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Abundanee Conjecture for 3-folds: Case v = 1

by Yoiehi Miyaoka

Dedieated to Professor F. Hirzebrueh on his 60th birthday

Introduetion.

Anormal projective variety is said to be minimal if it

has only terminal singularities and its eanonieal divisor

K
X

E Pie (X) 0 W is nef. Arecent result of S. Mori [Mr]

asserts the existenee of a minimal model for a given eomplex

algebraic )-fold except for uniruled one~

In [My] the author proved a minimal 3-fold has non-negative

Kodaira dimension; when eornbined with Mori's theorem mentioned

above this amounts to the following charaeterization of

3-folds wit~ K = -00 :

Theorem. A complex algebraic )-fold has Kodaira dimension -00

if and only if it is uniruled.

A natural question now arises: What is the charaeterization"

of 3-folds with K = 0 ? More specifieally:

(*) Does a 3-fold with K = 0 have a minimal model with

numerically trivial canonical divisor?
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To make things more explicite, let us introduce an

invariant v(X) , the numerical Kodaira dimension, of a

minimal variety X . By definition,

Clearly v takes value in {O,1, ... ,dim X} . For example,

v(X) = 0 is equivalent to the numerical triviality of K
X

;

v(X) = dim X if and only if K~, 1s big, i.e. K~~m X > 0 .

As is easily seen, the question (*) would be affirmatively

answered if we could verify

(**) (Abundance conjecture) K(X) = v(X)

The inequality K(X) S v(X) follows from a formal argument,

yet the inequality of the converse direction is not so trivial.

Furthermore (**) involves an important implication; via his

powerful "base point freeness theorem", Y. Kawamata [Kw]

pointed out that the linear system ImKxl is free fram base

points for sufficiently divisible m, provided the abundance

conjecture (**) is true.

In an extremal case v = 0 or 3, the equality K = V

for a minimal 3-fold can be checked rather easily. The objective

of the present paper is to show the equality in one of the

intermediate cases: v = 1 .

Main Theorem. Let X be a minimal 3-fold with v(X) = 1 . Then

K'(X) = 1 and there is a positive integer m such that
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0x(mKx) is generated by global sections.

Our proof is based on the analysis of an effective Cartier

divisor D E lmKxl (m > 0) , the existence of which is guaranteed

by K(X) ~ 0 [My]. We are interested in the analytic and

infinitesimal neighbourhoods of D as weIl as D itself. A

direct analysis of them seems a little bit tao taugh; to simplify

the situation, we need three reduction steps described below.

Let U c X be a sufficiently small analytic neighbourhood

of D. Then we have:

(0.1) (Gorenstein reduction, see § 1) There is a finite covering

y : V ---> U· etale off

Cartier.

Sing(U) such that K = y*K
V U

i5

(0.2) (Semi-stable reduction, see § 2) There is a proper,

generically finite covering cr : W ---> V , etale off

supp(y*D) , such that W is smooth and that cr*y*D is

a multiple of a reduced divisor 0 with only simple

normal crossings.

(0.3) (Minimal model a la Kulikov-Pers50n-Pinkham, § 3) After

finitely many contractions of component5 of 0 and

elementary transformations, a smooth "minimal model"

(WO,OO) of (W,D) i5 reached. The natural image Da

of D in Wo is still a divisor with only simple normal

crossings and Doloo S Kw 100 ~ 0 ·
o
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Once we come across this situation, it is combinatorics

to determine the structure of 00 as an analytic space. A

theorem of R. Friedman shows that 00 is actually adegeneration

of smooth surfaces with K = 0 . This implies that KW 100 and
o

Dol~o are both torsions in Pic(DO) so that there exists an

etale covering T : M ---> Wo such that KMls ~ Sls ~ 0 ,

where S = T*OO . Finally, we study the infinitesimal neighbour­

hoods of S in M:

(0.4) The infinitesimal displacements of S in M is not

obstructed. In particular,

dirn HO (nS ,.0 (kS) )
ns

whence it follows that

= n for n e: E, k e: z ,

Main Theorem is a direct consequence of (0.4), see § 4.

In this paper, we work in the category of analytic spaces.

Acknowledgements. This paper was motivated by M. Reid's
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to the proof of (**)j in this sense the present approach owes
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hospitality and finantial support. Finally I appreciate the

helpful and encouraging conversations with S. Mori and

D. Morrison during the preparation of the paper.
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1. Gorenstein reduction

In order to show the Gorenstein reduction (0.1), let

us start with some elementary observations.

(1.1) Lemma. Let (Z,O) be a germ of terminal 3-fold singularity

of index r . Then

H
1

(Z,Z) = 0 ,

H1 (Z-O,Z) = Z/rZ

Pic(Z) = (1) ,

Pic(Z-O)t ~ Horn(H 1 (Z-O,Z)'~*)t • P ·er or r

Proof. (Z,O) is a ~ -quotient of a compound Du· Val singularity·,r

and TI 1 (Z-O) = (1) by Milner's theorem [MI, Theorem 6.6].

[J

(1.2) Lemma. Let (Z,O) be as above and S an effective Cartier

divisor passing through 0 • Then the restrietion mapping

Pic(Z-O)tor ---> Pic(S-O)tor

is injective.

Proof. Let f Z --> Z be the "canonicalll lJ -covering as
·r

in the proof of (1.1). S = f*S 1s a connected Cartier divisor

on Z, while 0 = f- 1 (O) 1s a single point and hence of

codimension 2 in S. Therefore 5-0 1s connected, which
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TI (S-O) ---> n (Z-O)1 . 1 and of

H
1

(S-Q,Z) ---> H
1

(Z-O,Z) . Thus we infer the injectivity of

Pic.{Z-Q) tor ~ Hom{H 1 (Z-Q,Z) ,<:1:*) -> F = Hom{H 1 (S-O,Z) .<:1:*)) •

The group F is naturally identified with that of flat line

bundles c Pic(S-O) .

(1.3) Corollary. In the same notation as in (1.2), aKzls is

Cartier on S if and only if r]a (a E Z, Y = index of (Z,O)).

Proof. aKzls is Cartier if and only if 0S_O(aK z ) ~ 0S-O

which means that aKz is trivial on z-o by (1.2), i.e.

aK Z ~s Cartier on Z.

c

Let U be an analytic 3-fold with only finitely many

terminal singularities and D c U an effective Cartier divisor

which contains the sinqular locus Sing(U) .

. (1.4) Lemma. Let r denote the index of U, vize the L.e.M.

of the indices at the singular points. Assume that

c 1 (rKü) ID E H2 (D,Z) 1s a torsion. Then there are a small

neighbourhood Ü' c U of D and a finite etale covering

g : Ün ---> Öl such that c 1 (rKü") \g*D = 0 € H2 (g*D,Z) .

Proof. Immediate consequence of the natural isomorphism
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for a tubular neighbourhood Ur of D.

c

(1.5) Lemma. Let the notation and the assumption be as in (1.4).

Then there exists a finite cyclic Pr-covering h : D* ---> g*D

which has the following two propertie5:

(1.5.1) h i5 etale off Sing(Ü") c g*O

(1.5.2) The braneh index of h at P E g*D i5 exaetly the

loeal index of Ü" at P; in other words, D* is locally a

dis joint union of canonieal eov~rs over P.

Proof. Since PicO (g*O) ;; H1 (g*O,O)/H1.(g*O,Z) is a divisible

group, we can find T E PicO (g*D) such that

_ °rKÜ" - rT = ° E Pie (g*D) . Fix a non-zero seption

°s E H (g*D,Og*o(rKti" - rT» and construct a Pr-cover

in a standard manner. Then 0* satisfies our requirements by

(1.4) since O(T) is locally isomorphie to O.

c

Now we have the following theorem whieh is slightly more

general than (0.1):

(1.6) Theorem. Let U be an analytie 3-fold with only finitely

many terminal singularities and 0 an effective Cartier divisor.

Let r be the index of Ü and assume that e 1 (rKü) ID E H2 (D,Z)
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1s a torsion. Then, for a suffieiently small neighbourhood

U' c U of D , there is a finite eovering Y : V ---> Ü'

whieh satisfies the following eonditions:

(1.6.1) Y is etale off Sing(Ü I
)

(1.6.2) The braneh index of y at P E D is exactly the

-Ioeal index of U at P i

(1.6.3) V is anormal Gorenstein analytie space with only

terminal.singularities.

Pro9f. Fix a small neighbourhood ß C U of Sing(Ü) . Then

choose a sufficiently small neighQourhood U' c U of D in

such a way that Da = D - (D n ß) is adeformation retract of

üb = u· - (Ur n ß) • By (1.5), we have a finite etale covering

Since ~1 (Da) = ~1 (Üb) , there 1s an etale covering

Yo V ---> ul

o 0

which induces y. On the other hand, we have the canonical

eovering 6 ---> 6 . Recalling that goh : D* ---> D is

locally the canonical eovering, we ean pateh up Va with

finitely many copies of components of ~ to get a finite

covering
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y V ---> VI U ß .

This construction implies (1.6.1-3).

o
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2. Semi-stable reduction

Let Y be a complex 3-manifold, E * 0 an effective,

projective Cartier divisor on Y and V c Y a small open

neighbourhood of E. Throughout this section, we fix this

notation and assume the following extra conditions:

a) The reduced part Ered of E is a divisor with only

simple normal cro5sings;

b) EIE i5 numerically trivial on E .
I

c) There exists a divisor H on Y such that H[E is

a~ple.

s
E = LaiS. be the decomposition into distinct irreducible

. 1 1.1.=

components.

(2.1) Lemma. The restrietion maps and the degree maps give

natural isomorphisms

. deg
,..."

r8Jit. s 4
------> «t H (Si'Z)

i=1

Proof. Consider the exact sequence

S------> Z •

s
o --->: ZE ---> e z --->

1=1 Si
e z

. j s. ns.
1.< 1. ]

--> ez --->0.
o . k So ns. nSk1.<)< 1. ]

Frorn the fact that the real dimension of Si n Sj = 2 , the
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assertion easily follows.

'0

Let

We denote by 0 the natural isomorphism H4 (E,Z) ~> ZS •

444
p : H (V,Z) ---> H (E,Z) = H (E,~) be the restrietion map,c c

where the subscript estands for the cohomology with compact

support.

Proof.

that

Let deg (n U S.) , 50
1.

By the Lefschetz duality H~(V,Z) ; H2 (V,Z) ~ H2 (E,Z), n can

be regarded as a 2-cycle n l on E and we have

deg n U E = deg Ein' •

Since E is numerically trivial on E, deg EInt = 0 which

proves the lemma.

o

(2.3) Corollary. ker{H 1 (V-E,Z) ---> H1 (V,Z} has positive

rank.

Proof. By the Lefschetz duality we have
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5ker{H
1

(V-E,Z) ---> H
1

(V,Z)} ~ ker{Hc(V,E;Z) -->

4 4= Coker{H (V,I) ---> H (E,Z)} ,c

and the third term has positive rank by (2.2).

[J

(2.4) Definition. Let L c Y be a compact effective divisor

such that (2.4.a) L is projective with an ample divisor H

and that

(2.4.b) LIL is numerically trivial.

Let L = EeiLi be the decomposition into irreducible components.

L is said to be primitive if L is connected and

G.C.D. {e.} = 1 •
~

(2.5) Lemma. Suppose that an effective divisor L = EeiLi

satisfies (2~4.a) and (2.4.b). Assume that L is connected. If

(EeiLi) ·HIL is nurnerically trivial, then e 1 = ce i for some

constant c € Windependent of i. In particular, L can be

uniquely decomposed inte EliL i , where Li1s are primitive

and disjoint with each ether.

The proof is easy and left to the reader. Applying this

to our original situation, we have

(2.6) Corollary. E can be uniquely decomposed into EbiE i ,

where

and
E I S

i
b. I S
~

are primitive divisors which are mutually disjoint

are positive integers.
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Thus the small neighbourhood V c Y is a disjoint union

argument be1ow. Let

of neighbourhoods

generality, we may

v. of E. . Therefore, without 1055 of
1. 1.

assurne that E is connected in the
s

E = e L a!S. be the decomposition into
. 1 1. 1.
1.=

irreducible components, where e E E, G.C.D. {ai} = 1 .

(2.7) Lemma. Assume that E i5 connected. Then

Ea!x. = O}
1. 1.

i8 a sublattice of finite index.

proof. It suffices to show Im(cop ~ W) = {(x1 , ... ,x ) E ~s is-
Eaixi = O} . Consider the ~-vector subspace rr. c Irn(cop 0 W)

2
generated by S1H1E, ... ,SsHIE. (Note that Si E He (V,Z) ,

H E H
2

(V,I) so that S.·H € H4 ·(V,Z) .) Then, by (2.5), the
1. c

unique relation between the S. ·HIE E H
4

(E,W) is
1.

Hence dimWlrn(ö op ~ ~) = dimWlrn(p S·W)

'= dirnOJ jI = 5-1 = dirnOJ { (x 1 I • • • , x s ) E (Ds i Ea ixi = O} ·

This shows the assertion.

(2.8) Corollary. If E is connected, then

c
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. 4 4
ker{H1 (V-E,Z) --> H1 (V,z)}/tor ~ Coker{Hc(V,~) ---> H (E,Z)}/tor

a Ci -1 (7L (a1' ... ,a ~)) c H
4

(E, Z ) •

(2.9) Corollary. For each positive integer I, there exists a

canonical ~l-covering 01 : VI ---> V branching along E whose

branch index along S. is exactly l/(l,a!) . If I 1s
~ ~

divisible by a1, ... ,a~ , then (oiE)/l is a reduced Cartier

divisor.

The normal analytic space VI has toric singularities over

the double curves of Ered . However, it i5 known that VI has

a nice resolution:

(2.10) rheorern (G. Kempf and al. [KKMS]). If I 1s sufficiently

divisible, then VI

* *such that n 0IE/I

normal crossings.

has aresolution n = n l : W = WI ---> VI

1s a reduced divisor with only'simple

(2.11)'Remark. The integer labave is not L.C.M.{ai} in

general.

Putting things tagether, we obtain

(2.12) Theorem. There exist5 a proper, generically finite

covering 0: W ---> V such that

(2.12.a) W is non-singular and that
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*(2.12.b) a E is a multiple of e reduced divisor with only

simple normal crossings.

To show (0.2), we apply (2.12) to a suitable resolution (Y,E)

of the Gorenstein reduction of (Ü,D) . Since D' comes from

X , its total transform E is projectivei H 1s easily

constructed from the pull-back of an ample divisor on X and

the exceptional divisors with respect to the resolution.
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3. Minimal model

Let N be an analytic 3-manifold with an effective,

projective, reduced divisor T on it. Assume the following

two conditions:

a) T]T is numerically trivial (on T );

b) There are positive integers mi
such that

~]T ~ 0:m. T. ) IT " where T. I s stand for the
~ ~ ~

irreducible components of T .

(3.1) Remark. In this situation, KNIT 1s nef ~ KNIT ~ 0

~ mi = mj for every i,j • If we start with D E lmKxl for

a minimal 3-fold X and take a Gorenstein reduction

y : V ---> U of a small neighbourhood U of D and then a

semi-simple reduction 0 W ---> V , then the pair

* *(W,o'y D/deg 0) satisfies the conditions a) and b) above.

(Without Gorenstein reduction, the coefficient m.
~

miqht be.,

a rational number.) Furthermore, we have in this case

wher.e D.
~

1s an irreducible cornponent of * *D= a y D/deg a .

(3.2) Theorem (Kulikov [KIl, Persson-Pinkham [pp]). Let N

and T be as above. Then, after finitely many smooth

contractions of components of T and/or Kulikov's elementary
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transformation (or "symmetrie flopSlI) we come across a

minimal model (M,S); the pair (M,S) has the following

properties:

(3.2.A) M is non-singular and KMls S 0

(3.2.B) The proper transform S of T is a reduced divisor

with only simple normal crossings and sls ~ 0 ;

The original papers deal with adegeneration of smooth

surfaces, but their numerical proof works in our setting.

(3.3) Remark. The assumption that m.
~

is integral is essential.

If we allow rational numbers as coefficients, certain quotient

singularities appear on a minimal model. S is not neeessarily

projective; however, contractions of finitely many curves on

S gives anormal 3-fold M in which the image S of S is

projective.

It 15 not too difficult to classify 5 as an analytic

space; the result is essentially given in Friedman-Morrison

[FM, p. 15 . ff. ] .

(3.4) Theorem. S is isomorphie to one of the following surfaces:

(0) A srnooth surface (5 is either a K3, Enriques, abelian

of hyperelliptic surface);
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(1) A cycle of (relatively) minimal elliptic ruled surfaces S.
5 ~

(i E Z / sZ, 5 ~ 2) and 5. meets only
~

along

two disjoint sectionsi

(1') 5 A chain of minimal elliptic -~~~~ ~u~fac;:.:_- S1'··· ,S5'

(s ~ 2) such that

(a) Si meets only Si±1 along two disjoint 5ections

for 1 < i < s ,

(ß) 51 [resp. Sr] meets only 52 [resp. 5r - 1 ] along an

etale double sectioni

(2)s A chain of surfaces S1' ... 'Ss (5 ~ 2) such that

(a) S. is a minimal elliptic'ruled surface and meets
~

only 5 i ±1 along two disjoint sections for

1 < i < 5 ,

(ß) 51 [resp. 55] 1s a rational surface and 521s1

[resp. 5 s _
1

1 5
s

] is:a smooth elliptic curve

[resp. -KS ] i
s

(2 1 )s A chain of surfaces 5
1

, •.. ,5s (s ~ 2) such that

(a) Si is a minimal elliptic rtiled surface and,meets

only 5i ±1 along two disjoint sections for 1 < i < 5 ,

(ß) 51 i5 a minimal elliptic ruled surface with 521s1

being an etale douöle section,

(y) S
5

is a rational surface with s 155-1 5
being a

smooth elliptic curve - -KS
5
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(3) Configuration of rational surfaces whose dual graph 1s

a triangulation cf either a 2-sphere 52, areal

projective plane F 2
QR) , a torus 51 x 51 er a

Klein bottle.

(3.5) Rernark. A surface of type (1 1 )s [re5p. (2 1 )s] i5 an

etale ~2-quotient of that cf type (1)25-2 [resp. (2)2s-1] ·

(3.6) Proposition. If 5 is of type (0) er (1)s er (1 1 )5

[resp. (2)5 er (2 1 )5 or (3)], then 4KS er 6KS ~ 0 [resp.

2K
S
~ 0] • Hence, by adjunction,

12 (KM + S) ls ~ 0 ·

(3.7) Corollary. If KM - nS, n E Z'{-1} ,then 515 1s a

torsion. For a tubular neighbourhood MI c M of 5, there i5

an etale covering E : MI ---> M' such that

* * . •
E SIE S ~ KM' IE S ~ 0 .

(3.8) Theorem (Friedrnan [F]). Under the notation and assurnption

as in (3.7),5 has a versal deformation

~ (X,S) ---> (V,O) .

Here X and V are complex manifold5, 0 E Y is a reference

point, and ~ is a proper flat rnorphi5m with central fibre

S = $-'(0) . The relative canonical sheaf wX/ y = Wx ~ $*W~'

is trivial around S.
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(3.9) Remark. Since contractions and elementary transformations'

commute with etale covering, we can replace the semistable-

Gorenstein reduction yaa: W ---> U by a suitable etale

covering of' W so that the image 00 of - *D = (yaa) D/deg a

on a minimal model Wo satisfies

It qoes without saying that Da is a degeneratiqn of K3 or

abelian surfaces. As an immediate consequence of the construction

of the minimal model Wo ' there exists a diagram of proper

birneromorphic rnorphisrns

such that *- *-P Da = q D

W
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4. Formal neighbourhoods

In this section, we give the proof of Main Theorem. Let

us start with an elementary observation.

(4.1) Lemma. Let S be a cornpact analytic spaee with the

underlying reduced structure T = 5 d. Let L be an invertiblere

sheaf on 5. If L 0 0T ~ 0T and L0n = 05 for seme positive

integer n, then L ~ 05 • In ether words,

ker{Pic(5) --> Pie(T)} has no torsion.

Proof. Without loss ef generality, we may assume that 5 is

connected. Since T is compact and redueed,

*Hence the exponential exaet sequence 0 ----> Z ~ ° --> ° -> 0

gives rise to a commutative diagram with exact rows:

H
1

(5,:1)
i

H
1

(S,O) Pie (5)--> -->

l~ 1 1
o --> H1 (T,Z) --L> H1

(T,O) --> Pic(T)

-->

-->

5ince j is injeetive, so 15 i and we see that

ker{Pic(S) ---> Pic(T)}

is a ~-veetor space.

Iii ker {H 1 (S, 0 ) --> H
1

(T,O)}

c
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The main ingredient of this section is the following

(4.2) Theorem. Let S be a ~onnected, compact, reduced analytic

subspace of pure codimension 1 (hence an effective Cartier divisor)

on an analytic manifold M. Assume the following three conditions:

b * -2a, -3a, -4a, ...

(4.2.c) There exists a versal deformation

ep (X,S) _._> (Y,O)

of S such that X is smooth and W X/V >:I 0x around S •

Then, for every positive integer n, we have

and there exists a natural morphism

which induces an isomorphism

n(4.2.2)n nS ~ Spec(CJ:(e:]/(e: )) 'y X •
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Moreover,

(4.2.3)
n

° 0H (nD,O(rnD» ---> H (n'D,O(mD»

every n' < n and mEZ.

is surjective for

The proof of (4. 2) is by induct10n on n . (4. 2 · 1 )1"" 1s

nothing but (4.2.a), while (4.2.3) f is vacuous. The morphism

~1 : Spec ~ ---> (V,O) i5 trivially defined as the constant

map to 0, which e5tablishes (4.2.2)1 .

Let us fix the notation. Let {U.} be an open Stein covering
~

of M and f. € r(ui,OM) a Ioeal defining equation of S . On
~

*u. n u. , there is a non-vanishing function (!lij € r(U i n U j ,.OM)
~ ]

such that

Thus {fi} defines a global.sectien of the invertible sheaf

associated with the transition funetions {(!l .. } •
~J

(4 . 3) Proof of (4. 2) f er n = 2. 'Take an everywhere ~on-vani shing

section 5 = {Si} E HO(S,OS(S) , where

Let Si' E r(ui,OM) be a Ioeal lifting of

2divisor on Spec ~rE]/(E )x Ui defined by

s.
~

and 5.
~

the

f ­i
-ES. = ° .
~
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2on Spec <I:[e:]/ (E ) x (U i n Uj ) . Indeed,

= (f.-e:s.)OM[e:] = q') .. (f.-e:S.)GM[e:J
J J ~J J J

= (f. - e: q'). .5 .) 0M[ e:] = {( f . - e:5 . ) + e: (5 . -q'). . 5 j) }°M[ e: l' '
~ ~J J ~ ~ ~ ~J

On the other hand, since {Si} is a lift of {si}'

so that

15 c 1s + e:fiOM
j i

= 1.- + e:(f
i

+ Esi)OM
Si

= 1.-
S.
~

2thanks to E = 0 • By the symrnetry between i and j , we have

1'8 = I~ on Spec a:[EJ/(e:
2 ) x-: (U1 n Uj ) . Thus (Si} defines an

i j

effective divisor 5 on Spec (![e:J/(e: 2 ) x- M . There are natural

projections p: '5 ---> Spec ~[EJ/(e:2) and q : 5 ----> M • The

ring homomorphism

-1
q GM -> Os

* .--1
is surjective. In fact, noting si E GM ' we have e: = fisi
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Thus q is a closed immersion. In the mean time

ker q-1

so that q gives an isomorphism S g 25 • On the other~ hand,

since €o .....
5

is flat over
2Spec a:[€]/(E )

with central fibre 5. Hence there exists a natural morphism

2Spec a:[€]/(€ ) ---> (Y,O)

such that

(4.2.2)2 25 ~ S ~ 5pec a: [ E] / (E2) :x. X •
Y

In particular, it gives isomorphisms of dualizing sheaves:

* *W Si tu- =: p ./il- 2 0 41 2 wx/ y25 ·5
Spec a:[E]/(E )

::; 0..... o 0..... :; Os - 025S ° SS

while the adjunction formula shows

whence follows



- 27 -

- 02S«2a + b)S) .

Since b * -2a , this irnplies that 02S(5) is a torsion in

Pie (2 S) . Now, by (4 . 1) and (4. 2 . a) we conc lude:

(4.2.3)2 is easy. In fact, a non-vanishing section of

02S(mS) a 025 gives a ~-basis of
o

H ( S ,Os (mS)) -= ~ •

(4 .4) Proof of (4 .2) for n ~ 3 . Supp<?se that (4.2.2) 1 ,
n-

(4.2.2) 1 and (4.2.3) 1 hold (n ~ 3) . By (4.2.2) 1 , wen- n- n-

can identify O(n-1)S with the flat ~[E:]/(En-1) - algebra

via ~ Note that'+'n-1 ·

Ui n (n -1 ) S •. ~

f.a.-f.Ct
j

a E-E:
~ ~ ]

= 0 rnod f n - 10
i M

or, equivalently
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so that {a.} gives rise to aglobaI section
~

a E HO«n-2)S,O(-S» . (We need here the hypothesis n ~ 3 ).

By (4.2.3) l' et can be lifted to a E HO«n-1)S,O(-S»n-
.....
a is represented by et i E f(Ui,OM) such that

We define a

formula

n
~[s]/(s ) - algebra structure on by the

This is well-defined because

..... -1..... n-1
where 0ij = a i - ~ijaj E f j 0M

algebra structure on O(n-1)S to
nover a: [ s ] / (E) by

This extends the

0ns · Moreover

na:[s]/(s ) -

ans is flat

n-1
E 0nS = = fn-1 0 *' ° .i nS I

in other words, we have a proper flat rnorphism

nnS ---> Spec a:[s]/(s )
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whence derives a morphism

ct>n
nSpec a: [s ] / (s ) -> (Y, 0) ,

which extends ~ and induces an isomorphism'+'n-1

(4.2.2)n nS ;:; Spec a:[s]/(€n) x, x .
Y

Therefore, similarly as in (4.3),

WnS
:;: °nS by (4.2.c) ,

.w~a :;: anS (aKM+anS) by adjunctionnS

Zi °nS(bs+anS) by (4.2.b) .

Since b * -an, 0nS(S) is a torsion so that

(4 • 2 • 1 ) n 0nS (S) i2 0nS by (4. 1) •

Finally (4.2. 3) n is immediate from (4.2.1) n and (4. 2'. 2) n.

(4.5) Corollary. Under the same assumption as in (4.2), we

have

for n E:IN, k E Z .

o
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(4.6) Corollary. Let M,N and U be three analytic spaces

and f : N ---> M, g : N ---> U proper, surjective, generically

finite rnorphisrns. Assume that there are cornpact, effective

*Cartier divisors SeM, T c N and D c U such that f S = T,

*g D = k1 (k E~) . If (M,S) satisfies the hypotheses in (4.2),

then

o
dirn H (nD,OnD(nD))

grows like n .

Applying this corollary to the original situation, we get

(4.7) Corollary. Let :~ be a minimal 3-fold with v = 1 . Let

D i be a connected component of DEI mKX I, m > 0, ind P~J !m .

Then

(4.8) Proof of Main Theorem. Consider the exact sequence

and the associated cohomology exact sequence

o 0o -> H (XrO~r) -> H (X,Ox(nD)) ---> HO(nD,O (nD))
nD

1
-> H (x,ox) .

The first and the last terms are independent of n and their



- 31 -

dimensions are bounded, so hO(nD,O(nO» = L hO(nOi,O(nOi»
i

.-.J O(n) implies h
O

(X, Ox,. (nO) ) O(n), i.e. "!<"(X) = 1 • Similarly,

hO (X", 0 "(nO i"J) .-.J 0 (n) . 0'0..' is a mul tiple of a pr imitive divisor
~X ~

Ei : 0 1 = eiEi · Noting that 0ilEi ~ ° , we see that the

moving part ILln) I of Inoil has no base points and of the

form In!E. I n~ > ° . Hence In!O. I = leiL~n) I is base point
~ ~ ~ ~ ~ ~

free; therefore, for n O = L.C.M.{ni}, Inool = [nomKxl is also

base point free.

(4.9) Remark. In the assumption in (4.2), the strange condition

b * -2a, -3a, ... 1s actually necessary. For instance, let A be

an abelian variety ahd consider an non-trivial extension

°--> 0A --> E --> 0A --> ° ·

Let "M = lP (E) • lP (E) contains a unique sect10n S;: A • (M, S)

satisfies all the hypotheses in (4.2) except that KM.-.J -25 .

Moreover, (4.2.2)2 holds, too. However, 02S(S) is not isomorphie

to 02S. In fact, since S.-.J 1 E ' the tautological line bundle,

we have an exact sequence

so that HO(2S,02S(~r)·:";:; H°oP(E),O(l E» ~ HO(A,E) :;; CI: , while

HO (25,0
25

) ·-"~=7· """ a: 2 . It 15 therefore impossible to extend the

~[g]/(E2) - algebra structure on 02S to a ~[E]/(E3) - algebra

structure on °
35

, i.e. the connected component of Chow(M)

that contains {S} 1s a non-reduced point ~ Spec ~[E]/(E2) .

Cl
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(4.10) Remark. Applying our argument to the minimalsurface

case, we can prove without complicated dichotomy that v(~) = 1

implies the existence of an elliptic fibration.
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