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CONVEX ALGEBRAIC GEOMETRY

OF CURVATURE OPERATORS

RENATO G. BETTIOL, MARIO KUMMER, AND RICARDO A. E. MENDES

Abstract. We study the structure of the set of algebraic curvature opera-

tors satisfying a sectional curvature bound under the light of the emerging
field of Convex Algebraic Geometry. More precisely, we determine in which

dimensions n this convex semialgebraic set is a spectrahedron or a spectrahe-

dral shadow; in particular, for n ≥ 5, these give new counter-examples to the
Helton–Nie Conjecture. Moreover, efficient algorithms are provided if n = 4

to test membership in such a set. For n ≥ 5, algorithms using semidefinite

programming are obtained from hierarchies of inner approximations by spec-
trahedral shadows and outer relaxations by spectrahedra.

1. Introduction

The emerging field of Convex Algebraic Geometry originates from a natural
coalescence of ideas in Convex Geometry, Optimization, and Algebraic Geometry,
and has witnessed great progress over the last few years, see [BPT13] for surveys.
The main objects considered are convex semialgebraic subsets of vector spaces,
such as spectrahedra and their shadows; and their study has led to remarkable
achievements in optimization problems for polynomials in several variables. In
particular, semidefinite programming on spectrahedral shadows is a far-reaching
generalization of linear programming on convex polyhedra, and an area of growing
interest due to its numerous and powerful applications.

The raison d’être of this paper is to shed new light on curvature operators of Rie-
mannian manifolds with sectional curvature bounds from the viewpoint of Convex
Algebraic Geometry. More importantly, we hope that the connections established
here will serve as foundations for developing further ties between the exciting new
frontiers conquered by Convex Algebraic Geometry and classical objects and open
problems from Geometric Analysis and Riemannian Geometry.

In keeping with the above objectives, we now briefly discuss some background
that might be unfamiliar to more traditionally-trained differential geometers. Recall
that a semialgebraic set is a subset S ⊂ Rn defined by boolean combinations of
finitely many polynomial equalities and inequalities; for example, the set S ⊂ R4

consisting of (a, b, c, x) ∈ R4 such that ax2 +bx+c = 0 and a 6= 0 is a semialgebraic
set. The celebrated Tarski–Seidenberg Theorem states that linear projections of
semialgebraic sets are also semialgebraic. As an illustration, consider the image
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2 R. G. BETTIOL, M. KUMMER, AND R. A. E. MENDES

π(S) ⊂ R3 of S ⊂ R4 under the projection π(a, b, c, x) = (a, b, c). It consists
precisely of (a, b, c) ∈ R3 with a 6= 0 for which

(1.1) ∃x ∈ R such that ax2 + bx+ c = 0,

and it can also be described by finitely many polynomial equalities and inequalities
(without quantifiers), namely:

(1.2) b2 − 4ac ≥ 0.

The algorithmic process of rewriting a quantified polynomial sentence, such as
(1.1), as an equivalent polynomial sentence without quantifiers, such as (1.2), is
known as Quantifier Elimination. This method generalizes the Tarski–Seidenberg
Theorem as formulated above, and has deep consequences in Logic, Model Theory,
and Theoretical Computer Science.

An elementary application of Quantifier Elimination to Riemannian Geometry
is to eliminate the quantifier ∀ from the sentence that defines a sectional curvature
bound. For example, the condition sec ≥ k for an algebraic curvature operator
R : ∧2 Rn → ∧2Rn, is given by the (quantified) sentence

∀σ ∈ Gr+2 (Rn), secR(σ) := 〈R(σ), σ〉 ≥ k,
where Gr+2 (Rn) = {X ∧ Y ∈ ∧2Rn : ‖X ∧ Y ‖ = 1} is the (oriented) Grassmannian
of 2-planes in Rn, which is a real algebraic variety hence also a semialgebraic set.
This had been observed, among others, by Weinstein [Wei72, p. 260]:

there exist finitely many polynomial inequalities in the Rijkl’s such
that, given any curvature tensor, one could determine whether it
is positive sectional by evaluating the polynomials and checking
whether the results satisfy the inequalities.

In other words, the sets

Rsec≥k(n) :=
{
R ∈ Sym2

b(∧2Rn) : secR ≥ k
}

are semialgebraic. Here, the subscript b indicates that R ∈ Sym2(∧2Rn) satisfies
the first Bianchi identity, see (2.1). Weinstein [Wei72, p. 260] continues:

It would be useful to know these inequalities explicitly. [...] Unfor-
tunately, the [Quantifier Elimination] procedure is too long to be
used in practice even with the aid of a computer.

Despite all technological advances, this remains true today, almost 50 years later.
Although such an explicit description of Rsec≥k(n) is still elusive, in this paper we
provide new information about these semialgebraic sets. Besides being of intrinsic
interest, we hope this will lead to applications in global differential geometry.

A fundamental example of convex semialgebraic set is the cone {A ∈ Sym2(Rd) :
A � 0} of positive-semidefinite matrices. Preimages of this cone under affine maps
Rn → Sym2(Rd) are also convex semialgebraic, and are called spectrahedra. They
generalize polyhedra, which correspond to affine maps with image in the subspace
of diagonal matrices. In contrast to polyhedra, the linear projection of a spectra-
hedron may fail to be a spectrahedron. Nevertheless, these projections are con-
vex semialgebraic sets, and are called spectrahedral shadows. Following a question
of Nemirovski [Nem07] in his 2006 ICM plenary address, Helton and Nie [HN09,
p. 790] conjectured that every convex semialgebraic set is a spectrahedral shadow.
Remarkably, this turned out not to be the case, as very recently discovered by Schei-
derer [Sch18b]. Further counter-examples were subsequently found in [Faw19].
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Our first main result describes how sets of algebraic curvature operators with
sectional curvature bounds fit in the above taxonomy of convex semialgebraic sets,
providing yet another class of counter-examples to the Helton–Nie Conjecture:

Theorem A. For all k ∈ R, each of the sets Rsec≥k(n) and Rsec≤k(n) is:

(1) not a spectrahedral shadow, if n ≥ 5;
(2) a spectrahedral shadow, but not a spectrahedron, if n = 4;
(3) a spectrahedron, if n ≤ 3.

We state Theorem A in the above manner for the sake of completeness, despite
the fact that some claims were previously known. More precisely, statement (3)
follows trivially from the equivalence, in dimensions n ≤ 3, between secR ≥ k
and R − k Id � 0; analogously for sec ≤ k (which we omit henceforth, see Re-
mark 2.2). Furthermore, the first part of statement (2) follows from the so-called
Thorpe’s trick [Tho72], see Proposition 3.1; namely, the equivalence, in dimension
n = 4, between secR ≥ k and the existence of x ∈ R such that R − k Id +x ∗ � 0,
where ∗ is the Hodge star operator. In other words, Rsec≥k(4) is the image of the

spectrahedron {R ∈ Sym2(∧2R4) : R − k Id � 0} under the orthogonal projection
Sym2(∧2R4) → Sym2

b(∧2R4), whose kernel is spanned by ∗. We point out that
Thorpe’s trick is actually an instance of a much older result due to Finsler [Fin36],
see Lemma 2.10; a fact that seems to have gone unnoticed thus far.

For readers interested in strict sectional curvature bounds sec > k and sec < k,
we note that statements (1) and (2) in Theorem A carry over to this setting, see
Remarks 2.2 and 2.4. However, in keeping with the Convex Algebraic Geometry
literature, all spectrahedra are (by definition) closed sets. Thus, Rsec>k(n) and
Rsec<k(n), n ≤ 3, are, strictly speaking, not spectrahedra. Of course, this is just a
matter of convention, and sec > k is clearly equivalent to R− k Id � 0 if n ≤ 3.

Although Rsec≥k(n), n ≥ 5, fails to be a spectrahedral shadow, our second main
result provides natural approximations by spectrahedral shadows and spectrahedra:

Theorem B. For all k ∈ R and n ≥ 2, there are inner and outer approximations of
Rsec≥k(n) by nested sequences Im of spectrahedral shadows and Om of spectrahedra,

I0 ⊂ I1 ⊂ · · · ⊂ Im ⊂ · · · ⊂ Rsec≥k(n) ⊂ · · · ⊂ Om ⊂ · · · ⊂ O1 ⊂ O0, m ≥ 0,

which are O(n)-invariant and satisfy
⋃

m≥0 Im = Rsec≥k(n) =
⋂

m≥0 Om.

The inner approximation by spectrahedral shadows Im, m ≥ 0, is constructed
in the same spirit as the Lasserre hierarchy [Las01]; and, if k = 0, the first step I0
coincides precisely with the subset of curvature operators with strongly nonnegative
curvature, see [BM17b, BM18]. The outer approximation by spectrahedra Om,
m ≥ 0, is given by curvature operators with positive-semidefinite curvature terms
in all Weitzenböck formulae for traceless symmetric p-tensors with p ≤ m + 1,
see [BM17a, Thm. A]; and, if k = 0, the first step O0 coincides with the subset
of curvature operators with nonnegative Ricci curvature. Since all Im and Om are
O(n)-invariant, these approximations are geometric, in the sense that they define
coordinate-free curvature conditions. We remark that I0 = Rsec≥k(n) if and only
if n ≤ 4, while O0 = Rsec≥k(n) if and only if n = 2. By Theorem A, these
approximations do not stabilize after finitely many steps m ≥ 0, for all n ≥ 5.

In our third main result, we restrict to dimension n = 4 to exploit the description
of Rsec≥k(4) as a spectrahedral shadow in order to obtain an explicit description of
this set as an algebraic interior, see Definition 2.5.



4 R. G. BETTIOL, M. KUMMER, AND R. A. E. MENDES

Theorem C. The set Rsec≥k(4) is an algebraic interior with minimal defining

polynomial pk : Sym2
b(∧2R4)→ R, given by

(1.3) pk(R) = discx
(
det(R− k Id +x ∗)

)
.

More precisely, Rsec≥k(4) = Ck, where Ck is the only connected component of the

set
{
R ∈ Sym2

b(∧2R4) : pk(R) > 0
}

such that (k + 1) Id ∈ Ck.

In the above, discx denotes the discriminant in x, see Subsection 2.3. Using a
complexification trick (3.3), the above polynomial pk(R) can be seen as the discrimi-
nant of a symmetric matrix, and hence more efficiently computed, e.g. using [Par02].
A result related to Theorem C, where (1.3) is considered as a polynomial in k ∈ R,
was recently obtained by Fodor [Fod].

Although Theorem C falls short of giving a description of Rsec≥k(4) as a semial-
gebraic set, it provides an explicit such description of another semialgebraic set that
has Rsec≥k(4) as (the closure of) one of its connected components. Moreover, it
follows from Theorem C that the algebraic boundary of Rsec≥k(4), i.e., the Zariski
closure of its topological boundary, is the zero set of the polynomial (1.3).

As a computational application of the description of Rsec≥k(4) as a spectrahedral
shadow, we provide an efficient algorithm (different from semidefinite programming)
to determine when a given R ∈ Sym2

b(∧2R4) belongs to this set. This algorithm is
based on Sturm’s root counting method, and detects membership in Rsec≥0(4) and
also in Rsec>0(4), see Algorithms 2 and 3; the cases of other sectional curvature
bounds (strict or not) are easily obtained from these with obvious modifications.
For n ≥ 5, the approximations given by Theorem B allow to use an iteration of
semidefinite programs (see Algorithm 1) to detect membership in Rsec≥k(n) except
for a set of measure zero of bad inputs, where the algorithm does not halt.

Discussion of proofs. In order to simplify the exposition, now and throughout the
paper we only consider the sectional curvature bound sec ≥ 0, for the reasons laid
out in Remark 2.2. The proof of Theorem A (1) relies on much heavier theoretical
machinery than Theorem C, namely the deep recent results of Scheiderer [Sch18b],
while Theorem A (2) is a consequence of Theorem C. Theorem B relies on [BM17a]
to produce the outer approximation by spectrahedra, and on an adaptation of the
Lasserre hierarchy method for the inner approximation by spectrahedral shadows.

There are three main steps in the proof of Theorem C, which is presented in
Section 3. First, a complexification trick (3.3) is used to establish that p := p0,
see (1.3), vanishes on the topological boundary of Rsec≥0(4), see Proposition 3.2.
Second, we show that the vanishing locus of p does not disconnect the interior of
Rsec≥0(4) for dimensional reasons, see Proposition 3.5. These two facts already
imply that Rsec≥0(4) is an algebraic interior with defining polynomial p, so it only
remains to prove that p is minimal. This follows from irreducibility of p, which is
an application of canonical forms for complex symmetric matrices, see Appendix A.

The intimate connection between algebraic curvature operators and quadratic
forms on the Grassmannian of 2-planes is at the foundation of the proof of Theo-
rem A (1). More generally, given a real projective variety X ⊂ CPN , and a (real)
quadratic form f on X, that is, an element in the degree 2 part R[X]2 of its homo-
geneous coordinate ring, the value of f at a real point x ∈ X(R) is not well-defined,
however its sign is. Indeed, f(λx̃) = λ2f(x̃) for any representative x̃ ∈ RN+1 and
λ ∈ R \ {0}. Thus, one may consider the set PX ⊂ R[X]2 of all nonnegative
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quadratic forms on X(R), see (2.8), which clearly contains the set ΣX of quadratic
forms that are sums of squares of elements in R[X]1, see (2.7). The characterization
of varieties X for which PX = ΣX as those of minimal degree is a landmark result
recently obtained by Blekherman, Smith, and Velasco [BSV16]. This fits into the
broader question of which nonnegative functions are sums of squares, which has a
long history, dating back to Minkowski, Hilbert [Hil88] and Artin [Art27].

In the case of the Grassmannian X = Gr2(n), which is determined by quadratic
equations ωi = 0 called Plücker relations, see (2.4), the connection alluded to above
takes the form of the identification

(1.4) R[Gr2(n)]2 ∼= Sym2
b(∧2Rn).

Namely, Sym2(∧2Rn) can be identified as usual with quadratic forms on ∧2Rn

by associating each R to qR(α) = 〈R(α), α〉. On the one hand, R[Gr2(n)]2 is
by definition the quotient Sym2(∧2Rn)/ span(ωi), since ωi generate the vanishing
ideal of Gr2(n). On the other hand, the orthogonal complement of span(ωi) in
Sym2(∧2Rn) is exactly Sym2

b(∧2Rn), yielding (1.4), see Subsection 2.2 for details.
Under the identification (1.4), the set PGr2(n) ⊂ R[Gr2(n)]2 corresponds to

Rsec≥0(n) ⊂ Sym2
b(∧2Rn), while ΣGr2(n) corresponds to the set of curvature oper-

ators with strongly nonnegative curvature, see Example 2.11. As the Grassman-
nian Gr2(4) has minimal degree, PGr2(4) = ΣGr2(4) by [BSV16]. This recovers the
Finsler–Thorpe trick, since the only Plücker relation in dimension n = 4 is given
by ω1(R) = 〈∗R,R〉 = 0. Furthermore, as Gr2(n) does not have minimal degree for
all n ≥ 5, there exist P ∈ PGr2(n) \ΣGr2(n) which translates to the failure of higher-
dimensional analogues of the Finsler–Thorpe trick (explicit P ’s were obtained by
Zoltek [Zol79]). Such a P is the key input to apply a criterion of Scheiderer [Sch18b]
to show that PGr2(n)

∼= Rsec≥0(n) is not a spectrahedral shadow, as claimed in
Theorem A (1). In fact, we extract from [Sch18b] an easily applicable criterion,
Theorem 2.14, which implies [Faw19, Thm. 3] and is of independent interest.

More generally, the Grassmannians Grk(n) of k-planes do not have minimal
degree if and only if 2 ≤ k ≤ n − 2 and n ≥ 5, and hence PGrk(n) 6= ΣGrk(n) in
this range. Scheiderer’s criterion still applies in this situation, and leads to the
conclusion that PGrk(n), 2 ≤ k ≤ n− 2, n ≥ 5, are not spectrahedral shadows, see
Corollary 4.2. Since ΣX is a spectrahedral shadow for any projective variety X, this
can be interpreted as a strengthening of [BSV16] for the class of Grassmannians

X = Grk(n) ⊂ CP (n
k)−1; namely, PX is a spectrahedral shadow if and only if PX =

ΣX . The same strengthening was observed by Scheiderer [Sch18b, Cor. 4.25] for

the class of degree d Veronese embeddings X = CPn ⊂ CP (n+d
d )−1. Nevertheless,

such a strengthening does not hold in full generality, as exemplified by curves X of
positive genus (e.g., elliptic curves). Such X do not have embeddings of minimal
degree, however PX is always a spectrahedral shadow since it is the dual of the
convex hull of a curve, which is a spectrahedral shadow by Scheiderer [Sch18a].

Acknowledgements. It is a great pleasure to thank Bernd Sturmfels for introduc-
ing the second-named author to the first- and third-named authors, and suggesting
the complexification trick (3.3). We also thank Alexander Lytchak for supporting
a visit by the second-named author to the University of Cologne, during which ex-
cellent working conditions allowed us to finalize this paper. The first-named author
is grateful to the Max Planck Institut für Mathematik in Bonn for the hospitality
in the summer of 2019, which made it possible to regularly meet the other authors.
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2. Preliminaries

2.1. Riemannian Geometry. Given a Riemannian manifold (M, g) and p ∈ M ,
the curvature operator at p is the symmetric endomorphism R ∈ Sym2(∧2TpM),

〈R(X ∧ Y ), Z ∧W 〉 = g
(
∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z,W

)
,

where ∇ denotes the Levi-Civita connection, and 〈·, ·〉 denotes the inner product
induced by g on ∧2TpM . Curvature operators R satisfy the (first) Bianchi identity :

(2.1) 〈R(X ∧ Y ), Z ∧W 〉+ 〈R(Y ∧ Z), X ∧W 〉+ 〈R(Z ∧X), Y ∧W 〉 = 0,

for all X,Y, Z,W ∈ TpM . Given X,Y ∈ TpM two g-orthonormal tangent vectors,
the sectional curvature of the plane σ spanned by X and Y is

(2.2) sec(σ) = 〈R(X ∧ Y ), X ∧ Y 〉.
Since the present paper is only concerned with pointwise properties of curvature

operators, we henceforth identify TpM ∼= Rn and define (algebraic) curvature oper-

ators as elements R ∈ Sym2(∧2Rn) that satisfy the Bianchi identity (2.1). We de-
note by Sym2

b(∧2Rn) ⊂ Sym2(∧2Rn) the subspace of such curvature operators, and
by b the orthogonal projection onto its complement, so that Sym2

b(∧2Rn) = ker b.
Elements R ∈ Sym2(∧2Rn) are sometimes called modified curvature operators.

We identify ∧4Rn with a subspace of Sym2(∧2Rn) via

(2.3) 〈ω(α), β〉 = 〈ω, α ∧ β〉, for all ω ∈ ∧4Rn, α, β ∈ ∧2Rn.

Note that ∧4Rn is the image of b, i.e., the orthogonal complement of Sym2
b(∧2Rn).

2.2. Grassmannians and curvature operators. The above classical definitions
from Riemannian geometry can be conveniently reinterpreted in terms of the alge-
braic geometry of the Grassmannian of 2-planes. This relationship forms the raison
d’être of this paper.

The natural coordinates xij , 1 ≤ i < j ≤ n, in ∧2Cn induced from the standard
basis e1, . . . , en of Cn are called Plücker coordinates. The Grassmannian

(2.4) Gr2(n) ⊂ P(∧2Cn) ∼= CP (n
2)−1

of 2-planes in Cn is the real projective variety defined by the Plücker relations;
namely the zero locus of the quadratic forms associated to a basis of ∧4Rn, con-
sidered as

(
n
4

)
homogeneous quadratic polynomials on (the Plücker coordinates

of) ∧2Cn, cf. (2.3). These quadratic forms generate the homogeneous vanishing
ideal IGr2(n) ⊂ C[xij ] of Gr2(n), and the homogeneous coordinate ring C[Gr2(n)]
of Gr2(n) is given by C[xij ]/IGr2(n). The rings C[xij ] and C[Gr2(n)], as well as the
ideal IGr2(n), have natural graded structures; as usual, we denote their degree d
part with the subscript d.

The Grassmannian of 2-planes inRn is the set Gr2(n)(R) of real points of Gr2(n),

which we also denote Gr2(Rn). The (oriented) Grassmannian Gr+2 (Rn) ⊂ S(n
2)−1

in the Introduction is the double-cover of Gr2(Rn) ⊂ RP (n
2)−1 given by the inverse

image under the natural projection map.
We identify symmetric endomorphisms R ∈ Sym2(∧2Rn) with their associated

quadratic form qR ∈ R[xij ]2, which is a polynomial in the Plücker coordinates xij :

qR(xij) =

〈
R

∑
i<j

xijei ∧ ej

 ,
∑
i<j

xijei ∧ ej

〉
.
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To simplify notation, we use the same symbol R for both of these objects, and
henceforth identify Sym2(∧2Rn) = R[xij ]2. Under this identification, the subspace

∧4Rn ⊂ Sym2(∧2Rn) corresponds to the degree 2 part (IGr2(n))2 ⊂ R[xij ]2 of the

graded ideal IGr2(n). In particular, its orthogonal complement Sym2
b(∧2Rn) shall

be identified with the quotient R[Gr2(n)]2 = R[xij ]2/(IGr2(n))2, as claimed in (1.4).

∧4Rn �
� (2.3) // Sym2(∧2Rn) // // Sym2

b(∧2Rn)

(IGr2(n))2
� � // R[xij ]2 // // R[Gr2(n)]2

The sectional curvature function secR : Gr+2 (Rn) → R determined by a (modi-
fied) curvature operator R ∈ R[xij ]2 is its restriction to Gr+2 (Rn) ⊂ ∧2Rn, cf. (2.2).

Since secR is invariant under the antipodal map on S(n
2)−1, it descends to a function

on Gr2(Rn) also denoted by secR.

Definition 2.1. Given k ∈ R and n ≥ 2, let

Rsec≥k(n) =
{
R ∈ Sym2

b(∧2Rn) : secR ≥ k
}
,

and similarly for Rsec>k(n), Rsec≤k(n), and Rsec<k(n).

Remark 2.2. In order to simplify the exposition, we henceforth consider only the
sectional curvature bound sec ≥ 0, as other sectional curvature bounds can be easily
recovered using the following elementary properties:

(i) Rsec≥k(n) = Rsec>k(n) and Rsec≤k(n) = Rsec<k(n);
(ii) int

(
Rsec≥k(n)

)
= Rsec>k(n) and int

(
Rsec≤k(n)

)
= Rsec<k(n);

(iii) secR ≥ k if and only if secR−k Id ≥ 0, and secR ≤ k if and only if seck Id−R ≥ 0.
In particular, Rsec≥k(n) and Rsec≤k(n) are affine images of Rsec≥0(n).

The above are direct consequences of linearity of R 7→ secR and secId ≡ 1.

2.3. Discriminants. Given a polynomial p(x) = anx
n + · · · + a1x + a0 ∈ C[x],

the discriminant of p(x) is a polynomial discx(p(x)) ∈ Z[a0, . . . , an] with integer
coefficients whose variables are the coefficients of p(x), defined as

(2.5) discx(p(x)) = a2n−2n

∏
i<j

(ri − rj)2,

where r1, . . . , rn ∈ C are the roots of p(x). It can be computed explicitly in terms of
ai, 0 ≤ i ≤ n, by taking the determinant of the Sylvester matrix of p(x) and p′(x).
Clearly, discx(p(x)) = 0 if and only if p(x) has a root of multiplicity ≥ 2. Note
that discx(−p(x)) = discx(p(x)) = discx(p(−x)). The discriminant of an n × n-
matrix A is defined as the discriminant of its characteristic polynomial, that is,
disc(A) = discx(det(A−x Id)). Thus, disc(A) = 0 if and only if A has an eigenvalue
of algebraic multiplicity ≥ 2. For a description of disc(A) as a determinant, see
[Par02]. Irreducibility of disc(A) for (symmetric) matrices is studied in Appendix A.

2.4. Spectrahedra and their shadows. We now recall basic notions from convex
algebraic geometry, mostly without proofs. As a reference, we recommend [BPT13].
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Definition 2.3. A spectrahedron is a set S ⊂ Rn of the form

(2.6) S =

{
x ∈ Rn : A+

n∑
i=1

xiBi � 0

}
,

where A,Bi ∈ Sym2(Rd) are symmetric matrices, and M � 0 means M is positive-
semidefinite. A spectrahedral shadow is the image of a spectrahedron under a linear
projection, i.e., a set S ⊂ Rn of the form

S =

x ∈ Rn : ∃ y ∈ Rm, A+

n∑
i=1

xiBi +

m∑
j=1

yjCj � 0

 .

Remarks 2.4. The following are basic facts about spectrahedra and their shadows:

(i) Both spectrahedra and their shadows are convex semialgebraic sets. Further-
more, spectrahedra are closed;

(ii) The class of spectrahedral shadows contains linear subspaces, polyhedra and
all closed convex semialgebraic sets of dimension two [Sch18a];

(iii) The class of spectrahedral shadows is closed under intersections, linear pro-
jections, convex duality, (relative) interior, and closure.

The following notion was introduced by Helton and Vinnikov [HV07], and used
in their proof of a conjecture of Peter Lax from 1958, see also [BPT13, Sec. 6.2.2].

Definition 2.5. A closed subset S ⊂ Rn is called an algebraic interior if it is
the closure of a connected component of the set {x ∈ Rn : p(x) > 0} for some
polynomial p ∈ R[x1, . . . , xn], which is called a defining polynomial of S.

Remark 2.6. Let S be an algebraic interior, and p be a defining polynomial of
minimal degree. Then p divides every defining polynomial of S, see [HV07, Lemma
2.1]. In particular, defining polynomials of minimal degree are unique up to a
positive constant factor.

Lemma 2.7. Every spectrahedron S with nonempty interior int(S) is an algebraic
interior whose minimal defining polynomial p satisfies p(x) 6= 0 for all x ∈ int(S).

Proof. Assume (without loss of generality) that d in the semidefinite representation
(2.6) of S is minimal. We claim that A+

∑n
i=1 xiBi � 0 for all x ∈ int(S). Indeed,

suppose that this does not hold at some x∗ ∈ int(S). We may assume that x∗ = 0
and e1 ∈ kerA. This implies that A and Bi are of the form

A =

(
0 0
0 A′

)
, Bi =

(
bi vti
vi B′i

)
,

where A′, B′i ∈ Sym2(Rd−1), bi ∈ R, and vi ∈ Rd−1 is a column vector. Since
0 ∈ int(S), it follows that

∑n
i=1 xibi ≥ 0 for all x ∈ Rn near 0, so bi = 0, 1 ≤ i ≤ n.

Then, applying the same reasoning to the appropriate 2× 2-submatrices, it follows
that vi = 0, 1 ≤ i ≤ n. Therefore, S admits the semidefinite representation
S = {x ∈ Rn : A′ +

∑n
i=1 xiB

′
i � 0}, contradicting the minimality of d.

The spectrahedron S is hence an algebraic interior with defining polynomial
det
(
A+

∑n
i=1 xiBi

)
, which is positive in int(S). In particular, the minimal defining

polynomial p(x) of S is also positive in int(S), see Remark 2.6. �
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Example 2.8. It is easy to show that the convex hull of two disjoint unit discs in
the plane is not an algebraic interior (this set is called the football stadium). It is
clearly a spectrahedral shadow, and not a spectrahedron by Lemma 2.7.

Example 2.9. The TV screen {(x, y) ∈ R2 : x4 + y4 ≤ 1} is an algebraic interior
and a spectrahedral shadow, but not a spectrahedron.

2.5. Quadratic forms on real projective varieties. Let X ⊂ CPN be a real
projective variety that is irreducible, not contained in any hyperplane, and whose
set of real points X(R) ⊂ RPN is Zariski dense in X. Let R[X] be its homogeneous
coordinate ring, i.e., the polynomial ring in N+1 variables modulo the homogeneous
vanishing ideal of X. Inside the degree 2 part R[X]2, we consider the convex cone

(2.7) ΣX =
{
f ∈ R[X]2 : f = g21 + . . .+ g2s , gi ∈ R[X]1

}
consisting of all sums of squares of linear forms, as well as the convex cone

(2.8) PX =
{
f ∈ R[X]2 : f ≥ 0 on X(R)

}
of all nonnegative quadratic forms on the real points X(R). For the latter, note
that the sign of f at any point x ∈ X(R) is well-defined because f has even degree.
Clearly, ΣX ⊂ PX . Blekherman, Smith, and Velasco [BSV16, Thm. 1] showed that
ΣX = PX if and only if X has minimal degree, namely deg(X) = codim(X) + 1.
It is worth pointing out that PX and ΣX are pointed closed convex cones with
nonempty interior. Moreover, ΣX is the cone dual of a spectrahedron, see (2.10)
and [BSV16, Lem. 2.1] or [BPT13, Cor. 3.40], and hence a spectrahedral shadow.

In the special case in which X ⊂ CPN is a quadric, that is, the zero set of a
single quadratic form, the above conclusion ΣX = PX holds without any additional
assumptions and has been known for almost 100 years [Fin36].

Lemma 2.10 (Finsler). Let A,B ∈ Sym2(Rd). The following are equivalent:

(i) 〈Av, v〉 ≥ 0 for all v ∈ Rd \ {0} such that 〈Bv, v〉 = 0;
(ii) there exists x ∈ R such that A+ xB � 0.

The analogous statement replacing all inequalities by strict inequalities also holds.
Moreover, if (i) holds and there exists v ∈ Rd \ {0} with 〈Av, v〉 = 〈Bv, v〉 = 0 and
B has full rank, then x in (ii) is unique.

Calabi [Cal64] independently found an elegant topological proof of this result;
see also the survey [DP06] for other proofs and discussion.

Example 2.11. The sets PX and ΣX have an important geometric interpretation
when X = Gr2(n) is the Grassmannian of 2-planes (2.4). Namely, keeping in mind
the identifications described in Subsection 2.2, we have that

(2.9) PGr2(n) = Rsec≥0(n),

and ΣGr2(n) is the set of curvature operators with strongly nonnegative curvature,
see [BM17b, BM18].

In order to compare PGr2(n) and ΣGr2(n) using the results in [BSV16], note that

codim Gr2(n) =

(
n

2

)
− 1− 2(n− 2) =

(n− 2)(n− 3)

2
,

and, by [EH16, Ex. 4.38],

deg Gr2(n) =
(2(n− 2))!

(n− 2)!(n− 1)!
.
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Thus, deg Gr2(n) = codim Gr2(n) + 1 if and only if n ≤ 4. Therefore, by Blekher-
man, Smith, and Velasco [BSV16, Thm. 1], ΣGr2(n) = PGr2(n) if and only if n ≤ 4.
In particular, PGr2(n) is a spectrahedral shadow for n ≤ 4. On the other hand, for
all n ≥ 5, there exists a nonnegative quadratic form P ∈ PGr2(n) that is not a sum
of squares, which plays a crucial role in the proof of Theorem A (1). An explicit
example of such P ∈ PGr2(n) \ΣGr2(n), n ≥ 5, found by Zoltek [Zol79], is given by:

RZol = x212+2x213+2x223+2x214+x215+x234+2x225+2x245−2x12x34−2x12x15−2x34x15.

Remark 2.12. Since real symmetric matrices are diagonalizable, R ∈ R[xij ]2 is a
sum of squares if and only if R � 0, i.e.,

Σ
CP(n

2)−1
= P

CP(n
2)−1

is the cone of positive-semidefinite curvature operators.

2.6. Scheiderer’s criterion. The only methods currently available to prove that
a certain convex semialgebraic set is not a spectrahedral shadow were recently de-
veloped in a seminal work by Scheiderer [Sch18b]. For example, he showed that PX

is not a spectrahedral shadow when X ⊂ CP (n+d
d )−1 is the dth Veronese embedding

of CPn for every n ≥ 2, d ≥ 3; or n ≥ 3, d ≥ 2. Note that these are exactly the
cases in which the dth Veronese embedding does not satisfy deg(X) = codim(X)+1,
see [EH16, Sec. 2.1.2]

In order to present Scheiderer’s criterion, recall the following basic definitions
and facts of convex geometry. Given any subset Ω of a finite-dimensional real vector
space V , the convex hull and conic hull of Ω are defined, respectively, as:

conv(Ω) =

{
k∑

i=1

αivi : vi ∈ Ω, αi ≥ 0,

k∑
i=1

αi = 1, k ∈ N

}
,

cone(Ω) =

{
k∑

i=1

αivi : vi ∈ Ω, αi ≥ 0, k ∈ N

}
.

Denote by V ∨ the dual vector space of V . The cone dual of Ω is defined as

(2.10) Ω∗ = {λ ∈ V ∨ : λ(x) ≥ 0, ∀x ∈ Ω}

and satisfies the following properties:

(i) Ω∗ ⊂ V ∨ is a closed convex cone;

(ii) Ω∗ =
(

conv(Ω)
)∗

and similarly for cone duals of any combinations of conic

hull, convex hull, and closure;
(iii) Ω∗∗ = (Ω∗)∗ = cone(Ω);
(iv) Ω∗ is a spectrahedral shadow whenever Ω is a spectrahedral shadow.

For properties (iii) and (iv), see e.g. [BPT13, (5.11)] and [BPT13, Thm. 5.57],
respectively.

Definition 2.13. Given f ∈ R[x1, . . . , xn], its homogeneization is the unique ho-
mogeneous polynomial fh ∈ R[t, x1, . . . , xn] with the same degree as f such that
fh(1, x1, . . . , xn) = f(x1, . . . , xn).

We are now in position to present the following convenient criterion to check if a
semialgebraic set is not a spectrahedral shadow, extracted from Scheiderer [Sch18b].
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Theorem 2.14. Let L ⊂ R[x1, . . . , xn] be a finite-dimensional vector space with
1 ∈ L, and let f ∈ R[x1, . . . , xn] be a nonnegative polynomial which is not a sum of
squares. Suppose that, for all y ∈ Rn, the coefficients of fh(t, x1−y1, . . . , xn−yn),
considered as a polynomial in the new variable t, belong to L. Then the set

K = {g ∈ L : g(x) ≥ 0 for all x ∈ Rn}

is not a spectrahedral shadow.

Proof. For each x ∈ Rn, let φx ∈ L∨ be the evaluation functional φx(f) = f(x).
Note that K = {φx, x ∈ Rn}∗ = C∗, where

C = conv({φx, x ∈ Rn}) ⊂ L∨.

Since f is nonnegative but not a sum of squares, the same holds for its homo-
geneization fh. Using this and that the coefficients of fh(t, x1 − y1, . . . , xn − yn)
belong to L, one can show, by the exact same reasoning as in [Sch18b, Ex. 4.20,
Rem. 4.21], which follow from [Sch18b, Lem. 4.17, Prop. 4.18, Prop. 4.19], that C
is not a spectrahedral shadow.

Suppose, by contradiction, that K is a spectrahedral shadow, so that its cone
dualK∗ is also a spectrahedral shadow. By (iii), we have thatK∗ = C∗∗ = cone(C).
Since 1 ∈ L, every evaluation φx is contained the affine hyperplane H = {λ ∈ L∨ :

λ(1) = 1} and hence C ⊂ H. In particular, C = cone(C) ∩ H = K∗ ∩ H is a
spectrahedral shadow, providing the desired contradiction. �

3. Curvature operators in dimension 4

In this section, we prove Theorem C and statement (2) in Theorem A. For
simplicity, we only treat the case sec ≥ 0 for the reasons discussed in Remark 2.2.
Furthermore, we denote by p(R) the polynomial p0(R) from (1.3).

3.1. Curvature operators on 4-manifolds. Recall that the Hodge star operator
is defined as ∗ ∈ Sym2(∧2R4) corresponding to ω = e1 ∧ e2 ∧ e3 ∧ e4 ∈ ∧4R4 under
the identification (2.3). Its eigenvalues are ±1 and the corresponding eigenspaces
∧2±R4 ∼= R3 consist of so-called self-dual and anti-self-dual 2-forms. Any symmetric
endomorphism R : ∧2R4 → ∧2R4 can be represented by a block matrix with respect
to the decomposition ∧2R4 = ∧2+R4 ⊕ ∧2−R4 ∼= R6,

(3.1) R =

(
A B
Bt C

)
where A and C are symmetric 3× 3-matrices and B is any 3× 3-matrix. Note that

(3.2) ∗ =

(
Id 0
0 − Id

)
,

and the Bianchi identity (2.1) for R as in (3.1) is trA− trC = tr(R ∗) = 〈R, ∗〉 = 0.
Finally, denote by Sym2(C6) the space of complex symmetric 6× 6-matrices.

The following characterization of Rsec≥0(4) was given by Thorpe [Tho72]. Note
that this an immediate application of Finsler’s Lemma 2.10.

Proposition 3.1 (Thorpe’s trick). A curvature operator R ∈ Sym2
b(∧2R4) has

secR ≥ 0 if and only if there exists x ∈ R such that R + x ∗ � 0, and analogously
for secR > 0. Moreover, if R has secR ≥ 0 but not secR > 0, then x ∈ R is unique.
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3.2. Vanishing of p on ∂Rsec≥0(4). We make repeated use of the complex matrix

T = diag
(
1, 1, 1,

√
−1,
√
−1,
√
−1
)
,

written in terms of the above identification (3.1). Note that T is a square root of
∗ and hence det(R + x∗) = −det(TRT + x Id), since T (R + x∗)T = TRT + x Id
and det(T 2) = −1. Thus, discx

(
det(R + x∗)

)
= disc(TRT ) by the properties of

discriminants:

(3.3)

discx
(
det(R+ x∗)

)
= discx

(
− det(TRT + x Id)

)
= discx(det(TRT − x Id))

= disc(TRT ).

Proposition 3.2. The polynomial p(R) = discx(det(R + x ∗)) vanishes on the
(topological) boundary ∂Rsec≥0.

Proof. Let R ∈ ∂Rsec≥0, which means that secR ≥ 0 but R does not satisfy secR >
0. By the Finsler–Thorpe trick (Proposition 3.1), there exists x0 ∈ R such that
R+ x0 ∗ � 0. It suffices to show x0 is a root of det(R+ x∗) with multiplicity ≥ 2.

Assume that x0 is a simple root of this polynomial. Then −x0 is an eigenvalue
of TRT with algebraic (and hence geometric) multiplicity 1. Since R + x0 ∗ =
T−1(TRT +x0 Id)T−1, this implies that dim ker(R+x0 ∗) = 1. As R+x0 ∗ � 0, it
has 5 positive eigenvalues (counted with multiplicities). Since x0 was assumed to
be a simple root of det(R+ x ∗), there exists x near x0 such that det(R+ x ∗) > 0
and hence R+x ∗ � 0, contradicting the fact that R does not satisfy secR > 0. �

Remark 3.3. The discriminant discx
(
det(R + x ∗)

)
is a homogeneous polynomial

of degree 30 in the coefficients of R.

Remark 3.4. As a consequence of the above proof, −x0 is an eigenvalue of TRT
with algebraic multiplicity ≥ 2. We warn the reader that this does not imply that
its geometric multiplicity is ≥ 2, because TRT is a complex symmetric matrix,
hence not necessarily diagonalizable.

In fact, the geometric multiplicity of −x0 cannot be always ≥ 2. Indeed, on
the one hand, codim

(
∂Rsec≥0

)
= 1. On the other hand, as in the proof of Propo-

sition 3.5 below, since the set of symmetric 6 × 6-matrices with rank ≤ 4 has
codimension ≥ 3 (see [HT84, p. 72]), it follows that

codim
(
{R ∈ Sym2

b(∧2R4) : ∃x0 ∈ R, rank(R+ x0 ∗) ≤ 4}
)
≥ 2.

3.3. Zeroes of p in Rsec>0(4). We now study the interior vanishing locus of p.

Proposition 3.5. The zero set {R ∈ Rsec>0(4) : p(R) = 0} is a real subvariety of
codimension ≥ 2, hence its complement {R ∈ Rsec>0(4) : p(R) > 0} is connected.

Proof. Consider the orthogonal projection π : Sym2(∧2R4) → Sym2
b(∧2R4). Since

the set of matrices of rank ≤ 4 in Sym2(C6) is a subvariety of codimension 3, see
e.g., [HT84, p. 72], the real subvariety Y = {R ∈ Sym2(∧2R4) : rank(R) ≤ 4} has
codimension ≥ 3. Thus, π(Y) has codimension ≥ 2 since dimπ(Y) ≤ dimY and the
ambient dimension drops by one. Thus, it suffices to show that for all R ∈ Rsec>0(4)
with p(R) = 0, there is x0 ∈ R with rank(R+ x0 ∗) ≤ 4, i.e., R ∈ π(Y).

Choose λ ∈ R such that R + λ ∗ � 0 and an invertible real 6× 6-matrix S such
that R+λ ∗ = StS. Since p(R) = 0, the polynomial q(t) = det(R+ (λ+ t) ∗) has a



CONVEX ALGEBRAIC GEOMETRY OF CURVATURE OPERATORS 13

root t0 6= 0 of multiplicity ≥ 2. We claim that rank(R + x0 ∗) ≤ 4 for x0 = λ+ t0.
Note that

(3.4)

q(t) = det(StS + t ∗)
= (detS)2 det

(
Id +t (St)−1 ∗ S−1

)
= (detS)2t6 det

(
1

t
Id +(St)−1 ∗ S−1

)
= (detS)2

1

s6
det
(
(St)−1 ∗ S−1 − s Id

)
,

where s = − 1
t . Since q(t0) = 0 and q′(t0) = 0, it follows that − 1

t0
is an eigenvalue

of (St)−1 ∗S−1 with algebraic multiplicity ≥ 2. As this is a real symmetric matrix,
the geometric multiplicity of − 1

t0
is also ≥ 2. Thus,

rank(R+ (λ+ t0)∗) = rank

(
1

t0
(R+ λ ∗) + ∗

)
= rank

(
∗+

1

t0
StS

)
= rank

(
(St)−1 ∗ S−1 +

1

t0
Id

)
≤ 4.

�

Remark 3.6. It follows from (3.4) that the polynomial t 7→ det(R+t∗) only has real
roots if R ∈ Rsec≥0(4), since (St)−1 ∗S−1 is a real symmetric matrix. In particular,
its discriminant p(R) is nonnegative, see (2.5).

3.4. Rsec≥0(4) as an algebraic interior. We now prove Theorems C and A (2).

Proof of Theorem C. The zero set {p(R) = 0} contains the topological boundary
of Rsec≥0(4) by Proposition 3.2 and has codimension ≥ 2 in its interior by Propo-
sition 3.5. By direct inspection, p(R) > 0 at R = diag(1, 2, 3, 4, 5, 6) ∈ Rsec≥0(4).
This implies that Rsec≥0(4) is an algebraic interior with defining polynomial p(R),

see Definition 2.5. We claim that this polynomial p : Sym2
b(∧2R4) → R is irre-

ducible over R, and hence it is a minimal defining polynomial, see Remark 2.6.
Denote by p̃ : Sym2(∧2R4) → R the polynomial p̃ = p ◦ π, where π is the

orthogonal projection onto Sym2
b(∧2R4). Clearly, p is irreducible if and only if p̃ is

irreducible. On the other hand, p̃(R) is given by the same formula (1.3) as p(R)
since shifts in the variable x do not change the discriminant, see (2.5). It suffices to
show that the complexification p̃ : Sym2(C6)→ C of p̃ is irreducible over C. This is
a consequence of Proposition A.1 in the Appendix, because p̃(R) is the discriminant
of TRT according to (3.3), and R 7→ TRT is a linear isomorphism of Sym2(C6).

Finally, the last statement in Theorem C follows from the fact that the closure
of any two connected components of {p(R) > 0} can only intersect at boundary
points and Id ∈ int(Rsec≥0(4)). �

Proof of Theorem A (2). The set Rsec≥0(4) is a spectrahedral shadow as a con-
sequence of the Finsler–Thorpe trick (Proposition 3.1), see also Example 2.11.
Furthermore, it is not a spectrahedron by Lemma 2.7, since p is a minimal defin-
ing polynomial for Rsec≥0(4) by Theorem C, and p vanishes at the interior point
Id ∈ Rsec>0(4), since p(Id) = discx

(
det(Id +x ∗)

)
= discx

(
(1+x)3(1−x)3

)
= 0. �
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4. Curvature operators in dimensions ≥ 5

Using the notation from Section 2, consider the Plücker embedding of the Grass-
mannian Gr2(5) in CP 9, and recall that PGr2(n) ⊂ R[Gr2(n)]2 is the subset of
nonnegative quadratic forms on the real points of Gr2(n), see (2.8). The main step
in the proof of Theorem A (1) is the following application of Theorem 2.14.

Proposition 4.1. The closed convex cone PGr2(5) is not a spectrahedral shadow.

Proof. By [BSV16, Thm. 1] or [Zol79], see Example 2.11, there exists a polynomial
P ∈ PGr2(5) \ ΣGr2(5). In other words, P is a nonnegative quadratic form that is
not a sum of squares modulo the vanishing ideal of Gr2(5), i.e., the ideal generated
by the Plücker relations. We consider the affine chart U of Gr2(5) defined by the
Plücker coordinate x15 being nonzero. Every point in U is a 2-plane of the form

(e1 + x25e2 + x35e3 + x45e4) ∧ (x12e2 + x13e3 + x14e4 + e5),

that is, the row span of the matrix

(4.1) Γ =

(
1 x25 x35 x45 0
0 x12 x13 x14 1

)
.

Note that U is isomorphic to an affine complex space A6 with coordinates x1j and
xi5, 2 ≤ i, j ≤ 4. Consider the linear map given by restriction from R[Gr2(5)]2 to
the regular functions on U :

(4.2) ψ : R[Gr2(5)]2 → R[U ] = R[x12, x13, x14, x25, x35, x45]

that sends every Plücker coordinate xij to the 2 × 2-minor corresponding to the
columns i and j of the matrix Γ. More precisely, the effect of applying ψ to an
element of R[Gr2(5)]2 represented by

∑
i<j,k<lRijklxijxkl ∈ Sym2(∧2R5) consists

of making the following substitutions:

x15  1 x23  x25x13 − x35x12
x1j  x1j , 2 ≤ j ≤ 4 x24  x25x14 − x45x12(4.3)

xi5  xi5, 2 ≤ i ≤ 4 x34  x35x14 − x45x13
Note that since the real points of U are dense in the real points of Gr2(5), we

have that ψ is injective, and the subset of nonnegative polynomials contained in
its image L = ψ

(
R[Gr2(5)]2

)
is exactly ψ(PGr2(5)). In particular, PGr2(5) is not

a spectrahedral shadow if and only if K = {g ∈ L : g ≥ 0 on U(R)} is not a
spectrahedral shadow. We will show that the latter holds applying Theorem 2.14.

First, note that 1 ∈ L since it is the image of (x15)2.

Claim. The polynomial f = ψ(P ) is nonnegative but not a sum of squares.

Nonnegativity of f follows directly from the fact that P is nonnegative.
For the sake of contradiction, suppose that

(4.4) f = g21 + . . .+ g2r

for some gk ∈ R[U ]. Note that deg f ≤ 4, and hence deg gk ≤ 2. Thus, we can
write gk = lk +pk, where deg lk ≤ 1 and pk are homogeneous polynomials of degree
two. The homogeneous part of degree four of f is then

(4.5) f4 = p21 + . . .+ p2r,
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and by (4.3) it vanishes at the points where the matrix

(4.6) Γ′ =

(
x25 x35 x45
x12 x13 x14

)
has rank at most 1, since this is equivalent to the vanishing of its 2× 2 minors. By
(4.5), this implies that every pk also vanishes at these points.

The ideal I of C[x12, x13, x14, x25, x35, x45] generated by the 2 × 2 minors of Γ′

is prime and hence radical, see e.g. [BV88, Thm. 2.10]. Since the real points are
Zariski dense in the complex affine variety defined by I, every pk vanishes on this
variety. By Hilbert’s Nullstellensatz, pk is a linear combination of the 2× 2 minors
of Γ′, with real coefficients because pk are real. Since all of x1j , xi5, 2 ≤ i, j ≤ 4
and 1 are 2 × 2 minors of Γ, we have that gk = lk + pk is a linear combination of
2× 2 minors of Γ. As the square of a linear combination of 2× 2 minors of Γ is the
image by ψ of a square in R[Gr2(5)]2, injectivity of ψ and (4.4) contradict the fact
that P is not a sum of squares, concluding the proof of the above Claim.

The homogeneization fh can be obtained substituting each Plücker coordinate
xij in P by the 2× 2-minor corresponding to columns i and j of the matrix(

t x25 x35 x45 0
0 x12 x13 x14 t

)
.

This and multilinearity of the determinant imply that all coefficients of

fh(t, x12 − y12, . . . , x45 − y45),

considered as a polynomial in t, belong to L for all yij ∈ R. Thus, by Theorem 2.14,
we have that ψ

(
PGr2(5)

)
, and hence PGr2(5), are not spectrahedral shadows. �

Although our geometric applications only require the following result for Gr2(n),
n ≥ 5, for the sake of completeness, we state and prove it in the more general case
of the Grassmannian Grk(n) of k-planes in n-dimensional space.

Corollary 4.2. The closed convex cone PGrk(n) is not a spectrahedral shadow for
all n ≥ 5 and 2 ≤ k ≤ n− 2.

Proof. We proceed by induction on n ≥ 5. For n = 5, the conclusion holds by
Proposition 4.1, since Gr2(5) ∼= Gr3(5) are naturally isomorphic.

For the induction step, fix n ≥ 5 and suppose PGrk(n) is not a spectrahedral
shadow for all 2 ≤ k ≤ n − 2. Since Grk(n + 1) ∼= Grn−k(n + 1) are naturally
isomorphic, it suffices to show that PGrk(n+1) is not a spectrahedral shadow for all

2 ≤ k ≤ n+1
2 . Note that every such k satisfies 2 ≤ k ≤ n− 2 because n ≥ 5.

The cone on the Grassmannian of k-planes in Cn,

(4.7) CGrk(n) =
{
v1 ∧ · · · ∧ vk : vi ∈ Cn

}
⊂ ∧kCn,

is an affine variety whose (affine) coordinate ring agrees with the homogeneous
coordinate ring of Grk(n). The projection map π : Cn+1 → Cn onto the first n
coordinates induces a linear map ∧kπ : ∧kCn+1 → ∧kCn, which maps CGrk(n+1)
onto CGrk(n). In particular, the associated homomorphism of coordinate rings
given by composition with ∧kπ is injective. This implies that R[Grk(n)]2 can be
identified with a linear subspace of R[Grk(n+1)]2. Note that PGrk(n) ⊂ R[Grk(n)]2
consists of the elements which are nonnegative on the real points CGrk(n)(R), and
similarly for PGrk(n+1) ⊂ R[Grk(n+ 1)]2. Therefore,

(4.8) PGrk(n) = PGrk(n+1) ∩R[Grk(n)]2
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because ∧kπ maps CGrk(n+ 1)(R) onto CGrk(n)(R) and pull-back of nonnegative
functions are nonnegative. Since the intersection of a spectrahedral shadow with
a linear subspace is also a spectrahedral shadow, it follows from the induction
hypothesis and (4.8) that PGrk(n+1) is also not a spectrahedral shadow. �

Proof of Theorem A (1). We have that Rsec≥0(n) = PGr2(n) by (2.9), and this is
not a spectrahedral shadow by Corollary 4.2. �

5. Relaxations and Algorithms

We now construct relaxations of Rsec≥0(n), that is, inner and outer approxima-
tions, proving Theorem B. These relaxations are then combined with semidefinite
programming to establish simple algorithms to test whether a given curvature oper-
ator R ∈ Sym2

b(∧2Rn) has secR ≥ 0, or any other sectional curvature bound, after
a simple modification (Remark 2.2), see Algorithm 1. For n = 4, we exploit the fact
that Rsec≥0(4) is a spectrahedral shadow to construct a more efficient algorithm
based instead on Sturm’s real root counting, see Algorithms 2 and 3.

5.1. Inner relaxations. Ideas similar to the Lasserre hierarchy [Las01] can be
used to produce inner approximations of Rsec≥0(n) as follows.

Definition 5.1. Given n ≥ 2 and a nonnegative integer m ≥ 0, consider the linear
map

ϕm : R[Gr2(n)]2 → R[Gr2(n)]2m+2, ϕm(P ) = rm · P,
where r =

∑
i<j x

2
ij ∈ R[Gr2(n)]2 is the sum of squares of Plücker coordinates. Let

Im be the preimage of the subset of sums of squares in R[Gr2(n)]2m+2 under ϕm.

Clearly, every element of Im is a curvature operator R with secR ≥ 0. The
next result shows that, conversely, every curvature operator with secR > 0 is in
some Im. Observe that I0 is precisely the set of curvature operators with strongly
nonnegative curvature, see Example 2.11.

Proposition 5.2. For each n ≥ 2, the collection Im, m ≥ 0, is a nested sequence
of O(n)-invariant spectrahedral shadows such that

Rsec>0(n) ⊂
⋃
m≥0

Im ⊂ Rsec≥0(n).

In particular, we have
⋃

m≥0 Im = Rsec≥0(n).

Proof. First, observe that the subset of R[Gr2(n)]2m+2 consisting of sums of squares
is the cone dual of a spectrahedron, and hence a spectrahedral shadow. Thus, its
preimage Im under the linear map ϕm is a spectrahedral shadow. Furthermore, it
is O(n)-invariant because r is fixed by the O(n)-action. Since the product of two
sums of squares is again a sum of squares, the sequence Im is nested.

Let P ∈ R[Gr2(n)]2 be a quadratic form that is positive on every real point of
Gr2(n), i.e., an element of Rsec>0(n). We claim that rm · P is a sum of squares
of elements from R[Gr2(n)]m+1 for all sufficiently large m, i.e., P ∈ Im. This
follows from an appropriate Positivstellensatz, namely [Sch12, Cor. 4.2] applied to
the pull-back L of the dual of the tautological line bundle on projective space via
the Plücker embedding. Note that R[Gr2(n)]k is the space of global sections of
L⊗k. The last statement then follows from Remark 2.2 (i). �
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Example 5.3. The curvature operator RZol of Zoltek [Zol79] in Example 2.11 has
sec ≥ 0 but does not have strongly nonnegative curvature, i.e., lies in Rsec≥0(5)\I0.
It can be checked that R ∈ I1, using the package SOS [CKPP] for the computer
algebra system Macaulay2 [GS].

Remark 5.4. For general n, both inclusions in Proposition 5.2 are strict. For exam-
ple, since I0 = Rsec≥0(4), one has Rsec>0(4) (

⋃
m≥0 Im in this case. On the other

hand, if we interpret RZol from Example 2.11 as an element of R[Gr2(7)]2 instead of
R[Gr2(5)]2, then RZol is not contained in any Im, and thus

⋃
m≥0 Im ( Rsec≥0(7).

This follows from the fact that RZol has a bad point in the sense of [Del97] at the
point of Gr2(7) corresponding to the 2-plane spanned by e6 and e7.

Remark 5.5. The curvature conditions corresponding to Im, m ≥ 0, are preserved
under Riemannian submersions. More precisely, if π : (M, g) → (M, g) is a Rie-
mannian submersion and RM ∈ Im, then also RM ∈ Im. This is a direct conse-
quence of the Gray–O’Neill formula as presented in [BM18, Thm. B], which states:

RM = (RM )|∧2TM + 3α− 3b(α),

where TM ⊂ TM is the horizontal space, α is a quadratic form defined by the Gray–
O’Neill A-tensor, and b : Sym2(∧2TM) → ∧4TM is the orthogonal projection.
Thus, if ϕm(RM ) ∈ R[Gr2(n)]2m+2 is a sum of squares, then so is ϕm(RM ) ∈
R[Gr2(n)]2m+2, since ϕm(3α) is also a sum of squares and 3b(α) is in the vanishing
ideal of Gr2(n).

5.2. Outer relaxations. We now observe that outer approximations of Rsec≥0(n)
by spectrahedra can be constructed using [BM17a, Thm. A]. As usual, we identify
traceless symmetric p-tensors ψ ∈ Symp

0R
n with harmonic homogeneous polynomi-

als ψ ∈ R[x1, . . . , xn]p∩ker ∆. The curvature term induced by R ∈ Sym2
b(∧2Rn) in

the Weitzenböck formula for traceless symmetric p-tensors is the symmetric linear
endomorphism K

(
R,Symp

0R
n
)

: Symp
0R

n → Symp
0R

n determined by

(5.1)
〈
K
(
R,Symp

0R
n
)
ψ,ψ

〉
= cp,n

∫
Sn−1

〈
R
(
x ∧∇ψ(x)

)
, x ∧∇ψ(x)

〉
dx,

where cp,n > 0 is a constant, see [BM17a, Prop. 3.1].

Definition 5.6. Given n ≥ 2 and a nonnegative integer m ≥ 0, let

Om =
{
R ∈ Sym2

b(∧2Rn) : K
(
R,Symp

0R
n
)
� 0 for all 1 ≤ p ≤ m+ 1

}
.

Proposition 5.7. For each n ≥ 2, the collection Om, m ≥ 0, is a nested sequence
of O(n)-invariant spectrahedra such that⋂

m≥0

Om = Rsec≥0(n).

Proof. Since K
(
R,Symp

0R
n
)

depends linearly on R and is O(n)-equivariant, Om are
(finite) intersections of O(n)-invariant spectrahedra, hence O(n)-invariant spectra-
hedra themselves. The inclusion Rsec≥0(n) ⊂

⋂
m≥0 Om holds since the integrand in

(5.1) is a sectional curvature; the reverse inclusion follows by [BM17a, Thm. A]. �

Remark 5.8. Note that the first step O0 is precisely the set of curvature operators
with nonnegative Ricci curvature [BM17a, Ex. 2.2]. Thus, in contrast with the
inner approximations (see Remark 5.5), these curvature conditions are in general
not preserved under Riemannian submersions, see e.g. [PW14].
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Proof of Theorem B. Without loss of generality, we may consider only the case
k = 0, see Remark 2.2. The result now follows from Propositions 5.2 and 5.7. �

5.3. Algorithms to detect sec ≥ 0. The relaxations constructed above enable the
use of semidefinite programming to test membership in Rsec≥0(n). A semidefinite
program optimizes a linear functional over a spectrahedral shadow S; in particular,
it can be used to test whether S is empty, and whether a given point belongs to S.
Using interior-point methods, one can solve a semidefinite program up to a fixed
precision in polynomial time in the size of the program description, see e.g. [NN94].

Algorithm 1: Query secR ≥ 0 via iterated semidefinite programs, for n ≥ 5

input : R ∈ Sym2
b(∧2Rn)

output: TRUE if secR ≥ 0, FALSE otherwise
1 var m := 0

2 var finished := FALSE

3 while finished = FALSE do
4 if R ∈ Im /* Semidefinite Programming used here */

5 then
6 finished := TRUE

7 return TRUE

8 end

9 if R 6∈ Om /* Semidefinite Programming used here */

10 then
11 finished := TRUE

12 return FALSE

13 end

14 m := m+ 1

15 end

Proposition 5.9. For all R ∈ Sym2
b(∧2Rn) \B, where B := Rsec≥0(n) \

⋃
m≥0 Im,

Algorithm 1 terminates and returns TRUE if and only if secR ≥ 0. The set of bad
inputs B has measure zero in Sym2

b(∧2Rn) and is contained in ∂Rsec≥0(n).

Proof. These claims follow immediately from Propositions 5.2 and 5.7. �

5.4. Efficient algorithms for n = 4. Although semidefinite programming would
not require iterations to detect membership in the spectrahedral shadow Rsec≥0(4),
more efficient algorithms follow from the Finsler–Thorpe trick (Proposition 3.1).

Recall that the classical Sturm’s algorithm returns the number of real roots
(disregarding multiplicities) of a given univariate real polynomial p ∈ R[x] in any
interval [a, b] with −∞ ≤ a < b ≤ +∞ and p(a) 6= 0 and p(b) 6= 0, see e.g. [BCR98,
Cor. 1.2.10], or [BPR06, Sec. 2.2.2] for a more algorithmic viewpoint. This method
produces partitions −∞ = a1 < a2 < · · · < aN = +∞ which are root-isolating, that
is, p(aj) 6= 0 for all j and p(x) has exactly one root in [aj , aj+1]. In what follows, we
convention that p(±∞) are interpreted as limits. Combining this procedure with
Euclid’s division algorithm (to compute greatest common divisors of polynomials),
one can produce a common root-isolating partition for any finite collection of poly-
nomials pi ∈ R[x], i.e., −∞ = a1 < a2 < · · · < aN = +∞ such that pi(aj) 6= 0



CONVEX ALGEBRAIC GEOMETRY OF CURVATURE OPERATORS 19

for all i and j, and [aj , aj+1] contains exactly one root of some pi(x). Note that if
more than one pi(x) vanishes in [aj , aj+1], then they must do so at the same point.

Algorithm 2: Query secR > 0 in dimension n = 4

input : R ∈ Sym2
b(∧2R4)

output: TRUE if secR > 0, FALSE otherwise
1 def σi(x) ∈ R[x], 1 ≤ i ≤ 6, such that

det(R+ x ∗ −λ Id) = λ6 +

6∑
i=1

(−1)iσi(x)λ6−i

/* i.e., σi(x) are the elementary symmetric polynomials on

eigenvalues of R+ x ∗ */

2 def −∞ = a1 < a2 < · · · < aN = +∞ common root-isolating partition for

σi(x) ∈ R[x], 1 ≤ i ≤ 6 /* Sturm’s Algorithm used here */

3 if ∃j such that σi(aj) > 0 for all 1 ≤ i ≤ 6 then
4 return TRUE

5 else
6 return FALSE

7 end

Proposition 5.10. For all R ∈ Sym2
b(∧2R4), Algorithm 2 terminates and returns

TRUE if and only if secR > 0.

Proof. By the Finsler–Thorpe trick (Proposition 3.1), secR > 0 if and only if there
exists x ∈ R such that R + x � 0, that is, the elementary symmetric polynomials
σi(x), 1 ≤ i ≤ 6, in the eigenvalues of R+ x ∗ are all positive.

Suppose the algorithm returns TRUE. Then there exists 1 ≤ j ≤ N such that
σi(aj) > 0 for all 1 ≤ i ≤ 6, so R + aj ∗ � 0 and hence secR > 0. Conversely,
if secR > 0, let x0 ∈ R be such that R + x0 ∗ � 0. Set 1 ≤ j ≤ N such that
x0 ∈ [aj , aj+1]. If x0 = aj or x0 = aj+1, then the algorithm clearly returns TRUE,
so we may assume x0 ∈ (aj , aj+1). Since −∞ = a1 < a2 < · · · < aN = +∞ is a
common root-isolating partition, one of the intervals (aj , x0) or (x0, aj+1) contains
no roots of any σi(x). Thus, either σi(aj) > 0 for all 1 ≤ i ≤ 6, or σi(aj+1) > 0 for
all 1 ≤ i ≤ 6; which implies that the algorithm returns TRUE. �

Proposition 5.11. For all R ∈ Sym2
b(∧2R4), Algorithm 3 terminates and returns

TRUE if and only if secR ≥ 0.

Proof. Analogously to Proposition 5.10, secR ≥ 0 if and only if there exists x ∈ R
such that σi(x) ≥ 0 for all 1 ≤ i ≤ 6.

Suppose the algorithm returns TRUE, so there exists 1 ≤ j ≤ N − 1 such that
for all 1 ≤ i ≤ 6 with σi(aj) < 0 and σi(aj+1) < 0, the polynomial σi(x) has a root
in (aj , aj+1). Let x0 ∈ (aj , aj+1) be the only root of some σi(x) in that interval. We
claim that σi(x0) ≥ 0 for all 1 ≤ i ≤ 6, hence secR ≥ 0. This is shown by examining
the signs of σi(aj) and σi(aj+1) and using that −∞ = a1 < a2 < · · · < aN = +∞
is a common root-isolating partition for the σi(x), as follows:

(1) If σi(aj) < 0 and σi(aj+1) < 0, then σi(x0) = 0 by the test in line 5;
(2) If σi(aj) > 0 and σi(aj+1) > 0, then clearly σi(x0) ≥ 0;
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Algorithm 3: Query secR ≥ 0 in dimension n = 4

input : R ∈ Sym2
b(∧2R4)

output: TRUE if secR ≥ 0, FALSE otherwise
1 def σi(x) ∈ R[x], 1 ≤ i ≤ 6, such that

det(R+ x ∗ −λ Id) = λ6 +

6∑
i=1

(−1)iσi(x)λ6−i

/* i.e., σi(x) are the elementary symmetric polynomials on

eigenvalues of R+ x ∗ */

2 def −∞ = a1 < a2 < · · · < aN = +∞ common root-isolating partition for

σi(x) ∈ R[x], 1 ≤ i ≤ 6 /* Sturm’s Algorithm used here */

3 var answer := FALSE

4 for j = 1, . . . , N − 1 do
5 if ∀1 ≤ i ≤ 6 with σi(aj) < 0 and σi(aj+1) < 0, σi(x) has a root in

(aj , aj+1) then
6 answer := TRUE

7 end

8 end

9 return answer

(3) If σi(aj) and σi(aj+1) have opposite signs, then σi(x0) = 0 by the Interme-
diate Value Theorem.

Conversely, if secR ≥ 0, choose x0 ∈ R such that σi(x0) ≥ 0 for all 1 ≤ i ≤ 6.
Let 1 ≤ j ≤ N − 1 be such that x0 ∈ [aj , aj+1], and 1 ≤ i ≤ 6 be such that
σi(aj) < 0 and σi(aj+1) < 0. If σi(x0) > 0, then σi(x) would have more than one
root in (aj , aj+1) contradicting the common root-isolating property, so σi(x0) = 0.
Therefore, the algorithm returns TRUE. �

Appendix A. Irreducibility of the discriminant of symmetric matrices

In this Appendix, we study irreducibility of discriminants of symmetric matrices.
Although the techniques are standard, we give complete proofs for the convenience
of the reader, as the following does not seem to be easily available in the literature:

Proposition A.1. The discriminant of symmetric matrices disc : Sym2(Cn)→ C

is irreducible over C for all n ≥ 3.

Remark A.2. The polynomial disc : Sym2(Cn) → C is a constant if n = 1, and is
not irreducible if n = 2 since it is a product of two complex conjugate linear forms.

Consider the conjugation action on Sym2(Cn) of the (complex) Lie groups:

O(n,C) =
{
S ∈ GL(n,C) : StS = Id

}
,

SO(n,C) =
{
S ∈ O(n,C) : det(S) = 1

}
.

Recall that dimCO(n,C) = dimC SO(n,C) =
(
n
2

)
, and that SO(n,C) is an irre-

ducible affine variety.

Lemma A.3. Let A ∈ Sym2(Cn) be a symmetric matrix whose ith row has only
zero entries, except possibly for its ith entry. Then the O(n,C)-orbit of A coincides
with its SO(n,C)-orbit.
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Proof. Let S ∈ O(n,C) \ SO(n,C) be the reflection on the ith coordinate, i.e., the
diagonal matrix with entries 1 on the diagonal, except for a −1 at the ith position.
Clearly, S is in the isotropy of A and O(n,C) = SO(n,C) ∪ (SO(n,C) · S). �

In the following, we describe the O(n,C)-orbit of a symmetric matrix A ∈
Sym2(Cn) by expressing it in terms of a convenient canonical form. To this end,
following the notation of [Tho91], let ∆k,Λk ∈ Sym2(Ck) be the matrices given by

∆k =


1

1

. .
.

1
1

 , Λk =



0
0 1

. .
.

1

. .
.

. .
.

0 1

 ,

and fix Rk ∈ GL(k,C) such that Rk∆kR
t
k = Idk. Note that Λ1 = 0. Furthermore,

given λ ∈ C, define Mk(λ) ∈ Sym2(Ck) by

Mk(λ) = λ Idk +RkΛkR
t
k.

Lemma A.4. Given A ∈ Sym2(Cn), there exist λ1, . . . , λ` ∈ C eigenvalues of A,
and k1, . . . , k` ∈ N, so that the O(n,C)-orbit of A contains the block diagonal matrix

(A.1)

Mk1
(λ1)

. . .

Mk`
(λ`)

 .

Moreover, the characteristic polynomial of A is det(A− t Id) =
∏`

i=1(λi − t)ki .

Proof. We make use of the fact that one can bring pencils of symmetric matrices
over C to a certain standard form. As proved e.g. in [Tho91, Sec. 5], there exist
λ1, . . . , λ` ∈ C eigenvalues of A, k1, . . . , k` ∈ N, and S ∈ GL(n,C) with the following
property: for all ρ ∈ C, the matrix S(ρ Idn +A)St is block diagonal with ` blocks
of the form (ρ+ λi)∆ki

+ Λki
.

Letting R ∈ GL(n,C) be the block diagonal matrix with blocks Rk1 , . . . , Rk`
, we

have that RS(ρ Idn +A)StRt is a block diagonal matrix with blocks Mki(ρ + λi).
Since this holds for all ρ ∈ C, it follows that RS ∈ O(n,C) and that RS A (RS)t

has the desired form (A.1).
The characteristic polynomial of A is equal to that of (A.1), which is the product

of the characteristic polynomials of its blocks Mki
(λi). These can be computed as:

det(Mk(λ)− t Idk) = det(Rk(Λk + (λ− t)∆k)Rt
k)

= det(Rk)2 det(Λk + (λ− t)∆k)

= (λ− t)k,

because det(Rk)2 = (−1)bn/2c and det(Λk + (λ− t)∆k) = (−1)bn/2c(λ− t)k. �

We are now in the position to prove the main result of this Appendix:

Proof of Proposition A.1. The zero set V of disc : Sym2(Cn)→ C is a hypersurface
in Sym2(Cn), and hence an equidimensional variety of (pure) codimension 1. Fur-
thermore, since disc : Sym2(Cn)→ C is O(n,C)-invariant, by Lemma A.4 we have
that V is the union of the O(n,C)-orbits of block diagonal matrices with blocks
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Mk1
(λ1), . . . ,Mk`

(λ`) for all λi ∈ C, and k1 + . . .+ k` = n with at least one ki ≥ 2,
that is, ` ≤ n−1. For fixed k1, . . . , k`, the set of such block matrices is parametrized
by C`, and hence the union of the O(n,C)-orbits of such matrices has dimension
≤ `+dimCO(n,C). If ` < n−1, then `+dimCO(n,C) < dimC V . Thus, since V is
equidimensional, it is the closure of the union of the O(n,C)-orbits of all matrices

M(λ) =


M2(λ1)

λ2
. . .

λn−1


with λ = (λ1, . . . , λn−1) ∈ Cn−1. Since n ≥ 3, it suffices to take SO(n,C)-orbits by
Lemma A.3. In other words, V is the closure of the image of the map

SO(n,C)× Cn−1 → Sym2(Cn), (S, λ) 7→ SM(λ)St.

As the source is irreducible, the (closure of the) image is irreducible as well, which
shows that V is irreducible. Therefore, disc = φm for some irreducible polynomial
φ : Sym2(Cn) → C and m ∈ N, so it remains to show that m = 1. This can be
seen, e.g., considering the restriction of disc : Sym2(Cn)→ C to the curve

1 + x
√
−1√

−1 −1− x
1

. . .

n− 2

 ∈ Sym2(Cn),

which is a univariate polynomial in x with a simple root at 0, hence m = 1. �
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