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Abstract
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Introduction.

An oriented Riemannian 4-manifold (M, g) is said to be sei/-dual if its Weyl curvaturc

W, thought of as a bundle-valued 2-forI11, satisfies W = *W, where * denotes the Bodge

star operator. Because both Wand * are unehanged if the metrie is Inultiplied by a

positive function, this property is conformally invariant, and the term self-dual is thus

often used to describe thc confonnal dass {g] := {ug I u : M Cco) R +} rather than thc

metric 9 whieh represents it.

Two falniliar exanlples of cornpaet self-dual manifolds are provided by the synl1net­

rie spaees 54 = 50(5)/50(4) and CP2 = 5U(3)/U(2). For lnany years, these were

the only known exaIl1ples of compact sinlply-connected self-dual manifolds with positive

scalar eurvature, and it was therefore a Inajor breakthrough when Poon [15] constructed

a one-paranleter family of positive-scalar-curvature self-dual rnetrics on CP2#CP 2 ; here

the connected surn operation # is carried out by deleting balls from the given lnanifolds

and then identifying the resulting boundaries in a manner compatible with the given ori­

entations. Motivated by this discovery, Donaldson-Friedman [6] and Floer [7] abstractly

proved the existenee of self-dual metries on the n-fold connected surn

n

for every n. The first author [12] then realized that such D1etrics on nCP 2 can be

eonstructed explicitly by means of the so-called "hyperbolie ansatz" reviewed below in

§2. This last Inethoel has the added advantage that each of the confonnal classes so

constructed can be seen to contain a representative of positive sGdar curvature.

On the other hand, the examples provided by 54 and CP2 actually have positive

Ricci curvature, anel, in light of the work of Cheeger [4], Andersoll [1] and Sha-Yang

(16], it i~ natural to ask whether there are other eompact 4-manifolds which aellnit self­

dual metrics with this property. Our objective here is to show that the answer to this

question is yes. We will accolnplish this (§4) by explicitly construeting such Illetries on

nCP 2 when n = 2 anel 3; moreover, it will turn out that each of Poon's cOnfOrl11al classes

on 2CP2 contains such a metric. On the other hand, it is rather easy (§l) to see that.

a compact self-elual Illanifold with positive Ricci curvature must be h0l11e0l110rphic to

n CP 2 for same n 2: 0, where by convention OCP 2 := S4. This rai ses the faseinating

question, left unanswered here, of whether nCP2 adrnits such lnetrics when n 2: 4.

On a related front, Gauduchon [8] has studied self-dual manifolels with non-negative

Ricci operator (cf. §l), and asked whether 2CP2 and 3CP2 admit such lnetrics. Our

metries on 2CP 2 will be seen to satisfy both this condition anel another, which we eall

strongly positive Ricci curvature.
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In order to prove these positivity results, we will first (§2) need to eompute the Ricci

curvature of the general self-duallnetric of hyperbolic-ansatz type. Our results will then

follow once we have introduced a suitable choice of conformal gauge, motivated (§3) by

a re-exalnination of the Fubini-Study lnetric of CP1.
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BerkeleYi we are thus greatly inelebted to these institut ions for their hospitality anel
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1 Topological Preliminaries

The present artic1e is largely motivated by the following easy observation:

Proposition 1.1 Let (M, g) be a compact sel/-dual 4-manifold with positive Ricci C7J,1'V{I,­

ture. Then M is homeomorphic to nCP2 for some n 2: o. Moreover, M is diffeol110rphic

to nCP2 if n ::; 4.

Proof. Let the universal cover M of M be equipped with tbe pull-back lnetrie. Sinee

tbe Ricci curvature of M is then bounded below by a positive constant, Myers ' theorem

teIls us that M is compaet, anel M --+ M is therefore a finite-sheeted eovering. How­

ever, a simple Bochner-Weitzenböek argument [3, 11] implies that a eompaet self-dual

4-manifold with positive sealar Gurvature must have b_ = O. Thus for both M anel M,

we have bl = b_ = 0, and henee both bave X - T = 2(1 - bl + b_) = 2, where X is

the Euler eharacteristic and T is the signature. But X - T is multiplicative nnder finite

coverings because it ean be computed from a Gauss-Bonnet formula. Henee lvI -t IvI

is the trivial eovering, anel M is siluply connecteel. It now follows [roln the work of

DOllaldson [5] and Freedman that M is hOll1eOmorphie to nCP2 for SOllle 11, 2: O. On the

other hand, a self-dual Inanifold with positive scalar curvature, bl = 0, anel T ::; 4 l11tlst

[14] be diffeomorphic to nCP 2 beeause its twistor space contains a rational hypersurface

of degree 2. I

It is now natural to ask whether, conversely, the manifolds nCP2 admit self-dual

metries with positive Rieci eurvature. For snlall values of n we shall see that the answer

is in fact affiflnative.
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Rather than merely asking for the Ricci curvature Ric to be positive, one might ask

for its traee-free part RieQ to be slTIall enough with respeet to its scalar curvature s > °
so as to guarantee apriori that Ric > O. This motivates the following definition:

Definition 1.1 Let (M,g) be a Riemannian 4-mani/old. Then we will say that M has

strongly positive Ricei eurvature iJ, at each point 0/ M, we haue

. s
IRleo I < M'

2v3

Similarly, we will SlLY that M has strongly non-negative Ried curvature iJ s > °and

. s
1RlCo I ~ 2/3

at euery point 0/ M.

Observe that strongly positive Ricei eurvature implies positive Rieci curvature. 1n­

deed, if (Ah"" A4) are the eigenvalues of Ric/s, then, in the 3-plane Al +... + A4 = 1,

positive Ricci curvature corresponds to the tetrahedron with corners (1, 0,0,0), ... , (0,0,0,1),

whereas strongly positive Ricci curvature corresponds to the ball of radius 1/2V3 arouncl

(±' ... , ~), and this ball j ust fills the in-sphere of the tetrahedron. By the Salne argu­

ment, we also see that strongly non-negative Ricci curvatllre inlplies non-negative Ricci

curvature.

Proposition 1.2 Let (M,g) be a sel/-dual 4-maniJald with strongly positive Ricci CU1'­

uature. Then M is diffeomorphic ta nCP2 , where 0 ~ n ~ 3.

Proof. The Gauss-Bonnet formulae for the signature and Euler characteristic of a

compact oriented Riemannian 4-manifold (M, g) are

and

where vg is the nletric volume fornl. Thus any cOlnpact self-dual 4-Iuanifold satisfies

(2X - 37)(M) = ~ { (~- I RiCo 1
2

) V g ,
81r JM 12

and the fight-hand side is manifestly positive if the Ricci curvature is strongly positive.

Now M is homeomorphic to nCP 2 by Proposition 1.1, and even diffeomorphic if n ~ 4.

But the inequality 2X - 37 > °implies that n < 4, as desired. I
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Rather than focusing on the Ricci tensor of a Riemannian 4-rnanifold (M,g), one

may instead choose [8] to consider an algebraically equivalent object Rie, called the Ried

ope1'ator, whieh is defined as the fuH curvature operator minus its Weyl cOlnponent, If

we let Q denote Schouten's modified Ricci tensor

Q = Ric-::g,
6

the Ried operator is explieitly given by

where Q~ is the endolllorphism of TM corresponding to Q and X, Y are any tangent

veetors. It foHows that the Ricci operator is positive (respectively, non-negative) if anel

only if the surn of the lowest two eigenvalues of Q is positive (respectively, non-negative).

In tenns of Al, , .. , A4, this corresponds to requiring that

2 13 > (resp. 2) Ai + Aj > (resp. 2) 3 Vi =1= j,

which is to say that (Al,'" , "\4) is a point of the open (respectively, closed) cube with

( I 1 1 0) (0 1 1 1) (1 1 1 1) (1 1 1 1) S' h' b' . Icorners 3'3'3' , ... , '3'3'3' 6'6'6'2 , ... , 2'6'6'6' lucet ISCU elscontalnec
in the in-sphere, we therefore have

positive Ricci operator :::}

strongly positive Rieci curvature :::}

positive Ricci curvature,

and

non-negati ve Ricci operator anel s > 0 :::}

strongly non-negative Rieci curvature :::}

non-negative Ricci curvature.

Moreover, non-negative Ricci operator and s > 0 fail to imply that the Ricci curvature is

strongly positive only when (Al,' .. , A4) is a corner of the cube. Using this observation,

we now prove a slightly sharpened version of a result discovered by Gauduchon [8], using

different lllethods.

Theorem 1.3 Let (M,g) be a compaet selJ.dual 4-maniJold with positive sealar C'Ul'­

vature and non-negative Ricci operator. Then either M is diffeomorphie to nCP2,

o:::; n :::; 3, or else the universal cover oJ (M, g) is the Riemannian product R X 53.

5



Proof. Since the Ricci curvature is strongly non-negative,

(2X - 3r)(M) = 8:2 iM (;; -I Rieo 12) Vg :::: 0,

with equality iff IRieo I=s/2V3. If tpe inequality is strict, 2X - 3r > O. Thus bl (M) = 0

and r(M) < 4. The proof of Proposition 1.1 thus implies that M ~ nCP 2 for n < 4.

If equality holds, (AI, ... ''\4) must everywhere be one of the corners of the previously

mentioned cube, and Ric therefore has exactly two eigenvalues at each point of M, one

with multiplicity 3 and one with multiplicity 1. It follows that there is a line sub­

bundle of TM, and X(M) = O. Moreover, b+(M) = r(M) = ~X(M) = 0, so that

. b2(M) = b+(M) = O. Henc~ 0 = X(M) = 2 - 2bl (M), and bt{M) = 1. Since A1 has 11on­

negative Ricci curvature, the classical Bochner argument [2] now says that M admits a

parallel I-form, and thus locally splits as the Riemannian product of R x N, where N

is a 3-manifold. But since Ric everywhere has a positive eigenvalue of multiplicity 3,

N is an Einstein 3-manifold of positive scalar curvature. Thus lV has positive constant

sectional curvature, and the universal cover of M is R X S3. I

2 Ricci Curvature and the Hyperbolic Ansatz

In this section, we shall compute the Ried curvature of those self-dual metries which

arise from the following "hyperbolic ansatz" construction:

Proposition 2.1 [12] Let (1-l.3 , h) denote hyperbolie S-spaee, whieh we equip with a fixed

orientation, and let V be a positive harmonie funetion on some open set V C 1{3. Suppose

that the eohomology dass 0/ 2
1
1f * dV is integral, where * is the Hodge star operator of

H,3. Let M -r V be a circle bundle wilh a eonneetion l-form () whose curvature is *dV .

Then the eonformal dass

of Riemannian metries on M is self-dual with respeet to the orientation determined by

() 1\ Vh, where Vh is the volume form of 'H.3
.

We now wish to calculate the Ricci curvature of metrics in these self-dual confornlal

classes. With the most obvious choice of conformal factor, the answer turns out to be

surprisingly simple:

Proposition 2.2 For any positive harmonie function Y on a region of H,3, the Rieci

eurvature of the self-dual metde 9 == Vh + y- 1()2 is Ricg = -2h.
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The V-independence of this Rieci eurvature is analogous to the Ricci-ßatness of the

metrics produced via the Gibbons-Hawking ansatz [9].

\Vhile this answer is beguilingly simple, it is also depressingly negative! Fortunately,

the picture will become less bleak onee we conformally rescale our metric:

Proposition 2.3 Let fand V be respectively a smooth /unetion and a positive harmonie

/unetion on a domain V C 11.3. Then the Rieci eurvature 0/ the eorresponding sel/-dual

metric 9 = e2 / (Vh + V-18~) is given by

Ricg = (-2 - 6/ - 2ldfl~ - V-1(dV, df)) h

-2Ddf + 2(df)'J + 2V- I dV <:) df

+ (-!:J.f - 2[d/1 2 +V-I (dV, df)) (V-18)2

-2V-1 * (dY t\ df) (0 v-ln.

(2.1 )

Here D, 6., and * are respeetively the Levi-Civita connection, negative Laplace-Beltrami

operator, and Hodge star operator 0f hyperbolie 9-space (11..3 , h), while I . land (- l .) are

the corresponding norm and inner product on i-forms.

To prove these statements, let us first observe that (2.1) is valid iff it holds for sonle

partieular f; in particular, Propositions 2.2 and 2.3 are logically equivalent. Indeed, if

90 = Vh + y-I{j2 and 9 = e2f90, the standard formula [2] governing the alteration of

eurvature by conformal rescaling yields

where V' and D.. are respectively the Levi-Civita. connection and negative Laplace-Beltrami

operator of 90. Now since

V'df = ~Lr;ra.dgo/90

- ~Lr;radgo/ Vh + t.cr;rad9Q / V-I 02

- !.cV-llPiradhfVh + ~ (.cV-Ir;radh/V-I) (p + y-IO (0 (V-Igradhf -.JdO)

= 1 (.c _ V) h (DV- Idlf) _ (dV, df) ()2 8 (0 (gradhf -.J * tly)
2 V lr;radh/ + Vsymm 2V3 + V2

Ddf _ dV 0 df (dV, df) h _ (dV, df) 02 08 *(dV /\ df)
- :J V + 2V 2V3 + V2 '

it follows that

D,,/ = V- 16f,
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and we therefore have

Ricg = llicgo -2Ddf +2V- 1dV 8 df - V-I (dV, df)h

+V-3 (dV, df)(j'l - 2V-20 8 *(dV /\ df) + 2(df)2

- (V-1Lof +2y- 1 ldfI 2
) (Yh +V- 102

)

RicgO - (L.f +21dfl 2 + V-I (dY, df)) h

-2Ddf +2(df? + 2V- 1dV 8 df

+ (-L.f - 21dfl2+V-I (dY, df)) (y- 1B)2

-2y-2B8 *(dY /\ df).

But this will coincide with (2.1) for any particular f iff RicgO = -2h.

We now conlplete our proof by verifying (2.1) for a slightly peculiar choice of /, best

described in tenns of the upper-half-space model

of H,3. We will now set f = log z because [13, §3] the corresponding lnetric

is Kähler with respect to the integrable ahnost-complex structure

dx 1-+ dy,
z

dz H- yB,

with Ricci fornl
P = -d(y-10) = _*dV dY /\ ()

V + V 2 .

The Ric~i curvature of this lnetric is therefore

~ [ 2 2 2 (z) 2] 2Yx [ z ]Rieg = zv -<lx -dy +dz + y O + zV dX8dz+dY8yO

2Yy [ z ]+ zY dy 8 dz - dx <::) V O .

But, since Idfl 2 = 1,

Dd( = ~i' h = ~i' (dx
2 + dy 2 + dz

2
) = _ dx

2 + dy
2

;} 2 ~r~dhJ 2 %1; z'1 Z2 '

and L.f = -2, this is exactly the result pl'edicted by (2.1) with f = logz. Thus (2.1)

holds for our partiClIlar f, and Propositions 2.2 and 2.3 therefore follow.
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To conclude this section, let us point out that the scalar curvature 8 g anel the Illodifieel

Ricci tensor Qg = Ricg - kSgg are now respectively given by

and

Qg = (-I-ldfl~-(?j;,df))h

- 2Ddf + 2(df)2 + 21/1 0 df

+ (1 -Idfl~ + (1/1,df)) (V-IO?

-2 * (1j; A df) 0 v-Ie,

(2.2)

(2.3)

where 'lj; = V-I dV = d log V. Notice that the sign of 8 9 IS independent of V; for

applications, cf. {12, 10].

3 Choosing a Conformal Factor

The hyperbolic ansatz described in the last section can be used [12] to construct self­

dual metries on nCP2. When n = 1, this construction gives metries confornlal to thc

Fubini-Study metric on CP2, and our Inain tasks here will be to re-examine the type of

conformal factor this entails.

Let {PI, ... ,Pn} be an arbitrary collection of n points in 'H.3
, and let

1
Gi = -(coth Ti - 1)

2

be the hyperbolic Green's function centered at Pi; here Ti is the hyperbolic distance fro111

Pi, and our normalization is chosen so that d * dGi = -27T"opj' Thus

n 1 n

V := 1 +2: G j = 1 + - 2:(coth Ti - 1)
i=I 2 i=l

(3.1 )

is a positive hannonic function on V = 'H.3 \ {PI,'" ,Pn} satisfying the integrality con­

dition of Proposition 2.1. Letting (M, 0) be the circle bundle with connection I-forl11

as in Proposition 2.1, which is uniquely determined up to gauge equivalence since V is

simply connected, we thus obtain a self-dual metric

on M. If we now use the Klein projective model to identify 'H.3 with the interior of

the closed 3-disk D3
, there is a smooth compactification M of M such that the bundle
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projection M -+ '}-l3 \ {Pi} extends t.o a surjective smooth Inap M -+ D3 , and D3 is

thereby identified with the orbit space of an SI-action on M; in fact, M \ M is the set of

fixed points of this action, alld consists of a 2-sphere 52, which projects diffeolllorphically

to aD3 , alld n isolated fixed points Pi, one for each Pi E '}-l3. Moreover, 9 = e2/90 extends

to a self-dual nletric on the compact manifold M ~ nCP2 whenever f : '}-l3 -+ R

is a smooth function which behaves like -r near infinity, where l' is the hyperbolic

distance from an arbitrary reference point. When n = 0,1, this construction produces

the conformal classes of the standard metrics on S4 and CP 2; when n = 2, it instead

yields the self-dual metrics on 2CP2 first discovered by Poon [15].
In the above discussion, we assunled for simplicity that f was a SlllOOth function on

'}-l3; and on '}-l3 \ {Pi} Sllloothness is obviously needed to guarantee that e 2/90 is Slllooth

on M. On the other hand, the derivative of the natural projection M -+ D3 vanishes at

each Pi, and the pull-back of the function ri is consequently smooth on M \ S2. Choices

of f with this sort of behavior near the Pi are also allowable, anel will in fact turn out

to be crucial for our purposes.

Ta see why, let us look luore closely at the n = 1 case. In geoelesic polar coordinates

about p = PI, the hyperbolic llletric on '}-l3 \ P can be written as

h = dr 2 + sinh2
r 952,

where 952 is the standard lnetric on the unit 2-sphere. Now the ansatz stipulatcs that

V = 1 + t(coth l' - 1) = (1 - e-2r )-1, and hence *dV = -tw, where w is the standard

area form on the 2-sphere. In order to produce a circ1e bundle with this curvature, let

IL : S3 --+ S2 be the Hopf lllap, and let the unit 3-sphere S3 = S]J(I) be equipped with

a left-invariant orthornoinal coframe {0"1' 0"2, 0"3} such that IL* 9$2 = 4(0"1
2 + 0'22). Then

/--l*( - tw ) = -20"1 /\ 0"2 = d( -0"3), and the desired circ1e bundle 7r : M --+ '}-l3 \ P Illay be

taken to be the pull-back of J-L, with connection form 0 = -0"3, to S2 X R+. Thus

90 Vh + V- 102

1 _1
e
_.r [dr' + 4 sinh' r (Ul' + u,')] + (1 - e-'r)u?

Setting p = cos- 1(e- r
), we now have

cot2 p [tan 2 p dp2 + tan2p sin2p (0"1
2 + 0"2

2
)] + cos2 p sin2p 0"3

2

dp2 +sin 2 p (a1
2 + 0"2

2 +cos 2 P 0"3
2

),

which is exactly the Fubini-Study luetric of CP 2, expressed in geodesic polar coordinates.

So far as positive Ricci curvature is concerned, the best possible choice of f when 11, = 1

is thus f = -r, aud the challenge now facing us is to suitably generalize this for n > 1.
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Since we will still need f "J -r as r ---+ 00, one obvious generalizatioll is

f = _ rl + ... + r n •

n

In the next section, we will see that this choice actually works surprisingly .weIl when

n ::; 3.

4 Positive Ricci Curvature

In the previous section, we associated a conformal class of self-dua.l metries on nCP2 to

any configuration of points {PI, ... ,Pn} in 1[3. We will henceforth clenote this confonnal

class by CP1 , ... ,pn'

Theorem 4.1 Eaeh eonforrnal class Cpt ,P2 of self-dual metries on CP2#CP2 eontains

ametrie with strongly positive Ricci C'lL1'vature and non-negative Ricci operator.

In fact, the metric 9 = e2f (Vh + V- I02) has these properties provided we set

f - _ rl + r2
- 2'

where rl and r2 are respectively the hyperbolic distances from Ph P2 E J[3. We will

prove this by first showing that the Ricci operator is non-negative, and then observing

that the Ricci curvature is still strongly positive at the points where the Ricci operator

has non-trivial kernel.

On an open dense subset of M c M, and with respect to the Inetric V-Igo

h + V- 2 02 , we ITIay define an oriented orthonormal coframe {eI,. , ., e4} by

el = drl + dr2 , e2 = drl - dr2 , anel e4 = V-IO.
[drl +dr21 IdTI - dr21

Let r.p := sin-1 (drt, e l ) be the oriented angle between drl and e l . Then

dV

Ddf - ~ [coth '\ (h - ,17,\2) + coth '2 (h - d.2
2
)]

= - ~ [Sill2 'P (coth.\ + coth "2) (e\)2 - 2 cos 'P Sill 'P (coth "\ - coth "2) e\ <::) e2

+ cos2 r.p (coth 7'1 +coth '''2) (e2
)2 + (coth rl +coth T2) (e3?] .
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Plugging these expressions into (2.3), we see that the cornponents of Q with respect to

the dual frame {ei} of {ei} satisfy

Ql1 = (a + 1) sin2 c.p + ß cos2 c.p

> sin2 c.p + ß,

Q22 (a - ß) cos2 c.p - sin2 'P

> - sin2 'P,

Q33 = (a + 1) - (ß + 1) cos2 'P

> (ß + 1) sin2 'P,

Q34 = Q43

= ,sin 'P eos 'P,

Q44 = sin2 cp + ßeos2 cp,

Qik = ° otherwise,

where a := coth, + coth l' - 2 ß:= coth
J

rl±coth
J

r2-2 anel "Y := eoth, - coth T satisfy
1 .2, cothrl±cothr:;z' I 1 2

a > ß > 1,1·
Now since Q33 anel Q44 both exceed sin2 "P, and since

Q . 2
33 - SIll "P

Q43

Q34

Q ·244 - sln cp

= (ß2 - ,2) sin2 cp eos2 cp

> 0,

the eigenvalues [Qjk] in the e3e4-plane exceeel sin2 "P. Hence three of the eigenvalues

of [Qik] exceed sin2cp, whereas the remaining eigenvalue Q22 is greater than - sin 2 cp.

The surn of the lowest two eigenvalues of Q, calculated with respect to any Inetric in

the fixed conforlllal dass, is therefore positive on the domain of our Inoving fraDle. But

since this domain is actually dense, it follows that the Ricci operator is non-negative Oll

the entirety of M ~ 2CP2.

Since Ql1 > (Q33 +Q44)/2 = (0./2) + sin2 "P, the largest two eigenvalues of [Qik] are

at least (0./2) +sin2<p on tbe dOlllain of our frame, anel the SUlll of the lowest and thircl

lowest eigenvalues of [Qik] therefore exceeds 0./2 on this region. However, the frame {ei}
we have been using is only confo,mallyorthonormal with respect to 9 = e2f V(h+ V-282).

We now renledy this by introducing the g-orthonormal frame ej := e- f V- 1
/

2ei, with

respect to which the components of Q beeOlne

2ert ±r2

Q' -2fV-IQ Q
jk = e jk = th + th jk·co rl co '2
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If P'l ~ /--L2 ~ /--L3 :::; I t4 are the eigenvalues of [Qjk], we therefore have

aerl +r2 e2rt + e2r2 - 2
PI + /--L3 > = erl +r2 -....,....--..,....---

eoth 1'1 + eoth r2 e2(q +r2) - 1
2erJ + r2 - 2 2

> er1 + r2 = > 1e2(rl+r2) - 1 1 + e-(rl+r2) .

Beeause the dOIl1ain of our frame is dense, the continuity of the speetrulll therefore

implies that the SUll1 PI +!-L3 of the lowest and third lowest eigenvalues of Q, calculatecl

with respect to g, is at least 1 on an of M. The sum Itl + /--L2 of the two lowest eigenvalues

of Qean thus vanish only at points at which Qdoes not have an eigenvalue of 111ultiplieity

3, and the Rieei eurvature of 9 is therefore strongly positive on all of M.

Corollary 4.2 Any self-dual metrie of positive sealar eurvature on CP2#CP2 zs con­

formal to a metric of st1'ongly positive Ricci curvature and non-negative Ricci operaio1'.

Proof. Any self-dual conforInal dass on CP2#CP2 with a representative of positive

sealar curvature is [12, p. 251] of the form Cp1 ,P2' I

With this suecess in hand, it seelllS reasonable, more generally, to investigate the

Ried curvature of Inetrics of the form e2J (Vh + V- I B2) on nCP 2 , where V is defined by

(3.1) anel
f = _ 1'1 + ... + 1'n .

n

In fact, a rough pieture is not difficult to obtain when the points PI, ... ,Pn E 1{.3 are ex­

trelnely elose together. Indeed, eonsider a sequence of configurations of n distinet points

in 1{.3 which eonverges to the degenerate configuration eonsisting of a single point ]J E 'H3

eounted with l11ultiplidty n. On the cOlnplement of any ball about p, the curvature of

these metries will converge uniformally to that, of the orbifold metrie corresponding to

V = l+nG anel f = -r, where r is the hyperbolic distanee from p and G = (eoth 1'-1)/2.

But (2.1) prediets that the Ried tensor of this orbifold lilllit is

where

( =

1] =

coth r - 1
2 (I ) (4 + 3n eoth r - n),+n cot 1 r - 1

coth l' - 1
(h ) (8 + 3n coth r - 5n).

2 + n cot l' - 1

Observe that 1] is positive everywhere on 1{.3 iff n :::; 4, anel that limr~co '(ll( = 0 if n = 4;

moreovcr, we always have ( ~ 1]. Hence the Rieci eurvature of this orbifold lilllit is
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everywhere positive if and only if n ~ 3. (When n = 4, it is still non-negative, hut fails

to be positive along §2.) In short, the only encouraging news pertains to thc n = 3 case,

where the above computation will help HS to prove the following:

Theorem 4.3 /f PI,]J2,'P3 E ~H..J are nearly geodesicaUy coUinear and a1'f sujJiciently

elose to each other, then the confonnal elass CPt ,P2,P3 of self-dual1netrics on 3CP2 cou­

tains (l metric with positive Ricci curvature.

To produce self-dual metrics with positive Ried curvature on 3CP2 , we start with

the above singular Inodel and puH the centers PI, P2, P3 slightly apart, keeping theIn

geodesicaIly collinear. Outside a neighborhood of p, the Ricci curvature rernains positive

by our previous computation. Theorem 4.3 is thus implied by the following:

Lemma 4.4 There exists an € > 0 such that, for aU col/inear configurations {PI, P2, P3} C

1-l3 , the Ricci curvature of 9 is positive on the inverse image of U1=I Be:(pj).

Proof. Ignoring bounded terms, Ddf 'V -~ Lj r:' (h - drj 2), 6./ 'V -~ (rIl + rl'J + r~)'

V 'V ! (..!.. + ..!.. +..!..) and dV 'V _! (4!:J.. +~ + !b.). Equation (2.1) therefore teIls HS
2 r 1 r2 r3' 2 r 12 r2'J r3 2

that

6V Ric 'V

where 'V means that the difference between the lcft- anel right-hand sides is of order

90 = Vh + V- I {}2 on Uj=IBe:(pj). Letting R denote tbe right-hand siele of the above

expression, it will thus suffice for us to show that R dominates V90 = V 2h + (J2, since

Ric will tben d0111inate I-C6V-
1

90 for SOHle constant C, and so will be positive-definite

on Uj::;:::I Be: (Pj) for e sufficiently slnall.

Because we are only considering coHinear configurations, drl + d1'2 + dT3 =J 0 on

1{3 \ {PI' P2, P3}, and we may let e l be the unit covector in this direction. At any given

point, choose e 2 so that the drj are all linear combinations of e l and e 2
;

I I, 2
lrj=coS<pje +SIn<pje.
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R33 -

R44 =

R34

are

Rn -

R22

R12

Extend this to an oriented orthonornlal eofrcune {eI, e2, e3} for h, anel set e4 = v-Ie.
Then, letting t\, := Lj eos <.pj, the eomponents af R with respeet ta the dual fraIne {ej}

L ~ (2 + K eos <.pj + 2sin2 <.pj) + 2 L _,1_ (2 + sin 2
<.pj + sin2

<.pk) ,
j 1') j<k r)rk

L ~ (2 - I\, eas <.pj + 2eos:l <.pj) + 2 L _,1_ (2 + eas2
<.pj + eas2

<.pk) ,
j 1) j<k r)rk

HZ1

E ~ (K - 2 eos 'f'j) sin <.pj - 2 E _1_(cas 'f'j sin 'f'j + eos <.pk sin 'Pk),
j 1'j j<k rjrk

1 1E -(4 - K,cas'Pj) + 8L-'
, 1'.2 , 1"rk) ) )<k )

1 1L -2(2 + t\,eos'Pj) + 4L-'
j Tj j<k IjTk

... 1
R 43 = L -1,.2 K, sin <pj,

j )

Rjk = 0 otherwise.

We now just need to show that the eigenvalues of [Rjkl are all bigger than V 2
, To

da this, first notice that Lk sin <Pk = 0, anel so

KeDs('Pi - 219) = (~ eDS 'Pk) eDs('Pi - 219) - (~Sin 'Pk) sin('Pi - 219)

L cos(<Pj + <Pk - 219)
k

for any {). Thus

2 ... .... 2'" '"' (Lj({}) ~ (Ljk(t9)
eos () Rll + 2 eas 17 sin 19 R12 + sln 19 R22 = LJ --2- + LJ

j rj j<k 1'jTk

anel

where

aj(17) .- cos2
{J (2 + K, eos <Pj + 2 sinz <pj) + sin2 17 (2 - t\, eas <pj + 2 eos 2 <pj)

+2eost9sint9(ti: - 2eos<pj) sin <Pj

3 + K eos( 'f'j - 219) - eos(2<pj - 219)

= 3 + L eos(<pj + <Pk - 2{))
k"#j

15



> 1,

bj(17) .- eos2 17(4 - ~ eos <Pj) + 2 eos 17 sin 17~ sin <Pj + sin2 17(2 + ~ eos <pj)

- 3 + eos 219 - ~ eos( <Pj + 219)

= 3 - E eos(<pj - <Pk + 219)
k#j

> 1,

CLjk(t9) .- 2 eos 2 19 (2 + sin2 <Pj + sin2 <Pk) + 2 sin~ 19 (2 +eos2 <Pj + eos2 <Pk)

-4 sin 19 eos 19(eos <pj sin <Pj + eos <Pk sin <Pk)

= 6 - eos(2<pj - 219) - eos(2<pk - 219)

> 4 > 2,

bjk (19) .- Seos2 19 + 4 sin~ 19 = 4 +4 eos2 19

> 4> 2.

Henee every eigenvalue of [R jk ]exeeeds L:j*+L:j<k rj~k = (L:j r~) 2, anel henee exceeels

V 2 on UjB~(pj) for any c < ~. The result folIows. I
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