEOREM D. Every object oE the category C(n) with a srnootb eurve Cn and a line
bundle:F on C n satisfying tbe eobomology vanishing eondition

HO(Cn,:F) = H 1 (Cn,:F) = 0

gives rise to a maximal eommutative algebra consisting oEordinary differential operators
with eoefBcients in n x n matrix valued functions.

The only eommutative algebras of matrix ordinary differential operators known before
are eonstructed from loeally cyelic eoverings of curves, i.e. a morphism f : C ~ Co
such that there is a point p E Co where f-l(p) eonsists of oue point [Na, Appendix].
Sinee we ean use arbitrary eoverings of eurves, the algebras we obtain in this paper form
a far larger dass of totally new examples. As a key step from algebraie geometry of
eurves and veetor bundles to the differential operator algebra with matrix eoefficients,
we prove the following (6.6):
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THEOREM E. The big-cell of the Grassmanruan Grn(O) is eanonieally identiJied with
tbe group of monie invertible pseudodifferential operators with matrix eoeffieients.

Dnly tbe case of n = 1 of this statement was known before. Witb this identmcation,
we can translate the ßows on the Grassmannian associated with an arbitrary commu­
tative subalgebra of tbe loop algebras into an integrable system of nonlinear partial
differential equations. Tbe unique solvability of these systems can be shown by using
tbe generalized Birkboff decomposition of [M2].

0.5. This paper is organized a.s follows. In Section I, we review some standard facts
about Prym varieties. The Heisenberg flows are introduced in Section 2. Since we do not
deal with any central extensions in this paper, we shall not use the Heisenberg algebras
in the main text. All we need are the maximal commutative subalgebras of the formal
loop algebras. Accordingly, tbe action of the Borel subalgebras will be replaced by the
action of tbe full maximal commutative algebras defined on certain quotient spaces of
the Grassmannian. This turns out to be more natural because of the coordinate-free
nature of tbe flows on the quotient spaces. Tbe two categories we work with are defined
in Section 3, where a generalization of tbe Krichever functor is given. In Section 4,
we give tbe construction of the geometrie data out of the algebraic data consisting of
commutative algebras and a point of tbe Grassmannian. The finite-dimensional orbits
of the Heisenberg flows are studied in Section 5, in which the characterization theorem
of Prym varieties is proved. Section 6 ia devoted to explaining the relation of the entire
theory with the ordinary differential operators with matrix coefficients.

The results we obtain in Sections 3, 4, and 6 (except for 6.15, where we need zero
characteristic) hold for an arbitrary field k. In Sections 1 and 5 (except for 5.1, which
is true for any field), we work with the field C of complex numbers.

ACKNOWLEDGEMENTS: The authors wish to express their gratitudes to tbe Max­
Planck-Institut für Mathematik for generous support and hospitality, without it the
entire project would never have taken place. They also thank S. P. Novikov and
H. Tarnanoi for useful comments given to the authors in the early stage of this work.

1. Covering morphisms of curves and Prym varieties.

We begin with defining Prym varieties in the most general setting, and then introduce
locally cyclic covering8 of curves, which play an important role in defining the category
of arbitrary covering morphisms of algebraic curves in Section 3.

1.1. DEFINITION. Let f : C -+ Co be a eovering morphism of degree n between
smooth algebraic curves C and Co, and let NI : Jac(C) --+ Jae(Co) be the nonn
homomorphism between the Jacobian varieties, which assigns to an element L:q n q • q E

Jae(C) its image L:q n q •f (q) E Jac(Co). This is a surjective homomorpbism, and henee
tbe kernel Ker(NI) is an abelian su bscheme of Jac(C) ofdimension g(C) - g(Co), where
g(C) denotes the genus of the curve C. We call this kernel the Prym variety associated
with the morpbism f, and denote it by Prym(f).
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1.2. REMARK: Usually the Prym variety of a covering morphism fis defined to be the
connected component of the kernel of the norm homomorphism containing O. Since auy
two connected components of Ker(Nf) are translations of each other in J ac(C), there
is 00 hann to call the whole kernel the Prym variety. H the pull-back homomorphism
f* : J ac(Co) --+ J ac(C) is injective, then the norm homomorphism can be identified
with the transpose of f-, and hence its kernel is connected. So in this situation, our
definition coincides with the usual oue. We will give a dass of coverings where the
norm homomorphisms are injective (see 1.7).

1.3. REMARK: Let Re C be the ramification divisor of the morphism f of (1.1) and
Oc(R) the locally free sheaf associated with R. Then it can be shown that for auy line
bundle'c on C, we have Nf('c) = det(f.'c)0det (f*Oc(R)). Thus up to a translation,
the norm homomorphism can be identified with the map assigning the determinant of
the direct image to the line bundle on C. Therefore, one can talk about the Prym
varieties in Picd(C) for an arbitrary d, not just in Jac(C) = Pico(C).

When the curves C and Co are singular, we replace the Jacobian variety Jac(C) by
the generalized J acobian, which is the connected component of H I (C, Oe) containing
the structure sheaf. Hy taking the detenrunant of the direct image sheaf, we can define
a map of the generalized Jacobian of C ioto HI(CO'Oco)' The fiber of this map is
called the generalized Prym variety associated with the morphism f.

1.4. REMARK: According to our definition (1.1), the Jacobian variety of an arbitrary
algebraic curve C can be viewed as a Prym variety. Indeed, for a nontrivial morphism •
of C onto pI, the induced norm homomorphism is the zer~map. Thus the dass of
Prym varieties contains Jacobians as a subclass. Of course there are infinitely many
ways to realize Jac(C) as a Prym variety in this manner.

Let us consider the polarizations of Prym varieties. Let Sc and eco be the Riemann
theta divisors on Jac(C) and Jac(Co), respectively. Then the restriction of Bc to
Prym(f) gives an ample divisor H on Prym(f). However, this is never a principal
polarization. In fact, it is of type (1, "', 1, n, "', n), where the entry n is repeated
g(Co)·times. There is a natural homomorphism tj; : Jac(Co) x Prym(f) ---+ Jac(C)
which assigns f-.c 0 M to ('c,M) E Jac(Co) x Prym(f). This is an isogeny, and the
pull-back of Bc under this homomorphism is given by

tj;-OJac(C)(Bc ) ,...... OJac(Co)(neco ) 0 OPrym(f)(H) .

In Section 3, we defioe a category of covering morphisms of algebraic curves. As a
morphüm between the covering morphisms, we use the following special coverings:

1.5. DEFINITION. A degree r morphism 0 : C ---+ Co oE algebraic curves is said to
be a locally cyclic c01Jering if there is a point p E Co such tbat o-(p) = r . q for some
q E C.

1.6. PROPOSITION. Every smooth projective curve C bas inilnitely many smooth
locally cyclic coverings oE an arbitrary degree.

PROOF: We use the theory of spectral curves to prove this statement. For a detailed
account of spectral curves, we refer to [BNR] and [H].
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Let us take a line bundle Lover C of sufficiently large degree. For such L we ean
ehoose seetions Si E HO(C, r,i), i = 1, 2, "', r, satisfying the following eonditions:

(1) All Si'S have a common zero point, say p E C, i.e., Si E HO(C, Li(-p)),
i = 1,2"" ,rj

(2) Sr rt HO( C, Lr( -2p)).

Now eonsider the sheaf 'R of symmetrie Oc-algebras generated by L-1
. As an 00­

module this algebra can be written as

00

'R = EBL- i
.

i=O

In order to eonstruet a 10calIy eyelie eovering of C, we take the ideal I 6 of the algebra
'R. generated by the image of the surn of the homomorphisms Si : [,-r~ [,-r+i. We
define C. = Spee('RII6 ), where S = (s), S2,'" ,sr)' Then C6 is a spectral eurve, and
the natural projeetion 7f' : C6 ~ C gives a degree r covering of C. For suffieiently
general sections Si with properties (1) and (2), we may also assume the following (see
[BNR]):

(3) The speetral eurve C6 is integral, Le. redueed and irreducible.

We claim here that C6 is srnooth in a neighborhood of the inverse image of p. Indeed,
let us take a loeal parameter y of C around p and a loeal eoordinate x in the fiber
direetion of the total spaee of the line bundle [,. Then the loeal Jacobian eriterion for
smoothness in a neighborhood of 7f'-1 (p) states that the following system

{

xr +Sl(Y)X r- 1 +... + sr(Y) = 0

rxr- 1 +SI (y)(r - 1)xr- 2 + +Sr-l (y) = 0

Sl(Y)'Xr- 1 + S2(y)'X r- 2 + + Sr(Y)' = 0

of equations in (x, y) has no solutions. But this is clearly the ease in our situation
beeause of the eonditions (1), (2) and (3). Thus we have verified the claim. It is also
clear that 7f'.(p) = r . q, where q is the point of C6 defined by x r = 0 and y = O. Then
by taking the normalization of C6 we obtain a smooth loeally eyclie eovering of C. This
eompletes the proof.

1.7. PROPOSITION. Let a : C ~ Co be a loca11y cyclic covering oE degree r. Then
tbe induced homomorpbism o· : Jac(Co) ~ Jac(C) oE Jacobians is injective. In
particular, tbe Prym variety Prym(a) associated witb tbe morpbism a is connected.

PROOF: Let us suppose in eontrary that L ~ 000 and a· r, rv 00 for some [, E Jae(Co).
Then by the projeetion fonnula we have L 0 o.Oc ~ 0.00. Taking determinants on
both sides we see that [, is an r-torsion point in Jae(Co), i.e. [,r rv OCo' Let m be the
smallest positive integer satisfying that .cm

c:i 000' Let us eonsider the speetral eurve

00

C' = Spee( EB [,-i II.)
i=O
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defined by the line bundle .c and its sections

m
__ ~ 0 i

8 = (SI, 82, ... ,Sm-I, Sm) -- (0,0, ... ,0, 1) E '\J] H (Co,.c ) .
i=1

It is easy to verify that C' is an unramified covering of Co of degree m. Now we claim
that the morphism 0 : C~ Co factors through C', but this leads to a contradiction
to our assumption that 0 is a locally cydic covering.

The construction of such a morphism / : C~ C' over Co amounts to defining an
Oco-algebra homomorphism

(1.8)
00

/' :E9 .c-i /ItJ --+ a",Oc .
i=O

In order to give (1.8), it is sufficient to define an Oco-module homomorphism r/J
.c-1 ~ a",Oc such that t/>@m : .c-m

'" OCo ~ a",()c is the indusion map induced
by a. Since we have

the existence of the desired r/J is obvious. This completes the proof.

2. The Heisenberg flows on the Grassmannian of vector valued functions.

In this section, we define the Grassmannians of vector valued functions and introduce
various vector fields (or flows) on them. Let k be an arbitrary field, k{[z]) the ring of
formal power series in one variable z defined over k, and L = k((z )) the field of fractions
of k[[z]). An element of L is a formal Laurent series in z with a pole of finite order.
We call y = Y(z) ELan element of order m if y E k[[z]]z-m \ k[[z]]z-m+l. Consider
the infinite-dimensional vector space V = L$n over k. It h88 a natural filtration by the
(pole) order

... C F(m-l)(v) C F(m)(v) c F(m+l)(v) C ... ,

where we define

(2.1)

In particular, we have F(m)(v)/F(m-l)(V) ~ k$n for all mEZ. The filtration satisfies

U p(m)(v) = V and
m=-oo

8

00n F(m)(v) = {O} ,
m=-oo



and hence it determines a topology in V. In Section 4, we will introduce other filtrations
of V in order to define algebraic curves and vector bundles on them. The current
filtration (2.1) is used onIy for the purpose of defining the Grassmannian as a pro­
algebraic variety (see for example [KUS]).

2.2. DEFINITION. For every integer Jl, the following set is called the index Jl Grass­
marlnian ofvector valued functions of size n:

Grn(Jl) = {W C V I ,w is Fredholm of index Jl} ,

where ,w :W --+ V / F(-l)(V) is the natural projection.

Let N w = {ordz(v) I v E W}. Then the Fredholm condition implies that N w is
bounded from below and contains all sufficiently Iarge positive integers. But of course,
this condition of Nw does not impIy the Fredholm property of ,w when n > l.

2.3. REMARK: We have used F(-l)(V) in the above definition as a reference open set
for the Fredholm condition. This is because it becomes the natural choice in Section 6
when we deal with the differential operator action on the Grassmannian. From purely
algebro-geometric point of view, F(O)(V) can also be used (see 4.6).

The big.cell Grt(O) of the Grassmannian of vector valued functions of size n is the
set of vector subspaces W C V such that ,w is an isomorphism. For every point
W E Grn(Jl), the tangent space at W is naturally identified with the space of continuous
homomorphism of W into V/W:

Let us define various vector fields on the Grassmannians. Since the formal Ioop algebra
gl(n, L) acts on V, every element ~ E gl(n, L) defines a homomorphism

(2.4) eW --+ V --+ V --+ V/W ,

which we shall denote by Ww(e). Thus the association

determines a vector field w(~) on the Grassmannian. For a subset 3 C gl(n,L), we use
the notations ww(3) = {Ww(~) I~ E 3} and '11(3) = {w(~) I~ E 3}.
2.5. DEFINITION. A smooth subvariety X oE Grn(Jl) is said to be an orbit (or tbe
integral manifold) of the Bows oE '1'(3) if the tangent space Tw X oE X at W is equal
to '1'w(3) as a subspace of the wbole tangent space TwGrn (Jl) for every point W EX.

2.6. REMARK: There is a far Iarger algebra than the Ioop algebra, the algebra gl(n, E)
of p~etLdodifferentialoperator~ with matrix coefficients, acting on V. We will come back
to this point in Section 6.
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Let us choose a monie element

(2.7)
00

y = zr + L cmz r +m E L
m=l

of order -r and consider the following n x n matrix

0 0 Y
1 0 0

(2.8) hn(y) =
1

0
1 0

1 0

satisfying that hn(y)n = y' In, where In is the identity matrix of size n. We denote by
H(n)(Y) the algebra generated by hn(y) over k((y)), which is a maximal commutative
subalgebra of the formal loop algebra gl (n, k((y))). Obviously, we have a natural
k((y) )-algebra isomorphism

where x is an indeterminant.

2.9. DEFINITION. For every integral vector n = (nI, n2,' .. ,nl) oE positive integers nj

such that n = nl + n2 +... +nl and amome element y E L oE order -r, we define a
maximal commutative k((y))-subalgebra oE gl(n, k((y)) by

l l

Hn(y) = EB H(nj )(y) "'-I EB k((yI/nj )) ,
j=l j=I

where eacb H(nj)(Y) is embedded by the disjoint principal diagonal blocks:

The algebra Hn(y) js called the maximal commutative algebra 01 type n associated with
the variable y.

As a module Qver the field k((y)), the algebra Hn (y) has dimension n.

2.10. REMARK: The lifting of the algebra Hn(y) to the central extension of the formal
loop algebra 91 (n, k( (y))) is the Heisenberg algebra associated with the conjugacy dass
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of the Weyl group of gien, k) determined by the integral vector n ([FLM], [Ka], [PS]).
The word Heüenberg in the following definition has its origin in this context.

2.11. DEFINITION. The set oE commutative vector nelds 'I1(Hn(y)) deBned on Grn(Jl)
is called the He~enberg fiow$ oE type n = (nI, n2,'" ,nt) and rank r associated with
the algebra Hn(y) and the coordinate y oE (2.7). Let Hn(y)o denote the subalgebra
oE H n (y) consisting oE the traceless elements. The system oE vector nelds W(Hn (y)o)
is called the traceles$ Heüenberg flow$. Tbe set oE commuting vector neIds w(k((y)))
on Grn(Jl) is called the r-reduced KP system (or the r-reduction oE the KP system)
associated with the coordinate y. The usual KP system is deBned to be tbe 1-reduced
KP system witb tbe eboice oEy = z. Tbe Heisenberg flows associated witb H(l,,,.,l)(Z)
oE type (1" .. , 1) is called the n-component KP system.

2.12. REMARK: As we shall see in Section 4, the Hn(y)-action on V is equivalent to the
component-wise multiplication of (4.1) to (4.4). From this point of view, the Heisenberg
flows of type D and rank r are contained in the i-component KP system. What is
important in our presentation as the Heisenberg flows is the new algebrcrgeometric
interpretation of the orbits of these systems defined on the (quotient) Grassmannian
which can be seen only through the right choice of the coordinates.

2.13. REMARK: The traceless Heisenberg flows of type n = (2) and rank one are
known to be equivalent to the BKP system. As we shall see later in this paper, these
flows produce the Prym variety associated with a double sheeted covering of algebraic
curves with at least one ramification point. This explains why the BKP system is
related only with these very special Prym varieties.

The flows defined above are too large from the geometrie point of view. The action of
the negative order elements of gI(n, L) should be considered trivial in order to give a
direct connection between the orbits of these flows and the Jacobian varieties. Thus it
is more convenient to define these flows on certain quotient spaces. So let

(2.14)

and define an abelian group

(2.15) r n(y) = exp(Hn(y)-) = In + Hn(y)- .

This group is isomorphie to an affine space, and acts on the Grassmannian without
fixed points. This can be verified as follows. Suppose we have 9 . W = W for some
9 = In + hErn(y) and W E Grn(Jl). Then h . W c W. Since h is a nonnilpotent
element of negative order, by iterating the action of h on W, we get a contradiction to
the Fredholm condition of 'Yw .

2.16. DEFINITION. The quotient Gra$~mannian oE type D, index J.I. and rank r associ­
ated witb tbe algebra Hn(y) is tbe quotient space

11



We denote by Qn,y : Grn(Jl)~ Zn(Jl, y) tbe canomcal projection.

Since r n(Y) is an affine space acting on the Grassmannian without fixed points, the
affine prineipal fiber bundle Qn,y : Grn(Jl) ~ Zn(Jl, y) ia trivial. H the Grassmannian
is modeled on a eomplex Hilbert space, then one can introduce a Kähler strueture on
it, which gives rise to a canonieal eonnection on the principal bundle Qn,lI' In that
case, there is a standard way of defining veetor fields on the quotient Grassmannian by
using the conneetion. In our case, however, since the Grassmannian Grn(J.l) is modeled
over k((z)), we cannot use these technique of infinite-dimensional complex geometry.
Beeause of this reason, instead of defining veetor fields on the quotient Grassmannian,
we give directly adefinition of orbits on Zn(J-l, y) in the following manner.

2.17. DEFINITION. A subvariety X of tbe quotient Grassmannian Zn (Jl, y) is said to
be an orbit of tbe Heisenberg flows associated witb Hn(y) jf tbe pull-back Q;,;(X) is
an orbit oE tbe Heisenberg fJ.ows on tbe Grassmanman Grn(J-l).

Here, we note that becRuse of the eommutativity of the algebra Hn(y) and the group
r n(Y), the Heisenberg flows on the Grassmannian "descend" to the quotient Grassman­
man. Thus for the flows generated by subalgebras of Hn(y), we eau safely talk about
the induced ftow~ on the quotient Grassmannian.

2.18. DEFINITION. An orbit X of tbe vector fjelds '1'(3) on tbe Grassmannian Grn(J-l)
is said to be oE finite type if X = Qn,y(X) is a finite-dimensional subvariety oE the
quotient Grassmannian Zn(Jl, y).

In Seetion 5, we study algebraie geometry of finite type orbits of the Heisenberg ßows
and establish a eharaeterization of Prym varieties in terms of these fiows. The aetual
system of nonlinear partial differential equations eorresponding to these veetor fields
are derived in Seetion 6, where the unique solvability of the initial value problem of
these nonlinear equations is shown by using a theorem of [M2].

3. The Krichever functor for covering morphisms of algebraic curves.

The original Kriehever correspondence of [Kr] is a eonstruetion of an exact solution
of the entire KP system out of a set of algebro-geometrie data eonsisting of curves and
line bundles on them. This correspondence was fonnulated RB a map of the set of these
geometrie data into the Grassmannian by Segal and Wilson [SW]. Its generalization
to the geometrie data eontaining arbitrary veetor bundles on eurves was diseovered in
[M3]. In order to deal with arbitrary covering morphisms of algebraic curves, we have
to enlarge the framework of the Kriehever functor of [M3].

3.1. DEFINITION. A set oE geometrie data oE a covering morphism oE algebraic curves
of type D, index Jl and rank r is the collectjoD

12



oE the Eollowing objects:

(1) n = (nI, n2,·· . ,nt) is an integral vector oE positive integers nj such that n =
nI + n2 + ... + nt·

(2) Cn is a reduced algebraic curve def1ned over k, and ~ = {PI,P2,··· ,Pt} is a set
oE l smooth rational points oE Cn •

(3) TI = (1T'I, ••• ,1T't) consists oEa cyclic covering morphism 1T'j : Uoj ---t Uj oE degree
r wbich maps tbe Eormal completion Uoj oE the a:fBne line Al along the origin
onto the Eormal completion Uj oE tbe curve Cn along Pj.

(4) :F is a torsion Eree sheaf oE rank r de/ined over Cn satisfying tnat

(5) ~ = (<PI,'· . ,<Pt) cODsists oE an OUj -module isomorpbism

where :FUj is the formal completion of:F along Pj. We identify <pj and Cj· <Pj for
every nonzero constant Cj E k".

(6) Co is an integral curve witb a marked smooth rational point p.
(7) f: Cn --+ Co is a finite morpbism of degree n of Cn onto Co such that I-I (p) =

{PI,·'· ,Pt} with ramification index nj at each point Pj.
(8) 1T' : Uo ---t Up is a cyc1ic covering morphism of degree r wbicb maps the formal

completion Uo of the affine line Al at the origin onto the formal completion Up

of tbe curve Co along p.
(9) 1T'j : Uoj --+ Uj and the formal completion Ij : Uj --+ Up oE the morpbism f at

Pj satisfy the commutativity of the diagram

Uoj
1fj

U·I J

vJj1 Ih
Uo I Up ,

1r

wbere "pj : Uoj --+ Uo is a cyclic covering of degree nj.

(10) t/> : (f.:F)u. ...::. ,... ( Ea~=l V>j. (Ou.; (-1))) is an (J.Oe.) u. -module isomor­

phism of tne sneaves on tbe formal scheme Up willch is compatible with tne
datum ~ upstairs.

Here we note that we have an isomorphism tPj .. (Ouoj(-l)) ".I Ouo(-l)$n j as an Ouo­
module.

Recall that the original Krichever functor is really a cohomology funetor. In order
to see what kind of algebraic data eome up from our geometrie data, let us apply
the eohomology funetor to them. We choose a eoordinate z on the formal scheme Uo

and fix it once far al1. Then we have Uo = Spec(k[[z]]). Sinee,pj : Uoj --+ Uo is a

13



(3.2)

(3.3)

(3.4)

eyclie eovering of degree n;, we ean identify Uo; = Spee(k[[ZI/nj ]]) so that 1/1; is given
by z = (ZI /nj ) nj = zjj, where z; = ZI/nj is a eoordinate of Uo;' The morphism 1r

determines a eoordinate
00

Y = zr + L cmzr+m

m=I

on Up • We also ehoose a eoordinate Yj = yI/nj of U; in which the morphism fj can

be written as y = (yI/nj ) nj = vjj . Out of the geometrie data, we ean assign a veetor
subspaee W of V by

W = 4>(HO(Co \ {p}, f*:F))

C HO (Up \ {p}, '11".~ tPj.(OUoj (-1)))

=HO (Uo \ {al,~ tPj. (Ou.j (-1)))

l

C:J! HO(Uo \ {o},EBOu.(-l)EBn j
)

j=I

,-v HO(Uo \ {o},Ouo(-l)$n) = k((z))$n = V .

Here, we have used the eonvention of [M3] that

HO(Co \ {p}, Oco ) = lim HO (Co, Oco(m . p))
--+
m

HO (U0 \ {o}, 0 U0) = lim HO (U0,°u0(m )) = k((z)) ,
--+
m

ete. The coordinate ring of the eurve Co determines a sealar diagonal stabilizer algebra

Ao = 1r* (HO(Co \ {p}, Oco ))

C 1r*(HO(Up \ {p},Ou,J)

c HO (U0 \ {o}, "u0 )

=LCgl(n,L)

satisfYing that Ao . W c W, where L is identified with the set of scalar matriees in
gl(n, L). The rank of W over Ao is r . n, whieh is equal to the rank of f.:F. Note that
we have also an inclusion

by the eoordinate y. As in [M3, Section 2 and 3], we can use the formal patching
Co = (Co \ {p}) U Up to eompute the cohomology group

1 ,-v HO(Up \ {p},Oup )

H (Co,OCo ) = HO(Co \ {p},OC
o

) + HO(Up,Ou
p

)

~ k((y))
- Ao + k[(y]] .

14



Thus the cokernel of the projection lAo : Ao --+ k((y))/k[[y]] has finite dimension.
The functibn ring

l

An = HO(Cn \ß,OcIJ C EBHO(Uj \ {Pj},OUj)
j=1

also acts on V and satisfies that An . W C W, because we have a natural injective
isomorphism

(3.5)

An = HO(Cn \ ß,Oco ) Ci HO (Co \ {p},!.Oco)

c HO(Up \ {p},(!.Oco)u,)
l

= HO (Up \ {p}, EB !j.Ou;)
j=1

t

= EB k((y)) [h n ; (y)]
j=l

= Hn(y) C gl(n, k((y))) ,

where hnJ (y) is the block matrix of (2.8) and Hn(y) is the maximal commutative
subalgebra of gl(n, k((y))) of type D. In order to see the action of An on W more
explicitly, we first note that the above isomorphism is given by the identification y1/nj =
hnj (y). Since the formal completion :FUj of the vector bundle :F at the point Pj is a
free OUj -module of rank r, let us take a basis {eI, e2,' .. ,er} for the free HO(Uj, OUj)­
module HO (Uj l :FUj). The direct image sheaf !j.:FUj is a free Ou, -module of rank n j . r,
so we can take a basis of sections

(3.6)

for the free HO(Up, Ou, )-module HO(Up,!j.:FUj)' Since HO(Uj , :FUj) = HO(Up,!j.:FUj)'
HO(Uj,OUj) = HO(Up,!j.OUj) acts on the basis (3.6) by the matrix hnj(y)Q!}Ir, where
Ir is the identity matrix acting on {eI, e2," . ,er}. This can be understood by observing
that the action of y1/n on the vector

n-1

(co, CI, ... , Cn-1) = L coyo/n
0=0

is given by the action of the block matrix hn(y).

3.7. REMARK: From the above argument, it is clear that the role which our 1f and 4>
play is exactly the same as that of the parabolic .dructure of [Mum2]. The advantage of
using 1f and 4> rather than the parabolic structure lies in their functoriality. Indeed, the
parabolic structure does not transform functorially under morphisms of curves, while
our data naturally do (see 3.14).
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The algebra Hn(y) has two different presentations in terms of geometry. We have
used

l

Hn(y) ~ HO(Up \ {p},(/.Oc1.)up ) = ffik((y))[hnj(y)] C gl(n,k((y)))
j=l

in (3.5). In this presentation, an element of Hn(y) is an n X n matrix acting on
V I'V HO (Up \ {p}, (/.F)u,). The other geometrie interpretation is

t l t

Hn(y) I'V HO(Up \ {p},ffi/j.Ouj) ~ ffiHO(Uj \ {Pj},OUj) = ffik((Yj)).
j=l j=l j=l

In this presentation, the algebra Hn(y) acts on

t

V~ HO (Up \ {p}, 71".~ tPj. (OU,j( -1)))

l

I'V ffi HO (Uoj \ {o}, OUoj (-1))
j=l

t

= ffi k((zj))
j=l

by the component-wise multiplication of Yj to Zj. We will come back to this point in
(4.4).

The pull-back through the morphism / gives an embedding Ao C An. As an Ao­
module, An is torsion free of rank n, because Co is integral and the morphism / is of
degree n. Using the formal patching Cn = (Cn \ ß) U U1 U ... U Ut, we ean eompute
the cohomology

(3.8)

m~ HO (U' \ { .} 0 .)H 1 (CO) I'V W ] = 1 ] p], UJ

n, CD HO(Cn \ ß, OclJ + EB1=1 HO(Uj, OUJ)

I'V EB1=1 k((y1/n j
))

- An + EB1=1 k[[y1/n j ]]

~ Hn(y)
- An + Hn(y) ngl(n, k[[y]]) .

This shows that the projection

has a finite-dimensional cokernel. These discussions motivate the following definition:
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3.9. DEFINITION. A tripIe (Ao, An, W) is said to be a set oE algebraic data oE type D,

index j.l, and rank r jf tbe Eollowing conclitions are satisned:

(1) W is a point oE the Grassmannian Grn(J.l) oE index j.l oE the veetor valued Eune­
tions oE size n.

(2) The type n is an integral veetor (nt," . ,ni) eonsisting oE positive integers such
tbat n = n1 + ... + ni.

(3) There is a monic element y E L = k( (z)) oE order -r such tbat Ao is a subalgebra
oE k«y)) eontaining tbe neId k.

(4) The eokernel oE the projection l'Ao : Ao ----t k«y))/k[[y]] has finite dimension.
(5) An is a subalgebra oE the maximal eommutative algebra Hn(y) C gl(n, k«y)))

oE type n such that the projeetion

has a finite-dimensional eokemel.
(6) There is an embedding Ao C An as the sealar diagonal matriees, and as an

Au-module (wbicb is automatiea1ly torsion Iree), An has rank n over Ao.
(7) The algebra An C gl(n, k«y))) stabilizes W C V, i.e. An . W c W.

The homomorphisms l'Ao and 'Y Ag satisfy the Fredholm condition because (7) implies
that they have finite-dimensional kerneis. Now we ean state

3.10. PROPOSITION. For every set oE geometrie data oE (3.1), there is a unique set oE
algebraie data oE (3.9) baving the same type, index and rank.

PROOF: We have already constructed the tripie (Ao, An, W) out of the geometrie data
in (3.2), (3.3) and (3.5) which satisfies all the conditions in (3.9) hut (I). The only
remaining thing we have to show is that the vector subspace W of (3.2) is indeed a
point of the Grassmannian Grn(J.l). To this end, we need to compute the cohomology
of !.:F by using the formal patching Co = Spec(Ao) U Up (for more detail, see {M3]).
Noting the identification

i

EB?'vj.(Ouoj(-1)) rv Ouo(-l)€Bn
j=1

as in (3.2), we can show that

(3.11 )

HO(Co, !.:F) = HO(Co \ {p}, !.:F) n HO(Up , /.:Fup )

~ W n HO (Up , 1r.(Ou
Cl
(_l)€Bn

))

rv W n HO (U0' ()uCI ( -1)Ei) n )

rv W n (k[[z]]z) ffin

= Ker(rw) ,
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and

(3.12)

H 1 (C f:F) ~ HO(Up \ {p}, I.:F)
0,. - HO(Co \ {p}, !.:F) + HO(Up , 1.:Fu

p
)

I'V HO(Up \ {p},1I".(Ouo (-1)EBn))
= W + HO (Up ,1I"*(Ou,,(-1)Ean))
!:Y. HO(Uo \ {o},Ouo (-l)EBn)
- W +HO (Uo,Ou

o
(-l)EBn)

~ k((z))EBn
- W + (k[[z]]z) EBn

= Coker(,w) ,

where lW is the canonical projection of (2.2). Since f is a finite morphism, we have
Hi(Co,I.:F) I'V Hi(Cn,:F). Thus

(3.13) J.L = dim,. HO (Cn,:F) - dim,. H 1 (Cn,:F) = dirn,. Ker(lw) - dimk Coker( fW) ,

which shows that W is indeed a point of Grn(J.L). This completes the proof.

This proposition gives a generalization of the Krichever map to the case of covering
morphisms of algebraic curves. We can make the above map further into a functor,
which we shall call the Krichever functoT for covering morphi"mj. The categories we
use are the folIowing:

3.14. DEFINITION. Tbe category C(n) oE geometrie data of a fixed type n consists of
tbe set of geometrie data oE type n and arbitrary index Jl and rank r aB its objeet. A
morpbism between two objeets

(I: (Cn,ß,II,:F,~)-+ (Co,p,1I",/.:F,</J))

of type 0, index J.L and rank r and

(I' : (C~, ß', II',:F', ~') -+ (C~,p', 11"', /;:F', </J'))

oE tbe same type n, index Jl' and rank r' is a triple (a,ß,A) of morphisms satisfying
the following eonditions:

(1) a: C~ -+ Co is a locally cyc1ic covering of degree S of the base curves such that
a*(p) = s . p', and 11" and 11"' are related by 11" = Ci 0 11"' with the morphism Ci of
formal schemes indueed bya.

(2) ß : C~ -+ Cn is a eovering morphism of degree s such that ß' = ß-1(ß), and
the following diagram

C'
ß

I Cnn

1'1 11

c' • Co0
a
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commutes.
(3) The morphism ßj : Uj ~ Uj offormal schemes induced by ß at each pj satisfies

'Trj = ßj 0 'Tri and the commutativity of

"'~ ~
Uoj

J
u~ u·I I

J J

t/Yj1 fJ1 h1
Ua I u;, I Up •

",'
.......
a

(4) A : ß.:F' ~ :F is an injective OCa -module bomomorphism such tbat its com­
pletion Aj at each point pj satisfies commutativity of

(ß.:F')UJ

Pi (4);)l' t14>;
ßj. 7I"j. OUoj ( -1) ==== 71"j. OUoj ( -1).

In particular, eacb Aj is an isomorpmsm

3.15. REMARK: From (3) above, we have r = s . r'. The eondition (4) above implies
that :F/ ß.:F' is a torsion sheaf on Cn whose support does not intersect with ~.

One can show by using (1.6) that there are many nontrivial morphisms among the sets
of geometrie data with different ranks.

3.16. DEFINITION. The categoIy Sen) oE algebraic data oE type n has tbe stabi­
Uzer tripies (Ao, An, W) of (3.9) of type n and arbitrary index jL and rank r as its
objects. Note tbat for every object (Ao, An, W), we have the commutative algebras
k«y)) and Hn(y) associated with it. A morphism between two objects (Ao, An, W)
and (A~, A~,W') is a tripie (l., e,w) of injective homomorphisms satisfying the follow­
ing conditions:

(1) t : Ao '-4 A~ is an inclusion compatible with the inclusion k«y)) c k«y'))
defined by apower series

(2) € : An ~ A~ is an injective bomomorphism satisfying the commutativity oE
the diagram

t

An A'n

1 1
Hn(y) I Hn(y'),

e
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where the vertieal arrows are the inc1usion maps, and

l l

E : Hn(y) rv E9 k((yl/n;)) -+ E9 k((yl1 / nJ )) rv Hn(y')
;=1 j=1

is an injeetive homomorphism defined by tbe Pwseux expansion

of (1) for every n j. Note tbat neither f nor E is an inelusion map of su balgebras
of gl(n,L).

(3) w : W' ---+ W is an injeetive An-module homomorphism. We note that W' has
a natural An-module strueture by the homomorphism f. As in (2), w is not an
inelusion map of the veetor subspaees of V.

3.17. THEOREM. There is a fully-faitbful funetor

K n : C(n) ...:::... Sen)

between the eategory of geometrie data and the eategory of algebraie data. An objeet
oE C(n) of index p. andrank r eorresponds to an objeet oE S (n) of tbe same index and
rank.

PROOF: The association of (Ao, An, W) to the geometrie data has been done in (3.2),
(3.3), (3.5) and (3.10). Let (0:, ß, A) be a morphism between two sets of geometrie
data as in (3.14). We use the notations U; = Uj \ {Pj} and U; = Up \ {p}. The
homomorphism t is defined by the commutative diagrarn

'"
I HO(Co \ {p}, OCo ) HO(U;,Oup)Ao

~1 0·1 ;;·1
A' I HO(C~ \ {p'},Oc~) ~ HO(U';" Ou' p')'°

Similarly,

An I HO(Cn \ß,OCo ) ~ EB~=l HO(U; , OUj )

el p·1 fBi;1
A' • HO(C~ \ß',Oc~) I EB~=1 HO(U'j,Ou,;)n
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defines the homomorphism f. Finally,

w
W' W' W

1r Ir l'
HO(Cö \ {p'}, f' .:F')

a.
I HO(Co \ {p}, !.ß.:F')

/.(A)
HO( Co \ {p}, f.:F)J

/,·1, /·1' rlr
HO(c~ \ 6..', :F')

ß.
HO(Cn \ 6.., ß.:F')

A
HO(Cn \~,:F)

1 1 1
EB j HO(U'j,:Fb!)

$~.
EB j HO(U;, ßj.:Fb!)

$Aj
EB j HO(U;, :FUj)I }

J J

determines the homomorphism w.
In order to establish that the two eategories are equivalent, we need the inverse

eonstruetion. The next seetion is entirely devoted to the proof of this claim.

The following proposition and its eorollary about the geometrie data of rank one are
erucial when we study geometry of orbits of the Heisenberg flows in Seetion 5.

3.18. PROPOSITION. Suppose we have two sets oE geometrie data of rank ODe having
exaetly tbe same eonstituents exeept for the sheaf isomorpbisms (q" t/» for one and
(<I»' , <p') for tbe otber. Let (Ao, An, W) and (Ao, An, W') be the eorresponding algebraic
data, where Ao and An are eommon in botb oE the tripIes because oE the assumption.
Then tbere is an element gErn(Y) oE (2.15) such that W' = g' W.

PROOF: Reeall that

is an (f.Oc
D

) U -module isomorphism. Thus,
p

l l

9 = 4/04>-1 : 7r. ($ tPj.(OUOj( -1))) ....:::... 7r. ($ tPj. (OUoj( -1)))'
)=1 )=1

is also an (f.OcD) u
p
-module isomorphism. Note that we have identified (f.OcD)u

p

as a subalgebra of Hn(y) in (3.5). Indeed, this subalgebra is Hn(y) n gl(n, k[[y]]).
Therefore, the invertible n x n matrix

9 E k·$n +gl(n, k[[y]]y) = k·$n +gl(n, k[[z]]z)
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eommutes with H n (y )ngl (n, k[(yJ]), w here k· denotes the set of nonzero eonstants and
k·EBn the set of invertible constant diagonal matrices. We recall that k[[z]] = k[[yJ],
because y has order -1. The commutativi ty of 9 and Hn (y) ngl (n, k [[y]]) immediately
implies that 9 commutes with all of Hn(y). But since Hn(y) is a maximal commutative
subalgebra of gl (n, k((y))), it implies that 9 E r n (y). Here we note that ifJ'; 0 4>j -1 is
exactly the j-th block of size ~j X nj of the n x n matrix g, and that we can normalize
the leading term of 4>'; 0 4>j -1 to be equal to I nj by the definition (5) of (3.1). Thus
the leading term of 9 can be normalized to In. From the eonstruction of (3.2), we have
W' = g. W. This eompletes the proof.

3.19. COROLLARY. The Kricbever functor induees a bijeetive eorrespondenee between
tbe collection of geometrie data

(I: (Cn,ß,Il,:r) --+ (Co,p,7r,I.:r))

of type ll, index jl, and rank one, and tbe triple of algebraic data (Ao, An, W) of type
n, index j.t, and rank one satisEying tbe same conditions of (3.9) exeept that W is a
point oE tbe quotient Grassmannian Zn(/-l, V).

PROOF: Note that the datum <I> is indeed the block decomposition of the datum of
4>. Thus taking the quotient space of the Grassmannian by the group action of r n(Y)
exactly corresponds to eliminating the data <I> and ifJ from the set of geometrie data of
(3.1).

4. The inverse construction.

Let W E Grn(JJ) be a point of the Grassmannian and eonsider a commutative sub­
algebra A of gl(n, L) such that A . W c W. Since the set of veetor fields 'II(A) has
W as a fixed point, we call such an algebra a eommutative .5tabilizer algebra of W.
In the previous work [M3], the algebrü-geometric structures of arbitrary commutative
stabilizers were determined for the case of the Grassmannian Gr1 (JJ) of scalar valued
funetions. In the eontext of the eurrent paper, the Grassmanman is enlarged, and
consequently there are far larger varieties of commutative stabilizers. However, it is
not the purpose of this paper to give the eomplete geometrie c1assifieation of arbitrary
stabilizers. We restrict ourselves to studying large stabilizers in eonneetion with Prym
varieties, which will be the central theme of the next section. A stabilizer is said to
be large if it corresponds to a finite-dimensional orbit of the Heisenberg flows on the
quotient Grassmannian. The goal of this section is to recover the geometrie data out
of a point of the Grassmannian together with a large stabilizer.

Choose an integral vector n = (n1, n2, ... ,nt) with n = n1 +... +nt and a monie
element Y of order -r a.s in (2.7), and consider the formalloop algebra gl(n, k((y)))
acting on the vector space V = LEBn. Let us denote Yj = hnj (y) = y1/n j • We introduee
a new filtration
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in the maximal eommutative algebra

l l l

(4.1) Hn(y) rv EB k«y)) [y 1
/ ni ] rv EB k«yl/n j

)) = EB k«Yj))
j=1 j=1 j=1

by defining

where ordYi (aj) is the order of aj(Yj) E k«Yj)) with respect to the variable Yj. Ae­
eordingly, we ean introduee a filtration in V which ia eompatible with the action of
H n (y) on V. In order to define the new filtration in V geometrically, let us start
with Uo = Spec(k[[z]]) and Up = Spee(k[[y]]). The inclusion k[[y]] C k[[z]] given by
y = y(z) = zr + CIZr+1 + C2Zr+2 +... defines a morphism 11" : Uo ~ Up • Let
Uj = Spec(k[[Yj]]). The identification Yj = y1

/ nj gives a cyclic covering /j : Uj ~ Up

of degree nj. Correspondingly, the covering ,pj : Uoj ~ Uo of degree nj of (9) of (3.1)
is given by k[[z]] C k[[zl/n j ]]. Thus we have a commutative diagrarn

•
k[(zl/n j ]] «

1ri
k[[y1 / nj ]]

!Pj1 1fj

k[(z]] k[[yll
1\'".

of inclusions, where 11"; is defined by the Puiseux expansion

of y(z). Reeall that in order to distinguish from Uo = Spec(k[[z]]), we have introduced
the notation Uoj = Spec(k[[zl/n j ]]) for the cyclic covering of Uo. The above diagram
corresponds to the geometrie diagram of covering morphisms

Uoj
1rj

U·I J

tPj1 IIJ
UO I Up •

1r

We denote u; = Uo\ {o}, U:j = Uoj \ {o}, u; = Up \ {p}, and u; = Uj \ {Pj} a.s before.
The k«y))-algebra Hn(y) is identified with the HO(U;, OUp)-algebra

l l

Hn(y) = HO (U;, EB /j.OUj) ~ EB HO(U;, OUj) .
j=1 j=1
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Corresponding to trus identification, the vector space V - L$n as a module over
L = HO(U:, OUo ) is identified with

i i i

(4.4) V = HO (u;.~ tPj. (Ouo;(-1))) ~ ~HO(U;j,OUo;(-1)) ~ ~ k«zI/R;)) .

The Hn(y)-module structure of V is given by the pull-back EB~=l 1TJ, wruch is nothing
hut the component-wise multiplication of k((yl/n;)) to k((zl/n;)) through (4.3) for each
j. Define a new variable by Zj = zl/n;. We note from (4.3) that Yj = yj(zl/n;) = Yj(Zj)

is of order -r with respect to Zj. Now we can introduce a new filtration

... C v(m-l) C v(m) C V(m+l) C ...

in V by defining
(4.5)

v(m) = { (VI (zd."· •vt(Zl)) E~ k«Zj)) Imax [ord., (VI).··· ,ord.,(vl)] ~ m} I

where ordz; (Vj) denotes the order of Vj = Vj(Zj) with respect to Zj.

4.6. REMARK: The filtration (4.5) is different from (2.1) in general. However, we
always have V(O) = F(O)(V) and V(-l) = F(-l)(V). This is one of the reasons why we
have chosen F( -l)(V) instead of an arbitrary F(v)(V) in the definition of the Grass­
mannian in (2.2).

It is clear from (4.2) and (4.5) that Hn(y)(rmt>. v(m,) C v(rm1+m,), and hence V is
a filtered Hn(y)-module. With these preparation, we can state the inverse construction
theorem.

4.7. TH EOREM. A triple (Ao, An, W) oE algebraie data oE (3.9) determines a unique
set oE geometrie data

PROOF: The proof is divided into four parts.

(I) Construetion oE the eurve Co and tbe point p: Let us define A~rm) = A on k[[Ylly-m,

which consists of elements of Ao of order at most m with respect to the variable y.
This gives a filtration of Ao:

... C ~rm-r) C A~rm) C A~rm+r) C ...

Using the finite-dimensionality of the cokernel (4) of (3.9), we ean show that Ao has
an element of order m (with respect to y) for every large integer m E N, i.e.

(4.8) d· A(rm)/A(rm-r) - 1
Imk ° ° -
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Since A o . W C W, the Fredholm condition of W implies that A~rm) = 0 for all m < O.
Note that Ao is a subalgebra of a field, and thuB it is an integral domain. Therefore,
the complete algebraic curve Co = Proj(grAo) defined by the graded algebra

00

grAo = E9 A~rm)
m=O

is integral. We claim that Co is a one-point completion of the affine curve Spec(Ao).
In order to prove the claim, let w denote the homogeneous element of defee one
given hy the image of the element 1 E A~O) under the inclusion A~O) C A~r. Then
the homogeneous localization (grAo)«w)) is isomorphie to Ao. Thus the prineipal open
subset D+(w) defined by the element w is isomorphie to the affine curve Spec(Ao). The
complement of Spee(Ao) in Co is the closed subset defined by (w), whieh is nothing
hut the projeetive seheme

Proj (~A~rm)/A~rm-r))

given by the associated graded algebra of grAo. Take a monie element a m E A~rm) \

A~rm-r) for every m » 0, whose existenee is assured by (4.8). Since ai . aj =ai+j

mod A(ri+rj-r) the mapo ,

00( :E9 A~rm) /A~rm-r) ~ k[x] ,
m=O

whieh assigns xm to each a m for m » 0 and 0 otherwise, is a well-defined homomor­
phism of graded rings, where x is an indeterminant. In faet, ( is an isomorphism in
large degrees, and henee we have

Proj (~A~rm)/A~rm-r») ~ Proj(k[x]) = p.

This proves the claim.
Next we want to show that the added point p is a smooth rational point of Co. To

this end, it is suffieient to show that the formal eompletion of the structure sheaf of
Co along p is isomorphie to a formal power series ring. Let us consider (grAo)/(w n

).

The degree m homogeneous pieee of this ring is given hy A~rm) /(w n A~rm-rn)), which
is isomorphie to k . am EB k . am-l wEB· .. EB k . am-n+l w n - 1 for all m > n >> O. From
this we conclude that

in large degrees for n »0. Therefore, taking the homogeneous localization at the
ideal (w), we have
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for n >> O. Letting n --+ 00 and taking the inverse limit of this inverse system, we see
that the formal eompletion of the strueture sheaf of Co along pis indeed isomorphie to
the formal power series ring k[[w/x]]. We cau also present an affine loeal neighborhood
of the point p. Let a = a(y) E Ao be a monie, nonconstant element with the lowerest
order. It is unique up to the addition of a eonstant: a(y) H a(y) + c. This element
defines a principal open subset D+(a) eorresponding to the ring

(grAO)(a) = grAo [a- 1
] 0

(4.9) = {a-ib IbE Ao, i ~ 0, ordJt(b) - i· ordy(a}:$ O}

C k[[y]] .

Sinee the formal eompletion of Co aJong p eoineides with that of D+(a) at p, and sinee
the strueture sheaf of the latter is k[[y]] by (4.9), we have obtained that k[[w / x]] = k[[y]].
Thus Y is indeed a formal parameter of the eurve Co at p.

(11) ConstructioD of Cn and ß: Since An C Hn(y), it has a filtration A};m) = An n
Hn(y)(rm) induced by (4.2). The Fredholm condition of W again implies that A~m) = 0
for all m < O. So let us define Cn = Proj(grAn), where

00

grAn = E9 A~m) .
m=O

This is a complete algebraie eurve and has an affine part Spec(An ). The eomplement
Cn \ Spec(An ) is given by the projective scheme

Proj (~A~m)/A~m-r») .

The finite-dimensionality (5) of (3.9) implies that for every i-tuple (Vb'" ,VI) of pos­
itive integers satisfying that Vj >> 0, the stabilizer algebra An has an element of the
form

I

(al (Yl), ... , al(YI)) E An C E9 k((Yj))
j=l

such that the order of aj(Yj) with respect to Yj is equal to Vj for all j = 1,'" ,e. Thus
for all sufficiently large integer m E N l we have an isomorphism

Aetually, by choosing a basis of A~m) / A~m-r) for eaeh m » 0, we ean prove in the

similar way as in the sealar ca.se that the associated graded algebra EB:=o A~m) /A~m-r)

is isomorphie to the graded algebra EB~=o k[xj] in suffieiently large degrees, where x/s
are independent variables. The projective scheme of the latter graded algebra is an
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i-point scheme. Therefore, the curve Cn is an i-point completion of the affine curve
Spec(An). Let

ß = {PbP2,'" ,Pt} = Proj (ffi A!;m) /A!;m-rJ) •
m=O

We have to show that these points are smooth and rational. Ta this end, we investigate
the completion of Cn along the subscheme {Pb P'2 , ... ,Pt}. Let u be the homogeneous
element of degree one in A~) given by the image of 1 E A~O) under the inclusion map
A~O) C A~). Then the closed subscheme (the added points) is exactly the one defined
by the principal homogeneous ideal (u). We can prove, in a similar way as in (I), that

t t

gr(An)/(u n
) ~ (EBk[xj])[u]/(u n

) rv EB (k[xj,uj]/(uj))
j=l j=l

in large degrees for n >> 0, where x j 's and u/s are independent variables. Letting
n -+ co and taking the inverse limit, we conclude that the formal completion of the
structure sheaf of Cn along the subscheme {PI, 1>2, ..• ,Pt} is isomorphie to the direct
SUffi EB~=l k[[U j / x j]]. Thus all of these i points are smooth and rational. By considering
the adic-completion of the ring

(An)p= {a-ih I hEAn(rm), i;:::O, m-i.ordy(a)::;O} ,

where a is an in (4.9), we can show that k[[uj/xj]J = k[[Yj]J. So Yj can be viewed as a
formal parameter of Cn around the point Pj'

(111) Construction of tbe morphism f: The inclusion map Ao ~ An gives rise to an
inclusion

(4.10)
<Xl <Xl

EB A~rq) C EB A~m) ,

q=O m=O

because we have A~rq) C A~m) for all m ;::: q . max[nl," . ,ntJ. It defines a finite
surjective morphism f : Cn --Jo Co. Using the formal parameter Yj, we know that
the morphism fj : Uj --Jo Up of the formal completion Uj of Cn along Pi induced by
f : Cn -.. Co is indeed the cyclic covering morphism defined by Y = yj j

• Since Hn(y)
is a free k((y) )-module of dimension n and since the algebras Ao and An satisfy the
Fredholm condition described in (4), (5) and (7) of (3.9), An is a torsion free module
of rank n over Ao. Thus the morphism f has degree n.

(IV) Construction of the sheaf 7=': We introduce a filtration in W C V induced by

(4.5). The An-module structure of W is compatible with the Hn(y) = EB~=1 k((Yj))­
action on V = EB~=lk((zj)). Note that we have A~md ·w(m2) C w(rm 1+m2), and

hence Ea:=-<Xl wem) is a graded module over grAn. Let:F be the sheaf corresponding

to the shifted graded module ( EB:=-oo w(m»)( -1), where this shifting by -1 comes
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from our convention of (2.2). This sheaf is an extension of the sheaf W ..... defined on
the affine curve Spec(An). The graded module (EB:=-oo w(m»)( -1) is also a graded
module over grA o by (4.10). It gives rise to a torsion-free sheaf on Co, which is nothing
but !.F. Let us define

where a is as in (4.9). Then Wp is an (Ao)p-module of rank r· n = r 2: nj. The formal
eompletion (!.:F)u, of f.F at the point pis given by the k[[y]]-module Wp (8l(Ao), k[[y]],
and the isomorphism

(4.11)
I

Wp (8l(Ao), k[[y]) r-v E9 k[[zj]]zj
j=l

gives rise to the sheaf isomorphism

I

4> : (f.:F)u, ~ 1T. E9 ,pj. (Ouoj (-1))
j=l

and its diagonal blocks ep = (rPb" . ,4>1). Since f.:F has rank r· n over OCo from (4.11)
and An has rank n over Ao, the sheaf :F on Cn must have rank r. The eohomology
ealeulation of (3.11), (3.12) and (3.13) shows that the Euler charaeteristie of:F is equal
to J.l. Thus we have eonstrueted all of the ingredients of the geometrie data of type D,

index J.l, and rank r. This completes the proof of (4.7).

In order to eomplete the proof of the eategorical equivalenee of (3.17), we have to
eonstruet a tripie (0', (3,..\) out of the homomorphisms t : Ao '--t- A~, f : An --+ A~, and
w : W' ---+ W. Let s be the rank of Ati as an Ao-module. The injeetion t is associated
with the inclusion k«y)) C k«(y')), and the coordinate y has order -8 with respeet to
y'. Therefore, we have r = s . r'. Reeall that the filtration we have introduced in Ao
is defined by the order with respeet to y. The homomorphism L induees an injeetive
homomorphism

00 00 00

A - ffi A(rm) ffi A,(a-r'm) c ffi A,(r'm) - A'
gr 0 - '\I7 0 --+ '\I7 0 '\I7 0 - gr 0,

m=O m=O m=O

which then deBnes a morphism Q : C'o --+ Co.
Note that the homomorphism f comes from the inclusion k«(Yj)) c k(yj)) for every

j. By the Pwseux expansion, we see that every Yj = y1/nj has order -8 as an element
of k«(yj)) = k«yl1/n j )). Thus we have

00 00 00

grAn = E9 A~m) ---+ E9 A,~a.r'm) C E9 A'~'m) = grA'n ,

m=O m=O m=O
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and this homomorphism defines ß : C'n --+ Cn.
Finally, the homomorphism ,\ can be constructed as folIows. Note that w gives an

inclusion w'(m) c w(m) as subspaces of EB~=l k((zj)) for every mEZ. Thus we have
an inclusion map

00 00

ffi w,(m) C ffi w(m),

m=-oo m=-oo

which is clearly a grAn-module homomorphism. Thus it induces an injective homo­
morphism'\ : ß.J=" ~ J='.

One can check that the construction we have given in Section 4 is indeed the inverse
of the rnap we defined in Section 3. Thus we have eompleted the entire proof of the
categorical equivalence (3.17).

5. A characterization of arbitrary Prym varieties.

In this section, we study the geometry of finite type orbits of the Heisenberg flows,
and establish a simple characterization theorem of arbitrary Prym varieties. Consider
the Heisenberg flows associated with Hn(y) on the quotient Grassmannian Zn(JJ, y)
and assurne that the flows produce a finite-dimensional orbit at a point W E Zn (JJ, y).
Then this situation corresponds to the geometrie data of (3.1):

5.1. PROPOSITION. Let W E Grn(JJ) be a point oE the Grassmannian at wbich tbe
Heisenberg flows oE type n and rank r associated with Hn(y) generate an orbit oEfinite
type. Then W gives rise to a set oE geometrie data

(I: (cn,ß,rr,F,<t» --+ (Co,p,7r,I.:F,cP))

oE type n, index 1', and rank r.

PROOF: Let X n be the orbit of the Heisenberg Hows starling at W, and consider the r­
reduced KP flows associated with k((y)). The finite-dimensionality of X n = Qn,y(Xn )

implies that the r-reduced KP flows also produce a finite type orbit X o at W. Let
Ao = {a E k((y)) la· W C W} and An = {h E Hn(y) I h· W C W} be the stabilizer
subalgebras, which satisfy Ao C An. From the definition of the vector fields (2.5), an
element of k((y)) gives the zero tangent vector at W if and only if it is in Ao. Similarly,
for an element b E Hn(y), ww(b) = 0 if and only if b E An. Thus the tangent spaces
of these orbits are given by

TwXo ~ k((y))/Ao and TwXn 9:t Hn(y)/ An .

Therefore, going down to the quotient Grassmannian, the tangent spaces of X n and
X o = Qn,~(Xo) are now given by

T-X
o
~ k((y)) = k((y))

W Ao+k((y)) n gl{n, k[[y]]y) ~ ffi k[(y]]y
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and
T. X n ~ Hn{y) = Hn{y) ,

W An + Hn{y) n gl(n, k[[y]]y) An Er) Hn{y)-

where W = Qn,y{W), and Hn(y)- is defined in (2.14). Since both of the above sets
are finite-dimensional, the tripie (An, An, W) satisfies the cokemel conditions (4) and
(5) of (3.9). The rank condition (6) of (3.9) ia a consequence of the fact that Hn(y) has
dimension n over k(y)). Therefore, applying the inverse construction of the Krichever
functor to the tripie, we obtain a set of geometrie data. This completes the proof.

Since k c Ao C An, from (3.4) and (3.8) we obtain

(5.2)

and

- k«(y)) 1
TWXo ~ A

o
Er) k[[y]]y ~ H (CO,OCo)

(5.3)
- Hn(y) 1

TwXn ~ An Er) Hn(y)- ~ H (Cn,OcIJ·

Thus we know that the genera of Co and Cn are equal to the dimension of the orbits
X 0 and X n on the quotient Grassmannian, respectively. However, we cannot conclude
that these orbits are actually Jacobian varieties. The difference of the orbits and the
Jacobians lies in the deformation of the data (cI», 4». In order to give a surjective map
from the Jacobians to these orbits, we have to eliminate these unwanted information
by using (3.19). Therefore, in the rest of this section, we have to assume that the
point W E Grn(p.) gives rise to a rank one tripie (Ao, An, W) of algebraic data from
the application of the Heisenberg flows associated with Hn(y) and an element y E L of
order -1.

In order to deal with Jacobian varieties, we further assume that the field k is the field
C of complex numbers in what follows in this section. The computation (5.3) shows
that every element of H 1(Cn , Oca ) is represented by

(5.4)
l 00 l

L L tijYji E EBC((Yj)) = Hn(y)·
j=l i=-oo j=l

The Heisenberg ßows at W are given by the equations

(5.5) aw . ( )-i
!l.l .. =yjl·W= hnj(y) ·W,
UL 1}

where hnj (y) acta on W through the block matrix

o

o
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and the index i runs over all of Z. The formal integration

(5.6)

of the system (5.5) shows that the stabilizers Ao and An of W{t) do not defonn as t
varies, because the exponential factor

(5.7)

commutes with the algebra Hn(y). Note that half of the exponential factor

is an element of r n{Y).

5.8. THEOREM. Let y E L be a monie element 01 order -1 and X n a finite type orbit
oE the Heisenberg f10ws on Grn{J-l) associated with Hn{y) starting at W. As we bave
seen in (5.1), the orbit X n gives rise to a set 01 geometrie data

Then the projeetion image X n 01 this orbit by Qn,y : Grn(J-l) --+ Zn (J-l, y) is canonieally
isomorpbie to the Jaeobian variety Jac(Cn ) oftbe eurve Cn witb W = Qnl~{W) as its
origin. Moreover, the orbit X o of the KP system (written in terms of the variable y)
defined on the quotient Grassmanman Zn(J-l, y) is isomorphie to the deformation spaee

{N ~ I.:F IN E Jac(Co)} .

Thus we bave a finite eovering Jac(Co) --+ X o ofthe orbit, which is indeed isomorphie
if I.:F is a general vector bundle on Co.

PROOF: Even though the fonnal integration (5.6) is not well-defined as a point of the
Grassmannian, we can still apply the same construction of Section 4 to the algebraic
data (Ao, An, W (t)) understanding that the exponential matrix e{t) of (5. 7) ia an extra
factor of degree O. Gf course the curves, points, and the covering morphism 1 : Cn --+

Co are the same as before. Therefore, we obtain

(I: (Cn,~,II,:F(t),~(t))--+ (Co,p, 1r,I.:F(t), t/>(t))) ,
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where the line bundle :F(t) comes from the An-module W(t). We do not need to specify
the data cI»(t) and ifJ(t) here, because they will dis8,ppear anyway by the trick of (3.19).
On the curve Cn, the formal expression e(t) makes sense because of the homomorphism

1 00

exp: H 1(Cn ,Oca ) 3 L L tijYji...-.. [e(t)] = .c(t) E Jac(Cn ) C H1 (Cn ,Oca ) ,

j=l i=-oo

where .c(t) is the line bundle of degree 0 corresponding to the cohomology dass [e(t)] E
H 1

( Cn, 0C
a

)' Thus the sheaf we obtain from W(t) = e(t). W is :F(t) = .c(t) ~:F. Now
consider the projection image (Ao, An, W(t)) of the algebraic data by Qn,y. Then it
corresponds to the data

by (3.19). Since exp : H1 (Cn ,Oc,J ~ Jac(Cn ) is surjective, we can define a map
assigning (5.9) to every point .c(t) E Jac(Cn ) of the Jacobian. Through the Krichever
functor, it gives indeed the desired identification of Jac(Cn) and the orbit X'n:

Jac(Cn ) 3 .c(t)~ (5.9) ...-.. W(t) E X n •

The KP system in the y-variable at W E Zn(Jl, y) is given by the equation

8W -m W--y .8s
m

- •

The formal integration

W(s) = exp (fl smy-m) . W

corresponds to

where N(s) ~ f.:F is the vector bundle corresponding to the Ao-module Wes). From
(5.2), we have a surjective map of H 1(CO' OCo) onto the Jaeobian variety Jae(Co) C

H 1 ( Co l 0 (0 ) defined by

exp: H1(CO'Oco) 3 fl smy-m .......... [exp(~ smy-m)] =JV(s) E Jac(Co).

Thus the orbit X 0 eoincides with the deformation space N'(s )® f.:F, whieh is covered by
Jae(Co). The last statement of the theorem follows from a result of [L]. This eompletes
the proof.
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Let (7]1, •.. ,7]l) be the transition function of :F defined on Uj \ {Pj}, where 7] j E C((y j )).

Then the fa.mily :F(t) of line bundles on Cn is given by the transition function

and similarly, the line bundle 'c'(t) is given by

Here, we note that the nOIUlegative powers of Yj = hnj (y) do not contribute to these
transition functions.

Recall that Hn(y)o denotes the subalgebra of Hn(y) consisting of the traceless ele­
ments.

5.10. THEOREM. In the same situation as above, the projeetion image X C Zn (J-l , y)
oE the orbit X oE the traeeless Heisenberg fIows W(Hn (Y)o) starting at W is eanoniea11y
isomorphie to the Prym variety associated with the eovering morphism f : Cn ~ Co.

PROOF: Because of (1.3), the locus of 'c'(t) E Jac(Cn ) such that

det (f.(L:et ) @.1"») = det(f•.1")

is the Prym variety Prym(f) associated with the covering morphism I. SO let us
compute the factor

(5.11) V(t) = det (f.('c'(t) ® :F)) 0 det(f•.1')-l ,

. Tl ,exp

which is a line bundle oe degree 0 defined on Co. We use the transition function Tl of
1•.1' defined on Up \ {p} written in terms of the basis (3.6). Since f •.1'(t) is defined by
the Ao-module structure of W(t) = e(t) . W, its transition function is given by

2::1 tit (hnt (y)) -i

where the n x n matrix acts on the yo/nj -part of the basis of (3.6) in an obvious way.
Let us denote the above matrix by

T(t) =
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Then, it is clear that D(t) ~ [exp traceT(t)] E BI (Co, 0 00 ), From this expression, we
see that if L(t) stays on the orbit X of the traceless Heisenberg Hows, then D(t) ~ OCo'

Namely, X C Prym(f).
Conversely, take a point W(t) EXn of the orbit of the Heisenberg Hows defined on the

quotient Grassmannian Zn(Jl, y). It corresponds to a unique element L(t) E Jac(Cn )

by (5.8). Now Buppose that the factor D(t) of (5.11) is the trivial bundle on Co. Then
it implies that [traceT(t)] = 0 as an element of H I

( Co, 0 co), In particular, traceT(t)
acts on W trivially from (5.2). Therefore, W(t) is on the orbit of the flows defined by

1
T(t) - In . - traceT(t) ,

n

which are clearly traceless. In other words, W(t) E X. Thus Prym(f) C X. This
completes the proof.

5.12. REMARK: Let us observe the case when the curve Co downstairs happens to
be a PI. First of all, we note that the r-reduced KP system associated with y is
nothing but the trace part of the Heisenberg flows defined by Hn(y). Because of the
second half statement of (5.8), the trace part of the Heisenberg flows acts on the point
W E Zn(Jl, y) trivially. Therefore, the orbit X n of the entire Heisenberg ßows coincides
with .the orbit X of the traceless part of the flows. Of course, this reßects the fact that
every Jacobian variety is a Prym vanety associated with a covering over PI. Thus
the characterization theorem of Prym varieties we are presenting below contains the
characterization of Jacobians of [Mt] aB a special case.

Now consider the most trivial maximal commutative algebra H = H(1, ... ,I)(Z) ­
C((z))$n. We define the group r(l, ... ,l)(z) following (2.15), and denote by

(5.13)

the corresponding quotient Grassmannian. On this space the algebra H acts, and gives
the n-component KP system. Let Ho be the traceless subalgebra of H, and consider
the traceless n-component KP system on the quotient Grassmannian Zn(Jl).

5.14. THEOREM. Every finite-dimensional orbit oE the traceless n-component KP sys­
tem defined on tbe quotient Grassmannian Zn(Jl) of(5.13) is canonically isomorphie to
a (generalized) Prym variety. Conversely, every Prym variety associated with a degree
n covering morphism of smootb curves can be realized in this way.

PROOF: The first half part has been already proved. So start with the Prym variety
Prym(f) associated with a degree neovering morphism f : C -t Co of smooth curves.
Without loss of generality, we ean assume that Co is conneeted. Choose a point p of
Co outside of the branching locus so that its preimage f-I(p) consists of n distinct
points of C, and supply the necessary geometrie objeets to malce the situation into the
geometrie data
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of (3.1) of rank one and type n = (1"" ,1) with C = Cn. The data. give rise to a unique
tripie (Ao,An , W) of algebraie data by the Krichever functor. We ean choose 7r = id
so that the maximal commutative subalgebra we have here ia indeed H = H(1, ... ,l)(z),
Define A~ = {a E C((z)) la· W C W} and A' = {h E H I h· W c W}, which satisfy
Ao C A~ and An C A', and both have finite codimenaions in the larger algebras. From
the tripie of the algebraic data. (A~, A', W), we obtain a set of geometrie data

The morphism (a, ß, id) between the two sets of data consists of a morphism Q' : C~ --t­

Co of the base curves and ß : C' --. Cn' Obvioualy, these morphisms are birational,
and hence, they have to be 8:I1 isomorphism, because Co and Cn are smooth. Going
back to the algebraic data by the Krichever functor, we obtain Ao = A~ and An = A'.
Thus the orbit of the traeeless n-component KP system starting at W defined on the
quotient Grassmannian Zn(J-l) is indeed the Prym variety of the covering morphism f.
This completes the proof of the characterization theorem.

5.15. REMARK: In the above proof, we need the fuH information of the funetor, not
just the set-theoretical bijection of the objects. We use a similar argument once again
in (6.15).

5.16. REMARK: The determinant line bundle DET over Grn(O) is defined by

DETw = (i\ Ker(-rw))' ®7\x Coker('Yw).

The eanonical section of the DET bundle defines the determinant divisor Y of Grn(O),
whose support is the eomplement of the big-cell Gr~(O). Note that the action of r n(Y)
preserves the big-cell. So we can define the big-cell of the quotient Grassmannian by
Z:(O, y) = Gr;t(O)jrn(Y). The determinant divisor also descends to a divisor Yjrn(Y),
which we also call the determinant divisor of the quotient Grassmannian. Consider a
point W E Grn(O) at whieh the Heisenberg flows of rank one produee a finite type
orbit X n . The geometrie data corresponding to this situation consists of a curve Cn of
genus 9 = dime X n and a line bundle :F of degree 9 - 1 because of the Riemann-Roch
fonnula

dime HO(Cn,:F) - dime H1(Cnl:F) = deg(:F) - r(g - 1) .

Thus we have an equality X n = Pieg
-

1 (Cn ) from the proof of (5.8). The intersection of
X n with the detenninant divisor of Zn(O, y) coincides with the theta divisor e which
gives the principal polarization of Pic9 -

1 (Cn ). However, the restrietion of this divisor
to the Prym variety does not give a principal polarization as we have noted in Section 1.

5.17. REMARK: PrOfi the expression of (5.9), we ean see that a finite-dimensional
orbit of the Heisenberg ßows of rank one defined on the quotient Grassmannian gives a
family of deformations f. (!(t) flJF) of the vector bundle f.:F on Co. It is an interesting
question to ask what kind of deformations does this family produce. More generally,
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we ean ask the following question: For a given eurve and a family of veetor bundles
on it, ean one find a point W of the Grassmannian Grn(fl) and a suitable Heisenberg
flows such that the orbit starting from W contains the original family?

It is known that for every veetor bundle V of rank n on a smooth eurve Co, there is
a degree neovering f : C~ Co and aHne bundle Fon C such that V is isomorphie
to the direet image sheaf f.F. We ean supply suitable loeal data so that we have a set
of geometrie data

with Cn = C. Let (Ao, An, W) be the tripie of algebraic data eorresponding to the
above geometrie situation with a. point W E Zn(fl, z), where fl is the Euler characteristic
of the original bundle V. Now the problem is to eompare the family of deformations
given by (5.9) and the original family.

The only thing we ean say about this question at the present moment is the following.
H the original vector bundle is a general stable bundle, then one can find a set of
geometrie data and a eorresponding point W of a quotient Grassmannian such that
there is a dominant and generieally finite map of a Zariski open subset of the orbit of
the Heisenberg flows starting from W into the moduli space of stable vector bundles
of rank n and degree fl + n(g(Co) - 1) over the eurve Co. Note that this statement is
just an interpretation of a theorem of [BNR] into our language using (5.8).

As in the proof of (5.14), the Heisenberg flows ean be replaeed by the n-component
KP flows if we choose the point p E Co away from the branching loeus of f. Thus one
may say that the n-eomponent KP system ean produce general veetor bundles of rank
n defined 00 an arbitrary smooth curve in its orbit.

6. Commuting ordinary differential operators with matrix coefflcients.

In this sectioo, we work with an arbitrary field k again. Let us denote by

(6.1) E = (k [[x]]) ((a-1
) )

the set of al1 pseudodifferential operators with eoefficients in kUx]), where a= d/dx.
This .is an associative algebra and has a natural filtration

defined by the order of the operators. We ean identify k((z)) with the set of pseudo­
differential operators with eonstant eoefficients by the Fourier tra,-,..,form z = a-1 :

L = k((z)) = k((a-1
)) CE.

There is also a eanonieal projection

(6.2) p: E ~ E/Ex "'-J k((a-1
)) = L,
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where Ex is the left-maximal ideal of E generated by x. In an explicit fonn, this
projection is given by

(6.3) p : E 3 P = L am . am(x) t---+ L am(O)z-m E L .
mEZ mEZ

It is obvious from (6.2) that L is a left E-module. The action is given by P . v =
P . p(Q) = p(PQ), where v E L = E/Ex and Q E E ia a representative of the
equivalence dass such that p(Q) = v. The well-definedness of tbis action is easily
checked. We also use the notations

{
D = (k[[x]])[8]
E(-l) = (k[[x]])[[8-1 ]]. 8-1 ,

which are the set of linear ordinary differential operators and the set of pseudodif­
ferential operators of negative order, respectively. Note that there is a natural left
(k[[x]])-module direct surn decomposition

(6.4) E = D ffi E( -1) .

According to this decomposition, we write P = p+ E9 P-, P E E, P+ E D, and
P- E E(-l).

Now consider the matrix algebra gl(n, E) defined over the noncommutative algebra
E, which is the algebra of pseudodifferential operators with coefficients in matrix valued
functions. This algebra acts on our vector space V = L(Jjn I"V (E / Ex) ffJn from the left.
In particular, every element of gl(n, E) gives rise to a vector field on the Grassmanillan
Grn<J.L) via (2.4). The decomposition (6.4) induces

v = k[Z-l ]ffJn E9 (k[[z]] . z) ffJn

after tbe identification z = a-t, and the base point k[Z-l ]ffJn of the Grassmannian
Grn(O) of index 0 is the residue dass of DffJn in EffJn via the projection EffJn ---+

EffJn /(E(-l»ffJn. Therefore, the gl(n, D)-action on V preserves k[Z-l]ffJn. Tbe follow­
ing proposition shows that the converse is also true:

6.5. PROPOSITION. A pseudodifferential operator P E gl(n, E) witb matrix coefIi­
cients is a differential operator, i.e. P E gl(n, D), if and only iE

PROOF: The case of n = 1 of this proposition was established in [M3, Lemma 6.2].
So let us assume that P = (pp,,) E gl(n, E) preserves the base point k[z-l ]ffJn. H we
apply the matrix P to the vector subspace
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with only nonzero entries in the v-th position, then we know that P"'I/ E E stabilizes
k[z-l] in L. Thus PIJI/ is a differential operator, Le. P E gl(n, D). This completes the
proof.

Since differential operators preserve the base point of the Grassmannian Grn(O), the
negative order pseudodifferential operators should give the most part of Grn(O). In
fact, we have

6.6. THEOREM. Let SE gl(n,E) be a monie zero-tb order pseudodifferential operator
of tbe form

00

(6.7) 8 = In + 2: sm(x)a-m ,
m=1

wbere Sm(x) E gl(n, k[[x]]). Then the map

CF : E 3 8 1--+ W = 8-1 . k[z-I]$n E Gr~(O)

gives a bijective correspondenee between the set E of pseudodifferential operators of
tbe form of (6.7) and tbe big-cell Gr~(O) of tbe index 0 Grassmanman.

PROOF: Since 8 is invertible of order 0, we have 8-1 . V = V and 8-1 . V( -1) = V( -1),

where V(-I) = F(-I)(V) = (k[[zJ]z)EEln. Thus V = 8-1.k[z-lp~nffiv(-I), which shows
that er maps into the big-cell.

The injectivity of er is easy: if 811.k[z-1 ]EBn = 8;I.k[z-1 ]EBn, then 818;1. k[z-1 ]EBn =
k[z-I]EBn. It means, by (6.5), that 515;1 is a differential operator. Since SIS:;1 has
the same form of (6.7), the ooly possibility is that 81S:;1 = In, which implies the
iojectivity of er.

In order to establish surjectivity, take an arbitrary point W of the big-cell Gr+ (0).
We can choose a basis (wj)l< '<n 0< for the vector space W in the form

_1_ I _JJ

where ej is the elementary column vector of size n and w~~ E k. Our goal is to construct

an operator SEE such that S-l . k[z-I]EBn = W. Let us put 8-1 = (Sj)l:5 i ,j:5n
with

00

S; = 8; +2: 8-1/· S~I/(x).
1/=1

Since every coefficient S~I/(x) of 8-1 is a formal power series in x, we can construct the
operator by induction on the power of x. So let us assume that we have constructed
S~JI(x) modulo k[[xJ]x JJ • We have to introduce oue more equation of order p. in order
to determine the coefficient of x'" in S~ 1/ ( X ), which comes from the equation

S-1 . ejz-JJ = a linear combination of wi .
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(6.8)

For the purpose of finding a consistent equation, let us compute the left-hand side by
using the projection p of (6,3):

n

S-I -IJ" Si -11·ejZ = LJei' j'Z ,...

i=l

= ejZ-1' + p (~t 8-v . s~v(x)ei . 81')

= ejz-I' + p(~t to (_l)m (~)ei' 81'-v-m . s~v (m)(X))

= ejz-I' +~t1;(_l)m (~)s~}m)(O)'ejz-I'+v+m

= ejz-I' +%j; t(_l)m (~)S~a-m(m)(O). eiz-I'+a

+%t( _l)m (~)S~I'-m(m)(O). ei

+~1;t(_l)m (~) s~ß+I'-m(m) (0) . ejzß .

Thus we see that the equation

S-1 . ejz-I' = w7 +%j; t(_l)m (~)S~a-m(m)(O) . wil'+a

IJ-I n ( )
+ 1=0 t;(-l)m ~ s~l'_m(m)(O) .w?

is the identity for the coefficients of eiz-v for all i and 11 ~ 0, and d~termines s~p{O)(JJ)

uniquely, because the coefficient of s;p{O)(IJ) in the equation is (-l)IJ. Thus by solving
(6.8) for all j and JJ ~ 0 inductively, we can determine the operator S urnquely, which
satisfies the desired property by the construction. This completes the proof.

Using this identification of Gr+{O) and E, we can translate the Heisenberg flows
defined on the big-cell into a system of nonlinear partial differential equations. Since
we are not introducing any analytic structures in E, we cannot talk about a Lie group
structure in it. However, the exponential map

exp: E(-I) --t In +E(-I) = E

is well-defined and surjective, and hence we can regard E( -I) as the Lie algebra of the
infinite-dimensional group E. Simbolically, we have an identification

E( -I) = Lie(E) = TIn E = S-I .TsE
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for every SEE. The equation

(5.5) aW(t) = (h n . (y)) -i . W(t)
Utij J

is an equation of tangent vectors at the point W(t). We now identify the variable y of
(2.7) with a pseudodifferential operator

(6.9)
00

y = a-r + L cma-r
-
m

m=l

with coefficients in k. Then the block matrix hnj (y) of (5.5) is identified with an
element of gl(n, E). Let W(t) be a solution of (5.5) which lies in Grt(O), where
t = (tij). Writing W(t) = S(t)-l . k[z-l] ED n, the tangent vector of the left-hand side of
(5.5) is given by

aW(t) aS(t)-l
-

atij &tij

which then gives an element

The tangent vector of the right-hand side of (5.5) is (hnj (t)) -i E HOlI1cont(W, V/W),
which gives rise to a tangent vector S(t)· (hnj(t)) -i. S(t)-l at the base point k[z-l]EDn
of the big-cell by the diagram

k[Z-l ]EDn S·h·S-1
• Vjk[Z-l]ffi nIV IV

S-11 s-11 1S-1 1S-1

W IV I V V/W,
h

where we denote W = W(t), S = S(t) and h = (hnj (t)) -i. Since the base point is
preserved by the differential operators, the equation of the tangent vectors reduces to
an equation

(6.10)

in the Lie algebra E( -1) level, where (.)- denotes the negative order part of the operator
by (6.4). We call this equation the He~enbergKP ~y~tem. Note that the above equation
is trivial for negative i because of (6.9). In terms of the operator

P(t) = S(t) . y-l . In . S(t)-l E gl(n, E)
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whose leading term is In' 8r, the equation (6.10) becomes a more familiar Lax equation

In particular, the Heisenberg KP system describes the infinitesimal isospectral defor­
mations of the operator P = P{O). Note that if one chooses y = z = 8-1 in (6.9), then
the above Lax equation for the case of n = 1 beeomes the original KP system. We can
solve the initial value problem of the Heisenberg KP system (6.10) by the generalized
BirkhoJJ decompo"ition of [M2]:

(6.11)

where Y{t) is an invertible differential operator of infinite order defined in [M2]. In
order to see that the S{t) of (6.11) gives a solution of (6.10), we differentiate the
equation (6.11) with respect to tij. Then we have

S{t). (hn.{y))-i . S{t)-l = _ 8S{t) . S{t)-l + 8Y{t) . Y{t)-l ,
J atij at ij

whose negative order terms are nothing but the Heisenberg KP system (6.10). It shows
that the Heisenberg KP system is a eompletely integrable system of nonlinear partial
differential equations.

Now, eonsider a set of geometrie data

such that HO (Cn , F) = H 1(Cn , F) = O. Then by the Krichever funetor of (3.17), it
gives rise to a tripie (Ao,An, W) satisfyjng that W E Gr+{O). By (6.6), there is a monie
zero-th order pseudodifferential operator 5 such that W = S-l . k[Z-l ]EBn. Using the
identification (6.9) of the variable y as the pseudodifferential operator with eonstant
eoefficients, we can define two eommutative subalgebras of gl{n, E) by

(6.12) {
Bo = 5· Ao .5-1

B n = S . An . S-l .

The inclusion relation Ao C k«y)) gives us Bo C k({P-1 )), where P = S· y-l . In' S-l
E gl(n, E). Sinee Ao and An stabilize W, we know that Bo and B n stabilize k[z -1 ] EBn •

Therefore, these algebras are eommutative algebras of ordinary differential operators
with matrix coefficients!

6.13. DEFINITION. We denote by C+ (D, 0, r) the set oE objects
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of the eategory C(n) of index 0 BJld rank r such that

HO(Cn,:F) = Hl(Cn,:F) = 0 .

The set of pairs (Bo, B) of eommutative algebras satisfying the following eonditions is
denoted by V(n, r):

(1) k C Bo C B C gl(n,D).
(2) Bo and B are eommutative k.algebras.
(3) There is an operator P E gl(n, E) whose leading term is In . ar such tbat

Bo C k((P-l )).
(4) The projection map Bo --.. k((P-l))/k[[P-l]) is Fredholm.
(5) B has rank nasa torsion free module over Bo.

Using trus definition, we cau summanze

6.14. PROPOSITION. The eonstruetion (6.12) gives a eanomeal map

Xn,r : C+(n, 0, r) --. V(n, r)

for every r and a positive integral vector n = (nI,'" ,nl) with n = nl + ... + nt.

If the field k is of characteristic zero, then we can construct maximal commutative
algebras of ordinary differential operators with coefBcients in matrix valued functions
as an application of the above proposition.

6.15. THEOREM. Every set

of geometrie data with a smooth curve Cn, 7f = id and a line bundle :F satisfying
tbat HO (Cn,:F) = Hl (Cn,:F) = 0 gives rise to a maximal commutative subalgebra
B n C gl(n, D) by Xn,l'

PROOF: Let (Bo, B n) be the image of Xn,l applied to the above object, and (Ao, An, W)
the stabilizer data eorresponding to the geometrie data. Recall that Bo = S· Ao .8-1 ,

where S is the operator corresponding to W. Since r = 1 in our ease, (4.8) implies the
existence of an element a E Ao of the form

a = a(z-l) = z-m +C2 Z- m+2 +C3Z-m+3 +... E Au C k((z)) .

We eall a pseudodifferential operator a(a) . In E gl(n, E) a normalized scalar diagonal
operator of order m with eonstant coefficients. Here, we need

6.16. LEMMA. Let K E gl(n, E) be a normalized scalar diagonal operator of order
m > 0 with constant coefflcients and Q = (Qij) an arbitrary element ofgl(n,E). HQ
and K commute, then every coefB.cient oE Q is a constant matrix.

PROOF: Let K = a(a) . In for some a(a) E k(a- l )). It is wen known that there is a
monic zero.th order pseudodifferential operator So E E such that

Sö l
. a(8) . So = am

•
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Since a(8) is a constant coefficient operator, we can show that (see [M3])

SOl. k((8- l )) . So = k((8- l )) .

Going back to the matrix case, we have

In characteristic zero, commutativity with am implies commutativity with a. Thus
each matrix component SOl. Qij . So commutes with 8, and hence SOl. Qij . So E
k((a-1 )). Therefore, Qij E k((a- l )). This completes the proof of lemma.

Now, let B ::> B n be a commutative Bubalgebra of gl(n, D) containing B n . Since
Bo = S· Ao . S-l and Bo C B, every element of B commutes with S· a(8) . In . S-l.
Then by the lemma, we have

A = S-l . B . S C gl(n, k((a- 1 ))) •

Note that the algebra A stabilizes W = S-l . k[z-l]EBn. Since Hn(z) can be generated
by An over k((z)) = k((a-1

)), every element of A commutes with Hn(z). Therefore,
we have A C Hn(z) because of the maximality of Hn(z). Thus we obtain another tripie
(Ao, A, W) of stabilizer data of the same type n. The inclusion An --+ A gives rise
to abirational morphism ß : C --+ Cn . Since we are assuming that the curve Cn is
nonsingular, ß has to be an isomorphism, which then implies that A = An' Therefore,
we have B = B n . This completes the proof of maximality of Bn .

6.17. REMARK: There-are other maximal commutative sUbalgebras in gl(n, D) than
what we have constructed in (6.15). It corresponds to the fact that the algebras
Hn(z) are not the only maximal commutative subalgebras of the formalloop algebra
gl(n, k((z))).
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