```
Abundance Conjecture for 3-folds:
    Case v = 1
```

 by
 Yoichi Miyaoka
    ```
Dedicated to Professor F. Hirzebruch on his 60th birthday
```

1
1
1
1
1

Dedicated to Professor F. Hirzebruch on his 60th birthday

Introduction.

A normal projective variety is said to be minimal if it has only terminal singularities and its canonical divisor $K_{X} \in \operatorname{Pic}(X) \otimes \mathbb{Q}$ is nef. A recent result of S. Mori [Mr] asserts the existence of a minimal model for a given complex algebraic 3-fold except for uniruled one.

In [My] the author proved a minimal 3-fold has non-negative Kodaira dimension; when combined with Mori's theorem mentioned above this amounts to the following characterization of 3-folds with $k=-\infty$:

Theorem. A complex algebraic 3-fold has Kodaira dimension $-\infty$ if and only if it is uniruled.

A natural question now arises: What is the characterization of 3-folds with $k=0$? More specifically:
(*) Does a 3-fold with $k=0$ have a minimal model with numerically trivial canonical divisor?

To make things more explicite, let us introduce an invariant $v(X)$, the numerical Kodaira dimension, of a minimal variety X. By definition,

$$
v(X)=\min \left\{d \in z ; c_{1}\left(K_{x}\right)^{d+1}=0 \in H^{2 d+2}(X, \mathbb{Q})\right\} .
$$

Clearly v takes value in $\{0,1, \ldots$, dim $X\}$. For example, $v(X)=0$ is equivalent to the numerical triviality of K_{X}; $\nu(X)=\operatorname{dim} X$ if and only if K_{X} is big, i.e. $\mathrm{K}_{\mathrm{X}}^{\operatorname{dim}} \mathrm{X}>0$. As is easily seen, the question (*) would be affirmatively answered if we could verify
(**) (Abundance conjecture) $k(X)=v(X)$.

The inequality $\kappa(X) \leqq \nu(X)$ follows from a formal argument, yet the inequality of the converse direction is not so trivial. Furthermore (**) involves an important implication; via his powerful "base point freeness theorem", Y. Kawamata [Kw] pointed out that the linear system $|m K x|$ is free from base points for sufficiently divisible m, provided the abundance conjecture (**) is true.

In an extremal case $v=0$ or 3 , the equality $k=v$ for a minimal 3-fold can be checked rather easily. The objective of the present paper is to show the equality in one of the intermediate cases: $v=1$.

Main Theorem. Let X be a minimal 3-fold with $v(X)=1$. Then $\kappa(X)=1$ and there is a positive integer m such that
$O_{X}\left(m K_{X}\right)$ is generated by global sections.
Our proof is based on the analysis of an effective Cartier divisor $D \in\left|m K_{X}\right|(m>0)$, the existence of which is guaranteed by $K(X) \geq 0[M Y]$. We are interested in the analytic and infinitesimal neighbourhoods of D as well as D itself. A direct analysis of them seems a little bit too tough; to simplify the situation, we need three reduction steps described below Let $U \subset X$ be a sufficiently small analytic neighbourhood of D. Then we have:
(0.1) (Gorenstein reduction, see § 1) There is a finite covering $\gamma: V \longrightarrow U$ étale off $\operatorname{sing}(U)$ such that $K_{V}=\gamma{ }^{*} K_{U}$ is Cartier.
(0.2) (Semi-stable reduction, see § 2) There is a proper, generically finite covering $\sigma: W \longrightarrow V$, étale off supp ($\gamma^{*} D$) , such that W is smooth and that $\sigma^{*} \gamma^{* D}$ is a multiple of a reduced divisor \widetilde{D} with only simple normal crossings.
(0.3) (Minimal model à la Kulikov-Persson-Pinkham, § 3) After finitely many contractions of components of $\widetilde{\mathrm{D}}$ and elementary transformations, a smooth "minimal model" $\left(W_{0}, \tilde{D}_{0}\right)$ of (W, \tilde{D}) is reached. The natural image \widetilde{D}_{0} of \tilde{D} in W_{0} is still a divisor with only simple normal crossings and $\tilde{\mathrm{D}}_{0}\left|\widetilde{\mathrm{D}}_{0} \approx \mathrm{~K}_{\mathrm{W}_{0}}\right| \widetilde{\mathrm{D}}_{0} \approx 0$.

Once we come across this situation, it is combinatorics to determine the structure of \widetilde{D}_{0} as an analytic space. A theorem of R. Friedman shows that $\tilde{\mathrm{D}}_{0}$ is actually a degeneration of smooth surfaces with $K=0$. This implies that $K_{W_{0}} \mid \widetilde{D}_{0}$ and $\widetilde{D}_{0} \mid \widetilde{D}_{0}$ are both torsions in $\operatorname{Pic}\left(\widetilde{D}_{0}\right)$ so that there exists an étale covering $\tau: M \longrightarrow W_{0}$ such that $K_{M}|S \sim S| S \sim 0$, where $S=\tau * \widetilde{D}_{0}$. Finally, we study the infinitesimal neighbourhoods of S in M :
(0.4) The infinitesimal displacements of S in M is not obstructed. In particular,

$$
\operatorname{dim} H^{0}\left(\mathrm{~ns}, 0_{\mathrm{ns}}(\mathrm{ks})\right)=\mathrm{n} \text { for } \mathrm{n} \in \mathbb{N}, k \in \mathbf{z}
$$

whence it follows that

$$
\operatorname{dim} H^{0}\left(n D, O_{n D}(n D)\right) \sim 0(n)
$$

Main Theorem is a direct consequence of (0.4), see §4.

In this paper, we work in the category of analytic spaces.

Acknowledgements. This paper was motivated by M. Reid's suggestion that the analysis of $D \in\left|m K_{X}\right|$ eventually leads to the proof of (**); in this sense the present approach owes much to him. The idea was conceived at University of Pisa and worked out at Columbia University and Max-Planck-Institut at

Bonn. I am grateful to the three institutions for their hospitality and finantial support. Finally I appreciate the helpful and encouraging conversations with S. Mori and D. Morrison during the preparation of the paper.

1. Gorenstein reduction

In order to show the Gorenstein reduction (0.1), let us start with some elementary observations.
(1.1) Lemma. Let $(2,0)$ be a germ of terminal 3 -fold singularity of index r. Then

$$
\begin{aligned}
& \mathrm{H}_{1}(Z, \mathbb{Z})=0, \\
& \mathrm{H}_{1}(Z-0, \mathbf{Z}) \cong \mathbf{z} / r \mathbf{z}, \\
& \operatorname{Pic}(Z)=(1), \\
& \operatorname{Pic}(Z-0)_{\text {tor }} \cong \operatorname{Hom}\left(\mathrm{H}_{1}(Z-0, Z), \mathbb{C}^{*}\right)_{\text {tor }} \cong \boldsymbol{\mu}_{r} .
\end{aligned}
$$

Proof. (2,0) is a ${\underset{\sim}{\mu}}^{r}$-quotient of a compound Du Val singularity $(\tilde{z}, \widetilde{\sigma})$ and $\pi_{1}(\widetilde{z}-\widetilde{\sigma})=(1)$ by Milnor's theorem [M1, Theorem 6.6].
(1.2) Lemma. Let $(2,0)$ be as above and S an effective Cartier divisor passing through 0 . Then the restriction mapping

$$
\text { Pic }(z-0) \text { tor } \longrightarrow \text { Pic }(\mathrm{s}-0) \text { tor }
$$

is injective.

Proof. Let $\mathrm{f}: \tilde{\mathrm{Z}} \longrightarrow \mathrm{Z}$ be the "canonical" μ_{r}-covering as in the proof of (1.1). $\widetilde{S}=f * S$ is a connected Cartier divisor on \tilde{Z}, while $\tilde{o}=f^{-1}(0)$ is a single point and hence of codimension 2 in \widetilde{S}. Therefore $\widetilde{S} \widetilde{o}$ is connected, which
implies the surjectivity of $\pi_{1}(S-0) \longrightarrow \pi_{1}(z-0)$ and of $H_{1}(S-0, Z) \longrightarrow H_{1}(z-0, z)$. Thus we infer the injectivity of
$\operatorname{Pic}(Z-0)$ tor $\left.\approx \operatorname{Hom}\left(\mathrm{H}_{1}(\mathrm{Z}-0, \mathrm{Z}), \mathbb{C}^{*}\right) \longrightarrow F=\operatorname{Hom}\left(\mathrm{H}_{1}(\mathrm{~S}-0, \mathrm{Z}) . \mathbb{C}^{*}\right)\right)$.

The group F is naturally identified with that of flat line bundles \subset Pic (S-0) .
(1.3) Corollary. In the same notation as in (1.2), $\left.\alpha K_{Z}\right|_{S}$ is Cartier on S if and only if $r \mid \alpha(\alpha \in \mathbb{Z}, \gamma=$ index of $(z, 0))$.

Proof. $\left.\alpha K_{Z}\right|_{S}$ is Cartier if and only if $0_{S-0}\left(\alpha K_{Z}\right) \cong 0_{S-0}$, which means that αK_{Z} is trivial on $Z-0$ by (1.2), i.e. αK_{Z} is Cartier on Z.

Let U be an analytic 3-fold with only finitely many terminal singularities and $D \subset \bar{U}$ an effective Cartier divisor which contains the sinqular locus Sing(U) .
(1.4) Lemma, Let r denote the index of \bar{U}, viz. the L.C.M. of the indices at the singular points. Assume that $c_{1}\left(r K_{\bar{U}}\right) \mid D \in H^{2}(D, X)$ is a torsion. Then there are a small neighbourhood $\bar{U} ' \subset \bar{U}$ of D and a finite étale covering $g: \bar{U} " \longrightarrow \bar{U}{ }^{\prime}$ such that $c_{1}\left(r K_{\bar{U}} \prime \prime\right) \mid g^{*} D=0 \in H^{2}\left(g^{*}, \mathbf{z}\right)$.

Proof. Immediate consequence of the natural isomorphism

$$
H^{2}(D, z) \text { tor } \tilde{Z}_{1}(D, z) \text { tor } \tilde{Z} H_{1}(\bar{U}, z) \text { tor }
$$

for a tubular neighbourhood $\overline{\mathrm{U}}$ ' of D .
-
(1.5) Lemma. Let the notation and the assumption be as in (1.4). Then there exists a finite cyclic μ_{r}-covering $h: D^{*} \longrightarrow g * D$ which has the following two properties:
(1.5.1) h is étale off $\operatorname{Sing}(\bar{U} ") \subset g^{*} D$;
(1.5.2) The branch index of h at $P \in g * D$ is exactly the local index of $\overline{U \prime \prime}$ at P; in other words, D^{*} is locally a disjoint union of canonical covers over P.

Proof. Since $\operatorname{Pic}^{0}\left(g^{*} D\right) \cong H^{1}\left(g^{*} D, 0\right) / H^{1}\left(g^{*} D, Z\right)$ is a divisible group, we can find $\tau \in \operatorname{Pic}^{0}(g * D)$ such that $r K_{\bar{U} "}-r t=0 \in \operatorname{Pic}^{0}\left(g^{*} D\right)$. Fix a non-zero section $s \in H^{0}\left(g * D, O_{g * D}\left(r K_{\bar{U}} "-r \tau\right)\right)$ and construct a μ_{r}-cover

$$
D^{\star}=\operatorname{Specan}\left\{0_{g_{D}} \oplus O_{g * D}\left(\tau-K_{\bar{U} \prime \prime}\right) \oplus \ldots \oplus O_{g^{*} D}\left((r-1)\left(\tau-K_{\bar{U} "}\right)\right)\right\}
$$

in a standard manner. Then D^{*} satisfies our requirements by (1.4) since $O(\tau)$ is locally isomorphic to 0 .

ㅁ
Now we have the following theorem which is slightly more general than (0.1):
(1.6) Theorem. Let \bar{U} be an analytic 3-fold with only finitely many terminal singularities and D an effective Cartier divisor. Let r be the index of \bar{U} and assume that $\left.c_{\mathcal{Y}}\left(r K_{\bar{U}}\right)\right|_{D} \in H^{2}(D, \mathbb{Z})$
is a torsion. Then, for a sufficiently small neighbourhood $\bar{U}{ }^{\prime} \subset \bar{U}$ of D, there is a finite covering $\gamma: V \longrightarrow \bar{U}$ ' which satisfies the following conditions:

$$
(1.6 .1) \mathrm{Y} \text { is étale off } \operatorname{Sing}\left(\bar{U}^{\prime}\right) \text {; }
$$

(1.6.2) The branch index of γ at $P \in D$ is exactly the local index of \bar{U} at P;
(1.6.3) V is a normal Gorenstein analytic space with only terminal singularities.

Proof. Fix a small neighbourhood $\Delta \subset \bar{U}$ of $\operatorname{Sing}(\bar{U})$. Then choose a sufficiently small neighbourhood $\bar{U} \cdot \subset \bar{U}$ of D in such a way that $D_{0}=D-(D \cap \Delta)$ is a deformation retract of $\bar{U}_{0}^{\prime}=U^{\prime}-(\bar{U} ' \cap \Delta)$. BY (1.5), we have a finite étale covering

$$
\bar{\gamma}: D_{0}^{*}=D^{*}-h^{-1}\left(g^{-1}(D \cap \Delta)\right) \longrightarrow D_{0} .
$$

Since $\pi_{1}\left(D_{0}\right) \approx \pi_{1}\left(\bar{U}_{0}^{1}\right)$, there is an étale covering

$$
\gamma_{0}: v_{0} \longrightarrow \bar{u}_{0}^{\prime}
$$

which induces $\bar{\gamma}$. On the other hand, we have the canonical covering $\tilde{\Delta} \longrightarrow \Delta$. Recalling that goh $: D^{*} \longrightarrow D$ is locally the canonical covering, we can patch up V_{0} with finitely many copies of components of $\widetilde{\Delta}$ to get a finite covering

$$
\gamma: V \longrightarrow \bar{U}^{\prime} U \Delta .
$$

This construction implies (1.6.1-3).
2. Semi-stable reduction

Let Y be a complex 3-manifold, $E \neq 0$ an effective, projective Cartier divisor on Y and $V \subset Y$ a small open neighbourhood of E. Throughout this section, we fix this notation and assume the following extra conditions:
a) The reduced part $E_{\text {red }}$ of E is a divisor with only simple normal crossings;
b) $\mathrm{E} \mid \mathrm{E}$ is numerically trivial on E ;
c) There exists a divisor H on Y such that $H \mid E$ is ample.

Let $E=\sum_{i=1}^{S} a_{i} S_{i}$ be the decomposition into distinct irreducible components.
(2.1) Lemma. The restriction maps and the degree maps give natural isomorphisms

Proof. Consider the exact sequence

$$
0 \longrightarrow: \mathbf{z}_{E} \longrightarrow \underset{i=1}{\stackrel{s}{\mathbf{z}} \mathbf{S}_{i}} \longrightarrow \underset{i<j}{\oplus} \mathbf{z}_{S_{i}} \cap S_{j} \longrightarrow \underset{i<j<k}{\oplus} \mathbf{z}_{i} \cap S_{j} n S_{k} \longrightarrow 0 .
$$

From the fact that the real dimension of $s_{i} \cap s_{j}=2$, the
assertion easily follows.

We denote by δ the natural isomorphism $H^{4}(E, Z) \xrightarrow{\approx} z^{s}$. Let $\rho: H_{C}^{4}(V, Z) \longrightarrow H_{C}^{4}(E, Z)=H^{4}(E, Z)$ be the restriction map, where the subscript c stands for the cohomology with compact support.
(2.2) Lemma. $\operatorname{Im}(\delta \circ \rho) \subset\left\{\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{z}^{s} ; \sum a_{i} x_{i}=0\right\}$.

Proof. Let $n \in H_{C}^{4}(V, z)$. Then $\operatorname{deg}\left(\eta \mid S_{i}\right)=\operatorname{deg}\left(\eta \cup S_{i}\right)$, so that

$$
\sum a_{i} \operatorname{deg}\left(\eta \mid S_{i}\right)=\sum a_{i} \operatorname{deg}\left(\eta \cup S_{i}\right)=\operatorname{deg}\left(\eta \cup \sum a_{i} S_{i}\right)=\operatorname{deg} \eta \cup E .
$$

By the Lefschetz duality $H_{C}^{4}(V, z) \cong H_{2}(V, z) \cong H_{2}(E, z), \eta$ can be regarded as a 2-cycle η^{\prime} on E and we have

$$
\operatorname{deg} \eta U E=\operatorname{deg} E \mid \eta^{\prime}
$$

Since E is numerically trivial on $E, \operatorname{deg} E \mid \eta^{\prime}=0$ which proves the lemma.
-
(2.3) Corollary. $\operatorname{ker}\left\{H_{1}(V-E, Z) \longrightarrow H_{1}(V, Z\}\right.$ has positive rank.

Proof. By the Lefschetz duality we have

$$
\begin{aligned}
& \operatorname{ker}\left\{H_{1}(V-E, Z) \longrightarrow H_{1}(V, z)\right\} \cong \operatorname{ker}\left\{H_{C}^{5}(V, E ; Z) \longrightarrow H_{C}^{5}(V, Z)\right\} \\
& \cong \operatorname{Coker}\left\{H_{C}^{4}(V, \mathbf{Z}) \longrightarrow H^{4}(E, Z)\right\},
\end{aligned}
$$

and the third term has positive rank by (2.2).
(2.4) Definition. Let $L \subset Y$ be a compact effective divisor such that (2.4.a) L is projective with an ample divisor H and that
(2.4.b) L|L is numerically trivial.

Let $L=\Sigma e_{i} L_{i}$ be the decomposition into irreducible components. L is said to be primitive if L is connected and G.C.D. $\left\{\mathbf{e}_{i}\right\}=1$.
(2.5) Lemma. Suppose that an effective divisor $L=\Sigma e_{i} L_{i}$ satisfies (2:4.a) and (2.4.b). Assume that L is connected. If ($\mathrm{Ee}_{\mathrm{i}}^{\prime} \mathrm{L}_{\mathrm{i}}$) $\mathrm{H} \mid \mathrm{L}$ is numerically trivial, then $\mathrm{e}_{\mathrm{i}}^{\prime}=\mathrm{ce} \mathrm{i}_{\mathrm{i}}$ for some constant $c \in \mathbb{Q}$ independent of i. In particular, L can be uniquely decomposed into $\sum 1_{i} L_{i}$, where L_{i} 's are primitive and disjoint with each other.

The proof is easy and left to the reader. Applying this to our original situation, we have
(2.6) Corollary. E can be uniquely decomposed into $\Sigma b_{i} E_{i}$, where E_{i} 's are primitive divisors which are mutually disjoint and b_{i} 's are positive integers.

Thus the small neighbourhood $V \subset Y$ is a disjoint union of neighbourhoods V_{i} of E_{i}. Therefore, without loss of generality, we may assume that E is connected in the argument below. Let $E=e \sum_{i=1}^{S} a_{i}^{\prime} S_{i}$ be the decomposition into irreducible components, where $e \in \mathbf{N}$, G.C.D. $\left\{a_{1}^{\prime}\right\}=1$.
(2.7) Lemma. Assume that E is connected. Then

$$
\left.\operatorname{Im} \delta o p \subset\left\{x_{1}, \ldots, x_{s}\right) \in z^{s} ; \sum a_{i}^{\prime} x_{i}=0\right\}
$$

is a sublattice of finite index.

Proof. It suffices to show $\operatorname{Im}(\delta 0 \rho \otimes \mathbb{Q})=\left\{\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{Q}^{s}\right.$; $\left.\sum a_{i} x_{i}=0\right\}$. Consider the \mathbb{Q}-vector subspace $\pi \subset \operatorname{Im}(\delta \circ \rho \otimes \mathbb{Q})$ generated by $S_{1} H\left|E, \ldots, S_{s} H\right| E$. (Note that $S_{i} \in H_{c}^{2}(V, z)$, $H \in H^{2}(V, z)$ so that $S_{i} \cdot H \in H_{C}^{4}(V, z)$,) Then, by (2.5), the unique relation between the $S_{i} \cdot H \mid E \in H^{4}(E, \Phi)$ is

$$
\Sigma\left(a_{i}^{\prime} S_{i} \cdot H\right) \mid E=0
$$

Hence $\operatorname{dim}_{\mathbb{Q}} \operatorname{Im}(\delta \circ \rho \otimes \mathbb{Q})=\operatorname{dim}_{\Phi} \operatorname{Im}(\rho \otimes \mathbb{Q})$

$$
\geq \operatorname{dim}_{Q} \cdot \pi=s-1=\operatorname{dim}_{\Phi}\left\{\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{Q}^{s} ; \sum a_{i}^{\prime} x_{i}=0\right\}
$$

This shows the assertion.
(2.8) Corollary. If E is connected, then
$\operatorname{ker}\left\{\dot{H}_{1}(\mathrm{~V}-\mathrm{E}, \mathrm{z}) \longrightarrow \mathrm{H}_{1}(\mathrm{~V}, \mathrm{z})\right\} /$ tor $\cong \operatorname{Coker}\left\{\mathrm{H}_{\mathrm{C}}^{4}(\mathrm{~V}, \mathrm{Z}) \longrightarrow \mathrm{H}^{4}(\mathrm{E}, \mathrm{z})\right\} /$ tor $\tilde{x} \delta^{-1}\left(\mathbb{Z}\left(a_{1}^{\prime}, \ldots, a_{s}^{\prime}\right)\right) \subset H^{4}(E, Z) \quad$.
(2.9) Corollary. For each positive integer I, there exists a canonical ${ }_{1}$-covering $\sigma_{1}: V_{1} \longrightarrow V$ branching along E whose branch index along S_{i} is exactly $1 /\left(1, a_{i}^{\prime}\right)$. If 1 is divisible by $a_{1}^{\prime}, \ldots, a_{s}^{\prime}$, then $\left(\sigma_{1}^{\star} E\right) / 1$ is a reduced Cartier divisor.

The normal analytic space V_{1} has toric singularities over the double curves of $E_{\text {red }}$. However, it is known that V_{1} has a nice resolution:
(2.10) Theorem (G. Kempf and al. [KKMS]). If 1 is sufficiently divisible, then V_{1} has a resolution $\pi=\pi_{1}: W=W_{1} \longrightarrow V_{1}$ such that $\pi \sigma_{1}^{*} E / 1$ is a reduced divisor with only simple normal crossings.
(2.11) Remark. The integer 1 above is not L.C.M. $\left\{a_{i}^{\prime}\right\}$ in general.

Putting things together, we obtain
(2.12) Theorem. There exists a proper, generically finite covering $\sigma: W \longrightarrow V$ such that
(2.12.b) $\sigma^{*} E$ is a multiple of e reduced divisor with only simple normal crossings.

To show (0.2), we apply (2.12) to a suitable resolution (Y,E) of the Gorenstein reduction of (\bar{U}, D). Since D comes from X , its total transform E is projective; H is easily constructed from the pull-back of an ample divisor on X and the exceptional divisors with respect to the resolution.
3. Minimal model

Let N be an analytic 3-manifold with an effective, projective, reduced divisor T on it. Assume the following two conditions:
a) $\mathrm{T} \mid \mathrm{T}$ is numerically trivial (on T);
b) There are positive integers m_{i} such that $K_{N} \mid T \approx\left(\sum m_{i} T_{i}\right) j T$; where $T_{i} ' s$ stand for the irreducible components of T.
(3.1) Remark. In this situation, $K_{N} \mid T$ is nef $\Leftrightarrow K_{N} \mid T \approx 0$ $\rightarrow m_{i}=m_{j}$ for every i, j. If we start with $D \in\left|m K_{X}\right|$ for a minimal 3-fold X and take a Gorenstein reduction $\gamma: V \longrightarrow U$ of a small neighbourhood U of D and then a semi-simple reduction $\sigma: W \longrightarrow V$, then the pair $\left(W, \sigma^{*} \gamma^{*} D / \operatorname{deg} \sigma\right)$ satisfies the conditions a) and b) above. (Without Gorenstein reduction, the coefficient m_{i} mig̣ht be a rational number.) Furthermore, we have in this case

$$
K_{W} \sim \Sigma m_{i} \widetilde{D}_{i}, m_{i} \in \mathbb{N}
$$

where \tilde{D}_{i} is an irreducible component of $\tilde{D}=\sigma^{*} \gamma^{*} D / \operatorname{deg} \sigma$.
(3.2) Theorem (Kulikov [K1], Persson-Pinkham [PP]). Let N and T be as above. Then, after finitely many smooth contractions of components of T and/or Kulikov's elementary

```
transformation (or "symmetric flops") we come across a
minimal model (M,S) ; the pair (M,S) has the following
properties:
```

(3.2.A) M is non-singular and $K_{M} \mid S \approx 0$;
(3.2.B) The proper transform S of T is a reduced divisor with only simple normal crossings and $\mathrm{s} \mid \mathrm{s} \approx 0$;
(3.2.C) If $K_{N} \sim \Sigma m_{i}^{\prime} T_{i}$, then $K_{M} \sim\left(\min \left\{m_{i}^{\prime}\right\}\right) \cdot S$.

The original papers deal with a degeneration of smooth surfaces, but their numerical proof works in our setting.
(3.3) Remark. The assumption that m_{i} is integral is essential. If we allow rational numbers as coefficients, certain quotient singularities appear on a minimal model. S is not necessarily projective; however, contractions of finitely many curves on S gives a normal 3-fold \hat{M} in which the image \hat{S} of S is projective.

It is not too difficult to classify S as an alytic space; the result is essentially given in Friedman-Morrison [FM, p.15.ff.].
(3.4) Theorem. S is isomorphic to one of the following surfaces:
(0) A smooth surface (S is either a K3 , Enriques, abelian of hyperelliptic surface);
(1) ${ }_{s}$ A cycle of (relatively) minimal elliptic ruled surfaces S_{i} (i $\in \mathbb{W} / s, s \geq 2$) and S_{i} meets only $S_{i \pm 1}$ along two disjoint sections;
($\left.1^{\prime}\right)_{s}$ A chain of minimal elliptic ruled surfaces $\mathrm{S}_{1}, \ldots, S_{s}$ $(s \geq 2)$ such that
(a) S_{i} meets only $S_{i \pm 1}$ along two disjoint sections for $1<i<s$,
(B) S_{1} [resp. S_{r}] meets only S_{2} [resp. S_{r-1}] along an étale double section;
(2) ${ }_{s}$ A chain of surfaces $S_{1}, \ldots, S_{s}(s \geq 2)$ such that
$(\alpha){ }^{S_{i}}$ is a minimal elliptic ruled surface and meets only $S_{i \pm 1}$ along two disjoint sections for $1<i<s$,
(β) S_{1} [resp. S_{s}] is a rational surface and $S_{2} \mid S_{1}$ [resp. $\left.S_{S-1} \mid S_{S}\right]$ is.a smooth elliptic curve $\sim-K_{S_{1}}$ [resp. $-\mathrm{K}_{\mathrm{S}_{\mathrm{S}}}$] ;
$\left(2^{\prime}\right)_{s} A$ chain of surfaces $S_{1} \ldots S_{s}(s \geq 2)$ such that
(α) S_{1} is a minimal elliptic ruled surface and meets only $S_{i \pm 1}$ along two disjoint sections for $1<i<s$,
$(B) S_{1}$ is a minimal elliptic ruled surface with $S_{2} \mid S_{1}$ being an étale double section,
$(\gamma) S_{S}$ is a rational surface with $S_{S-1} \mid S_{S}$ being a smooth elliptic curve $\sim-\mathrm{K}_{S_{S}}$;
(3) Configuration of rational surfaces whose dual graph is a triangulation of either a 2 -sphere S^{2}, a real projective plane $\mathbb{P}^{2}(\mathbb{R})$, a torus $s^{1} \times s^{1}$ or a. Klein bottle.
(3.5) Remark. A surface of type (1')s [resp. (2')s] is an étale \mathbb{W}_{2}-quotient of that of type (1) ${ }_{2 s-2}$ [resp. (2) $2 s-1$].
(3.6) Proposition. If s is of type (0) or (1) or (1') s [resp. (2) ${ }_{s}$ or ${\left(2^{1}\right)}_{s}$ or (3)], then $4 K_{S}$ or $6 K_{S} \sim 0$ [resp. $\left.2 \mathrm{~K}_{\mathrm{S}} \sim 0\right]$. Hence, by adjunction,

$$
\left.12\left(K_{M}+s\right)\right|_{S} \sim 0
$$

(3.7) Corollary. If $K_{M} \sim n s, n \in Z \backslash\{-1\}$, then $S \mid S$ is a torsion. For a tubular neighbourhood $M^{\prime} \subset M$ of S, there is an étale covering $\varepsilon: \widetilde{M}^{\prime} \longrightarrow M^{\prime}$ such that $\varepsilon^{*} S\left|\varepsilon^{*} S \sim \dot{K}_{\tilde{M}^{1}}\right| \varepsilon{ }^{*} S \sim 0$.
(3.8) Theorem (Friedman [F]). Under the notation and assumption as in (3.7), $\tilde{\mathrm{s}}$ has a versal deformation

$$
\phi:(x, \tilde{s}) \longrightarrow(y, 0)
$$

Here X and y are complex manifolds, $0 \in Y$ is a reference point, and ϕ is a proper flat morphism with central fibre $\widetilde{s}=\phi^{-1}(0)$. The relative canonical sheaf $\omega_{X / Y}=\omega_{X} \otimes \phi^{*} \omega_{Y}^{-1}$ is trivial around $\tilde{\mathrm{S}}$.
(3.9) Remark. Since contractions and elementary transformations commute with étale covering, we can replace the semistableGorenstein reduction $\gamma \circ \sigma: W \longrightarrow U$ by a suitable étale covering of. W so that the image \widetilde{D}_{0} of $\widetilde{D}=(\gamma \circ \sigma)^{*} D / \operatorname{deg} \sigma$ on a minimal model W_{0} satisfies

$$
\widetilde{\mathrm{D}}_{0}\left|\widetilde{D}_{0} \sim \mathrm{~K}_{\mathrm{W}_{0}}\right| \widetilde{\mathrm{D}}_{0} \sim \mathrm{~K}_{\widetilde{D}_{0}} \sim 0 .
$$

It qoes without saying that \tilde{D}_{0} is a degeneration of $K 3$ or abelian surfaces. As an immediate consequence of the construction of the minimal model W_{0}, there exists a diagram of proper bimeromorphic morphisms

such that $\mathrm{p}^{*} \widetilde{\mathrm{D}}_{0}=\mathrm{q}^{*} \widetilde{\mathrm{D}}$.
4. Formal neighbourhoods

In this section, we give the proof of Main Theorem. Let us start with an elementary observation.
(4.1) Lemma. Let S be a compact analytic space with the underlying reduced structure $T=S_{\text {red }}$. Let L be an invertible sheaf on S. If $L \otimes O_{T} \cong O_{T}$ and $L^{\otimes n} \cong O_{S}$ for some positive integer n, then $L \tilde{n^{2}} 0_{S}$. In other words, $\operatorname{ker}\{\operatorname{Pic}(\mathrm{S}) \longrightarrow \operatorname{Pic}(\mathrm{T})\}$ has no torsion.

Proof. Without loss of generality, we may assume that S is connected. Since T is compact and reduced,

$$
\mathrm{H}^{0}\left(\mathrm{~T}, \mathrm{O}_{\mathrm{T}}\right)=\mathbb{C}, \mathrm{H}^{0}\left(\mathrm{~T}, \mathrm{O}_{\mathrm{T}}^{*}\right)=\mathbb{C}^{*} .
$$

Hence the exponential exact sequence $0 \rightarrow \mathbf{z} \rightarrow 0 \rightarrow 0^{*} \rightarrow 0$ gives rise to a commutative diagram with exact rows:

$$
\begin{aligned}
& 0 \longrightarrow H^{1}(T, Z) \longrightarrow H^{1}(T, O) \longrightarrow \operatorname{Pic}(T) \longrightarrow H^{2}(T, Z) .
\end{aligned}
$$

Since j is injective, so is i and we see that

$$
\operatorname{ker}\{\operatorname{Pic}(S) \longrightarrow \operatorname{Pic}(T)\} \cong \operatorname{ker}\left\{H^{1}(S, 0) \longrightarrow H^{1}(T, 0)\right\}
$$

The main ingredient of this section is the following
(4.2) Theorem. Let S be a connected, compact, reduced analytic subspace of pure codimension 1 (hence an effective Cartier divisor) on an analytic manifold M. Assume the following three conditions:

$$
\begin{aligned}
& \text { (4.2.a) } 0_{S}(S) \approx 0_{S} ; \\
& (4.2 . b) 0_{M}\left(a K_{M}\right) \approx 0_{M}(b S) \text { for some } a, b \in \mathbb{z}, a>0, \\
& b \neq-2 a,-3 a,-4 a, \ldots
\end{aligned}
$$

(4.2.c) There exists a versal deformation

$$
\phi:(x, s) \longrightarrow(y, 0)
$$

Then, for every positive integer n, we have

$$
(4.2 \cdot 1)_{\mathrm{n}} 0_{\mathrm{ns}}(\mathrm{~S}) \cong 0_{\mathrm{ns}}
$$

and there exists a natural morphism

$$
\phi_{n}: \operatorname{spec} \mathbb{E}[\varepsilon] /\left(\varepsilon^{n}\right) \longrightarrow(y, 0)
$$

which induces an isomorphism

$$
(4.2 .2)_{n} n s \cong \operatorname{spec}\left(\mathbb{C}[\varepsilon] /\left(\varepsilon^{n}\right)\right) \times x \times
$$

Moreover,

$$
\begin{aligned}
& (4.2 .3)_{n} H^{0}(n D, O(m D)) \longrightarrow H^{0}\left(n^{\prime} D, O(m D)\right) \text { is surjective for } \\
& \text { every } n^{\prime}<n \text { and } m \in \mathbf{z} \text {. }
\end{aligned}
$$

The proof of (4.2) is by induction on n (4.2.1) is nothing but (4.2.a), while (4.2.3) T_{T} is vacuous. The morphism $\phi_{1}: \operatorname{Spec} \mathbb{C} \longrightarrow(y, 0)$ is trivially defined as the constant map to 0 , which establishes (4.2.2) 1_{1}.

Let us fix the notation. Let $\left\{U_{i}\right\}$ be an open Stein covering of M and $f_{i} \in \Gamma\left(U_{i}, O_{M}\right)$ a local defining equation of S. On $U_{i} \cap U_{j}$, there is a non-vanishing function $\varphi_{i j} \in \Gamma\left(U_{i} \cap U_{j}, 0_{M}^{*}\right)$ such that

$$
f_{i}=\varphi_{i j} f_{j} .
$$

Thus $\left\{f_{i}\right\}$ defines a global section of the invertible sheaf $O_{M}(S)$ associated with the transition functions $\left\{\varphi_{i j}\right\}$.
(4.3) Proof of (4.2) for $n=2$. Take an everywhere non-vanishing section $s=\left\{s_{i}\right\} \in H^{0}\left(S, O_{S}(S)\right)$, where

$$
s_{i} \in \Gamma\left(U_{i} \cap s, O_{S}^{*}\right), s_{i}=\varphi_{i j} s_{j}
$$

Let $\tilde{s}_{i} \in \Gamma\left(U_{i}, O_{M}\right)$ be a local lifting of s_{i} and \tilde{s}_{i} the divisor on Spec $\mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right) \times U_{i}$ defined by

$$
f_{i}-\varepsilon \tilde{s}_{i}=0
$$

Then we have $\tilde{S}_{i}=\tilde{S}_{j}$ on $\operatorname{spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right) \times\left(U_{i} \cap U_{j}\right)$. Indeed,

$$
\begin{aligned}
I_{\tilde{S}_{j}} & =\left(f_{j}-\varepsilon \tilde{S}_{j}\right) O_{M}[\varepsilon]=\varphi_{i j}\left(f_{j}-\varepsilon \tilde{S}_{j}\right) 0_{M}[\varepsilon] \\
& =\left(f_{i}-\varepsilon \varphi_{i j} \widetilde{s}_{j}\right) 0_{M}[\varepsilon]=\left\{\left(f_{i}-\varepsilon \tilde{S}_{i}\right)+\varepsilon\left(\tilde{s}_{i}-\varphi_{i j} \tilde{s}_{j}\right)\right\} 0_{M}[\varepsilon] \\
& \subset I_{\tilde{S}_{i}}+\varepsilon\left(\tilde{s}_{i}-\varphi_{i j} \tilde{s}_{j}\right) 0_{M} .
\end{aligned}
$$

On the other hand, since $\left\{\tilde{s}_{i}\right\}$ is a lift of $\left\{s_{i}\right\}$,

$$
\tilde{s}_{i}-\varphi_{i j} \tilde{s}_{j} \in I_{S}=f_{i} 0_{M}
$$

so that

$$
\begin{aligned}
I_{\widetilde{S}_{j}} & \subset I_{\widetilde{S}_{i}}+\varepsilon f_{i} O_{M} \\
& =I \widetilde{S}_{i}+\varepsilon\left(f_{i}+\varepsilon \widetilde{S}_{i}\right) O_{M} \\
& =I \widetilde{S}_{i}
\end{aligned}
$$

thanks to $\varepsilon^{2}=0$. By the symmetry between i and j, we have $I_{\widetilde{S}_{i}}=I_{\mathbb{S}_{j}}$ on Spec $\mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right) \times\left(U_{i} \cap U_{j}\right)$. Thus $\left\{\widetilde{S}_{i}\right\}$ defines an effective divisor \tilde{S} on spec $\mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right) \times M$. There are natural projections $p: \widetilde{S} \longrightarrow \operatorname{Spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right)$ and $q: \widetilde{S} \longrightarrow M$. The ring homomorphism

$$
\mathrm{q}^{-1}:{0_{\mathrm{M}}}^{\longrightarrow} 0_{\widetilde{\mathrm{S}}}
$$

is surjective. In fact, noting $\tilde{s}_{i} \in \mathcal{O}_{M}^{*}$, we have $\varepsilon=\mathcal{F}_{i} \tilde{S}_{i}^{-1}$.

Thus q is a closed immersion. In the mean time

$$
\begin{aligned}
\operatorname{ker} q^{-1} & =0_{M} \cap\left\{\left(f_{i}-\varepsilon \tilde{s}_{i}\right)\left(O_{M} \otimes \mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right)\right)\right\} \\
& =f_{i}^{2} O_{M}=I_{2 S},
\end{aligned}
$$

so that q gives an isomorphism $\widetilde{S} \approx 2 S$. On the other hand, since $\varepsilon O_{\widetilde{S}}=f_{i} \tilde{S}_{i}^{-1} O_{\widetilde{S}}=f_{i} O_{\widetilde{S}} \neq 0, \widetilde{S}$ is flat over spec $\mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right)$, with central fibre S. Hence there exists a natural morphism
$\phi_{2}: \operatorname{Spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right) \longrightarrow(y, 0)$
such that

$$
(4.2 .2)_{2} 2 S \cong \widetilde{S} \cong \operatorname{Spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right) x_{y}^{x} x .
$$

In particular, it gives isomorphisms of dualizing sheaves:

$$
\begin{aligned}
\omega_{2 S} \cong \omega_{\tilde{S}} & \approx \mathrm{p}^{*}{ }^{*} \text { Spec } \mathbb{a}[\varepsilon] /\left(\varepsilon^{2}\right)^{\otimes \phi_{2}^{*} \omega_{X / Y}} \\
& \approx 0_{\widetilde{S}} \otimes_{0_{\mathbb{S}}}^{\otimes} 0_{\widetilde{S}} \approx 0_{\widetilde{S}} \approx 0_{2 S} ;
\end{aligned}
$$

while the adjunction formula shows

$$
w_{2 S} \approx o_{2 S}\left(K_{M}+2 S\right)
$$

whence follows

$$
0_{2 S} \cong 2 S \cong 0_{2 S}\left(a K_{M}+2 a S\right) \cong o_{2 S}((2 a+b) S)
$$

Since $b \neq-2 a$, this implies that $0_{2 S}(S)$ is a torsion in Pic (2S) . Now, by (4.1) and (4.2.a) we conclude:

$$
(4.2 \cdot 1)_{2} 0_{2 S}(S) \cong 0_{2 S} .
$$

(4.2.3) 2 is easy. In fact, a non-vanishing section of $0_{2 S}(\mathrm{mS}) \approx 0_{2 S}$ gives a \mathbb{C}-basis of $H^{0}\left(\mathrm{~S}, \mathrm{O}_{\mathrm{S}}(\mathrm{mS})\right) \approx \mathbb{C}$.
(4.4) Proof of (4.2) for $n \geq 3$. Suppose that (4.2.2) $n-1$, $(4.2 .2)_{n-1}$ and $(4.2 .3)_{n-1}$ hold ($\left.n \geq 3\right)$. By (4.2.2) ${ }_{n-1}$, we can identify $0_{(n-1) S}$ with the flat $\mathbb{C}[\varepsilon] /\left(\varepsilon^{n-1}\right)$ - algebra

$$
\mathbb{C}[\varepsilon] /\left(\varepsilon^{\mathrm{n}-1}\right) \otimes_{0_{y}}^{\otimes} 0_{x}
$$

via ϕ_{n-1}. Note that $\varepsilon 0_{(n-1) S}=f_{i} O_{(n-1) S} \subset 0_{(n-1) s}$ on $U_{i} \cap(n-1) S:$

$$
\varepsilon=f_{i} \alpha_{i} \bmod f_{i}^{n-1} o_{M}
$$

where $\alpha_{i} \in \Gamma\left(U_{i}, O_{M}^{*}\right)$. Then

$$
f_{i}\left(\alpha_{i}-\varphi_{i j}^{-1} \alpha_{j}\right)=f_{i} \alpha_{i}-f_{j} \alpha_{j} \neq \varepsilon-\varepsilon=0 \bmod f_{i}^{n-1} O_{M} i
$$

or, equivalently

$$
\alpha_{i}=\varphi_{i j}^{-1} \alpha_{j} \bmod f_{i}^{n-2} o_{M}
$$

so that $\left\{\alpha_{i}\right\}$ gives rise to a global section
$\alpha \in H^{0}((n-2) S, O(-S))$. (We need here the hypothesis $n \geq 3$). By (4.2.3) ${ }_{n-1}, \alpha$ can be lifted to $\tilde{\alpha} \in H^{0}((n-1) S, O(-S))$. $\tilde{\alpha}$ is represented by $\tilde{\alpha}_{i} \in \Gamma\left(U_{i}, 0_{M}\right)$ such that

$$
\tilde{\alpha}_{i}=\varphi_{i j}^{-1} \tilde{\alpha}_{j} \bmod f_{i}^{n-1} 0_{M}
$$

We define a $\mathbb{C}[\varepsilon] /\left(\varepsilon^{n}\right)$ - algebra structure on $o_{n S}$ by the formula

$$
\varepsilon g=\left(f_{i} \tilde{\alpha}_{i}\right) g \text { for } g \in o_{n s}
$$

This is well-defined because

$$
\begin{aligned}
f_{i} \tilde{\alpha}_{i}-f_{j} \tilde{\alpha}_{j} & =\left(\varphi_{i j} f_{j}\right)\left(\varphi_{i j}^{-1} \tilde{\alpha}_{j}+\delta_{i j}\right)-f_{j} \tilde{\alpha}_{j} \\
& =\varphi_{i j} f_{j} \delta_{i j} \in f_{j}^{n_{M}},
\end{aligned}
$$

where $\delta_{i j}=\tilde{\alpha}_{i}-\varphi_{i j}^{-1 \tilde{\alpha}_{j}} \in f_{j}^{n-1} O_{M}$. This extends the $\mathbb{C}[\varepsilon] /\left(\varepsilon^{n}\right)-$ algebra structure on $0_{(n-1) s}$ to $0_{n s}$. Moreover $o_{n s}$ is flat over $\mathbb{C}[\varepsilon] /\left(\varepsilon^{n}\right)$ by

$$
\varepsilon^{n-1} o_{n S}=\left(\tilde{\alpha}_{i} f_{i}\right)^{n-1} o_{n S}=f_{i}^{n-1} o_{n S} \neq 0 ;
$$

in other words, we have a proper flat morphism

$$
\mathrm{ns} \longrightarrow \operatorname{spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{\mathrm{n}}\right)
$$

whence derives a morphism

$$
\phi_{n}: \operatorname{Spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{n}\right) \longrightarrow(y, 0),
$$

which extends ϕ_{n-1} and induces an isomorphism

$$
(4.2 .2)_{n} n s \cong \operatorname{Spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{n}\right) x_{i} x .
$$

Therefore, similarly as in (4.3),

$$
\begin{aligned}
\omega_{n S} & \approx 0_{n S} \text { by }(4.2 . c) \\
\omega_{n S}^{\otimes a} & \cong 0_{n S}\left(a K_{M}+a n S\right) \quad \text { by adjunction } \\
& \approx 0_{n S}(b S+a n s) \quad \text { by }(4.2 . b)
\end{aligned}
$$

Since $b \neq-a n, O_{n S}(S)$ is a torsion so that

$$
(4.2 .1)_{\mathrm{n}} 0_{\mathrm{nS}}(\mathrm{~S}) \approx 0_{\mathrm{nS}} \text { by }(4.1)
$$

Finally (4.2.3) n is immediate from $(4.2 .1)_{\mathrm{n}}$ and (4.2.2) n .
(4.5) Corollary. Under the same assumption as in (4.2), we have

$$
\operatorname{dim} H^{0}\left(n s, 0_{n S}(k S)\right)=n
$$

for $\mathrm{n} \in \mathbb{N}, k \in \mathbb{Z}$.
(4.6) Corollary. Let M, N and U be three analytic spaces and $f: N \longrightarrow M, g: N \longrightarrow U$ proper, surjective, generically finite morphisms. Assume that there are compact, effective Cartier divisors $S \subset M, T \subset N$ and $D \subset U$ such that $f^{*} S=T$, $g^{*} D=k T(k \in \mathbb{N})$. If (M,S) satisfies the hypotheses in (4.2), then

$$
\operatorname{dim} H^{0}\left(n D, O_{n D}(n D)\right)
$$

grows like n .

Applying this corollary to the original situation, we get
(4.7) Corollary. Let X be a minimal 3-fold with $v=1$. Let D_{i} be a connected component of $D \in\left|m K_{x}\right|, m>0$, ind $(X) \mid m$. Then

$$
\operatorname{dim} H^{0}\left(\mathrm{nD}_{\mathrm{i}}, 0_{\mathrm{nD}}^{i}\left(\mathrm{nD}_{\mathrm{i}}\right)\right)=O(\mathrm{n})
$$

(4.8) Proof of Main Theorem. Consider the exact sequence

$$
0 \rightarrow 0_{x} \longrightarrow 0_{x}(n D) \longrightarrow 0_{n D}(n D) \longrightarrow 0
$$

and the associated cohomology exact sequence
$0 \longrightarrow H^{0}\left(X, O_{X}\right) \longrightarrow H^{0}\left(X, O_{X}(n D)\right) \longrightarrow H^{0}\left(n D, O_{n D}(n D)\right) \longrightarrow H^{1}\left(X, O_{X}\right)$.
dimensions are bounded, so $h^{0}(n D, O(n D))=\sum_{i} h^{0}(n D i, O(n D i))$
$\sim O(n)$ implies $h^{0}\left(X, Q_{x}(n D)\right) \sim O(n)$, i.e. $\kappa(X)=1$. Similarly, $h^{0}\left(X, O_{X}\left(n D_{i}\right)\right) \sim O(n) \quad D_{i}$ is a multiple of a primitive divisor $E_{i}: D_{i}=e_{i} E_{i}$. Noting that $D_{i} \mid E_{i} \approx 0$, we see that the moving part $\left|L_{i}^{(n)}\right|$ of $\left|n D_{i}\right|$ has no base points and of the form $\left|n_{i}^{i} E_{i}\right| n_{i}^{\prime}>0$. Hence $\left|n_{i}^{\prime} D_{i}\right|=\left|e_{i} L_{i}^{(n)}\right|$ is base point Eree; therefore, for $n_{0}=$ L.C.M. $\left\{n_{i}^{\prime}\right\},\left|n_{0} D\right|=\left|n_{0} m K_{X}\right|$ is also base point free.
(4.9) Remark. In the assumption in (4.2), the strange condition $b \neq-2 a,-3 a, \ldots$ is actually necessary. For instance, let A be an abelian variety and consider an non-trivial extension

$$
0 \longrightarrow 0_{A} \longrightarrow E \longrightarrow 0_{A} \longrightarrow 0 .
$$

Let $M=\mathbb{P}(E)$. $\mathbb{P}(E)$ contains a unique section $S \cong A \cdot(M, S)$ satisfies all the hypotheses in (4.2) except that $K_{M} \sim-2 S$. Moreover, (4.2.2) ${ }_{2}$ holds, too. However, $\mathrm{O}_{2 \mathrm{~S}}(\mathrm{~S})$ is not isomorphic to $0_{2 S}$. In fact, since $S \sim 1_{E}$, the tautological line bundle, we have an exact sequence

$$
\left.0 \longrightarrow 0_{\mathbb{P}}(E)^{(-1} E\right) \longrightarrow 0_{\mathbb{P}}(E){ }^{\left.\left(1_{E}\right) \longrightarrow 0_{2 S}(S) \longrightarrow 0\right) \longrightarrow 0}
$$

so that $H^{0}\left(2 S, O_{2 S}(S)\right) \approx H^{0}\left(\mathbb{P}(E), O\left(1_{E}\right)\right) \cong H^{0}(A, E) \cong \mathbb{A}$, while $H^{0}\left(2 S, O_{2 S}\right)^{n} \cdots \alpha^{2}$. It is therefore impossible to extend the $\mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right)$ - algebra structure on $O_{2 S}$ to a $\mathbb{C}[\varepsilon] /\left(\varepsilon^{3}\right)$ - algebra structure on $0_{3 S}$, i.e. the connected component of Chow(M) that contains $\{S\}$ is a non-reduced point $\cong \operatorname{spec} \mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right)$.
(4.10) Remark. Applying our argument to the minimal surface case, we can prove without complicated dichotomy that $v(X)=1$ implies the existence of an elliptic fibration.
R. Friedman, Global smoothing of varieties with normal crossings,
R. Friedman and D. Morrison, The birational geometry of degenerations, Birkhäuser, Boston-Basel-Stuttgart (1983).
[Kw] Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Inv. Math. 79 (1985), 567-588.
[KKMS] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings I, Lect. Notes in Math. 339, Springer, Berlin-Heidelberg-New York (1973).
[Kl] V.S. Kulikov, Degeneration of K 3 and Enriques surfaces, Math. USSR Izvestija 11 (1977), 957-989.
[M1] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies 61, Princeton Univ. Press, Princeton (1968)
[My] Y. Miyaoka, Kodaira dimension of a minimal 3-fold, submitted to Math. Ann.
[Mr] S. Mori, Flip theorem and the existence of minimal models for 3 -folds, preprint.
[PP] U. Persson and H. Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. of Math. 113 (1981), 45-66.

