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Introduction.

A normal projective variety is said to be minimal if it
has only terminal singularities and its canonical divisor
KX € Pic(X) ® @ is nef. A recent result of S. Mori [Mr]
asserts the existence of a minimal model for a given complex
algebraic 3-fold except for uniruled one.

In [My] the author proved a minimal 3-fold has non-negative
Kodaira dimension; when combined with Mori's theorem mentioned

above this amounts to the following characterization of

3-folds with «k = -o :

Theorem. A complex algebraic 3-fold has Kodaira dimension -«

if and only if it is uniruled.

A natural question now arises: What is the characterization

of 3-folds with k = 0 ? More specifically:

(*) Doces a 3-fold with «k = 0 have a minimal model with

numerically trivial canonical divisor?



To make things more explicite, let us introduce an

invariant v{(X) , the numerical Kodaira dimension, of a

minimal variety X . By definition,

2d+2

viX) = min {4 € Z; c1(Kx)d+1 =0 €H (x,Q)} .

Clearly v takes value in {0,1,...,dim X} . For example,

v (X) 0 1is equivalent to the numerical triviality of Ke 7

dim X
% is big, i.e. Kx‘ > 0 .

As is easily seen, the question (*) would be affirmatively

v (X)

dim X if and only if K

answered if we could verify

(**) (Abundance conjecture) x(X) = v(X) .

The inequality «(X) s v(X) follows from a formal argument,
yet the inequality of the converse direction is not so trivial.
Furthermore (**) involves an important implication; via his
powerful "base point freeness theorem", Y. Kawamata [Kw]
pointed out that the linear system |mKx| 1is free from base
pointé for sufficiently divisible m , provided the abundance
conjecture (**) is true.

In an extremal case v = 0 or 3, the equality «x = v
for a minimal 3-fold can be checked rather easily. The objective
of the present paper is to show the equality in one of the

intermediate cases: v = 1

Main Theorem. Let X be a minimal 3-fold with v(X) = 1 . Then

k(X) = 1 and there is a positive integer m such that



OX(me) is generated by global sections.

Our proof is based on the analysis of an effective Cartier
divisor D € ImKXl(m > 0) , the existence of which is guaranteed
by x(X) 2 0 [My]l. We are interested in the analytic and
infinitesimal neighbourhoods of D as well as D itself. A
direct analysis of them seems a little bit too tough; to simplify
the situation, we need three reduction steps described below.

Let U <« X be a sufficiently small analytic neighbourhood

of D . Then we have:

(0.1) (Gorenstein reduction, see § 1) There is a finite covering

Y + V—> U étale off Sing(U) such that XK, = vy*K is

\Y U
Cartier.
(0.2) (Semi-stable reduction, see § 2) There is a proper,
generically finite covering ¢ : W —> V , étale off

supp (y*D) , such that W 1is smooth and that a*y*D is
a multiple of a reduced divisor D with only simple

normal crossings.

(0.3) (Minimal model & la Kulikov-Persson-Pinkham, § 3) After
finitely many contractions of components of D and
elementary transformations, a smooth "minimal model™

(Wy/Dy) of (W,D) is reached. The natural image D

0’ 0

of D in Wy is still a divisor with only simple normal

crossings and DOID0 = KWOIDO Mo .



Once we come across this situation, it is combinatorics
to determine the structure of BO as an analytic space. A
theorem of R. Friedman shows that 50 is actually a degeneration

of smooth surfaces with « = 0 . This implies that Ko |50 and
0

BOIBO are both torsions in Pic(Bo) so that there exists an
étale covering T : M —> W, such that KMIS ~ S|s ~0,
where S = T*Bo . Finally, we study the infinitesimal neighbour-

hoods of S in M :

(0.4) The infinitesimal displacements of S in M is not

obstructed. In particular,
aim 8%(ns,0__(k$)) =n for n €N, k €3 ,
‘whence it follows that
dim Ho(nD 0 . ~(nD)) ~ 0(n) .
"“nD
Main Theorem is a direct consequence of (0.4), see § 4.
In this paper, we work in the category of analytic spaces.
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1. Gorenstein reduction

In order to show the Gorenstein reduction (0.1), let

us start with some elementary observations.

(1.1) Lemma. Let (%Z,0) be a germ of terminal 3-fold singularity

of index r . Then

H1 (z,z) =0,
H1(Z-0,Z) = Z/r%z ,
Pic(z) = (1) ,

- = - * ]
Pic(Z 0)tor Hom(H1(Z 0,2),C )tor u
Proof. (2,0) 1is a p _~quotient of a compound Du Val singularity
(Z,0) and ﬂ1(§-3) = (1) by Milnor's theorem [Ml, Theorem 6.6].
a
(1.2) Lemma. Let (2,0) be as above and S an effective Cartier

divisor passing through 0 . Then the restriction mapping

PJ.c(Z-O)tor —_— PJ.c(S-O)tor
is injective.
Proof. Let f : 2 —> Z be the "canonical® pr-covering as

in the proof of (1.1). S = f*S is a connected Cartier divisor

-1

on 2, while 0 = £ '(0) is a single point and hence of

codimension 2 in S . Therefore $-0 is connected, which



implies the surjectivity of w1(S—0) —_— w1(Z-0) and of

H1(S-0,Z) —_— H1(Z-0,Z) . Thus we infer the injectivity of
=~ - *‘_..._._ = - *

piciz-o)tor 3 Hom(H1(Z 0,%),C*) > F Hom(H1(S 0,Z).C*))

The group F 1is naturally identified with that of flat line
bundles < Pic(S$~0) .
is

(1.3) Corollary. 1In the same notation as in (1.2), aKz|S

Cartier on S if and only if r|a (a € Z, Y = index of (Z,0)).

Proof. oK,|c is Cartier if and only if 0O _glaK,) = Og_ o
which means that ak, is trivial on 2-0 by (1.2), i.e.

oK is Cartier on 2 .

2
Let U be an analytic 3-fold with only finitely many
terminal singularities and D € U an effective Cartier divisor

which contains the singular locus Sing(U) .

.(1.4) Lemma. Let r denote the index of U , viz. the L.C.M.
of the indices at the singular points. Assume that

c1(rKﬁ)|D € H2(D,Z) is a torsion. Then there are a small
neighbourhood U' <« U of D and a finite étale covering

g : 0" —> §' such that c,(rKg.)|g*D = 0 € H°(g*D,2) .

Proocf. Immediate consequence of the natural isomorphism

tor

2 - . -
H (D,Z%) ] HT(D,x)tor s H1(U',z)tor



for a tubular neighbourhood U' of D
a

(1.5) Lemma. Let the notation and the assumption be as in (1.4).

Then there exists a finite cyclic ur-covering h : D* > g*D

which has the following two properties:

(1.5.1) h is étale off Sing(U") < g*D ;

(1.5.2) The branch index of h at P € g*D 1is exactly the
local index of U" at P ; in other words, D* is locally a

disjoint union of canonical covers over P .

Proof. Since Pico(g*D) s H1(g*D,O)/H1(g*D,Z) is a divisible

group, we can find 1t € Pico(g*D) such that

rKgu
O *

s € H (g D’og*D(rKU" r1)) and construct a u_-cover

-r7 =0 € Pico(g*D) . Fix a non-zero section

p* = Specan {Og*D & 0 ® ... ® Og*D((r-T)(T - K5u) )}

g*D
in a standard manner. Then D* satisfies our requirements by
(1.4) since 0(t1) 1is locally isomorphic to 0
(w]
Now we have the following'theorem which is slightly more

general than (0.1):

(1.6) Theorem. Let U be an analytic 3-fold with only finitely
many terminal singularities and D an effective Cartier divisor.

et r be the index of U and assume that c1(rKﬁ)|D € H2(D,Z)



is a torsion. Then, for a sufficiently small neighbourhood

U' « U of D , there is a finite covering vy : V —> g

which satisfies the following conditions:

(1.6.1) y 1is étale off Sing(U') ;

(1.6.2) The branch index of y at P € D 1is exactly the

local index of U at P H

(1.6.3) VvV 1is a normal Gorenstein analytic space with only

terminal singularities.

Proof. Fix a small neighbourhood A = U of 8ing(TU) . Then
choose a sufficiently small neighbourhood U' «U of D in
such a way that Dy = D - (D N A) 1is a deformation retract of
06 = U' - (U' n4a) . By (1.5), we have a finite étale covering

Y @ Da = D¥* = h-1(g-1(D na)) —— D0 .

o) F w1(56) » there is an étale covering
. I |
Yo ¢ VO > U0

which induces ? . On the other hand, we have the canonical
covering & —> A . Recalling that goh : D* —> D is

locally the canonical covering, we can patch up V with

0
finitely many copies of components of A to get a finite

covering
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This construction implies (1.6.1-3}.



2. Semi~stable reduction

Let Y be a complex 3-manifold, E %# 0 an effective,
projective Cartier divisor on Y and V c Y a small open
neighbourhood of E . Throughout this section, we fix this
notation and assume the following extra conditions:

a) The reduced part Ered of E 1is a divisor with only

simple normal crossings;

b) E|E 1is numerically trivial on E

-

c) There exists a divisor H on Y such that H|E is

ample.

s _
Let E = ) a;S; be the decomposition into distinct irreducible
i=1

components.

(2.1) Lemma. The restriction maps and the degree maps give

natural isomorphisms

4 rest. S 4 - deg s
H (E,Z) > ©® H (si,z) > % .
i=1
Proof. Consider the exact sequence
S
0O —> Z_ —> 6 Z _ ® 2 - ® Z —

E i=1 53 i<y S5iM8 i<i<k 51M84MSy

From the fact that the real dimension of S, N S, = 2 , the
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assertion easily follows.
‘a
We denote by § the natural isomorphism H4(E,x) =, 25 .
Let p : Hg(V,Z) R Hé(E,Z) = H4(E,Z) be the restriction map,
where the subscript ¢ stands for the cohomology with compact

support.
(2.2) Lemma. Im(8ep) < {(x4,...,x;) € z°; fa;x; = 0} .

Proof. Let n € H:(V,Z) . Then deg(n|Si) = deg(n U Si) , SO

that
Zaideg(nlsi) = Zaideg(nlJSi) = deg(nlJZaiSi) =deg nUE

H2(V,Z) = HZ(E,Z), n can

0

By the Lefschetz duality H_(V,E)

- 0O

be regarded as a 2-cycle n on E and we have
deg n U E = deg E{n' .

Since E 1is numerically trivial on E , deg E|n' = 0 which

proves the lemma.

(2.3) Corollary. ker{H1(V-E,3) —_ H1(V,z} has positive

rank.

Procf. By the Lefschetz duality we have
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ker{H.l(V—E,z)  — H1 (V,2)} = ker{Hcs: (V,E;Z) —> H(S:(V,E)}

= Coker{Hi(V,Z) —_— H4(E,E)} .

and the third term has positive rank by (2.2).

[m]
(2.4) Definition. Let L <« Y be a compact effective divisor
such that (2.4.a) L 1is projective with an ample divisor H

and that
(2.4.b) L|L is numerically trivial.

Let L = ZeiLi be the decomposition into irreducible components.
L 1is said to be primitive if L 1is connected and

G.C.D- {ei} = 1 -

(2.5) Lemma. Suppose that an effectiQe divisor L = EeiLi
satisfies (2.4.a) and (2.4.b). Assume that L is connected. If
(EeiLi)‘H[L is numerically trivial, then ei = ce;, for some
constant ¢ € @ independent of 1 . In particular, L can be

uniquely decomposed into ):liLi r wWhere Li's are primitive

and disjoint with each other.

The proof is easy and left to the reader. Applying this

to our original situation, we have

(2.6) Corollary. E can be uniquely decomposed into ZbiEi ’

s are primitive divisors which are mutually disjoint

where Ei

and bi's are positive integers.
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Thus the small neighbourhocod V « ¥ is a disjoint union
of neighbourhoods vy of Bi . Therefore, without loss of
generality, we may assume that E is connected in the
s 4

argument below. Let E = e E a:.'LSi be the decomposition into
i=1

irreducible components, where e € N, G.C.D. {ai} =1 .

(2.7) Lemma. Assume that E is connected. Then
Im Sop = {x X)) € zs- talx, = 0}
177 %g . i7i
is a sublattice of finite index.

Proof. It suffices to show Im(8ep @ @) = {(x1,...,xs) € Q° ;
Eaixi = 0} . Consider the Q-vector subspace 1. < Im(Sop © Q)

generated by S1H|E,...,SSH|E . (Note that S, € Hi(.v,x) ,

i
H € H'(V,8) so that S;-H € H.(V,8) .) Then, by (2.5), the

unique relation between the Si'H[E € H4(E,m) is
1 . =
L(ajs, H)Y|E = 0 .

Hence dimmIm(ﬁop @ Q) = dimQIm(p ® @)

I = - = S. ! =
2 dimm]I s=1 dimm{(x1,...,xs) € Q@ ; Zaixi 0} .

This shows the assertion.

(2.8) Corollary. If E is connected, then
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ker{ﬁ1(V—E,x) —_— HT(V,Z)}/tor = Coker{Hi(V,%) _— H4(E,Z)}/tor

s 57 '@(al,...,a0) < 8t (E,3)

(2.9) Corollary. For each positive integer 1 , there exists a

canonical pl-covering oy ¢ Vl ——> V branching along E whose
branch index along Si is exactly l/(l,ai) . If 1 \1is
divisible by ai,...,aé , then (oiE)/l is a reduced Cartier
divisor. ' |

The normal analytic space Vl has toric singularities over

the double curves of Er However, it is known that Vl has

ed °

a nice resolution:
(2.10) Theorem (G. Kempf and al. [KKMS]). If 1 is sufficiently
divisible, then Vl has a resolution ﬁ =T ol W = Wl _ Vl

* *
such that olE/l is a reduced divisor with only simple

normal crossings.

(2.11) Remark. The integer 1 above is not L.C.M.{ai} in

general.
Putting things together, we obtain

{2.12) Theorem. There exists a proper, generically finite

covering ¢ : W —> V such that

(2.12.,a) W 1is non-singular and that
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*
(2.12.b) 0 E 1is a multiple of e reduced divisor with only

simple normal crossings.

To show (0.2), we apply (2.12) to a suitable resolution (Y,E)
of the Gorenstein reduction of (U,D) . Since D comes from
X , its total transform E 1is projective; H is easily
constructed from the pull-back of én ample divisor on X and

the exceptional divisors with respect to the resolution.
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3. Minimal model

Let N be an analytic 3-manifold with an effective,
projective, reduced divisor T on it. Assume the following

two conditions:

a) T|T is numerically trivial (on T );

b) There are positive integers such that

My
KylT ® (ZmiTi)iT , where T.,'s stand for the

irreducible components of T .

{3.1) Remark. In this situation, KNIT is nef e= K |T ® 0

- my = m, for every i, .‘If we start with D € ImKil for
a minimal 3-fold X and take a Gorenstein reduction

Yy : V—> U of a small neighbourhood U of D and then a
semi-simple reduction ¢ : W —> V , then the pair
(W,G*Y*D/deg o) satisfies the conditions a) and b) above.
(Without Gorenstein reduction, the coefficient my might be
a rational number.) Furthermore, we have in this case

KW ~ ZmiDi'_mi €N

~ ~ *
where Di is an irreducible component of D = ¢ y D/deg o

{(3.2) Theorem (Kulikov [Kl], Persson-Pinkham [PP}). Let N
and T be as above. Then, after finitely many smooth

contractions of components of T and/or Kulikov's elementary
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transformation (or "symmetric flops") we come across a
minimal model (M,S) ; the pair (M,S) has the following

properties:

(3.2.A) M is non-singular and KMIS 80 ;

(3.2.B) The proper transform S of T is a reduced divisor

~

with only simple normal crossings and S|S & 0 ;

o d ' -~ 3 ' -
(3.2.C) If Kyg ImiT, . then K, (mln{mi}) S .
The original papers deal with a degeneration of smooth

surfaces, but their numerical proof works in our setting.

(3.3) Remark. The assumption that m; is integral is essential.
If we allow rational numbers as coefficients, certain quotient
singularities appear on a minimal model. S 1is not necessarily
projective; h&wever, contractions of finitely many curves on

S gives a normal 3-fold M in which the image S of S is

projective.

It is not too difficult to classify S as an analytic
space; the result is essentially given in Friedman-Morrison

[FMI p'15ff.].

(3.4) Theorem. S 1is isomorphic to one of the following surfaces:

(0) A smooth surface (S is either a K3 , Enriques, abelian

of hyperelliptic surface);
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(1)s A cycle of (relatively) minimal elliptic ruled surfaces S

(i€ x/sm, s 2 2) and S, meets only S,,q along

two disjoint sections;

(1')S A chain of minimal elliptic ruled surfaces” 81,...,8

o

-
{s 2 2) such that

(o) Sy meets only Sii1 along two disjoint sections

for 1 <1i<s,

(8) s, [resp. Sr] meets only S, [resp. Sr-1] along an

étale double section;

(2)S A chain of surfaces S1,...,S (s 2 2) such that

s

(a)“Si is a minimal elliptic ruled surface and meets

only si¢1 along two disjoint sections for

1 <4i<s,

(8) s, [resp. S_1 is a rational surface and 52|S1
[resp. Ss_1|SS] is a smooth elliptic curve ~ -K

[resp. =K. ] ;

Ss

(2')s A chain of surfaces S1,...,Ss {s 2 2) such that

(a) si is a minimal elliptic ruled surface and meets

only Sit1 along two disjoint sections for 1 < i < s

r

(B) 8, 1is a minimal elliptic ruled surface with S,|S

2'71

being an étale double section,

(v) S¢ is a rational surface with Sg_11S; being a

smooth elliptic curve ~ -KS ;
S
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(3) Configuration of rational surfaces whose dual graph is

a triangulation of either a 2-sphere 82 , a real

projective plane 1P20R) , a torus S1 X S1 or a

Klein bottle.

(3.5) Remark. A surface of type (1')s [resp. (2')5] is an

étale m,-quotient of that of type (1), _, [resp. (2)25_1]

(3.6) Proposition. If S 1is of type (0) or (1)5 or (1')S
[resp. (2)s or (2‘)s or (3)], then 4KS or 6KS ~ 0 [resp.

2K, ~ 0] . Hence, by adjunction,
12(Ky, + S)[S ~ 0

(3.7) Corollary. If K, ~nS, n € Z~{-1} , then S§|S is a
torsion. For a tubular neighbourhood M' =« M of S , there is
an étale covering e : M' —> M' such that

* x . ]
e Sle 5 ~ Kﬁ,le S~0

(3.8) Theorem (Friedman [F]). Under the notation and assumption

as in (3.7), S has a versal deformation
6 : (X,S) —> (V,0)

Here X and Y are complex manifolds, 0 € ¥ 1is a reference
point, and ¢ 1is a proper flat morphism with central fibre

~ - * _
S = ¢ 1(0) . The relative canonical sheaf wX/V = w y ® ¢ wV1

is trivial around S .
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(3.9) Remark. Since contractions and elementary transformations
commute with étale covering, we can replace the semistable-
Gorenstein reduction yeo : W ;——> u by a suitable étale
covering of* W so that the image 50 of D = (Yoo)*D/deg g
on a minimal model W0 satisfies

"D’O|'b'o ~ KW0|'150 ~ Ky ~0 .

0

It goes without saying that BO is a degeneration of K3 or
abelian surfaces. As an immediate consequence of the construction
of the minimal model Wo o there exists a diagram of proper

bimeromorphic morphisms

wl

*N ~
such that p D0 =qD.
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4. Formal neighbourhoods

In this section, we give the proof of Main Theorem. Let

us start with an elementary observatiocon.

(4.1) Lemma. Let S be a compact analytic space with the

underlying reduced structure T = S Let [ be an invertible

red

sheaf on S . If L © OT = OT and L@n = OS for some positive
integer n , then L = OS . In other words,

ker{Pic{(S) —> Pic(T)} has no torsion.

Proof. Without loss of generality, we may assume that S is

connected. Since T 1is compact and reduced,
0 _ 0 * _ *
H (T.OT) =€, H (T,OT) = ¢ .

*
Hence the exponential exact sequence 0 —> &2 —> ( —> (0 —> 0

gives rise to a commutative diagram with exact rows:

H1(S,Z) —i—> H1(S,0) > Pic(S) —> HZ(S,E)
I | | f

0 —> H1(T,Z) —i—> H1(T,0)

> Pic(T) —> H2(T,%) .
Since j 1is injective, so is 1 and we see that
ker{Pic(8) —> Pic(T)} = ker{H1(S,O) —_— H1(T,O)}

is a C-vector space. o
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The main ingredient of this section is the following

(4.2) Theorem. Let S be a connected, compact, reduced analytic
subspace of pure codimension 1 (hence an effective Cartier divisor)

on an analytic manifold M . Assume the following three conditions:

{(4.2.a) OS(S) f OS ;

(4.2.b) OM(aKM) = OM(bS) for some a,b € £, a > 0,

b * "za' _3a, _4a' )

(4.2.c) There exists a versal deformation
¢ ¢ (X,8) —> (VY,0)
of S such that X is smooth and Wyy é'ox around S
Then, for every positive integer n , we have

(4.2.1) _ 0_.(S) = 0

n nS nS

and there exists a natural morphism
¢, : Spec clel/(e™) —> (v,0)
which induces an isomorphism

(4.2.2)  ns = sPec(m{e]/tsn))Ag X .
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Moreover,

(4.2.3)_ #°(aD,0(mD)) —> B®(n'D,0(mD)) is surjective for

every n' <n and m¢€ 2 .

The proof of (4.2) is by induction on n . (4'2'1)f is
nothing but (4.2.a), while (4.2.3)T_is vacuous. The morphism
¢, : Spec € —> (¥,0) is trivially defined as the constant
map to 0 , which establishes (4.2.2)1

Let us fix the notation. Let {u;} Dbe an open Stein covering
of M and fi € F(Ui,OM) a local defining equation of S5 . On
Ui n Uj » there is a non-vanishing function wij € I‘(Ui n Uj,O;)

- such that

Thus {fi} defines a global section of the invertible sheaf
OM(S) associated with the transition functions {wij} .
(4.3) Proof of (4.2) for n = 2. Take an everywhere non-vanishing

section s = {si} € HO(S,OS(S)) , where

*
sy € F(Ui n S,Os), s; = wijsj .

O,

Let S, € I'(U;,0,) be a local lifting of s, and the

i i
divisor on Spec E[E]/(ez)x U; defined by
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Then we have §i = gj on Spec E[e]/(sz) X (Ui n Uj) . Indeed,

1]

Igj (fj-esj)oM[e] = wij(fj-ssj)OM[s]

(fi-wij%‘j) O lel = {(£;-€S,)+e (“s'.l-wij's”j) Yo, lel

c I§.+s(si-w s, )0

ijm3" "M ”

On the other hand, since {Ei} is a lift of {si} .

so that
I c 1 + ¢f, 0
§’j H i'M
= Iy +elfy + esi)OM
i
= I3,
i
thanks to 52 = 0 . By the symmetry between i and Jj , we have

Igi = Igj on Spec E[E]/(Ez) *-(Ui n Uj) . Thus {gi} defines an

effective divisor S on Spec m[sT/(ez) x-M . There are natural
projections p : § —> Spec E[E]/(Ez) and q : S —> M . The

ring homomorphism

q-1 : OM —_ Og

z71

. N .
is surjective. In fact, noting s, € (0, , we have ¢ = fi i

i M
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Thus g is a closed immersion. In the mean time

ker q ' = 0, N{(£;-¢5,)0, © €lel/ ()}
2, -
= £i0y = I35 v

so that g gives an isomorphism S = 25 . On the other: hand,
. _ ~=1 _ ¥ . 2
since EOg = fisi Og = inS + 0 , S 1is flat over Spec CT(el/(c”) .,

with central fibré S . Hence there exists a natural morphism
2
¢, : Spec C{el/(e”) —> (V,0)
such that

(4.2.2), 25 = S = Spec G:[s]/(sz)--x X .
y

In particular, it gives isomorphisms of dualizing sheaves:

® = e * *
s T U RS ® 9

u

Spec E[E]/(Ez)

ut

O 0% % 0y = Oyt

while the adjunction formula shows

Wog ¥ Upg(Ky *+ 25)

whence follows
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. ©Sa _ -
OZS 5 omrog ® OZS(aKM + 2as) = OZS((Za + b)S) .

Since b % -2a , this implies that OZS(S) is a torsion in

Pic(2S) . Now, by (4.1) and (4.2.a) we conclude:

(s) = 0 .

(4.2.1)2 0 25

28

(4.2.3)2 is easy. In fact, a non-vanishing section of

. ; 0 -
OzS{mS) = 028 gives a C-basis of H (S,OS(mS)) s C

(4.4) Proof of (4.2) for n 2 3 . Suppose that (4.2.2)n_1 ’

(4.2.2) and (4.2.3)n_1 hold (n 2z 3) . By (4.2.2) , We

n-1 n-1
n-1

can identify 0(n-1)S with the flat C€l[el/(e" ') - algebra

elel/ (") @ 0,
Oy

n-=1 -1)8

Ui N (n=-1)s :

via ¢ . Note that eo(n = in(n_1)s < O(n-1)s on

n-1
£ = fiai mod fi 0M ’
o*
where a, € F(Ui, M) . Then
f. (a -w-Ta ) = f.a.~f£.0, 3 €~¢ = 0 mod fn-TO ;
i7i Yiityg i"i T34 i M
or, equivalently

-1 n=-2
ay = wijaj mod fi OM
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so that {ai} gives rise to a global section
« € 8%((n=2)S,0(~S)) . (We need here the hypothesis n 2 3 ).
By (4.2.3) _, , a can be lifted to § € 1% ((n-1)s,0(-5))

~

a 1s represented by ai € F(Ui,OM) such that

We define a €lel/(e™) - algebra structure on onS by the

formula

£eg = (figi)g for g € O.s

This is well~-defined because

~ -~ - -1~ - .~
f.a. fja. = (wijfj)(wijuj + Gij) fjaj

= £.6.. € £20. ,
?1979%13 i'M

~ —1~

- _ n-1 n, _
where 6ij = qa, wijaj € fj 0.. . This extends the €[cl/(g )

i M
algebra structure on 0(n-1)s to Ons . Moreover Ons is flat
over €lel/(e”) by
n-1 - n-1 . n-=1 .
e Oqg = logfy)7 0pg = Fj Opg * 0

in other words, we have a proper flat morphism

nS —> Spec Clel/(e™)
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whence derives a morphism
4, : Spec €lel/(e") —> (¥,0) ,

which extends ¢n-1 and induces an isomorphism

(4.2.2)n nS = Spec m[e]/(en) X X
y

Therefore, similarly as in (4.3),

=

E v
t

ns by (4.2.c) ,

n

“4s Ons(aKM+anS) by adjunction

Ht

Ons(bs+anS) by (4.2.b)
Since b #% =-an, Ons(s) is a torsion so that

(4.2.1) 0 (8) = 0 by (4.1} .

ns ns

Finally (4.2.3) is immediate from (4.2.1) and (4.2L2)n.

(4.5) Corollary. Under the same assumption as in (4.2), we

have
dim 8% (ns,0 . (kS)) = n
*“ns

for n €N, k €
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(4.6) Corollary. Let M,N and U be three analytic spaces

and £f : N—> M, g : N——> U proper, surjective, generically
finite morphisms. Assume that there are compact, effective
Cartier divisors S « M, Tc N and D < U such that f*S = T,
g'D =kT (k €N) . If (M,S) satisfies the hypotheses in (4.2),

then
dim #% (aD,0__ (nD))
"“nD
grows like n
Applying this corollary to the original situation, we get
(4.7) Corollary. Let X be a minimal 3-fold with v = 1 . Let
D, be a connected component of D € |mKy{, m > 0, ind(X)|m .

Then

aim B (nDy,0__ (nD;)) = Ofn)

I'ID:L

(4.8) Proof of Main Theorem. Consider the exact sequence
0 —> OX —_ OX‘nD) —_— OnD(nD) —> 0
and the associated cohomology exact sequence
0 —> H%(x,04) —> HO(X,04(nD)) —> H(nD,0 _(nD)) —> H' (X,0,)
r}g' rx' rnD lx

The first and the last terms are independent of n and their
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dimensions are bounded, so ho(nD,O(nD)) =) ho(nDi,O{nDi))
i

~ 0(n) implies h°(X,0 (nD)) ~ O(n) , i.e. w(X) = 1 . Similarly,
hO(XTQXinDi)) ~ 0O{n) . Di. is a multiple of a primitive divisor

E, + Dy = eiEi . Noting that DiiEi M 0 , we see that the

moving part |Lin)| of |nDi| has no base points and of the
(n) . .
1 1 -
form |niEi| n{ > 0 . Hence Inip,| = [e;L;""| is base point
free; therefore, for n, = L.C.M.{n}}, |n0D| = [nOme| is also

base point free.

(4.9) Remark. In the assumption in (4.2), the strange condition
b + -2a, -3a,... 1s actually necessary. For instance, let A be

an abelian variety and consider an non-trivial extension

0 —> OA > E > 0. —> 0

Let M =1P(E) . P(E) contains a unique section S = A . (M,S)

satisfies all the hypotheses in (4.2) except that KM ~ =28

Moreover, (4.2.2)2 holds, too. However, OZS(S) is not isomorphic

to OZS . In fact, since S ~ 1

we have an exact sequence

£ the tautological line bundle,

0 —> Op g (V) —> G ) (1) —> 054(S) —> 0

so that H° (25,0, (SY) % HO@(E),0(1g)) = H (A,E) 5 € , while

2

HO(ZS,OZS)“E;‘w €~ . It is therefore impossible to extend the

E[E]/(Ez) - algebra structure on 0, to a E[e]/(€3) - algebra
structure on 03S + i1.e., the connected component of Chow(M)
that contains {S} 1is a non-reduced point = Spec E[E]/(Ez) .
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{4.10) Remark. Applying our argument to the minimal surface
case, we can prove without complicated dichotomy that v(X) =1

implies the existence of an elliptic fibration.
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