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BIG AND SMALL ELEMENTS IN CHEVALLEY GROUPS

E.W. ELLERS AND N.L.GORDEEV

Abstract. Let G̃ be a reductive algebraic group which is defined and split over a field
K. Here we consider the Zariski open subset B of the group G̃ which consists of elements
such that their conjugacy classes intersect the Big Bruhat Cell. In particular, we give a
description of the set B(K) in the case G̃ = GLn,SLn.

1. Introduction

Let G̃ be a reductive algebraic group that is defined and split over a field K and let

B̃ be a fixed Borel subgroup of G̃ that is defined over K. Further, let G = G̃(K) and

B = B̃(K). The groups G̃ and G have Bruhat decompositions

G̃ =
⋃

w∈W

B̃ẇB̃, G =
⋃

w∈W

BẇB

where W is the Weyl group corresponding to G̃ and ẇ is a preimage of w ∈ W in the

normalizer of a fixed maximal torus of B̃ (we assume ẇ ∈ G). The question ”when does a

given conjugacy class of G̃ (respectively, G) intersects a given Bruhat cell B̃ẇB̃ (respec-

tively, BẇB)?” is investigated, in particular, in [ChLT], [EG1], [EG2], [K], [Lu1], [Lu2],

[St], [V], [VS]. The complete solution of this problem seems to be very complicated. Here

we are interested in the following part of the question ”when is C̃ ∩ B̃ẇ0B̃ 6= ∅ (respec-

tively, C ∩Bẇ0B 6= ∅), where C̃ (respectively, C) is a conjugacy class of G̃ (respectively,

G) and w0 is the longest element of the Weyl group?”, that is, ”when does a conjugacy

class of a Chevalley group intersect the big Bruhat cell?”. However, even this particu-

lar question seems to be difficult to answer. Here we give an answer only for the cases

G = GLn(K), SLn(K). Namely, the conjugacy class Cg of an element g ∈ GLn(K) (re-

spectively, g ∈ SLn(K)) intersects the big Bruhat cell of GLn(K) (respectively, SLn(K))

if and only if

rank(g − αEn) ≥ [
n

2
] for every α ∈ K∗ (∗)

(here En is the identity matrix of GLn(K) and [x] = max{m ∈ N | m ≤ x}). For an

algebraically closed field K this result was obtained in [ChLT]. It is easy to extend this

result to the case where K is an infinite field (see, Theorem 2.3, below). However for

finite fields such extension cannot be obtained by the same arguments.

Here we give a proof of (∗) which holds for all fields.
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The proof is based on the following construction. Let Φ be a simple root system

corresponding to G̃ and let wα, w ∈ W where wα is the reflection that corresponds to the

root α ∈ Φ. Further, let w′ = wαwwα. We say that there is a short descent w → w′ if

l(w′) ≤ l(w) (here l(w) is the length of w with respect to the set of basic reflections {wα |
α ∈ Φ}). A descent w → w′ is a sequence of short descents w → w1 → · · · → wn = w′.

We say that a short descent w → w′ is strict if l(w′) < l(w). In the latter case we have

two jumps w Ã wαw, w Ã wwα. We say that there is a way w 7→ w′, where w′ ∈ W ,

if there is a sequence w1, . . . , wm ∈ Wn such that w1 = w, wm = w′, and for every pair

wi, wi+1 there is a descent wi → wi+1 or a jump wi Ã wi+1. If w 7→ w′ is a way, then for

a conjugacy class C of G

C ∩Bẇ′B 6= ∅ ⇒ C ∩BẇB 6= ∅
(see, [EG2], Propositions 2.2, 2.10; note, that in [EG2] we considered only jumps of the

form w Ã wwα, but the Proposition 2.2 [EG2] shows that we also may consider the

jumps w Ã wαw). Thus, to show for a conjugacy class C of G (with condition (∗)) that

C ∩ Bẇ0B 6= ∅, we construct a way w0 7→ w to an appropriate element of W such that

C ∩ BẇB 6= ∅. This gives us the sufficiency of (∗). The necessity of (∗) follows from a

simple observation on matrices belonging to ẇ0B.

The problem of describing the elements whose conjugacy classes intersect the big Bruhat

cell can be reformulated as follows. For an element g ∈ G̃ put

Bg = g(B̃ẇ0B̃)g−1 and B̂g = G̃ \Bg.

We define the sets

B =
⋃

g∈G̃

g(B̃ẇ0B̃)g−1 and B̂ = G̃ \B =
⋂

g∈G̃

B̂g,

which we call the set of big elements and the set of small elements of G̃, respectively. The

set B is an open subset of G̃; it consists of the elements g ∈ G̃ such that the conjugacy

class Cg of g has a non-empty intersection with the big Bruhat cell B̃ẇ0B̃, and the set B̂

is the closed subset of G̃ that consists of the elements whose conjugacy classes have no

intersection with the big cell. We also define an open and a closed subset of G̃

BK =
⋃
g∈G

g(B̃ẇ0B̃)g−1 and B̂K = G̃ \BK =
⋂
g∈G

B̂g,

which we call the set of K-big elements and the set of K-small elements of G̃, respectively.

We shall show that the closed subsets B̂ and B̂K are defined over K, and if K is an infinite

field, B̂ = B̂K . This implies, in particular, if K is an infinite field and x ∈ G, then

gxg−1 ∈ B̃ẇ0B̃ for some g ∈ G̃ ⇔ gxg−1 ∈ Bẇ0B for some g ∈ G.

We also describe the closed set B̂K for G̃ = GLn, SLn, Sp4.
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Throughout the paper we shall use the notation that we established in the Introduction.

We identify the group G̃ with the group of points G̃(K) for some algebraically closed

field K ⊃ K; all fields considered below are assumed to be subfields of K.

Further,

F is the algebraic closure of a field F ;

Y is the Zariski closure of a subset Y ⊂ X of an algebraic variety X;

e is the identity of G;

En is the identity matrix in GLn;

0k×m is the zero k ×m-matrix;

CΓ(x) is the centralizer of an element x in the group Γ;

Fp is the field consisting of p elements, where p is a prime.

2. The sets B, BK , B̂, B̂K

Proposition 2.1. For g ∈ G the closed subset B̂g of G̃ is defined over K. Moreover,

B̂g(K) =
⋃

w 6=w0

g(BẇB)g−1.

Proof. Since the map x → gxg−1 is an isomorphism of the affine variety G̃ onto itself that

is defined over K, it suffices to deal with the case g = e. Consider the closed subset

B̂e = G̃ \Be =
⋃

w 6=w0

B̃ẇB̃

of G̃ (we assume ẇ ∈ G). For every extension F/K we have
⋃

w 6=w0

B̃(F )ẇB̃(F ) ⊂ B̂e ∩ G̃(F ), B̃(F )ẇ0B̃(F ) ⊂ Be ∩ G̃(F ), (2.1)

G̃(F ) = (
⋃

w 6=w0

B̃(F )ẇB̃(F )) ∪ (B̃(F )ẇ0B̃(F )). (2.2)

From (2.1), (2.2),

B̂e ∩ G̃(F ) =
⋃

w 6=w0

B̃(F )ẇB̃(F ), Be ∩ G̃(F ) = B̃(F )ẇ0B̃(F ). (2.3)

Let F be an infinite field. Since G̃ is a split group, the group B̃ is a connected, split,

solvable group, thus the group B̃ is a unirational variety ([Sp], Theorem 14.3.8) and

therefore the set B̃(F ) is dense in B̃ ([Sp], 13.2.6). Thus, B̃(F ) = B̃ and, by (2.3),

B̂e ∩ G̃(F ) = (
⋃

w 6=w0

B̃(F )ẇB̃(F )) ⊃ (
⋃

w 6=w0

B̃(F )ẇB̃(F )) = B̂e. (2.4)

Thus, if K is an infinite field we may put F = K and get a dense subset B̂e∩ G̃(K) in B̂e

(this follows from (2.4)) and therefore the closed set B̂e is defined over K ([Sp], 11.2.4,

ii.). Now let K be a finite field and put F = K. Again (2.4) implies that B̂e is defined
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over K and Be(K) is a dense subset of B̂e. Also, the set B̂e(K) is Gal(K/K)-stable.

Hence, B̂e is K-defined ([Sp], 11.2.8).

The second assertion of the proposition follows from (2.3). ¤

Proposition 2.2. The closed subsets B̂, B̂K of G̃ are defined over K.

Proof. Let char K = p 6= 0. Since G̃ is split over K we may assume that G̃ is defined and

split over the prime field Fp. For the algebraically closed field K the map γ : K → K given

by the formula γ(a) = ap is an automorphism of K. If Γ = 〈γ〉, then KΓ = Fp.

Now we assume that G̃ is a closed subset of GLn(K) and the corresponding embedding

i : G̃ ↪→ GLn(K) is an Fp-defined morphism.

Let Fp[GLn] be the coordinate ring of the Fp-group GLn. The automorphism

l ⊗ f → γ(l)⊗ f

of K[GLn] = K ⊗Fp Fp[GLn], where l ∈ K and f ∈ Fp[GLn], will also be denoted by γ.

Thus, the group Γ = 〈γ〉 acts on K[GLn]. Consider the map

γ̃ : GLn(K) → GLn(K),

such that γ̃({aij}) = {ap
ij}. Since the group G̃ is Fp defined,

γ̃(G̃) = G̃, γ̃(G) ⊂ G.

Let

Ig = {f ∈ K[GLn] | f|B̂g
≡ 0 }

be the ideal of functions vanishing on B̂g. If g = e this ideal is generated by polynomials

with coefficients in Fp. Hence the ideal Ig of functions vanishing on B̂g = gB̂eg
−1 is

generated by polynomials whose coefficients are rational functions of entries in the matrix

i(g) ∈ GLn(K). Now γ(Ig) = Iγ̃(g) and γ̃(g) ∈ G̃ (respectively, γ̃(g) ∈ G if g ∈ G).

Hence, the ideal I =
∑

g∈G̃ Ig (respectively, IK =
∑

g∈G Ig ) is Γ-invariant, and therefore

the ideal I (respectively, IK) is generated as vector subspace of K[GLn] by elements in

Fp[GLn], because KΓ = Fp ([Sp ], 11.1.4). Since B̂ = V (I) (respectively, B̂K = V (IK))

and since Fp is a perfect field, the set B̂ (respectively, B̂K) is defined over Fp ([Hu], 34.1)

and therefore it is defined over K.

Let char K = 0. Then K is a perfect field and therefore the intersection of K-defined

closed sets B̂g =
⋃

w 6=w0
g(BẇB)g−1 , g ∈ G, (Proposition 2.1.) is also K-defined ([Sp]

11.2.13). Thus, the closed set B̂K is K-defined.

Further, since B̂K is K-defined, the set B̂K(K) is dense in B̂K .

Now we show the implication

x ∈ B̂K(K) ⇒ x ∈ B̂ ∩ G̃(K). (2.5)
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Suppose x /∈ B̂ ∩ G̃(K). Then x ∈ B ∩ G̃(K) and therefore gxg−1 ∈ B̃ẇ0B̃ for some

g ∈ G̃ (by the definition of B). Hence the conjugacy class C̃x of the element x in G̃ has a

non-trivial intersection Ux with the open subset B̃ẇ0B̃, and therefore the set Ux contains

an open subset of the closure of C̃x. Hence the subset Ux of the conjugacy class C̃x has a

non-trivial intersection with any dense subset of C̃x. But the set Vx = {g−1xg | g ∈ G}
is dense in C̃x = {g−1xg | g ∈ G̃}, because K is an infinite field and, therefore, G is

dense in G̃ ([Bor] 18.3). Thus Ux ∩ Vx 6= ∅. If g−1xg ∈ Ux ∩ Vx, then x ∈ gB̃ẇ0B̃g−1

where g ∈ G. Hence x ∈ BK and therefore x /∈ B̂K , which contradicts our assumption.

This confirms (2.5).

Since B̂ ⊂ B̂K , the implication (2.5) yields

B̂K(K) = B̂ ∩ G̃(K). (2.6)

The set B̂ ∩ G̃(K) is dense in B̂ (this follows from (2.6) and the density of B̂K(K) in

B̂K ⊃ B̂). Thus B̂ is K-defined ([Bor], AG, 14.4). Now let Γ = Gal(K/K) be the Galois

group of the extension K/K. The set B̂K(K) = B̂ ∩ G̃(K) is Γ-stable. Hence B̂ is

K-defined ([Sp]. 11.2.8, i). ¤

Theorem 2.3. If K is an infinite field, then

i. B̂K = B̂;

ii. for σ ∈ G the following statements are equivalent:

a) gσg−1 ∈ B̃ẇ0B̃ for some g ∈ G̃;

b) gσg−1 ∈ Bẇ0B for some g ∈ G.

Proof. i. We may apply here the same arguments as in the proof of (2.5). Namely, if

x ∈ B̂K , then the conjugacy class Cx of x in G̃ intersects B̃ẇ0B̃ trivially (otherwise

we get a contradiction to the assumption x ∈ B̂K as we did in the proof of (2.5)), and

therefore we get x ∈ B̂. Since B̂ ⊂ B̂K we get i.

ii. The implication b) ⇒ a) is obvious. Now we assume a). Then σ ∈ B. Hence

σ ∈ BK and therefore gσg−1 ∈ B̃ẇ0B̃ for some g ∈ G. Since gσg−1 ∈ G = ∪w∈W BẇB

and B = B̃(K) ⊂ B̃, the element gσg−1 can belong only to the Bruhat cell Bẇ0B. This

establishes b). ¤

3. Example I: G̃ = GLn, SLn

Let G = GLn(K), SLn(K) and let w0 ∈ W ≈ Sn be the element of maximal length.

Consider the big Bruhat cell Bẇ0B of G. Note, that a conjugacy class Cg of g ∈ G

intersects Bẇ0B if and only if it intersects the set ẇ0B, which is the set of matrices of
5



the form: 


0 0 · · · 0 a1n

0 0 · · · a2 n−1 a2n

· · · · · · · · · · · ·
0 an−1 2 · · · an−1 n−1 an−1 n

an 1 an 2 · · · an n−1 ann




. (3.1)

Now, if a matrix g ∈ G has the form (3.1), then

rank (g − αEn) ≥ [
n

2
] (3.2)

for every α ∈ K∗.

In particular, if g is a split semisimple element, the condition (3.2) means that the

multiplicity of eigenvalues of g is less than or equal to [n+1
2

].

Theorem 3.1. For g ∈ G,

Cg ∩Bẇ0B 6= ∅ ⇔ rank (g − αEn) ≥ [
n

2
] for every α ∈ K∗.

Proof. We shall use the following notation:

We denote the symmetric group corresponding to the interval [1, n] by Sn and also by

S[1, n] to identify imbeddings of symmetric subgroups of smaller degree. For instance,

the symmetric subgroup Sk of degree k < n can be identified with any subgroup of all

permutations of the subinterval [i, j] ⊂ [1, n] where j − i = k − 1. In this case we denote

such subgroup by S[i, j]. Thus, if 1 ≤ i ≤ j ≤ n, j − i = k − 1 we have the imbedding

Sk ↪→ S[i, j] ≤ S[1, n] = Sn.

We also identify the symmetric group Sn with the Weyl group Wn = W (An−1) with the

standard set of simple reflections wα1 , wα2 , . . . , wαn−1 , where Φ = {α1 = ε1−ε2, . . . , αn−1 =

εn−1 − εn} is the standard simple root system (see, [Bour], Table I). We also identify wαi

with the transposition (i i + 1) and for every root α = εi − εj we write wα = (ij).

We denote the length of w ∈ Wn = Sn with respect to the generating set

{wα1 , . . . , wαn−1} by l(w). The number of non-unit eigenvalues of the element w ∈ Wn,

which is considered as a linear operator in the standard linear representation of Wn = Sn

induced by permutations of a basis of the n-dimensional linear space, will be denoted by

i(g). Let

w0 =

{
(1 n)(2 n− 1) · · · (l l + 1) if n = 2l,

(1 n)(2 n− 1) · · · (l l + 2) if n = 2l + 1.

Then w0 is the element of maximal length n(n−1)
2

and i(w0) = [n
2
].

Proposition 3.2. Let w ∈ Wn. If i(w) ≥ [n
2
], then there is a way w0 → w′, where w′ ∈ Wn

is an element that is in the conjugacy class Cw of w in W , and l(w′) = min{l(w′′) | w′′ ∈
Cw}.
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Proof. Now we state the assumption of the induction:

[ : Let ω′ ∈ Wm = S[1,m] = 〈wα1 , . . . , wαm−1〉, 1 < m < n, be an element satisfying

the following conditions :

a)i(ω′) ≥ [m
2
].

b) Let e be the number of stable points of the permutation ω′. There exists an element

ω ∈ S[e+1,m], which is conjugate to ω′ in Wm and which satisfies the following conditions:

1. there is a way w′
0 → ω where w′

0 is the element of maximal length in Wm with respect

to the generating set {wα1 , . . . , wαm−1};
2. ω =

∏
α∈X wα where X ⊂ {αe+1, . . . , αm−1} and each wα, α ∈ X, occurs only once;

3. if ω = ω1ω2 · · ·ωd is the decomposition of ω into a product of disjoint cycles of

lengths r1, . . . , rd, respectively, then r1 = min{ri} and ω1 ∈ S[e + 1, e + r1].

For n = 2, 3, and 4 the assumption [ can be checked by simple calculation.

We need the following lemmas.

Lemma 3.3. Let 1 ≤ i < j ≤ m . Further, let ω = µν ∈ Wm, where µ ∈ S[i, j] and

where ν ∈ Wm is an element that stabilizes every element in [i, j]. If there is a way

µ 7→ µ′ ∈ S[i, j] in the group S[i, j], then there is a way ω 7→ µ′ν in the group Wm.

Proof. Let ζ → ζ ′ = wαl
ζwαl

be a descent in S[i, j]. We may assume ζ(αl) 6= αl (otherwise,

ζν → wαl
ζνwαl

= ζν is a non-strict descent). Then either ζ(αl) < 0 or ζ−1(αl) < 0 ([Ca],

Prop.2.2.8). Since ν stabilizes every element in [i, j] and ν(αl) = αl, either ζν(αl) =

ζ(αl) < 0 or (ζν)−1(αl) = ζ−1(αl) < 0 and therefore ω → µ′ν is a descent.

Now suppose ζ → ζ ′ = wαl
ζwαl

is a strict descent. Then ζ = wαl
ζ1wαl

, where 0 <

ζ1(αl) 6= αl, 0 < ζ−1
1 (αl) 6= αl ([Ca], Prop.2.2.8). Furthermore 0 < ζ1ν(αl) 6= αl, 0 <

ζ−1
1 ν−1(αl) 6= αl and therefore ζν → wαl

ζνwαl
= ζ1ν is a strict descent and ζν Ã

wα1ζν and ζν Ã ζνwα1 are jumps. ¤

Lemma 3.4. Let ω ∈ Wm = S[1,m] be an element satisfying the conditions [ : b)2, 3.

(here e is the number of stable points of ω). If e ≥ 1, then in the group Wm+1 = S[1,m+1]

there is a descent

(1 m + 1)ω → (e e + r1 + 1)ω1ω̃,

where ω̃ ∈ S[e + r1 + 2,m + 1] is the product of disjoint cycles of lengths r2, . . . , rd.

Moreover,

ω̃ =
∏

α∈X′
wα,

where X ′ ⊂ {αe+r1+2, . . . , αm} and each wα, α ∈ X ′, occurs only once.

Proof. Let i < e, αi = εi − εi+1. Clearly

[(i m + 1)ω](αi) = εm+1 − εi+1 < 0 ⇒
7



⇒ l(wαi
[(i m + 1)ω]wαi

) ≤ l([(i m + 1)ω] ⇒

⇒ [(i m + 1)ω] → wαi
[(i m + 1)ω]wαi

= (i + 1 m + 1)ω.

Thus

(1 m + 1)ω → (e m + 1)ω

is a descent.

Now let e + r1 + 2 ≤ j ≤ m + 1. Put Dj = {e + r1 + 1, . . . , j − 1, j + 1, . . . , m + 1} (if

j = m + 1, then Dj = {e + r1 + 1, . . . , m}).
Suppose there is a descent

(e m + 1)ω → (ej)ω1ω̃
′,

where ω̃′ is a permutation of the set Dj that is conjugate to ω2ω3 · · ·ωd in Wm. Moreover,

we suppose that ω̃′ is a product of transpositions of type wαk
, where k 6= j − 1, j and,

possibly, the transposition (j − 1 j + 1) and each such transposition can occur not more

than once. Therefore

[(ej)ω1ω̃
′]−1(εj−1 − εj) = εl − εe, l > e, ⇒

⇒ l(wαj−1
[(ej)ω1ω̃

′]wαj−1
) ≤ l[(ej)ω1ω̃

′])

⇒ [(ej)ω1ω̃
′] → wαj−1

[(ej)ω1ω̃
′]wαj−1

= (e j − 1)ω1ω̃
′′.

Here ω̃′′ = wαj−1
ω̃′wαj−1

. Note that among the factors of ω̃′ only wαj−2
and (j − 1 j + 1)

do not commute with wαj−1
. But

wαj−1
wαj−2

wαj−1
= (j − 2 j), wαj−1

(j − 1 j + 1)wαj−1
= (j j + 1) = wαj

.

Hence the element ω̃′′ is a product of transpositions of type wαk
, where k 6= j − 2, j − 1

and, possibly, the transposition (j − 2 j), and each such transposition can occur only

once.

Thus we get a descent

(e m + 1)ω → (e e + r1 + 1)ω1ω̃,

where ω̃ satisfies the condition of the lemma. ¤

Lemma 3.5. If ν = (1m)ν ′ ∈ Wm, where ν ′ ∈ S[2,m − 1] is an (m − 2)-cycle with

m− 2 ≥ 2, then there is a way ν 7→ µ, where µ is an m-cycle and l(µ) > m− 1.

Proof. Clearly ν(ε1 − ε2) = εm − εk < 0 and therefore l(νwα1) < l(ν). Further,

(νwα1)
−1(ε1 − ε2) = εm − εk′ < 0. Hence l(wα1νwα1) < l(νwα1) and ν Ã µ = wα1ν

is a jump.
8



Further, the transposition (1m) is the representative of the minimal length of the coset

(1m)S[2, m− 1], because (1m)(αk) = αk for every k = 2, . . . , m− 2 and therefore l(ν) =

l((1m)) + l(ν ′) ([Ca], Prop.2.3.3). Clearly

l(ν) = l((1m)) + l(ν ′) ≥ 2m− 3 + m− 3 = 3m− 6 ≥ m + 2.

Hence l(µ) ≥ m + 1. ¤

Lemma 3.6. If µ ∈ Wm is an m-cycle with l(µ) > m − 1, then there is a way µ 7→ µ̃ ∈
S[2, m], where µ̃ is an (m− 1)-cycle and l(µ̃) = m− 2.

Proof. Since µ 7→ µ′ where µ′ is an m-cycle with l(µ′) = m− 1 ([EG1], Proposition 3.3),

we may assume l(µ) = m + 1. Hence

µ = wαµ′wα

for some α ∈ Φ, where Φ = {α1, . . . , αm−1} is the standard simple root system and for

some m-cycle µ′ with l(µ′) = m− 1. Further, there exists a partition Φ = Φ1∪Φ2∪{α},
where Φ1, Φ2 6= ∅, Φ1 ∩ Φ2 = ∅, α /∈ Φ1, Φ2, such that

µ = wα(
∏

β∈Φ1

wβ)wα(
∏

γ∈Φ2

wγ)wα.

Note,

wα(
∏

β∈Φ1

wβ) 6= (
∏

β∈Φ1

wβ)wα, wα(
∏

γ∈Φ2

γ) 6= (
∏

γ∈Φ2

wγ)wα,

because otherwise l(µ) = m− 1. Hence wα 6= (12), (m m− 1), and if wα = (i i + 1), i 6=
1, m− 1, then each set

{wβ}β∈Φ1 , {wγ}γ∈Φ2

contains only one transposition in the set {(i− 1 i), (i + 1 i + 2)} (because only those

simple transpositions do not commute with (i i + 1)).

Put

µ1 =





wα(
∏

β∈Φ1

wβ)wα(
∏

γ∈Φ2

wγ) if (i− 1 i) ∈ {wβ}β∈Φ1 ,

(
∏

β∈Φ1

wβ)wα(
∏

γ∈Φ2

wγ)wα if (i− 1 i) ∈ {wγ}γ∈Φ2 .

Then there is a jump µ Ã µ1, where µ1 is an (m− 1)-cycle in the set {1, 2, . . . , i− 1, i +

1, . . . , m}. Moreover, l(µ1) = m and

µ1 = (
∏

β∈Ψ1

wβ)(i− 1 i + 1)(
∏

γ∈Ψ2

wγ),

9



where Ψ1 ∪ Ψ2 = Ψ = Φ \ {εi−1 − εi εi − εi+1)}, Ψ1 ∩ Ψ2 = ∅. By commuting with wβ,

where β ∈ Ψ1, we may have a non-strict descent µ1 → µ2, where

µ2 = (i− 1 i + 1)(
∏

ζ∈Ψ

wζ), l(µ2) = m.

Put δ = εi−1 − εi. Suppose i − 1 6= 1. Then µ2(δ) = εk − εi > 0, k ≤ i − 2 (because

among the roots in Ψ there is the root εi−2 − εi−1), and µ−1
2 (δ) = εl − εi < 0, l ≥ i + 1.

Hence l(wδµ2wδ) = l(µ2) = m. Put µ3 = wδµ2wδ. We have µ2 → µ3, where

µ3 = (i i + 1)(
∏

ζ′∈Ψ′
wζ′)(i− 2 i)(

∏

ζ′′∈Ψ′′
wζ′′),

where Ψ′ ∪ Ψ′′ = Ψ \ {εi−2 − εi−1}, Ψ′ ∩ Ψ′′ = ∅. Similar as in the case of the descent

µ1 → µ2 we can get a descent µ3 → µ4, where

µ4 = (i− 2 i)(
∏
χ∈∆

wχ), l(µ4) = m,

where ∆ = Φ\{εi−2−εi−1, εi−1−εi}. Thus, acting similarly, we can get a descent µ4 → µ′,

where µ′ is an (m− 1)-cycle of the form

µ′ = (13)
∏

ψ∈Σ

wψ,

where Σ = Φ \ {ε1 − ε2, ε2 − ε3}. Let wα1 = wε1−ε2 . Then

µ̃
def
= wα1µ

′wα1 = (23)
∏

ψ∈Σ

wψ =
∏

φ∈Φ\{(12)}
wφ.

Obviously, µ̃ is an (m− 1)-cycle in S[2,m] and l(µ̃) = m− 2. ¤

Lemma 3.7. If ω = (1m) ∈ Wm, then for every k with 1 ≤ k ≤ m − 1 there is a way

ω 7→ µ, where µ = (k k + 1 . . .m).

Proof. Conjugating ω successively by (12), (23), . . . , (k−1 k) we get a descent ω → (km).

Now our statement follows from ([EG2], Proposition 4.1). ¤

Let w ∈ Wn with i(w) ≥ [n
2
], and let k be the number of stable points of w. Further,

assume

w = u1 · · · us

is the decomposition of w into a product of disjoint cycles. Also, let l1, . . . , ls be the

degrees of the cycles u1, . . . , us, respectively. We assume l1 = min{li}s
i=1.

Case 1: k ≥ 1, l1 > 2.

Let u′1 be a cycle of length l1 − 1. Put w1 = u′1u2 · · · us. Then the number of stable

points of w1 is equal to k + 1 and i(w1) = i(w) − 1 ≥ [n−2
2

]. Since the condition of the

Proposition for the element w and the statement concern all elements of the conjugacy

class of w in Wn, we may assume w1 ∈ S[2, n− 1] (because k > 1).
10



By assumption [ there is a way w′
0 7→ w2, where w′

0 is the element of maximal length

in the group S[2, n− 1] and w2 is an element in the group S[2, n− 1] that is conjugate to

w1 in Wn and that satisfies conditions 2. and 3. of [. By Lemma 3.3 there is a way

w0 = (1n)w′
0 7→ w3 = (1n)w2,

where w2 = ω1ω2 · · ·ωs ∈ S[k + 1, n − 1] is a product of disjoint cycles of degree l1 −
1, l2, . . . , ls. Moreover, ω1, . . . , ωs are products of simple reflections wαi

, where each such

reflection can occur not more than once. Also, ω1 is an (l1− 1)-cycle in the set [k +1, k +

l1 − 1]. The element w2 satisfies the conditions of Lemma 3.4 (with w2 = ω, l1 − 1 =

r1; li = ri, i > 2; s = d, n = m + 1, e = k). Hence there is a descent

w3 = (1n)w2 → w4 = (k k + l1)ω1ω̃,

where ω̃ ∈ S[k + l1 + 1, n] is conjugate to ω2ω3 · · ·ωs and ω̃ ∈ S[k + l1 + 1, n] is a product

of basic reflections, where each such reflection can occur not more than once. By Lemmas

3.5 and 3.6 there is a way

(k k + l1)ω1 7→ ω′1 ∈ S[k + 1, k + l1],

where ω′1 is an l1-cycle and where l(ω′1) = l1 − 1. By Lemma 3.3, there is a way

w4 = (k k + l1)ω1ω̃ 7→ w5 = ω′1ω̃ ∈ S[k + 1, n].

The process of the construction shows that the element w5 satisfies the conditions for w′

of the Proposition.

Case 2: k = 0, s > 1.

Claim : i(u2 · · · us) ≥ [n−2
2

].

Proof. We have

i(u2 · · · us) = (l2 − 1) + · · ·+ (ls − 1) = n− l1 − s + 1 ≥ n− 2

2
⇔ n ≥ 2(l1 + s− 2).

Since l1 ≥ 2, s ≥ 2 and l1 = min{li}, we obtain

n ≥ l1s = l1[(s− 2) + 2] = l1(s− 2) + 2l1 ≥ 2(s− 2) + 2l1 = 2(l1 + s− 2).

¤

The same arguments as above yield the way

w0 7→ (1l1)ω̃ ∈ S[1, n],

where ω̃ ∈ S[l1 + 1, n] is an element that is conjugate to u2 · · · us and, using Lemma 3.7,

we get the way

(1l1)ω̃ ∈ S[k + 1, n] 7→ w′,

where w′ satisfies the conditions of the Proposition.

Case 3: k = 0, l1 > 2, s = 1.
11



Again the same arguments as above yield the way

w0 7→ (1n)ζ ′,

where ζ ′ ∈ S[2, n− 1] is an (n− 2)-cycle of length n− 3. Thus there is a jump

(1n)ζ ′ Ã ζ = (12)(1n)ζ ′,

where ζ is an n-cycle. Therefore there is a descent

ζ → w′,

where w′ is an n-cycle of length n− 1.

¤

Proposition 3.8. Let G = GLn(K) or G = SLn(K). If g ∈ G and

rank (g − αEn) ≥ [
n

2
] for every α ∈ K∗,

then g is conjugate in G to a block-diagonal matrix

R = diag(R1, R2, . . . , Rs), (3.3)

where each Ri is a cyclic matrix of size ni (possibly, ni = 1)



0 1 0 · · · 0

0 0 1 0 · · · 0

· · ·
0 0 0 0 · · · 1

a1 a2 a3 · · · ani




(3.4)

and
s∑

i=1

(ni − 1) ≥ [
n

2
]. (3.5)

Proof. Note, that every matrix in G is conjugate to a matrix of the form (3.3) (we may

take the rational form). We may assume that we cannot join any two blocks Ri, Rj into

one block of the form (3.4). Suppose
s∑

i=1

(ni − 1) < [
n

2
]. (3.6)

The inequality (3.6) implies that there is a block Ri of size one, ni = 1, i.e, Ri = α ∈ K∗.

Consider any block Rj, j 6= i. If α is not an eigenvalue of Rj, then we can join the blocks

Ri, Rj into one block of the form (3.4), which is a contradiction to our assumption. Thus

α is an eigenvalue of every block Rj, and therefore

rank(R− αEn) ≤
s∑

i=1

(ni − 1). (3.7)

Now we have a contradiction of (3.6), (3.7) with the assumption of the Proposition. ¤
12



Now we can finish the proof of the Theorem.

Let g ∈ G be an element satisfying the condition (3.2), and let Cg be its conjugacy class.

By Proposition 3.8 Cg ∩ Bẇ′B 6= ∅ for some w′ ∈ Wn with i(w′) ≥ [n
2
]. By Proposition

3.7 there is a way w0 7→ w, where w ∈ Wn is an element in the same conjugacy class as

w′. Note, that in Proposition 3.8 we can take the block diagonal matrix R corresponding

to w. Thus, we may assume Cg ∩ BẇB 6= ∅. This implies Cg ∩ Bẇ0B 6= ∅ ([EG2]; see

also the Introduction). ¤

Remark. If g ∈ GLn(K) ≤ GLn(K), then

rank (g − αEn) ≥ [
n

2
] for every α ∈ K∗ ⇔

⇔ rank (g − αEn) ≥ [
n

2
] for every α ∈ K

∗
.

Indeed, if α ∈ K \K, then α can be an eigenvalue only for blocks of the form (2.4) of size

≥ 2. Hence the inequality rank (g − αEn) ≥ [n
2
] holds for every such α.

In the following proposition we describe the structure of the affine variety B̂. We

assume here K = K is an algebraically closed field. Let g ∈ B̂ be a semisimple element.

Then Theorem 3.1 implies rank(g−α0En) < [n
2
] for some α0 ∈ K∗. This means that g has

an eigenvalue α0 with multiplicity m = [n+3
2

]. Let T be the group of diagonal matrices in

G and let

Tm = {diag(α, α, . . . , α︸ ︷︷ ︸
m−times

, β1, β2, . . . , βn−m) | α, βi ∈ K}.

Since the semisimple element g has eigenvalue α0 with multiplicity m, it is conjugate to

an element in Tm.

Note, that Tm is a subtorus of T if m < n or G = GLn(K), that is Tm is a connected

algebraic group. The cases m = n are possible only for n = 2, 3, and in these cases the

set B̂ coincides with the center of the group G.

Proposition 3.9. Let K be an algebraically closed field and let G = GLn(K), SLn(K).

If T is the group of diagonal matrices in G, then

B̂ =
⋃
g∈G

gTmg−1. (3.8)

In particular, if n > 3 or G = GLn(K), the set B̂ is irreducible and

dim B̂ =

{
n2 −m2 + 1 if G = GLn(K),

n2 −m2 if G = SLn(K).
(3.9)
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Proof. Let H1, H2 ≤ G be the subgroups consisting of matrices of the form

H1 = {




X | 0(n−m)×m

−− | −−
0m×(n−m) | αEm


 | X ∈ GLn−m(K), α ∈ K∗}

(note, that αm det X = 1, m < n if G = SLn(K)),

H2 = {




En−m | Y

−− | −−
0m×(n−m) | Em


 | Y ∈ M(n−m)×m(K)}.

Obviously, H1 and H2 are connected groups and the set H = H1H2 = {h1h2 | h1 ∈
H1, h2 ∈ H2} is also a group. Thus H is a connected subgroup of G. Further, if S is a

maximal torus of H1, then S is also a maximal torus of H, and the centralizer of S in H

coincides with S. Hence the elements that are conjugate to S are dense in H ([Hu], 2.2).

On the other hand, the torus S is conjugate to Tm in G (this follows from the definitions

of Tm and H). Thus

H ⊂
⋃
g∈G

gTmg−1. (3.10)

Further, if x ∈ B̂, then the linear operator x satisfies the inequality rank(x− αEn) < [n
2
]

for some α ∈ K∗, and therefore x has at least m = [n+3
2

] eigenvectors corresponding to

the eigenvalue α. Hence the operator x is conjugate to an element in H. Thus

B̂ =
⋃
g∈G

gHg−1. (3.11)

Now (3.10) and (3.11) imply

B̂ =
⋃
g∈G

gTmg−1.

The variety G × Tm is irreducible. Hence the closure of the image of the morphism

φ : G × Tm → G, given by the formula φ(g, t) = gtg−1, is irreducible. Thus B̂ is an

irreducible affine variety.

Let φ(g1 × t1) = φ(g2 × t2). Then g−1
2 g1(t1)g

−1
1 g2 = t2. Further, since t1, t2 ∈ T are

conjugate, ẇt2ẇ
−1 = t1 for some w ∈ W . Hence g2 = g1cẇ

−1 for some c ∈ CG(t1), and

therefore

dim φ−1(φ(g1 × t1)) = dim CG(t1). (3.12)

Let t = diag(α, α, . . . , α︸ ︷︷ ︸
m−times

, β1, β2, . . . , βn−m), where α 6= βi for every i and βi 6= βj. The set

of such elements t is dense in Tm. Therefore (3.12) implies

dim B̂ = dim Tm + dim G− dim CG(t). (2.13)
14



Further,

dim Tm =

{
n−m + 1 if G = GLn,

n−m if G = SLn,
(2.14)

dim CG(y) =

{
n−m + m2 if G = GLn,

n−m− 1 + m2 if G = SLn.
(2.15)

The formula for dim B̂ follows from (2.13)-(2.15).

¤

4. Example II: Sp4(K)

In this section we consider the case K = K and G̃ = G = Sp4(K) ≤ GL(V ), dim V = 4.

Here Φ = Φ(C2) = {ε1− ε2, 2ε2} is the standard simple root system of the root system

C2 ([Bour], Table III). The weights of the representation G ↪→ GL(V ) are ±ε1, ±ε2. The

highest weight is ε1. We fix the basis e1, e2, e−2, e−1 for V , where e±i is the weight vector

of the weight ±εi. Here the corresponding bilinear form is given by

〈ei, e−i〉 = 1, i = 1, 2, 〈ei, ej〉 = 0, j 6= −i.

The following is a presentation of root subgroups of G :

xε1−ε2(x) =




1 x 0 0

0 1 0 0

0 0 1 −x

0 0 0 1


 , xε1+ε2(y) =




1 0 y 0

0 1 0 y

0 0 1 0

0 0 0 1


 ,

x2ε1(s) =




1 0 0 s

0 1 0 0

0 0 1 0

0 0 0 1


 , x2ε2(t) =




1 0 0 0

0 1 t 0

0 0 1 0

0 0 0 1


 .

Further, if char K 6= 2, there exist the following non-trivial unipotent conjugacy classes

in G:

Creg = {the conjugacy class of regular unipotent elements} =

the conjugacy class of xε1−ε2(1)x2ε2(1);

Cε1−ε2 = {the conjugacy class of short root element xε1−ε2(1)} =

{conjugacy class of u = x2ε1(1)x2ε2(1)};
C2ε2 = {the conjugacy class of the long root element x2ε2(1)};
C1 = {the conjugacy class of E4 }.
Moreover we have the following inclusion:

C1 ⊂ C2ε2 ⊂ Cε1−ε2 ⊂ Creg.
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([Ca], p.435; [Spal], Tables.]). Let C be a unipotent class and u ∈ C; the class of −u will

be denoted by −C.

The group H = 〈h2ε1(α), h2ε2(β)〉 is a maximal torus of G and the presentation of

elements of H by matrices is the following:

h2ε1(α)h2ε2(β) =




α 0 0 0

0 β 0 0

0 0 β−1 0

0 0 0 α−1




We emphasize the element

h0 = h2ε1(−1)h2ε2(1),

which is conjugate to −h0 = h2ε1(1)h2ε2(−1). We denote the conjugacy class of h0 by Ch0 .

The general matrix corresponding to the Borel subgroup has the form

B(α, β, x, y, t, s) = h2ε1(α)h2ε2(β)x2ε1(s)x2ε2(t)xε1−ε2(x)xε1+ε2(y) =



α αx αy αc

0 β βt βy − βtx

0 0 β−1 −β−1x

0 0 0 α−1


 ,

where c is a polynomial in α, β, x, y, t, s such that for every fixed α, β, x, y, t we can get

every value of c in K changing the parameter s. Further, we choose

ẇ0 =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 .

Hence

ẇ0B(α, β, x, y, t, s) =




0 0 0 α−1

0 0 β−1 −β−1x

0 −β −βt −βy + βtx

−α −αx −αy −αc


 . (4.1)

Note,

g ∈ B ⇔ g is conjugate to a matrix of the form (4.1).

Thus

g ∈ B ⇒ rank(g − αE4) ≥ 2 for every α ∈ K∗. (4.2)

Proposition 4.1. Let G = Sp4(K). If char K 6= 2, then

B̂ = ±C1 ∪ Ch0 ∪ ±C2ε2 .

Proof.
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Lemma 4.2. If g ∈ G is an element that has no eigenvalues ±1, then g ∈ B.

Proof. Let g = gsgu be the Jordan decomposition. We may assume gs = h2ε1(α)h2ε2(β).

Then α, β 6= ±1. Also xgsx
−1 = ẇ2ε1ẇ2ε2u for some x ∈ 〈X±2ε1〉×〈X±2ε2〉, u ∈ X2ε1×X2ε2 .

Thus gs ∈ B. If g /∈ B, then g ∈ B̂. Since B̂ is closed and G invariant, the closure of

the conjugacy class of g is also in B̂. But gs is in this closure ([Sp-St], II). This is a

contradiction. Hence g ∈ B.

¤

Lemma 4.3. If u = x2ε1(1)x2ε2(1) and if g ∈ G is an element that is conjugate to

±u, ±h0u, then g ∈ B.

Proof. The same arguments as in the proof of Lemma 4.2. ¤

Lemma 4.4. If α 6= ±1, then h2ε1(α)h2ε2(±1)x2ε2(1) ∈ B.

Proof. The same arguments as in the proof of Lemma 4.2. ¤

Lemma 4.5. If u is a regular unipotent element, then u ∈ B.

Proof. This follows from Lemma 4.3 and the inclusion Cu ⊂ Creg (see also [K]). ¤

Lemma 4.6. h0 ∈ B̂.

Proof. Consider the natural surjection φ : Sp4(K) → SO5(K). Consider the natural

representation of SO5(K). One can easily check that φ(h0) = diag(−1,−1,−1,−1, 1).

Also, φ(BSp4) = BSO5 (here BSp4 and BSO5 are the variety B for Sp4(K) and SO5(K),

respectively) and if g ∈ BSO5 , then rank(g + E5) ≥ 2. ¤

Lemma 4.7. If δ, t ∈ K, δ 6= ±1, t 6= 0, then

h2ε1(δ)h2ε2(±1),±h0x2ε2(t) ∈ B.

Proof. Let gx and g−x be two matrices of the form (4.1) (i.e., g±x ∈ ẇ0B) with the

following values of parameters α = β = 1, t = 2, y = x, c = 2− x2

gx =




0 0 0 1

0 0 1 −x

0 −1 −2 x

−1 −x −x x2 − 2


 ,

and α = β = 1, t = −2, y = −x, c = x2 − 2

g−x =




0 0 0 1

0 0 1 −x

0 −1 2 −x

−1 −x x 2− x2


 .
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Consider the matrices

gx + E4 =




1 0 0 1

0 1 1 −x

0 −1 −1 x

−1 −x −x x2 − 1


 , gx − E4 =




−1 0 0 1

0 −1 1 −x

0 −1 1 −x

−1 −x x 1− x2


 .

It is easy to see that rank(gx + E4) = 2 and rank(g−x − E4) = 2. Hence the set of

eigenvalues of gx is {−1,−1, δ, δ−1} and the set of eigenvalues of g−x is {1, 1, δ, δ−1}.
Varying the parameter x we can get any value for tr g±x and, therefore , we can get any

value for δ.

If δ 6= ±1, then g±x are semisimple elements (otherwise the elements g±x are conjugate

to h2ε1(δ)h2ε2(±1)x2ε2(d) for some d 6= 0, and then rank(g±x ± 1) > 2). Thus, if δ 6= ±1,

there are semisimple elements g±x of the form (4.1) (i.e. g±x ∈ B) that are conjugate to

h2ε1(δ)h2ε(±1).

Now we put x = 2 and get tr gx = 0. Then the element g2 has eigenvalues {−1,−1, 1, 1}
and therefore the semisimple part of the Jordan decomposition of gx is conjugate to

h0. Since h0 /∈ B (Lemma 4.6) the unipotent part of gx is not trivial. There are two

possibilities: gx is conjugate to ±h0x2ε2(t) or to ±h0u. But in the latter case rank(gx +

E4) = 3. Hence there is only the possibility that gx is conjugate to ±h0x2ε2(t). ¤

Now we can prove our statement. Obviously, ±C1 = {±E4} ⊂ B̂. Further, if g ∈ ±C2ε2 ,

then rank(g ± E4) = 1. Hence ±C2ε2 ⊂ B̂, and, by Lemma 4.6, Ch0 ⊂ B.

Now let g ∈ B̂ and let g = gsgu be its Jordan decomposition. By Lemmas 4.2 and 4.7,

the eigenvalues of the element gs can only be 1 or −1. Thus, gs = ±E4 or gs is conjugate

to h0. In the latter case gu = 1, by Lemma 4.7. If gs = ±E4 then Lemmas 4.3 and 4.5

imply that the unipotent part gu is either trivial or it is conjugate to x2ε2(1).

Now the proposition has been proved. ¤

Now we consider the case char K = 2. Here we have the following diagram of unipotent

conjugacy classes

Creg

↓
C2ε12ε2

↙ ↘
Cε1−ε2 C2ε2

↘ ↙
C1

where C2ε12ε2 is the conjugacy class of x2ε1(1)x2ε2(1) and where Ca → Cb means Cb ⊂ Ca

([Spal], Tables).
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Proposition 4.8. Suppose char K = 2. If G = Sp4(K), then

B̂ = C1 ∪ C2ε2 ∪ Cε1−ε2 .

Proof. Let g ∈ G and let g = gsgu be the Jordan decomposition. If gs 6= 1, then gs /∈ B̂

(the proof is the same as in the case char K 6= 2). Thus we need to check only the

unipotent classes. The same arguments as in the case char K 6= 2 show that C2ε12ε2 ⊂
B, Creg ⊂ B, C2ε2 ⊂ B̂. If Cε1−ε2 ⊂ B, then c = ẇ0u for some c ∈ Cε1−ε2 , u ∈ U . Since

c2 = 1 we have

1 = (ẇ0uẇ0)︸ ︷︷ ︸
∈U−

u ⇒ u = 1 ⇒ c = ẇ0 = ẇ2ε1ẇ2ε2 , ẇ2
2ε1

= ẇ2
2ε2

= 1.

The involution x2ε1(1) is conjugate in 〈X±2ε1〉 to ẇε1 and the involution x2ε2(1) is conjugate

in 〈X±2ε2〉 to ẇε2 . Hence the involution x2ε1(1)x2ε2(1) is conjugate to c. Therefore c ∈
C2ε12ε2 , and c ∈ Cε1−ε2 . This is a contradiction and therefore Cε1−ε2 * B. ¤
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