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Abstract
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self-dual metrics with positive Ricci curvature. Moreover, every self-dual metric
of positive scalar curvature on CP,#CP; is conformal to a metric with positive

Ricci curvature,
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Introduction.

An oriented Riemannian 4-manifold {M, g) is said to be self-dual if its Weyl curvature
W, thought of as a bundle-valued 2-form, satisfies W = «*W where x denotes the Hodge
star operator. Because both W and x are unchanged if the metric is multiplied by a
positive function, this property is conformally invariant, and the term self-dual is thus
often used to describe the conformal class [g] := {ug |u: M i R"’} rather than the
metric ¢ which represents it.

Two familiar examples of compact self-dual manifolds are provided by the symmet-
ric spaces S* = SO(5)/SO(4) and CP, = SU(3)/U(2). For many years, these were
the only known examples of compact simply-connected self-dual manifolds with positive
scalar curvature, and it was therefore a major breakthrough when Poon [15] constructed
a one-parameter family of positive-scalar-curvature self-dual metrics on CP,#CP,; here
the connected sum operation # is carried out by deleting balls from the given manifolds
and then identifying the resulting boundaries in a manner compatible with the given ori-
entations. Motivated by this discovery, Donaldson-Friedman [6] and Floer [7] abstractly

proved the existence of self-dual metrics on the n-fold connected sum

TLCPQ = pPQ# e #CP%

n

for every n. The first author [12] then realized that such metrics on nCP;, can be
constructed explicitly by means of the so-called “hyperbolic ansatz” reviewed below in
§2. This last method has the added advantage that each of the conformal classes so
constructed can be seen to contain a representative of positive scalar curvature.

On the other hand, the examples provided by S* and CP; actually have positive
Ricei curvature, and, in light of the work of Cheeger (4], Anderson (1} and Sha-Yang
[16], it is natural to ask whether there are other compact 4-manifolds which admit self-
dual metrics with this property. Our objective here is to show that the answer to this
question is yes. We will accomplish this (§4) by explicitly constructing such metrics on
nCP; when n = 2 and 3; moreover, it will turn out that each of Poon’s conformal classes
on 2CP; contains such a metric. On the other hand, it is rather easy (§1) to see that
a compact self-dual manifold with positive Ricci curvature must be homeomorphic to
nCP, for some n > 0, where by convention 0CP; := S* This raises the fascinating
question, left unanswered here, of whether nCP; admits such metrics when n > 4.

On a related front, Gauduchon [8] has studied self-dual manifolds with non-negative
Ricei operator (cf. §1), and asked whether 2CP, and 3CP; admit such metrics. Our
metrics on 2CP, will be seen to satisfy both this condition and another, which we call

strongly positive Ricci curvature.



In order to prove these positivity results, we will first (§2) need to compute the Ricci
curvature of the general self-dual metric of hyperbolic-ansatz type. Our results will then
follow once we have introduced a suitable choice of conformal gauge, motivated (§3) by

a re-examination of the Fubini-Study metric of CP3.
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1 Topological Preliminaries

The present article is largely motivated by the following easy observation:

Proposition 1.1 Let (M, g) be a compact self-dual §-manifold with positive Ricci curva-

ture. Then M is homeomorphic to nCP, for somen > 0. Moreover, M is diffeomorphic
to nCP; if n < 4.

Proof. Let the universal cover M of M be equipped with the pull-back metric. Since
the Ricci curvature of M is then bounded below by a positive constant, Myers’ theorem
tells us that M is compact, and M — M is therefore a finite-sheeted covering. How-
ever, a simple Bochner-Weitzenb6ck argument [3, 11] implies that a compact self-dual
4-manifold with positive scalar curvature must have b_ = 0. Thus for both M and M,
we have by = b_ = 0, and hence both have x — 7 = 2(1 — b; + b_) = 2, where yx is
the Euler characteristic and 7 is the signature. But x — 7 is multiplicative under finite
coverings because it can be computed from a Gauss-Bonnet formula. Hence M — M
is the trivial covering, and M is simply connected. It now follows from the work of
Donaldson [5] and Freedman that M is homeomorphic to nCP, for some n > 0. On the
other hand, a self-dual manifold with positive scalar curvature, b; = 0, and 7 < 4 must

[14] be diffeornorphic to nCP; because its twistor space contains a rational hypersurface
of degree 2. 1

It is now natural to ask whether, conversely, the manifolds nCP, admit self-dual
metrics with positive Ricci curvature. For small values of n we shall see that the answer

is in fact affirmative.
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Rather than merely asking for the Ricci curvature Ric to be positive, one might ask
for its trace-free part Rico to be small enough with respect to its scalar curvature s > 0

so as to guarantee ¢ priori that Ric > 0. This motivates the following definition:

Definition 1.1 Let (M, g) be a Riemannian 4-manifold. Then we will say that M has
strongly positive Ricci curvature if, at each point of M, we have

| Rico | < —.

2v/3

Similarly, we will say that M has stronély non-negative Ricci curvature if s > 0 and

S

23

| Rico | <
at every point of M.

Observe that strongly positive Ricci curvature implies positive Ricci curvature. In-
deed, if (Ay,...,As) are the eigenvalues of Ric /s, then, in the 3-plane Ay +--- 4+ Ay =1,
positive Ricel curvature corresponds to the tetrahedron with corners (1, 0,0,0),...,(0,0,0,1),
whereas strongly positive Ricci curvature corresponds to the ball of radius 1/2\/§ around
(3,...,3), and this ball just fills the in-sphere of the tetrahedron. By the same argu-
ment, we also see that strongly non-negative Ricci curvature implies non-negative Ricci

curvature.

Proposition 1.2 Let (M, g) be a self-dual f-manifold with strongly positive Ricct cur-
vature. Then M s diffeomorphic to nCP,, where 0 < n < 3.

Proof. The Gauss-Bonnet formulae for the signature and Euler characteristic of a

compact oriented Riemannian 4-manifold (M, g) are

1 2 2
(M) = 5 [ (WeP = IW-1) v,
and I Rico | \
1 9 9 1Co S

where v, is the metric volume form. Thus any compact self-dual 4-manifold satisfies

=300 = o7 [ (5 - 1R ) v,

- 82

and the right-hand side is manifestly positive if the Ricci curvature is strongly positive.
Now M is homeomorphic to nCP, by Proposition 1.1, and even diffeomorphic if n < 4.
But the inequality 2y — 37 > 0 implies that n < 4, as desired. i



Rather than focusing on the Ricci tensor of a Riemannian 4-manifold (M, g), one
may instead choose (8] to consider an algebraically equivalent object Ric, called the Ricci
operator, which is defined as the full curvature operator minus its Weyl component. If

we let () denote Schouten’s modified Ricci tensor
s
= Ric—~g,
Q = Ric~¢g
the Ricci operator is explicitly given by
1
Rie(X AY) = > (PX)AY + X AQYY)),

where Q is the endomorphism of TM corresponding to @ and X, Y are any tangent
vectors. It follows that the Ricci operator is positive (respectively, non-negative} if and
only if the sum of the lowest two eigenvalues of Q is positive (respectively, non-negative).

In terms of Ay, ..., A4, this corresponds to requiring that

Vi # j,

G| 4=

% > (resp. 2) A+ A; > (resp. )

which is to say that (A, -- /\4) isa point of the open (respectively, closed) cube with
corners (§,3,5:0),-.-,(0,3,3,3), (5: 5281 3)r - - (;, %, %, %). Since this cube is contained
in the in-sphere, we therefore have

positive Ricci operator =
strongly positive Ricci curvature =

positive Ricci curvature,
and

non-negative Ricci operator and s > 0 =
strongly non-negative Ricci curvature =

non-negative Ricci curvature.

Moreover, non-negative Ricci operator and s > 0 fail to imply that the Ricci curvature 1s
strongly positive only when (Aq,...,A4) is a corner of the cube. Using this observation,
we now prove a slightly sharpened version of a result discovered by Gauduchon [8], using
different methods.

Theorem 1.3 Let (M,g) be a compact self-dual {-manifold with positive scalar cur-
vature and non-negative Ricci operator. Then either M is diffeomorphic to nCP.,

0 < n <3, or else the universal cover of (M, g) is the Riemannian product R x S°.



Proof. Since the Ricci curvature is strongly non-negative,
(2x - 3r)(M) = o5 [ (35~ Rico ) vy 20
XTI = gt g \T2 710 ) e =T

with equality iff | Rico | = s/2v/3. If the inequality is strict, 2y —37 > 0. Thus b,(M) =0
and 7(M) < 4. The proof of Proposition 1.1 thus implies that M ~ nCP; for n < 4.

If equality holds, (A, ..., A4) must everywhere be one of the corners of the previously
mentioned cube, and Ric therefore has exactly two eigenvalues at each point of M, one
with multiplicity 3 and one with multiplicity 1. It follows that there is a line sub-
bundle of TM, and x(M) = 0. Moreover, by(M) = 7(M) = 2x(M) = 0, so that

be(M) =b,(M) =0. Hence 0 = x(M) = 2—-25(M), and b;(M) = 1. Since M has non-
negative Ricci curvature, the classical Bochner argument [2] now says that M admits a
parallel 1-form, and thus locally splits as the Riemannian product of R x N, where N
is a 3-manifold. But since Ric everywhere has a positive eigenvalue of multiplicity 3,
N is an Einstein 3-manifold of positive scalar curvature. Thus N has positive constant

sectional curvature, and the universal cover of M is R x 53, |

2 Ricci Curvature and the Hyperbolic Ansatz

In this section, we shall compute the Ricci curvature of those self-dual metrics which

arise from the following “hyperbolic ansatz” construction:

Proposition 2.1 [12] Let (H? h) denote hyperbolic 3-space, which we equip with a fized
orientation, and let V be a positive harmonic function on some open set V C H®. Suppose
that the cohomology class of ~2'; + dV is integral, where % is the Hodge star operator of
H3. Let M =V be a circle bundle with a connection 1-form 8 whose curvature is xdV .

Then the conformal class
o] = [Vh + V7]

of Riemannian metrics on M is self-dual with respect to the orientation determined by

0 A vp, where vy, is the volume form of H3.

We now wish to calculate the Ricci curvature of metrics in these self-dual conformal
classes. With the most obvious choice of conformal factor, the answer turns out to be

surprisingly simple:

Proposition 2.2 For any positive harmonic function V on a region of H3, the Ricci
curvature of the self-dual metric g = Vh + V=182 is Ric, = —2h.



The V-independence of this Ricci curvature is analogous to the Ricci-flatness of the
metrics produced via the Gibbons-Hawking ansatz [9].
While this answer is beguilingly simple, it is also depressingly negative! Fortunately,

the picture will become less bleak once we conformally rescale our metric:

Proposition 2.3 Let f and V be réspect:'vely a smooth function and a positive harmonic
function on a domain V C H2. Then the Ricci curvature of the corresponding self-dual
metric g = eX/ (Vh + V710?) is given by

Ric, = (-2-Af=2ldf* - V"(dV,df)) h
—9Ddf +2(df)* +2V-'dV © df (2.1)
+(~Af = 20df]? + VU@V, df)) (V716)?
-2Vl (dV A df) @ V4.

Here D, A, and % are respectively the Levi-Civitd connection, negative Laplace-Beltram:
operator, and Hodge star operator of hyperbolic 3-space (H?,h), while | - | and (-,-) are

the corresponding norm and inner product on 1-forms.

To prove these statements, let us first observe that (2.1) is valid iff it holds for some
particular f; in particular, Propositions 2.2 and 2.3 are logically equivalent. Indeed, if
go = VA +V~10? and g = € gy, the standard formula [2] governing the alteration of

curvature by conformal rescaling yields
Ric, = Ricy, —2Vdf +2(df) — (Af +2|df|2,) go,

where V and A are respectively the Levi-Civita connection and negative Laplace-Beltrami

operator of go. Now since

Vdf %'Exudgofgﬂ
= 1L, Vh+ 1L V70
= 1Lyt VA + L (Ly-tga, V) 2+ V700 (V- grad, f1d0)

- dV,d 0O (grad, f_I *dV
= %(fv—lma,‘f\/)h—l-\/symm(DV ldf)_%sjlgz_i_ (gfa‘;.zf dV)
- Vod | (dV.df), (@dV,df) , §O*(dVAd)
= Ddf - v + % h— 2v30+ 7 ,

it follows that
Af=VTAS,



and we therefore have

Ric, = Ricy, —2Ddf +2V'dV 0 df — V-H{dV, df)h
+V-3(dV, df)0? — 2V 20 O *(dV A df) + 2(df)?
— (VA + 2Vl df?) (VR + V707
= Ricy, — (Af +2|df)? + V1AV, df))
—2Ddf + 2(df)?* + 2V 1V O df
+(=OF = 2df|* + VTHaV,df)) (V0)?
—2V20 O #(dV A df).

But this will coincide with (2.1) for any particular f iff Ricy, = —2h.
We now complete our proof by verifying (2.1) for a slightly peculiar choice of f, best
described in terms of the upper-half-space model

_ dz? + dy?* + dz?

2 1

h

z >0,
z

of H®. We will now set f = log z because [13, §3] the corresponding metric
g=2}(Vh+ V716?)
1s Kahler with respect to the integrable almost-complex structure
z
dz — dy, dzr— =0,

|4

with Ricci form

_ 1 __*dV dV A B
P=—-dV7'8) = v+ v
The Ricci curvature of this metric is therefore
2
Ric, = z‘?/ [—d:r2 —dy? 4+ d2* + (%0) ] + —2;:%- [d:n Odz +dy© —:7()
2V,
+57 [dy@dz—d:c@—;—O].

But, since |df|* =1,

1

1 dz? + dy?
Ddf = §fs,,dh1h = §£ 2 ( _—

2 H

T 22 4

dz? + dy* + dzz)

and Af = -2, this is exactly the result predicted by (2.1) with f = logz. Thus (2.1)
holds for our particular f, and Propositions 2.2 and 2.3 therefore follow.



To conclude this section, let us point out that the scalar curvature s, and the modified

Ricci tensor Qg = Ric, —is,g are now respectively given by
sg=6e"YV N (<1 — Af —|df?) (2.2)
and
Q = (~1—I1df]* = (%, d) b
—2Ddf + 2(df)* + 29 O df (2.3)

+ (1= 14 + (#,df)) (V7'0)*
—2x (pAdf)yO V'Y,

where p = V~'dV = dlogV. Notice that the sign of s, is independent of V; for
applications, cf. (12, 10).

3 Choosing a Conformal Factor

The hyperbolic ansatz described in the last section can be used [12] to construct self-
dual metrics on nCP;. When n = 1, this construction gives metrics conformal to the
Fubini-Study metric on CP3, and our main tasks here will be to re-examine the type of
conformal factor this entails.

Let {p1,...,p,} be an arbitrary collection of n points in H?, and let
1
Gj = i(coth r; — 1)

be the hyperbolic Green’s function centered at p;; here r; is the hyperbolic distance from

pj, and our normalization is chosen so that d « dG; = —2n4,,. Thus
L 1 n
V:zl-}-zG’j:l-}—-Q—Z(cothrj—l) (3.1)
=1 1=1
is a positive harmonic function on V = H*\ {p1,...,pn} satisfying the integrality con-

dition of Proposition 2.1. Letting (M, @) be the circle bundle with connection 1-form
as in Proposition 2.1, which is uniquely determined up to gauge equivalence since V is

simply connected, we thus obtain a sell-dual metric
go=Vh+V1¢?

on M. If we now use the Klein projective model to identify H* with the interior of
the closed 3-disk D?, there is a smooth compactification M of M such that the bundle

9



projection M — H>\ {p;} extends to a surjective smooth map M — D?* and D? ix
thereby identified with the orbit space of an S'-action on M; in fact, M \ M is the set: of
fixed points of this action, and consists of a 2-sphere §2, which projects diffeomorphically
to &D?, and n isolated fixed points p;, one for each p; € H®. Moreover, ¢ = €%/ g extends
to a self-dual metric on the compact manifold M =~ nCP, whenever f : H* - R
is a smooth function which behaves like —r near infinity, where r is the hyperbolic
distance from an arbitrary reference point. When n = 0,1, this construction produces
the conformal classes of the standard metrics on S* and CP,; when n = 2, it instead
yields the self-dual metrics on 2CP; first discovered by Poon [15].

In the above discussion, we assumed for simplicity that f was a smooth function on
H3; and on ‘H?\ {p,;} smoothness is obviously needed to guarantee that e/ g, is smooth
on M. On the other hand, the derivative of the natural projection M — D?® vanishes at
each ;, and the pull-back of the function r; is consequently smooth on M \ S%. Choices
of f with this sort of behavior near the p; are also allowable, and will in fact turn out
to be crucial for our purposes.

To see why, let us look more closely at the n = 1 case. In geodesic polar coordinates

about p = p,, the hyperbolic metric on H>\ p can be written as
h = dr? + sinh?r gs2,

where gs2 is the standard metric on the unit 2-sphere. Now the ansatz stipulates that
V =1+ g(cothr —1) = (1 — e7¥")7!, and hence *dV = —jw, where w is the standard
area form on the 2-sphere. In order to produce a circle bundle with this curvature, let
i S* — S? be the Hopf map, and let the unit 3-sphere S® = Sp(1) be equipped with
a left-invariant orthornomal coframe {ay, 09,03} such that u*gs: = 4(oy* + 0,%). Then
p*(—3w) = =20, A g3 = d(—03), and the desired circle bundle 7 : M — H3 \ p may be

taken to be the pull-back of y, with connection form # = —o3, to 5% x R*. Thus

g = Vh4+ V712

1
= I-_“-i: [dr2+4sinh2r (0')2+0'22)] +(1 —'8_2r)0'32.
— €

Setting p = cos™!(e™"), we now have
e gy, = cot?p [ta112 p dp* + tan® p sin’p (0, + 022)] + cos? p sin®p 03°
= dp® +sin’p (042 + 2% + cos? p 73%),
which is exactly the Fubini-Study metric of CP,, expressed in geodesic polar coordinates.

So far as positive Ricci curvature is concerned, the best possible choice of f when n =1

is thus f = —r, and the challenge now facing us is to suitably generalize this for n > 1.

10



Since we will still need f ~ —r as r — o0, one obvious generalization is

fo_mtdT

n
In the next section, we will see that this choice actually works surprisingly well when
n < 3.

4 Positive Ricci Curvature

In the previous section, we associated a conformal class of self-dual metrics on nCP; to
any configuration of points {p1,...,pn} in H>. We will henceforth denote this conformal

class by Cp, .. pn-

Theorem 4.1 Fach conformal class C,, , of self-dual metrics on CP,#CP;, contains

a metric with strongly positive Ricci curvature and non-negative Ricci operator.
In fact, the metric g = €2/(Vh + V~10?) has these properties provided we set
Lt
f = - 9 ’

where 7| and 7, are respectively the hyperbolic distances from p;,p; € H®. We will

prove this by first showing that the Ricci operator is non-negative, and then observing
that the Ricci curvature is still strongly positive at the points where the Ricci operator
has non-trivial kernel.
On an open dense subset of M C M, and with respect to the metric V-1gy =
h 4+ V~%0% we may define an oriented orthonormal coframe {e!,...,e%} by
. dry + drq g dry—dry

e =——, & = - and 84 = V"O.
ld’l‘l +d1‘2, |d7‘1 o d’l"2|

Let ¢ := sin~!{dr;, e') be the oriented angle between dr, and e'. Then
df = —(cosyp)e’,

iV = __1_- dry n drg jl

2 |sinh®r,  sinh®r,

1 'C 1,1 . 1 1 o2
= == |cCO0s e sSIn —
2| ¥\ sinh? ry sinh®ry ¥\ sinn? r1 sinh?r, ’

Ddf = - :coth 1 (h - ([1'12) + cothrg (h - drf)]

sin® ¢ (cothry + cothry) (e')? — 2cos psin g (cothr; — cothry)e' © e?

[S=A Il R

+ cos? ¢ (cothr; + coth ry) (€?)? 4+ (coth 7y + cothry) (e3)2] :

11



Plugging these expressions into (2.3), we see that the components of Q with respect to
the dual frame {e;} of {e’} satisfy

Qu = (a+1)sin’ ¢+ fcos’

> sinp+ g,
Q2 = (o —pf)cos’p —sin’p
> —sin®e,

Qa3 (a+ 1)~ (B+1)cos?yp
(B +1)sin® g,
Q34 = Q43

= ~sin¢ cosp,

Qs = sin®p+ Beos? o,

\%

Q;x = 0 otherwise,

coth? ry 4coth?ry—2
cothri4cothry

where « := cothry + cothry — 2, 8 := , and v := coth r; — coth ry satisfy
a>f> |y

Now since Qa3 and Qg4 both exceed sin® ¢, and since

Qa3 — sin ¢ Qaq . |
Q Quq —sin’ @ > (Bsin® p)(Bcos® p) — ¥ sin® pcos’ p
43 44 —
= (8% —+%)sin?pcosip
> 0,

the eigenvalues [Q,i] in the eses-plane exceed sin® . Hence three of the eigenvalues
of [Q;x] exceed sin? ¢y, whereas the remaining eigenvalue Qg is greater than —sin® .
The sum of the lowest two eigenvalues of Q, calculated with respect to any metric in
the fixed conformal class, is therefore positive on the domain of our moving frame. But
since this domain is actually dense, it follows that the Ricci operator is non-negative on
the entirety of M =~ 2CP,.

Since Qi1 > (Qas + Qu4)/2 = (a/2) + sin® ¢, the largest two eigenvalues of [Q;i] are
at least (@/2) + sin® ¢ on the domain of our frame, and the sum of the lowest and third
lowest eigenvalues of [Q;x] therefore exceeds /2 on this region. However, the frame {e;}
we have been using is only conformally orthonormal with respect to g = e/ V(h+V ~26?).
We now remedy this by introducing the g-orthonormal frame e’ := e~/V—1%;, with
respect to which the components of Q become
2en1tn

cothr| + cothry

Qi =e 2 V7'Qy = Qjk-

12



If 11 < p2 < pa < juq are the eigenvalues of [Q};], we therefore have

ry4r 2
”] + pa > ae 14r2 — erl+r2 62"[ + e ro __ 2
cothry; + cothr, e2(ri+ra) — 1
ritre _
> et 2enTre — 2 2 1.

- 62(r|+"2) —1 = 1 + e-(r1+r2) >

Because the domain of our frame is dense, the continuity of the spectrum therefore
implies that the sum g, + g3 of the lowest and third lowest eigenvalues of Q, calculated
with respect to g, is at least 1 on all of M. The sum ) + 1, of the two lowest eigenvalues
of Q can thus vanish only at points at which Q does not have an eigenvalue of multiplicity

3, and the Ricci curvature of g is therefore strongly positive on all of M.

Corollary 4.2 Any self-dual metric of positive scalar curvature on CP,#CP, is con-

formal to a metric of strongly positive Ricci curvature and non-negative Ricci operator.

Proof. Any self-dual conformal class on CP,#CP; with a representative of positive
scalar curvature is [12, p. 251} of the form C,, ,,. |

With this success in hand, it seems reasonable, more generally, to investigate the
Ricci curvature of metrics of the form e2/(Vh + V~16%) on nCP,, where V is defined by

(3.1) and
r Ty

mn

f=_

In fact, a rough picture is not difficult to obtain when the points p,...,p, € H? are ex-
tremely close together. Indeed, consider a sequence of configurations of n distinct points
in 43 which converges to the degenerate configuration consisting of a single point p € H?
counted with multiplicity n. On the complement of any ball about p, the curvature of
these metrics will converge uniformally to that of the orbifold metric corresponding to
V = 14nG and f = —r, where r is the hyperbolic distance from p and G = (cothr—1)/2.
But (2.1) predicts that the Ricci tensor of this orbifold limit is

Ric = ¢ [dr? + (V710)2] + 7 (h — dr?),

where
cothr — 1
( = 5 T n(cothr — 1)(4 + 3ncothr — n),
n = cothr - 1 (8 4+ 3ncothr — 5n).

2 4+ n(cothr — 1)

Observe that 7 is positive everywhere on H? iff n < 4, and that lim, 40 n/( = 0if n = 4;

moreover, we always have ( > 7. Hence the Ricci curvature of this orbifold limit is

13



everywhere positive if and only if n < 3. (When n = 4, it is still non-negative, but fails
to be positive along 52) In short, the only encouraging news pertains to the n = 3 case,

where the above computation will help us to prove the following:

Theorem 4.3 If pi,p2,ps € H® are nearly geodesically collinear and are sufficiently
close to each other, then the conformal class Cy, p, , of self-dual metrics on 3CP; con-

tains a metric with positive Ricci curvature.

To produce self-dual metrics with positive Ricci curvature on 3CP,, we start with
the above singular model and pull the centers py, p2, p3 slightly apart, keeping them
geodesically collinear. Qutside a neighborhood of p, the Ricci curvature remains positive

by our previous computation. Theorem 4.3 is thus implied by the following;:

Lemma 4.4 There exists ane > 0 such that, for all collinear configurations {py,p2,p3} C

‘H3, the Ricci curvature of g is positive on the inverse image of U3_, B.(p;).
g P g =1 ]J

Proof. Ignoring bounded terms, Ddf ~ —15"; % (h—dr;?), Af ~ 2 (ﬁ + ot }3),

V ~ % (ﬁ + ;12- + %), and dV ~ ——;— (f—;} + f—;} + f—;%) Equation (2.1) therefore tells us
that

z () d d

6V Ric ~ {2( + iJri) - <%+ 22T dry +dr2+dr3>] h

™ T2 r3

1 dry dry dr

S = (h—dr?) +2 (—% +— ——3) O (dry + dry + dry)

- Tj T'a

8 732

7
1 1 1\* d dr d .
+ [2 (— +—+ —) + <ﬂ + —7:- + L:,dﬁ +dre + d‘r‘3>] (V='o)*
T T T2 T3

12
—2 % [(—2 + —+ —2) A ((11‘1 + dTQ + dra)] © V”la)
> r3

where ~ means that the difference between the left- and right-hand sides is of order
go = Vh + V716% on U3 B.(p;). Letting R denote the right-hand side of the above
expression, it will thus suffice for us to show that R dominates Vgo = Vi + 62, since

Ric will then dominate I_Cﬁv_'gg for some constant C, and so will be positive-definite

on U3_, B.(p;) for ¢ sufficiently small.
Because we are only considering collinear configurations, dry + dr; + drz # 0 on
H3\ {p1, p2, p3}, and we may let e! be the unit covector in this direction. At any given

point, choose € so that the dr; are all linear combinations of e' and e*:

1y 2
dr; = cosp; e +sinyp; e,
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Extend this to an oriented orthonormal coframe {e',e?, e®} for i, and set e* = V~16.

Then, letting & := 3_; cos ¢;, the components of R with respect to the dual frame {e;}

are
= 1
R = ;T—J;(Q+ncoscpJ+2sm w,)+2§7(2+sm @; + sin® cpk)
i
Ry = ZL(Z—ncosgo + 2 cos? go)+22-——(2+coscp+cos (p;_)
s ; ’ Sk TiTk ’
Riz = Ra
1
= 3y, 7—2—(n — 2cos ;)sing; —2 Y —(cos ;81N ; + Cos i sin @y ),
I J<k 3
- 1
Ra; = 2—2(4—ncostp, +82———
FRRE i<k Jrk
~ 1
Ry = — 2+ kcosp;)+4)y —
? r;? ! % ritk
- - 1
R34 = R = Z —zK.Sll'l P,
]
1’?_,';: = 0 otherwise.

We now just need to show that the eigenvalues of [R;i] are all bigger than V2. To
do this, first notice that 3", sin, = 0, and so

kcos(p; —29) = (Z cos (p;_) cos(p; — 29) — (Z sin (p,g) sin(p; — 2¢)
= 2 _cos(p; + i — 20)
k
for any 9. Thus

~ - ~ (0 (1
cos® YRy, + 2cosUsin ¥ Ryy + sin® I Rgy = Z aj(_2) + Z asx(9)

H TJ i<k Tk
and b;(4 by (9
cos? 6R33 + 2 cos J sin 19]3’.;,.1 +sin? 9 Ry = Z 3(2) + Z s ),
where
a;(9) = cos’d (2 + Kk cos ; + 2sin’ goj) + sin® (2 — K cos p; + 2cos” cpj)

+2cos ¥ sind(k — 2 cos ;) sin ;
= 3+ rcos(p; — 20) — cos(2¢; — 29)
= 34+ Y cos(p; + px — 29)
oy

15



v

1,

bi(?) := cos®¥(4 — kcos ;) + 2cos I sindksinp; + sin’ ¥ (2 + x cos ;)
= 3+ cos2d — kcos(p; + 29)
= 33— cos(ip; — @k + 20)

k#3
> 1,
ajk(ﬂ) = 2cos’d (2 + sin? w; + sin? (pk) + 2sin? Y (2 + cos? v; + cos? cpk)
—4 sin cos ¥(cos ¢; sin ; + cos @y sin @)
= 6 — cos(2p; — 20) — cos(2¢x — 27)
> 4>2
bir(9) = 8cos®d +4dsin’*9 =4 +4cos*d
> 4>2 '

~ 2
i . 1 L, -2 oL : ;
Hence every eigenvalue of [R;i] exceeds 3, - +3 <k = (ZJ rj) , and hence exceeds

V? on U;B.(p;) for any € < 3. The result follows. |
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