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Introduction

Every algebraic variety X can be regarded as a real symplectic manifold. Indeed,
by the very definition X has to admit an embedding to the projective space of
certain dimension N . This implies that one can restrict to the embedded X any
standard Fubini - Study metric which gives the corresponding Kahler form ω on
X which can be regarded as the symplectic form. Every such an embedding is
characterized by the homological data — the corresponding class [ω] ∈ H2(X,Z)
or the first Chern class c1(L) of the corresponding very ample line bundle L,
which admits a sufficiently big space of holomorphic sections.

Such a form and such a metric is not unique in general: possible X can
admit several different classes of the symplectic forms, but if we restrict our
study considering compact and simply connected smooth algebraic varieties then
different symplectic structures correspond to the classes in H2(X,Z). For any
such a structure it is reasonable to study lagrangian submanifolds and try to
form certain moduli spaces of such lagrangian submanifolds.

The choice of such [ω] is well known in the theory of (semi) stable holomprhic
vector bundles: the choice of a principal polarization leads to the definition of
finite dimensional moduli spaces, see [1]. In contrast, if we would like to activate
symplectic geometry constructions it should be choosen a form ω, not a class
[ω]. But if we are interested in lagrangian geometry, the geometry of lagrangian
submanifolds and subcycles and their classifications, it is not hard to see, that
for different particular choices of the homologically equivalent forms ω, ω′ in the
case of simply connected X the submanifolds, lagrangian with respect to ω and
ω′ are related by certain natural transformations. Therefore if our aim is to
derive certain finite dimensional moduli spaces from the lagrangian geometry,
then for different choices ω or ω′ the topology of the corresponding moduli
spaces must be the same.

Suppose now that we consider a compact simply connected algebraic variety
X of dimension n and fix the Kahler form ω of a Kahler metric of the Hodge
type. From the real geometry point of view it corresponds to 2n dimensional
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real compact simply connected manifold M equipped with a symplectic form
ω with integer cohomology class [ω] ∈ H2(M,Z) and an integrable complex
structure I, compatible with ω.

Then we say that
Definition 0. A real submanifold S ⊂ M is lagrangian iff dimS = n and

ω|S ≡ 0.
Since the symplectic form is of the integer type, [ω] ∈ H2(M,Z), one can

impose a natural condition on a lagrangian submanifold S ⊂ M . To do this
consider a prequantization pair (L, a), where L → M is a line bundle with a
fixed hermitian structure h and a ∈ Ah(L) is a hermitian connection such that
its curvature form Fa = 2πiω. This means in particular that c1(L) = [ω].

Then
Definition 1. A lagrangian submanifold S ⊂ M is said to be Bohr - Som-

merfeld iff the restriction (L, a)|S admits covariantly constant sections.
Since we want to work with not only smoothly embedded lagrangian mani-

folds, but with cycles, submanifolds with simplest singularities, we reformulate
the last definition in the following form

Definition 1’. A lagrangian submanifold S ⊂ M is said to be Bohr -
Sommerfeld iff for any loop γ ⊂ S and any disc D ⊂ M bounded by this loop,
one has

∫
D
ω ∈ Z.

In the smooth situation the definitions are equivalent; at the same time the
last one is applicable in non smooth case.

Recall, that in [2] one constructs the moduli space BS of Bohr - Sommer-
feld lagrangian cycles of fixed topological type. This is a smooth infinite di-
mensional real manifold; it depends on the topological data ([S], topS), where
[S] ∈ Hn(M,Z) is the corresponding homology class and topS is the topological
type of S as a “parametrization space”. The details can be found in [2].

Above we were speaking about “finite dimensional moduli spaces”, and the
moduli space BS is not of the desired type. The main example and pattern in
our story is the celebrated SpLAG construction, proposed by N. Hitchin and J.
MacLean, see [3]. Recall briefly the setup and main steps.

Consider a Kahler Calabi - Yau variety X of complex dimension n; by the
very definition it can be equipped with a top holomorphic form θ, which is
unique up to C∗. The Kahler form is regarded as a symplectic form, and one
says that a lagrangian submanifold S ⊂ X is special iff it is a phase rotation
eiφ such that Imeiφθ|S ≡ 0 (in [3] one can find other equivalent definitions).

The main advantige of this specialty condition — it leads to finite dimen-
sional moduli spaces of special lagrangian submanifolds, since as it was shown
in [3], the local deformations of SpLag submanifolds are unobstructed forming
b1(S) - dimensional space. Therefore the moduli space of SpLag submanifolds
has dimension b1(S). Special lagrangian geometry was exploited in SYZ ap-
proach to Mirror Symmetry conjecture, see [4].

As it was pointed out by A. Tyurin, the Bohr - Sommerfeld condition (for
compact simply connected algebraic Calabi - Yau’s) is transversal to the spe-
cialty condition. This means that in the moduli space of special lagrangian
submanifolds in an algebraic CY variety one has a finite set of isolated points
which corresponds to special Bohr - Sommerfeld lagrangian submanifolds.

Our main goal is to extend this observation to much more wider class of
algebraic varieties. This means that we propose a programme which combines
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Special Lagrangian and Bohr - Sommerfeld lagrangian geometries, and this com-
bination can be realized over any compact simply connected algebraic variety.
As the main result we get certain moduli spaces of special Bohr - Sommerfeld
lagrangian cycles, covering open subsets in projective spaces. Unfortunately
our construction being applied to the Calabi - Yau case is not equivalent to the
Hitchin - MacLean construction, but nevertheless it is applicable in this case.

The material of these notes is organized as follows. First, we present the
general theory of Special Bohr - Sommerfeld lagrangian geometry (or SBS ge-
ometry for short) which arose in real symplectic case. Here we discuss how SBS
- geometry can be applied in Geometric Qunatization. Then in Section 2 we
specialize the story to pure algebraic geometrical setup. In particular we dis-
cuss natural problems arose in the framework of SBS - geometry in the simplest
algebraic case — for algebraic curves (thus it is a version of SBS - geometry for
non simply connected case). Furthemore in Section 3 we discuss the problem of
the construction of moduli spaces. Here the possible way for correct definition
is based on the Eliashberg conjecture about exact largangian submanifolds. We
modify the direct definition of the moduli space and prove that the modified
moduli space is smooth open Kahler variety, (and formulate the main conjecture:
the modified moduli space is an open part of an algerbaic variety).

I started this text in November 2016 at the Max- Planck- Institute hoping
that all technical problems which appear in the way can be easily solved after
discussions with experts in different parts of modern mathematics. But almost
every discussion shows that the corresponding problem is widely open and this
could not help in my way; at the same time every discussion helped me to find
a good trick to avoid the corresponding problem and make a small step in the
progamme. It is the reason why this text was not finished in time and the story
is not completely finished yet. Nevertheless today I can say that the moduli
space of Special Bohr - Sommerfeld cycles exists. And it is possible to say
only after the expression of my cordial thank and gratitude to Anton Zorich,
Ioan Marcut, Martin Schlichenmaier, Fedor Bogomolov, Andrei Shafarevich,
Yakov Eliashberg, Leonid Polterovich, Jorgen Andersen, Dmitry Orlov, Stefan
Nemirovsky, Aleksander Kuznetsov, Yuri Prokhorov. I would like to thank the
Max - Planck - Institute for Mathematics where the first part of this work was
done for excellent working condition and friendel athmosphere.

1 Special Bohr - Sommerfeld lagrangian cycles:
general theory

Consider a compact simply connected 2n - dimnesional symplectic manifold
(M,ω) with integer symplectic form, so [ω] ∈ H2(M,Z) ⊂ H2(M,R), and the
prequantization pair (L, a) where a ∈ Ah(L) such that Fa = 2πω. Let Γ(M,L)
be the space of all smooth sections of L; it is a Hilbert space with the hermitian
product

< s1, s2 >=

∫
M

(s1, s2)hdµL

where (; )h is our fixed hermitian structure on L which defines pointwise hermi-
tian product for sections.
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Fix topological data: an oriented closed source submanifold S0 and a ho-
mology class [S] ∈ Hn(M,Z), and apply ALAG programme from [2], giving us
as the output the moduli space BS of Bohr - Sommerfeld lagrangian cycles of
fixed topological type (see [2]). Recall, that it is an infifnte dimensional Frechet
- smooth manifold, locally modelled by the space C∞(S0,R) modulo constants.
Strictly speaking the moduli space BS consists of classes, but below we will take
in mind the geometrical meaning, so we will understand unparameterized Bohr
- Sommerfeld lagrangian submaniflods as points of BS in the cases when it does
not misslead.

Then
Definition 2. We say that a Bohr - Sommerfeld lagrangian submanifold

S ⊂M is special with respect to a smooth section α ∈ Γ(M,L) iff α|S = eicfσS
where σS is a covariantly constant section of (L, a)|S, c is a real constant, and
f ∈ C∞(S,R+) is a real strictly positive function.

As Definition 1 above the last definition is valid for smooth lagrangian sub-
manifolds only, therefore we need to reformulate it for applications in singular
cases.

To do this we need the following observation. For any smooth section α ∈
Γ(M,L) define complex 1-form

ρ(α) =
∇aα
α

=
(∇aα, α)h

(α, α)h
∈ Ω1

M\Dα ⊗ C.

Here Dα is the zeroset of α.
Simple computation shows that for this form ρ(α) we have

Reρ(α) = d(ln|α|), d(Imρ(α)) = 2πω

on the complement M\Dα.
Then
Definition 2’. An n - dimensional submanifold S ⊂ M is special Bohr -

Sommerfeld lagrangian w.r.t. a smooth section α ∈ Γ(M,L) iff the restriction
Imρ(α)|S ≡ 0.

The equivalence of Definition 2 and Definition 2’ for smooth case is proved
in [5]. Note however that Definition 2’ is applicable in the case when S has
singularities: the requirement in the last case is about the tangent vectors from
the tangent cone at a singular point, and even in very complicated cases the
vanishing of Imρ(α) at singular points is still a relevant condition of certain
types. Moreover, the condition from Definition 2’ is a type of calibration, which
is quite known and important in Lagrangian geometry.

Therefore we will work with Definition 2’. Since the form ρ(α) does not
change under rescaling of the section by complex constants, the specialty condi-
tion depends on the class of sections modulo C∗ and therefore our new specialty
condition cuts a subset in the direct product

USBS ⊂ BS × PΓ(M,L),

which contains pairs (S, p) such that S is α - special Bohr - Sommerfel lagrangian
cycle where α is a lift of point p ∈ PΓ(M,L) to the vector space Γ(M,L).

The main property of USBS which will be exploited many times reads as
follows:
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Proposition 1. Let f ∈ C∞(M,R) be a smooth function which generates
the corresponding Hamiltonian flow φtXf . Then for any pair (S, p) ∈ USBS the

transformed pair (φtXf (S), φtXf p) again belongs to USBS.
In other words, Special Bohr - Sommerfeld condition is stable with respect

to the Hamiltonian deformations. Here the Hamiltonain action Xf on PΓ(M,L)
is a lift defined by our choosen hermitian connection a.

The proof is based on the correspondence between smooth sections up to
scale and complex 1 - forms on open subsets of M . Take two smooth sections
α1, α2; on the complement M\D12 where D12 = {α1 = 0} ∪ {α2 = 0} the
equality ρ(α1) = ρ(α2) implies α1 = Cα2. Indeed, the first equality means

∇aα1

α1
=
∇aα2

α2
=⇒ α2 ⊗∇aα1 − α1 ⊗∇aα2 = 0,

but it is equivalent to the condition dln(α2

α1
) = 0 on the complement M\D12.

Here α2

α1
is a nonvanishing complex function, and the differentiation rules for its

logarithm leads exactly to the second equation above.
Thus the hamiltonian action on the pair (S, p) can be expressed via the

Hamiltonian action on the pair (S, ρ(α)), and the calibration condition Imρ(α)|S =
0 is evidently equivariant with respect to the Hamiltonian flow.

There is another discription of special Bohr - Sommerfeld submanifolds in
terms of Liouville structures. Recall that symplectic manifold (M̃, ω) is endowed
with a Lioville structure if one fixes a vector field λ such that Lλω ≡ ω. In the
presence of the symplectic form equally one can fix 1- form ρ such that dρ = ω.
From this it is clear that M̃ can not be compact and we present such an M̃ as
an open part of a compact symplectic manifold M .

In [6] one shows that Lioville structures play important role in symplectic
topology; the homotopical type of M in the presence of λ is encoded in the
stable part of M with respect to the flow generated by λ. This stable part is
called the core or the secelton of the Liouville structure; its main property is
that it is homotopical to M\D. Indeed, it is formed by finite integral lines of
the Liouville vector field Z, and since every infinte integral line must approaches
to D it follows that in M\D after shrinking of all infinite integral lines we get
the sceleton. In general the sceleton of a Liouville structure can be sufficienlt
big, of dimension greater than n.

Now we claim that the situation we have studied above can be translated to
the language of Liouville structures of special type: as we have seen above any
sufficiently regular smooth section α ∈ Γ(M,L) of the prequantization bundle
defines a Liouville structure on M\Dα (here sufficient regularity means that
the zeroset Dα is of dimension 2n− 2). Indeed, every such a section defines the
complex 1 -form ρ(α) and its imaginary part gives a Liouville structure since
dImρ(α) = ω. We denote the corresponding vector field λ as λ(α).

Then in the language of the Liouville structures our special Bohr - Sommer-
feld condition reads as follows:

Proposition 2. A lagrangian submanifold S ⊂ M is special Bohr - Som-
merfeld with respect to a smooth section α if and only if it is stable with respect
to the Liouville vector field λ(α).

In other words, S must be contained by the sceleton of the corresponding
Liouville structure.

How generic is the Liouville field defined by a smooth section?
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Let λ0 is a given Liouville structure on M\D for a smooth 2n − 2 - di-
mensional submanifold D ⊂ M which represents the homology class Poincare
dual to [ω] ∈ H2(M,Z). Take any smooth section α ∈ Γ(M,L) vanishing on
D and consider the corresponding Liouville field λ(α). Then the difference
ω(λ(α))−ω(λ0) is a closed 1 - form on M\ which represents the corresponding
class H1(M\D,R). If this class is integer then λ0 is generated by a section
from Γ(M,L). Indeed, if the difference is integer 1- form, then this form can be
presented as the logartihmic differential of a map ψ : M\D → C∗, and if this
ψ is applied to the section α as a gauge transformation of the prequantization
line bundle. The section which generates λ0, is smooth if certain additional
condition holds implied on the value of |

∫
γ
ω(λ0)| where γ is a small loop sur-

rounding a point p ∈ D in the normal bundle NM/D. Summing up, we get two
conditions: certain integrality condition (a Bohr - Sommerfeld condition on the
Liouville field) and condition on the residue near D (which is again of integer
type).

Therefore we can see that the set of Liouville structures generated by sections
of the prequantization bundle is a sery of affine subspaces of the affine space of
all Liouville structures stratified by the integer lattice H1(M\D,Z).

Can we recognize that a given Liouville structure λ is generated by a section
of the prequantization bundle without references to sections and computation
of the differences as above? The answer is positive: as we have seen above if a
Liouville structure is given by a smooth section then the sceleton of this structure
must satisfy the Bohr - Sommerfeld condition for singular submanifolds; and if
additionally the residue condition near D holds then the structure is generated
by a section of the prequantization bundle.

The Bohr - Sommerfeld condition is applicable for sceletons via formula-
tion given in Definition 1’: since we study smooth vector fields (note that the
symplectically dual 1 -forms are smooth) the sceletons ad hoc are presented by
the union of smooth pieces, and for any piecewise smooth loop γ which lies on
the sceleton we can impose the integrality condition on the symplectic area of
a curved polygon in M bounded by γ. The residue condition states that the
integral of ω−1(Z) over a small loop in the fiber of normal bundle (ND/M )p,
surrounded p ∈ D, equals to the symplectic area of a disc, bounded by the loop
in M , modulo Z.

Coming back to the main subject of our work, we would like to show, that the
space USBS carries several geometrical structures, and we are going to describe
some of them.

By the very definition this space is projected to the first and to the second
direct summands, and we consider the last projection

p2 : USBS → PΓ(M,L).

Note that the last projective space is endowed with a Kahler structure since we
do have a hermitian product on Γ(M,L). The main properties of this projection
were studied in [5]:

Fact 1. The fibers of this projections are discrete;
Fact 2. The image of this porjection is an open subset in the projective

space;
Fact 3. The differential of this projection has trivial kernel at smooth points.
Summing up the facts, one gets that the subset USBS at smooth points ad-

mits natural Kahler structure, lifted from the Kahler structure on the projective
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space. Note that the smoothness condition for S is mentioned since before we
have claimed that all the story can be extended to singular points of certain
complition of the moduli space BS : as we will see it is important for the case of
algebraic varieties since in certain cases for holomorphic sections smooth special
Bohr - Sommerfeld lagrangian submanifolds do not exist, and the smoothness
condition should lead to empty moduli space. But in general case we can speak
about smooth Bohr - Sommerfeld lagrangian submanifolds only and for these
“smooth points” of BS we can say that no branching appears in the covering
p2 : USBS → PΓ(M,L). Indeed, the fact is pure local, so we can study the situ-
ation restricting it to a Darboux - Weinstein neighborhood ODW (S0) of a fixed
smooth Bohr - Sommerfeld submanifold together with a complex 1- form ρ(α0).
Since every Bohr - Sommerfeld lagrangian submanifold, sufficiently close to S0

is presented by a Hamiltonain deformation of S0, near the branching point
we should have two different Hamiltonian vector fields Xf1 , Xf2 correspond-
ing to different leaves of covering which transport ρ(α0) to the same 1 - form
ρ(αt) such that Imρ(αt)|S1 = Imρ(αt)|S2 = 0 for Hamiltonian trasnformations
Si = φtXfi

(S0). But S1 and S2 must have nontrivial intersection since they are

Bohr - Sommerfeld consists of at least two points — they correspond to minimal
and maximal points of function f1−f2. Join these points by two pathes γi ⊂ Si
and calculate the integral

∫
γ1∪γ2 ρ(αt). It must be trivial since the real part of

ρ(αt) is exact and the imaginary part identically vanishes on both S1 and S2.
But this integral is essentially the difference between max(f1−f2)−min(f1−f2),
therefore it is possible if and only if f1 = f2 +const, and it implies that S1 = S2.

These arguments are similiar to the arguments from [5] where one establishes
the discretness of the fibers.

Thus the space USBS admits a Kahler structure, lifted from the projective
space. Why it is interesting ifself? We start with pure symplectic situation with
(M,ω) only and get a Kahler manifold. From one world, symplectic, we arrive
to another world, complex Kahler.

Another geometrical structure, naturally suggested by the very definition of
USBS , gives us a U(1) bundle on the space. The construction is as follows.

Recall, see [2], that the moduli space BS carries a natural U(1) - bundle PS
which is called the Berry bundle. Over a point S ∈ BS the fiber is given by
the covariantly constant sections σS ∈ Γ(S,L|S) of unit hermitian norm at each
point (since it is covariantly constant the norm is the same at each point of S).
The corresponding U(1) structure is inherited from the structure fixed on L at
the very begining of our story. Note that simultenous rotations on the fibers of
S1(PS) are correctly defined by the rotations on L.

On the other hand on the projective space PΓ(M,L) one has the (anti)
tautological line bundle endowed with the corresponding hermitian structure.
The associated principal U(1) - bundles S1(O(±1)) with rotations induced by
the same U(1) as for S1(PS) but by different rules: a point x ∈ S1(O(−1)|p
in the fiber over p ∈ PΓ(M,L) is presented by a normalized smooth section
sx ∈ Γ(M,L) such that

∫
M
< sx, sx > dµL = 1, and the rotation eic maps it to

eicsx.
Now consider the direct product S1(calPS) × S1(O(−1)) over the ambi-

ent space BS × PΓ(M,L); if we restrict this bundle on the space USBS then
the first product contains a S1 - subbundle defined by the specialty condition.
Namely, over point (S, p) ∈ USBS take an element in the product S1(PS) ×
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S1(O(−1))|(S,p) presented by pair σS , sx and impose the condition sx|S = fσS
where f is strictly positive real function on S. In the fiber this condition cuts
a circle S1, and the induced U(1) - action on the product rotates this cicrcle to
itself. Therefore it is defined a U(1) - bundle which we denote as P̃S → USBS .
This bundle can be called twisted Berry bundle.

Note that from certain point of view the space USBS can be regarded as
a “complexification” of the moduli space BS of Bohr - Sommerfeld cycles. In
a lagrangian approach to Geometric Quantization one establishes that BS is a
very natural object looking as a phase space of quantized system; the dynamical
properties are presented but it remains unknown how to present the measurment
process as it stated in the standard Quantum Mechanics. In [7] one uses the

moduli space Bhw,rS of half weighted Bohr - Sommerfeld cycles which is an
almost Kahler manifold and realizes the programme of ALGA - quantization for
classical mechanical systems with compact phase space. The problem appeared
in that programme was with the fact, that it is only almost Kahler, but for
complete realization one needs a fair Kahler moduli space. Now we do have
a Kahler space USBS , fibered over BS . It is not a complexification of BS , but
nevertheless it is a version of complexification, so one could try to exploit it in
the lagrangian approach to Geometric Quantization.

2 Special Bohr - Sommerfeld lagrangian cycles:
algebraic case

Suppose now that the symplectic manifold (M,ω) admits integrable complex
structure I compatible with ω. This means (M,ω, I) is an algebraic variety;
since the pair (ω, I) defines the corresponding Riemann metric g, and the her-
mitian triple (ω, I, g) gives a Kahler structure on M , and since the cohomology
class of the Kahler form ω is integer, this Kahler metric is of the Hodge type.
At the same time our connection a ∈ Ah(L) induces a holomorphic structure on
L since its curvature Fa has type (1,1) w.r.t. complex structure I being propor-
tional to ω. From this point we regard (M,ω, I) as a compact simply connected
algebraic variety X with an ample line bundle L → X equipped with a hermi-
tian structure h. Then the corresponding Kahler form ω can be reconstructed
as follows: for any holomorphic section α ∈ H0(X,L) the real function

Ψα = − 1

2π
ln|α|

is a Kahler potential on the complement X\D, where D is the zeroset of α;
and as L is very ample for any point x ∈ X it exists a holomorphic section
which doesn’t vanish at a neighborhood of this point, therefore the Kahler (=
symplectic form) can be completely recovered.

In this case we can specialize the projection p above, restricting it to the
finite dimensional subspace PH0(X,L) ⊂ PΓ(X,L) of holomorphic sections; we
denote the restricted map as

pI :MSBS → PH0(X,L),

where MSBS ⊂ USBS is the preimage p−1(PH0(X,L); this subset is clearly
finite dimensional. Our main goal is to study this MSBS , and first of all we
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would like to attach the corresponding data which define such a set. Apart of
the fixed above an ample line bundle L with a hermitian structure it depends
on the data which one needs for the definition of the moduli space BS , therefore

MSBS =MSBS(c1(L) ∈ H2(X,Z), h, [S] ∈ Hn(X,Z), topS).

Since the dependence on h does not change the geometry ofMSBS we will often
omitt it.

To study the set MSBS first let us specialize the general theory of special
Bohr - Sommerfeld cycles to the algebraic case.

For this pure algebraic situation we have the folowing reformulation of De-
fenition 2’. It is based on the fact, that if α is holomorphic then the form ρ(α)
by the very definition has type (1,0) w.r.t. I. This implies that the real and the
imaginary parts of ρ(α) are related therefore

Imρ(α) = I(dΨα),

and the vanishing condition in Definition 2’ can be reformulated as
Definition 2“. A lagrangian submanifold S ⊂ X is special Bohr - Som-

merfeld w.r.t. a holomorphic form α ∈ H0(X,L) iff S ∩ Dα = ∅ and at each
point p ∈ S one has gradΨα ∈ TpS.

A direct corollary from the last definition says that S must be stable with
respect to the gradient flow φtgradΨα

for any t; singular points for S can appear
at the singular points of the gradient vector field gradΨα.

Essentially this is the same requirement, which we have discussed in the
previous section: the gradient vector field for the function Ψα is a Liouville
vector field, therefore in the holomorphic situation we get a specialization of the
Lioville structure theory; it is known as the theory of Weinstein structures, see
[6], [8], and this theory will be very important for us in the next section.

Recall, see [8], that the Weinstein structure is given by a Liouville structure
Z plus a real function Ψ such that the vector field Z is gradient like for the
function. This means that it exists a compatible Riemannian metric g such
that dΨ(Z) ≥ c|Z|2 for a constant c ∈ R. In [6] it was shown that for Weinstein
structure the sceleton, defined as for the Liouville structure as the stable subset
of M\D, is stratified by isotropical submanifolds. Thus the main difference with
the case of a Liouville structure is the strong restriction on the dimensions of
the sceleton components.

Holomorphic sections give us the corresponding Weinstein structures: as
we have established above the Liouville vector field in this case is exactly the
gradient vector field for the function Ψα. In the theory of Weinstein structures
one requires for this function to be Morse or generalized Morse, and for our
holomorphic situation it is indeed the case.

The prove of the fact that the Weinstein sceleton contains isotropical com-
ponents comes with the properties of the function Ψα: as it was shown by J.
Milnor, it can have isolated critical points of the Morse index not greater than n
being a Kahler potential. Moreover, at each such a point the negative incoming
tangent subspace in the whole tangent space must be isotropical (so in the case
when the index equals to n this subspace must be lagrangian).

In any case the function Ψα is correctly defined on the complement X\Dα;
and the algebraic nature of the situation leads to the following
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Fact 1. for generic holomorphic section the function Ψα is Morse function
on the complement X\Dα, so on the complement it has non degenerated isloated
critical points only;

Fact 2. for generic holomorphic section the number of ”finite“ critical point
is finite;

Fact 3. the set of ”finite“ trajectories joining the finite critical points splits
in isotropical cells of finite number.

We denote the union of finite trajectories as Bα.
At this point it is very natural come back to the notion of sceleton of the

Liouville structure, but now the same definition for the Weinstein structure,
generated by a holomorphic section, gives us a correspondence ”divisors —
isotropical sceletons“, and for the last ones we have:

Proposition 3. An n - dimensional compact submanifold (possible, singu-
lar) is special Bohr - Sommerfeld w.r.t. a holomorphic section α ∈ H0(X,L) iff
it is contained by the sceleton Bα.

Proof. The key observation here is that the sceleton Bα is a CW - complex,
which is formed by isotropical cells therefore each cell has dimension less or
equal to n.

If S ⊂ X is special Bohr - Sommerfeld then according to Definition 2” it
must be parallel to the gradient vector field gradΨα. If S intersects an “infinite”
unbounded trajectory of the gradient flow then due to this property it must have
non trivial intersection with Dα which contradicts the definition. On the other
hand if it intersects a “finite” trajectory it must contain it. Therefore S must
lie in Bα. On the other hand, if a compact S lies in Bα it is decomposed as well
in cells but from the properties of the cells one can see that S is lagrangian, and
at the same time it is by the construction is parallel to the gradient vector field.
Thus it is special Bohr - Sommerfeld.

Digression: algebraic curves. Let Σ be a Riemann surface of genus g > 1
equipped with a fixed complex structure I. Then this complex structure can
be extended to the Kahler triple (G, I,Ω), where G is a riemannian metric of
constant negative curvature compatible with I. Up to constant this riemannian
metric is unique, and we normalize it by the condition

∫
Σ

Ω = 2g − 2. It is well
known that this metric is a solution of the Kahler - Einstein equation (see, f.e.
[9]).

The Kahler structure (G, I,Ω) induces the corresponding hermitian struc-
ture on the complex line bundle T ∗Σ, which we denote as KΣ and call the
canonical bundle following the algebro - geometrical traditions. In the presence
of the complex structure one has a finite dimensional subspace H0(Σ,KΣ) of
holomorphic section in the big space of all smooth sections; we call the sections
holomorphic differentials.

Any holomorphic differential ρ ∈ H0(Σ,KΣ) has generically 2g − 2 zeros
P1, ..., Pm but in particular cases certain Pi are multiple zeros, in which case
m < 2g − 2. Consider the following smooth real function

Ψ(ρ) = −ln|ρ|h,

which is correctly defined on the punctured surface Σ\{P1, ..., Pm}, where Pi —
zeros of holomorphic differential ρ, and the norm is taken with respect to the
hermitian structure on the canonical bundle. Since the function Ψ(ρ) is strictly
convex w.r.t. the complex structure I therefore all its “finite” isolated critical
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points have Morse indecies 0 or 1 (details see f.e. in [6]). Thus we have only
minima and saddle points.

It’s not hard to see, that for a generic holomorphic differential the corre-
sponding function Ψ(ρ) has non degenerated isolated critical points only, and
the number of these points is finite. This remark implies the first natural ques-
tion: for generic holomorphic differential ρ estimate (or find) the number of
minima for the function Ψ(ρ) on Σ\{p1, ..., pm}.

Then the number of saddle points is given from the formula

]min− ]saddle + 2g − 2 = 2− 2g

for the generic casem = 2g−2. Of course, the number varies along the projective
space CPg−1 = PH0(Σ,Kσ), since for certain holomorphic differentials zeros are
mutiple etc., the but what are the possible values?

Furthemore, following the SBS strategy we are interested in the base set
Bρ ⊂ Σ. It can be defined in our present situation: take all finite critical points
and all finite trajectories of the gradient flow of Ψ(ρ), this union is the base set
Bρ.

Note that despite of the fact that for certain ρ the finite critical points
of Ψ(ρ) may form 1 - dimensional subsets in Σ, the base set Bρ is still 1 -
dimensional. Indeed, the critical subsets cann’t be 2 - dimensional since Ψ(ρ)
is Kahler potential for Ω, on the other hand Bρ by the very definition must be
stable w.r.t. to the gradient flow, and if it contains 2 - dimensional components
then this component must be transported by the gradient flow to a saddle point,
but then this saddle point should have 2 - dimensional negative subspace in the
tangent space which is impossible.

Moreover, SBS geometry can help to prove here that the number of finite gra-
dient trajectories for generic ρ is finite. Indeed, we just modify the arguments
from [5]: if two finite gradient trajectories with the same ends are homotopical
one to each other then they must bound a domain whose symplectic area equals
to an integer multiple of 2g−2, but since the total sysmplectic area of Σ is 2g−2
it is impossible. On the other hand two gradient trajectories cann’t intersect
each other, consequently we can get only finite number of finite trajectories.

Note that if we oversee the picture on Σ we get that Bρ looks like a graph
where all minima present the vertices and the saddle points are not visible,
being just marked points on the edges of the graph. Indeed, two trajectories
meet at a saddle point p such that they a tangent to the negative subspace
T−p Σ ⊂ TpΣ, but since T−p Σ is 1 - dimensional these two trajectories give us
one smooth path with one marked point p. Going along an edge we can meet
several marked points since in general it is possible to have several saddle points
on the same line combinig the finite trajectories. Moreover, each part of each
edge is naturally oriented since the function Ψ(ρ) changes along these segments,
and we can attach to each segment the approriate sign. Note that every edge
must have at least one marked point.

Therefore for a generic holomorphic differential we get a finite graph Γ(ρ) ⊂
Σ which we formally distinguish from the base set Bρ (however as subsets in Σ
they are the same). This graph carries additional equipments — fixed points on
each edge and the corresponding orinetation for each segment ended at pairs of
the closest marked points.

The topological structure of the graph Γ(ρ) is given by the following ob-
servation: by the very construction Γρ is homotopic to Σ\{p1, ..., pm}. Indeed,
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the base set is the union of critical points and finite trajectories, therefore the
punctured surface consists of the base set plus infinite trajectories, and we can
shrink every infinite trajectory to point. We can compute the Euler character-
istic h1(Γ(ρ)) − h0(Γ(ρ)) equals to 4g − 4 in the general case for holomorphic
differential without multiple zeros using the Mayer–Vietoris exact sequence,
which is essensially the same as the formula for the numbers of minima and
saddle points above. For holomorphic differentials with multiple zeros one gets
the bound of the same type. Thus the presence of Γ(ρ) from the topological
point of view doesn’t distinguish different holomorphic differentials unless it has
multiple zeros.

But we can reduce some geometrical objects, f.e. vector bundles, from whole
Σ to the graphs which correspond to holomorphic differentials, and al least we
can define certain functions on the bundle H → Mg where Mg is the moduli
space of Riemann surfaces and H is the bundle whose fiber is H0(Σ,KΣ).

As a toy example let us present a complex valued function on the total space
H. To do this we first take holomorphic differentials such that the corresponding
functions Ψ(ρ) have isolated finite critical points. In this situation each ρ defines
the graph Γ(ρ) and since the number of edges is finite one can correctly define
the integral

ASBS : H → C, ASBS(ρ) =

∫
Γ(ρ)

ρ ∈ C,

where the integration is done first on the oriented segments of Γ(ρ) and then by
summing up these numbers.

If Ψ(ρ) admits degenerated critical points which form critical subsets then
we still get the corresponding graph Γ(ρ) admits certian edges with “zero” orien-
tation being the components of the critical subset. Nevertheless the expression
ASBS is correctly defined in this situation: one just excludes the edges with
zero orientation and integrates along the oriented segments only.

Then the natural probelm arises: what are the properties of the function
ASBS on H? Is it contineous? At least one thing is clear from the defintion:
it is linear along the fibers of H → Mg. This means that it corresponds to
a section of the dual bundle H∗ → Mg. Take the zeroset of this section and
denote it as DSBS ⊂ Mg. What can be said about this subset? Is it a real
submanifold?

More serious questions arise when we see that all the story looks somehow
related to a subject which is based on the same geometrical data: theory of
flat surfaces, see [10] and references therein. Every holomorphic differential ρ
defines a flat metric on Σ with conical singularities at zeros P1, ..., Pm. One
defines there certain dynamics on the total space H and on the components
H(d1, ..., dm) where di are multiplicities of zeros P1, ..., Pm. It is natural to ask:
what is the meaning of the function ASBS from the point of view of flat surfaces?

On the other hand the construction of finite graph Γ(ρ) works for any pos-
itive degree of the canonical bundle: the Kahler structure (G, I,Ω) induces
the corresponding hermitian structure on Kk

Σ for any k ∈ Z, and the distin-
guished prequantization connection aLC induces the corresponding connection
ak ∈ Ah(Kk

Σ. The construction of Γ(ρk) where ρk ∈ H0(Σ,Kk
Σ) is holomorphic

k - differential is the same as in the case of KΣ, therefore we get certain new
ingredients of any theory based on the geometry of the bundle Hk →Mg, but
it is already non toy level.
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Now come back to the general situation.
In the theory of Weinstein structures the property used in Definition 2“ is

very well known: this means that S is regular with respect to the Weinstein
structure given by our holomorphic section, see [8].

Thus the search of special Bohr - Sommerfeld lagrangian submanifolds is
reduced to the study of the sceleton Bα. As a corollary we get the following
result

Proposition 4. For any divisor Dα ∈ |L| = PH0(X,L) the fiber p−1
I (Dα)

is finite.
Proof. Since we have just a finite number of cells in the cell decomposition

of the sceleton Bα it is possible to construct only finite number of single com-
pact submanifolds (note that we consider lagrangian submanifolds geometrically
without multiplicities).

Furthemore, using this desription we can establish an important heuristic
result about the set MSBS .

Proposition 5. Near a generic point the set MSBS is a smooth variety lo-
cally isomorphic to the projective space. Moreover, it is fibered over an open part
in the projective space PH0(X,L). In particular it carries a Kahler structure.

The arguments are as follows: the topological structure of the sceleton Bα by
the definition is the same for small neighborhood of a generic point in |L|, and
it is the same since the homotopy type of Bα is the same as X\Dα therefore it
does not depend on small variation of the holomorphic section. Thus if we have
a compact n - dimensional cycle in Bα0

for a fixed generic section α0 and then
slightly vary the section we get essentially the same picture for any sufficiently
close section, which implies the result.

Thus if we consider singular lagrangian submanifolds it is possible to speak
about the moduli spaceMSBS , but it should require very hard analysis of these
singular components of the sceletons. Even in the simplest cases as we will see
in the next section this is very hard task; moreover in geometrically more inter-
esting situations the sceletons are always very complicated, and the direct way
for definition of the moduli space looks not quite reasonable. Instead of doing
this we will try to avoid the main problem and work with smooth lagrangian
submanifolds only. The idea is based on a conjecture which relates regular
smooth lagrangian submanifolds and exact lagrangian submanifolds. Below we
will modify the definition of the moduli space of special Bohr - Sommerfeld
lagrangian submanifolds and show that if Eliashberg conjectures are true then
these modified moduli spaces are naturally isomorphic to the old ones.

3 Moduli spaces, old and modified

We begin with examples.
The simplest algebraic variety is CP1 — complex projective line with the

standard Fubini - Study metric, see [9]. Then the corresponding Kahler form
ωFS gives an integer symplectic form. Then every smooth loop γ ⊂ CP1 is
a smooth lagrangian submanifold, and no other types of smooth lagrangian
submanifolds exist.

Consider L = O(1) as the prequantization bundle which corresponds to
ωFS = ω1. Then as it is well known no Bohr - Sommerfled loop exists: since
every γ ⊂ CP1 divides the ambient manifold into two pieces, each of them can
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be taken as the disc bounded by γ, and since the total symplectic area of CP1

equals to 1, then it is impossible to have a smooth Bohr - Sommerfeld loop. We
can say that in this case the moduli space is empty.

Shift the level of quantization and consider L = O(2); then a loop γ is Bohr -
Sommerfeld if it cuts a disc of symplectic area ±1 with respect to the symplectic
form ω2 = 2ω1. Then the space of holomorphic sections H0(CP1,O(2)) is 3 -
dimensional; every holomorphic section is given by a homogenious polynomial
of degree 2, and up to scaling the section is defined by two points — zeros of
the polynomial.

Consider first the case when the polynomial is irreducible therefore the
corresponding divisor consists of two distinct points p1, p2. Take the func-
tion Ψα = −ln|α| and study its finite critical points. At p1, p2 the function
goes to infinity, and it is not hard to see that it admits one minimal point
xmin ∈ CP1\{p1, p2}. But then it must have one saddle point: infinite trajec-
tories of the gradient flow go either to p1 or to p2 and therefore it must be a
separatrix line γ joining the minimal and the saddle points. This separatrix
line must be stable with respect to the gradient flow which implies that γ is
special Bohr - Sommerfeld lagrangian submanifold with respect to the section
vanishing at p1, p2.

Now if the section is reducible, p1 = p2, then the function Ψα has one infinite
maximum, only one minimal point — and no other critical points. This means
that no special Bohr - Sommerfeld lagrangian submanifolds exist for reducible
sections.

The subset of reducible sections form a curve C ⊂ PH0(CP1,O(2)) = CP2

which is essentially the same CP1 embedded by Veronese map to the projective
plane. From this we see that the moduli space MSBS is naturally isomorphic
to CP2\C, an affine algebraic variety.

Shift again the level of quantization and consider the case L = O(3); the
corresponding symplectic form is ω3 = 3ωFS . What happens in this situation?

An irreducible section α ∈ H0(CP1,O(3)) is defined by three point where it
vanishes, thus the corresponding Kahler potential Ψα has three infinities there,
but what are the finite critical points? For certain sections there are two local
minima and three saddle points: the corresponding separatrices join the local
minima passing through the saddle points, therefore one has three segments and
no smooth loops which belong to the sceleton Bα.

Indeed, suppose we take the section α given by homogenious polynomial
P3 = z3

0 − z3
1 with simple roots; the function Ψα has exactly 5 finite critical

points:
— at [1 : 0], [0 : 1] it admits local minima;
— at [1 : −1], [1 : ρ], [1 : ρ̄] it admits saddle points (ρ here is the standard

notation of the cubic root of −1).
One has exactly 6 finite trajectories of the gradient vector field of Ψα which

form three segments with ends at the North and the South poles, passing
through the saddle points. Thus the sceleton Bα is a graph of type Θ with
two vertices and three edges; and no smooth loops lie on Bα!

On the other hand there are the sections for which two of the three segments
meet each other smoothly at the end points, and for this configuration we may
say that the set of special Bohr - Sommerfeld lagrangian submanifolds is non
empty; the subset of such sections in PH0(CP1,O(3)) form non algebraic piece
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of very strange nature, and it is clear that at this point we face an obstruction
in the theory of moduli space of SBS lagrangian submanifolds.

As it was claimed above all the old definitions are still work in the case of
singular lagrangian submanifold, thus we may study the previous example from
this point of view. Take again the graph Bα of type Θ and derive singular
lagrangian submanifolds from it. Since we are still in very simple situation it is
possible to do: we get exactly three piecwise smooth loops: take two segments
and consider it as a loop with two corners at the North and the South poles.
But what would happen in a bit more interesting geometrical situation? The
theory of Weinstein manifolds says us (see [8]) that even in the best cases the
sceletons are very complicated, but the same theory hints how we can avoid this
main difficulty in the construction.

Recall that in the Weinstein manifold terminology our SBS lagrangian sub-
manifolds are regular being components of the sceletons. On the other hand
in the same theory one studies another type of lagrangian submanifolds: exact
lagrangian submanifolds. The definition can be found f.e. in [8]: a lagrangian
submanifold S ⊂ M is said to be exact if the restriction of the 1 - form λ|S is
an exact form (note that the restriction must be closed since dλ = ω).

In our special situation when the Weinstein structure on the complement
X\Dα is defined by the holomorphic section α via formula λα = IdΨα we can
show that the exactness property is related to the Bohr - Sommerfeld condition:

Proposition 6. In the situation described above a lagrangian submanifold
S ⊂ X\Dα is exact with respect to λα if and only if for any loop γ ⊂ S and
any disc B2 ⊂ M bounded by γ the topological intersection Dα ∩ B2 equals to
the symplectic area

∫
B2
ω.

In particular S must be Bohr - Sommerfeld lagrangian submanifold. Here
we understand the topological intersection as follows: if B2 intersects D non
transversally then we take a small deformation of B2 which is already transversal
and then calculate the intersection index.

The proof is given by fair computation: the Stocks formula for
∫
γ
λα relates

the residues of λα on B2 and the symplectic area of B2, and the sum of the
residues is given by the intersection number.

The property that we used in the last proposition can be separately presented
as a new notion:

Definition 3. Let (X,ω,D) is a simply connected symplectic manifold with
integer symplectic form ω and D ⊂ X be 2n− 2 submanifold whose homology
class is Poincare dual to [ω]. Then we say that a lagrangian submanifold S ⊂ X
is D - exact iff for any loop γ ⊂ S and any disc B2 ⊂ X bounded by γ the
topological intersection B2 ∩D equals to

∫
B2
ω.

Note that this property does not depend on any additional structures — just
on the mutual arrangement of S and D. On the other hand this defintion can
be extended even to the case when S ∩D 6= ∅.

With the definition of D - exactness in hands we are ready to present a new
definition of the moduli space, which we call modified moduli space of special
Bohr - Sommerfeld cycles and denote as M̃SBS .

Let X be a compact simply connected algebraic variety of complex dimension
n, L → X be a very ample line bundle and h be an appropriate hermitian
structure on L such that it gives a Kahler structure on X with the Kahler form
ωh. Let |L| be the projective space corresponding to holomorphic section space
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for L. Fix a topological type topS and a middle class [S] ∈ Hn(X,Z) where S
is a real n - dimensional orientable manifold.

Consider the space of pairs ({S}, D) where
— D ∈ |L| is a zero divisor of a holomorphic section from H0(X,L);
— {S} is a class of smooth homologically non trivial D- exact with respect

to D lagrangian submanifolds from the complement X\D modulo Hamiltonian
isotopies in X\D, which are of topological type topS and represent the class [S]
being considered in X.

Step by step, first we take a divisor D ∈ |L| and consider the complement
X\D. In this complement we have the group Hn(X\D,Z) with the natural
epimorphism π : Hn(X\D,Z)→ Hn(X,Z). Take the preimage π−1([S]) and for
each class from π−1([S]) = {χ1, ...χm}, χi ∈ Hn(X\D,Z), realizable by smooth
D - exact lagrangian submanifolds, find such smooth D- exact with respect to
D lagrangian submanifolds which represent in the complement X\D the classes
χi. These lagrangian submanifolds form spaces of solutions LχiD−ex for each i.
The last (but not least) step is the factorization of each LχiD−ex by the natural
action of Hamiltonian isotopies on the complement X\D. Each element of the
factorized space gives a point ({S}, D) of our modified moduli space M̃SBS .

Our first aim is to prove that without any references to our old definitions
and notions such a modified moduli space is correctly defined smooth complex
manifold of dimension h0(L) − 1 (if it is non empty). To show this we use the
natural projection to the second component which gives

p : M̃SBS → |L|.

The first claim is
Proposition 7. For each D ∈ |L| the fiber p−1(D) is descrite.
Consider the moduli space BS(topS, [S]) of all Bohr - Sommerfeld lagrangian

submanifolds of fixed topological type and cut the determinantal subspace ∆(D) ⊂
BS consists of submanifolds with non trivial intersection with D. For each con-
nected component BjS ⊂ BS\∆(D) it is defined a class wj from H1(S,Z) given
by the map α

σS
: S → C∗. If S0 ⊂ X\D is a represetative of our moduli space

then it must lie in the corresponding component Bj0S such that the class wj0 is
trivial (note that it is equivalent to the D - exactness condition in the case when
D is the zero divisor of holomorphic section α). Then whole the connected com-
ponent Bj0S consists of exact lagrangian submanifolds with the same non trivial
homology class in Hn(X\D,Z); but the Hamiltonian deformations locally form
Bj0S near S0, therefore the quotient space of Bj0S modulo Hamiltonian isotopies
must be just a point. Summing up we get a discrete set of points, corresponding
to levels ji for which the classes wji are trivial.

The next fact is
Proposition 8. Every point ({S}, D) ∈ M̃SBS admits a neighborhood nat-

urally isomorphic to a neighborhood of D ∈ |L| in the projective space.
If S0 is a representative for a divisor D from the class {S} of exact smooth

homologically non trivial lagrangian submanifolds then S0 is D - exact for D
and for all D’s from a neighborhood of D in the projective space |L|. Indeed,
if D′ is sufficiently close to D in |L| then it still does not intersect S0; since
S0 is Bohr - Sommerfeld universally with out any dependence on the choice of
D, then the restriction of λ(α′) to S0 must present an integer valued class in
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H1(S0,Z) but this class must be the same for D and D′, consequently it must
be trivial. Here α′ is a holomorphic section with zero divisor D′.

Therefore we can present the neighborhood of the point ({S}, D) just by the
constant first element and varying the second element in a suitible neighborhood
of D in the projective space.

In particular we get that the differential dp of map p is an isomorphism for
each non trivial point.

As a consequence we get
Theorem A. The modified moduli space M̃SBS is a Kahler manifold of

complex dimension h0(X,L)− 1.
We would like to emphersize that the last Theorem is an independent result

about an independent object — the modified moduli space M̃SBS . But we must
explain why we denote it using the abbreviation SBS thus why it is somehow
related to special Bohr - Sommerfeld cycles. The explanations lead to much more
strong fact which we first illustarte by an example which has been presented
above.

Come back to the case X = CP1 and L = O(3) when as we have seen
above no smooth special Bohr - Sommerfeld lagrangian submanifolds for generic
holomorphic section.

On the other hand we can easily construct the modified moduli space M̃SBS

for this case. Irreducible divisor D is defined by three distinct points p1, p2, p3 ∈
CP1; a smooth loop γ ⊂ CP1\{pi} is D - exact iff it bounds disc B2 of symplectic
area 1/3 with respect to ωFS containing exactly 1 points pi (the complimentary
case when B2 of symplectic area 2/3 containing exactly 2 points is essentially
the same). Up to Hamiltonian equivalence in CP1\{pi} we have exactly three
possibilities: for each point pi take a small smooth loop surrounding this point
and then blow it to have the right symplectic area for the bounded region —
and such γi is exactly the required one. Therefore for each irreducible divisor
D = {pi} we have exactly three classes of exact lagrangian submanifolds.

To describe the global structure of M̃SBS we have to study what happens
over points of |L| representing reducible divisors. The set of such points is given
by the discriminant equation for cubic equation, so they form a surface D4 of
degree 4 in CP3 = |O(3)|. This surface includes a rational curve C ⊂ D4 which
corresponds to cubic polynomial with only one triple root. Consider first the
points in D4\C. Over such a point we have only one smooth loop which divide
the surface of CP1 in the ratio 1 : 2, and the first part contains the single root
while the complement part contains the double root. Furthemore for a divisor
which is presented by triple point we don’t have D - exact loops at all. Therefore
we have the following grading over |L| ⊃ D4 ⊂ C: nothing over C, one element
over D4\C and three elements over generic point.

Very interesting fact appears in this picture: no ramification takes place!
When we start with an irreducible divisor and then two points p1 and p2 are
merging together to one double point the picture is as follows: loops γ1 and γ2

after their fusion under the process p1 7→ p2 give us the same γ3 which remains
to present the corresponding class in H1(CP1\{pi},Z). At the same time the
non trivial class [γ1], [γ2] ∈ H1(CP1\{pi}) either vanishes or turns to be equal
to [γ3].

Summing up, the modified moduli space M̃SBS is isomorphic to an algebraic
variety minus very ample divisor. Indeed, take in the direct product CP1×CP3

a subvariety Y given by the equation α0z
3
0 +α1z

2
0z1 +α2z0z

2
1 +α3z

3
1 = 0 where
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[zi], [αj ] are homogenious coordinates on the fisrt and the second summand
correspondingly. In this algebraic variety Y cut the ramification divisor ∆ ⊂ Y
with respect to the natural projection on the second summand, — then

Proposition 9. The modified moduli space M̃SBS for X = CP1 and L =
O(3) is naturally isomorphic to affine algebraic variety Y \∆.

The answer is amazing: we get algebraic variety with a fixed very ample
divisor! On the other hand we can take the Weinstein sceleton of Y \∆, study
D- exact smooth lagrangian submanifolds in Y \∆ et cetera, thus some new
horizons are opened.

In particular we would like first to answer the following natural question:
coming back to the starting point of our discussion we must study the de-
pendence of the constructed moduli space M̃SBS on the choice of hermitian
structure h on the very ample line bundle L→ X. To do this recall that h on L
makes it possible to assciate a Kahler potential Ψα to a holomorphic section α.
If we vary h = h0 → ht in the class of admissible hermitian structures (note that
not each hermitian structure gives a Kahler form on X) then the difference of h

and ht is presented by a real non vanishing function eft =
|α|ht
|α|h defined first lo-

cally on X\Dα; then taking different α’s we get a global non vanishing function
of X. Then the Kahler structure changes in a simple manner: ωt = ω + dIdft.
We claim that for small changes of ht the geometrical structure of the modified
moduli space is the same.

Indeed, let for a divisor Dα we have a smooth representative S0 for the point
({S}, D) where S0 is a D - exact lagrangian with respect to ω = ω0 submani-
fold. Consider the family of Weinstein structures (ln|α|ht , λt = Idln|α|ht) with
different symplectic forms ωt. Now if we take the time dependent vector field
vt = ω−1

t (λt) and generate the corresponding flow φtvt on a neighborhood of S0

then every St = φtvt(S0) must be exact for 1 - form φtvt(λt) since it is a family
of local diffeomorphisms. On the other hand 1 - form φtvt(λt) equals to λt plus
an exact form therefore St must be exact as well with respect to λt. Note that
exactness in this setup is not related to symplectic or lagrangian properties —
just to smoothness of the transformations.

To show that the difference φtvt(λt)− λt is exact compute the Lie derivative

Lvtλt = dλt(vt) + d(λt(vt));

the first term is the difference between λt − λ0 while the second term is exact.
Without loss of generality we can suppose ft = tf and get the result.

Thus for the changing of the hermitian structure we get a one - to one
correspondence for the classes {S} of D - exact smooth submanifolds lagrangian
with respect to different symplectic structures. Consequently we can show that
for all hermitian structures the modified moduli spaces M̃SBS are isomorphic.

In the last sentences we have repeated the arguments from [6] when one
establishes relations between homotopic Liouville structures. Our theory of
modified moduli space is related to the theory of Weinstein manifold as well,
and to claim some important facts about the modified moduli spaces we need
the statements known as the Eliashberg conjectures. They are presented as an
open problem for the Weinstein manifolds from (see [8], Problem 5.1), but for
us they are of different kinds being “stratified” into two levels.

The first level we would like to call Soft Eliashberg conjecture. It says
that if S ⊂ M̃ is a smooth exact lagrangian submanifold in a Weistein manifold
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(M̃,Ψ, λ) then it must be homologically non trivial, so Hn(M̃,Z) 3 [S] 6= 0.
Moreover, one claims that each homology class in Hn(M̃,Z) can contain at
most one smooth exact lagrangian submanifold up to Hamiltonian isotopies;
and the number of the homology classes realized by smooth exact lagrangian
submanifolds is finite.

For our modified moduli spaces the Soft Eliashberg conjecture (SEC) would
imply that

— the number of elements in any fiber p−1(D) is finite;
— no ramification happens near subspaces in the projective space |L| where

degenerations of the group Hn(X\D,Z) take place.
The first item is obvious, let us deduce the second item from SEC.
According to SEC the modified moduli space can be realized as a subset

of the product space ZN × |L| where N is the rank of the group Hn(X\D,Z)
where D is generic. Note that the group is the same for each generic D and it
degenerates at the elements when the divisor D turns to be singular; but at the
same time the smaller groups for singular divisors can be naturally embedded
in the big group ZN . Our picture should depend on the trivialization: since
the first stratum of singular divisors has complex codimension 1 then it is a
monodromy in the group AutHn(X\D,Z), but nevertheless a trivialization can
be fixed globally on |L|. Therefore if SEC is true then we can mark the classes
in ZN for every D ∈ |L| realizable by smooth D- exact lagrangian submanifolds
with respect to D of fixed topological and homological types which shall lead to
a finite covering of the projective space |L|. In this picture ramification could
not appear: points in the lattice can not merge being integer, and every point
a ∈ ZN under the limiting process when D tends to D0 ∈ DSing ⊂ |L| either
disappears if it is not contained by the subgroup Hn(X\D0,Z) ⊂ ZN or just
survives if it is contained.

Therefore if SEC is true then we get a Kahler structure on M̃SBS realized
as a subspace in the product ZN × |L|: the Kahler structure can be easily lifted
from the projective space |L|. However in the example presented above we got
much more interesting picture: an algebraic variety of the form Y \∆. Now our
main goal in the story is to find a good realization of the modified moduli spaces
so to find certain algebraic structure on these spaces.

On the other hand SEC implies certain relation between the moduli space
MSBS as they were defined above and the modified moduli space M̃SBS . As
we have discussed above for a holomorphic section α ∈ H0(M,L) the special
Bohr - Sommerfeld cycles must be singular being components of the Weinstein
sceleton of M\Dα. On the other hand every such a cycle must present a non
trivial homology class inHn(M\Dα,Z). If this cycle is sufficiently primitive then
according to SEC it should be a smooth realization by a smooth exact lagrangian
submanifold. Moreover such a submanifold should be unique up to Hamiltonian
isotopies if SEC is true. Therefore we can present a one - to one correspondence
between sufficiently primitive cycles in the Weinstein sceleton and the classes
of smooth exact lagrangian submanifolds in the complement. Again, SEC says
that MSBS is isomorphic to M̃SBS . And since we strongly belive in SEC, the
modified moduli space was notated with the same abbreviation SBS.

Fairly, we have not defined above what are the points ofMSBS , which cycles
from the Weinstein sceleton we understand as these points; now we can formu-
late all the details following the standard ideas from ALAG, [2]. Idealogically
we understand Bohr - Sommerfeld lagrangian cycles as limiting elements of fam-
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ilies of isodrastic deformations of given smooth Bohr - Sommerfeld lagrangian
submanifolds. Let St ⊂ M be a family of Bohr - Sommerfeld lagrangian sub-
manifolds such that for t ∈ (0; 1] every St is smooth, and under the limit t 7→ 0
the deformation is continuous. Therefore the limiting S0 can be singular, but
for every smooth piece of S0 it must be lagrangian or isotropical, and for every
piecewise smooth loop γ ⊂ S0 the symplectic area of a disc with corners B ⊂M
such that ∂B = γ is integer, — which is the refinement of the Bohr - Sommerfeld
condition.

Now if we have a singular cycle S0 inside of the Weinstein sceleton of M\Dα

such that there is a isodrastic lagrangian deformation St such that St are smooth
Bohr - Sommerfeld for t > 0 then one claims

Proposition 10. For sufficiently small t > 0 smooth lagrangian submani-
folds St are exact.

The proof follows from Propostion 6 above: since S0 does not intersect Dα

the same happens for every St for small t > 0. It implies that these St are D -
exact with repsect to Dα; at the same time all St lie in the same orbit under the
action of Hamiltonian isotopies on M\Dα. And if SEC is true then such an exact
St is the unique representation for the corresponding class [S0] ∈ Hn(M\Dα,Z)
which must be non trivial since S0 belongs to the sceleton (is regular).

If we have a smooth exact lagrangian submanifold S ⊂M\Dα then according
to SEC it must be homologically nontrivial therefore it is a cycle S0 in the
Weinstein sceleton which is homologically equivalent to S but it is a hard task
to prove that S is given by an isodrastic lagrangian deformation. Another
conjecture helps in this problem:

Hard Eliashberg Conjecture. Every smooth exact lagrangian submani-
fold is regular.

This conjecture is much more complicated; at the same time it should lead
to the equivalence between the moduli space of special Bohr - Sommerfeld cycles
MSBS and the modified moduli space M̃SBS . We finalize the discussion with
the statement:

Theorem B. If Hard Eliashberg Conjecture (HEC) is true then MSBS is
naturally isomoprhic to M̃SBS.

At the end we present more examples of the moduli spaces.
Let X = Q ⊂ CP3 be a smooth complex quadric. It is isomorphic to the

direct product CP1 ×CP1, see [9]. The line bundle O(1, 1), given by the tensor
product of two copies of O(1) from each direct summand, is very ample, and it
is well known that it is the same as the restriction O(1)|Q, therefore the zero
divisors of its holomorphic sections are given by the hyperplane section in CP3.
Thus the generic divisor is given by non tangent plane section of Q: in this case
the complement Q\D is homotopic to 2 - sphere, therefore H2(Q\D,Z) = Z,
and it is not hard to see that this class is realized by a lagrangian 2 - sphere,
essentially isotopic to the sphere given by the antidiagonal embedding into the
product CP1 × CP1. If D is reducible it corresponds to a tangent plane and
in this case the complement Q\D is isomorphic to C × C which imples non
existence of exact lagrangian spheres in the complement. Summing up we get
that M̃SBS in this case is naturally isomoprhic to CP3\Q∨, where Q∨ is the
dual quadric. Moreover, in this case it is possible to find the “old” moduli space
MSBS computing the critical points of the Kahler potentials Ψα defined by
holomorphic sections, and this moduli space is the same as the modified one.

Now consider a bit more complicated situation: let X = Q be again complex
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projective quadric, but take as L the bundle L = O(2, 1) which is very ample too.
The computations of critical points of the Kahler potentials for construction of
the “old” moduli space“ now is a hard task therefore we would like to describe
the modified moduli space only. For this we fix homogenious coordinates [x0 :
x1], [y0 : y1] on the direct summands CP1×CP1 = Q; note that a section of the
bundle O(2, 1) is given by a polynomial

(a0x
2
0 + a1x0x1 + a2x

2
1)y0 + (b0x

2
0 + b1x0x1 + b2x

2
1)y1 = 0,

thus we have as the complete linear system the projective space CP5 with the
coordinates [a0 : a1 : a2 : b0 : b1 : b2]; every couple (ai, bj) defines a section,
whose zeroset corresponds to this couple up to scale.

Consider the canonical projection πx : Q → CP1 to the first projective
line with coordinates [x0 : x1]. Then for a given section we have the fol-
lowing correspondence: the polynomial (*) defines a section of the projection
πx unless the points [x0 : x1] where both ”coefficient“ polynomials Pa(x) =
a0x

2
0 + a1x0x1 + a2x

2
1 and Pb = b0x

2
0 + b1x0x1 + b2x

2
1) vanish. Indeed, if for

certain [x0 : x1] at least one ”coefficient“ polynomial does not vanish we have
unique up to scale pair [y0 : y1] such that [x0 : x1], [y0 : y1] solve the equation
(*); and this defines a section of the projection πx.

It is clear that for generic choice of ai and bj the polynomials Pa and Pb
do not have common roots, and therefore for generic divisor from |L| we get
that the complement Q\D is isomorphic to the product CP1 × C therefore
the group π2(Q\D) is naturally isomorphic to Z. It follows that there are no
topological obstructions to the existence of 2 - sphere in Q\D but one more
topological obstruction is presented here: our lagrangian 2 - spheres represent
the homology class (1;−1) and therefore it must intersect any divisor from the
complete linear system |O(2, 1)|. Therefore despite of the fact that π2(Q\D) is
non trivial we do not have D - exact lagrangian spheres. At the same time if we
ask about the existence of other types of lagrangian submanifolds with trivial
homology class in H2(Q,Z) then HEC does not allow the existence of smooth
exact lagrangian tori (note however that Q contains lagrangian tori with trivial
homology class, f.e. — the product tori).

To finish the example consider the case of non generic divisors from the com-
plete linear system |O(2, 1)|: if the coefficient polynomials Pa and Pb have a com-
mon root, then the complement Q\D is isomorphic to the product (CP1\{pt})×
C since the divisor D contains the fiber over this root; therefore in this case Q\D
is homotopic to CP1\{pt} = C, thus H2(Q\D,Z) = 0. The same vanishing re-
sult happens when Pa and Pb are proportional.

Summing up we see that M̃SBS is trivial for the case X = Q,L = O(2, 1).
But the computation above is not ineffective since we will exploit the arguments
below in the most interesting example.

Let X = F 3 be the full flag variety in C3, realized as a hypersurface X =
{
∑2
i=0 xiyi = 0} in the direct product CP2×CP2 where [xi], [yj ] are homogenious

coordinates on each direct summand. The line bundle O(1, 1) being restricted to
X is very ample, and the corresponding symplectic form ω is given by the direct
sum of the lifted standard Fubini - Study forms from the direct summands.
Thus we consider L = O(1, 1)|X .

It is known that the flag variety F 3 = X with the standard symplectic form
ω contains a lagrangian 3 - sphere which is called the Gelfand - Zeytlin sphere
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since it arose in the framework of the Gelfand - Zeytlin systems. It is explicitly
presented in the homogenious coordinates by the condition

SGZ = {[x0 : x1 : x2]× [y0 = x̄0 : y1 = x̄1 : y2 = −x̄2]|
2∑
i=0

xiyi = 0} ⊂ X. ∗

It is not hard to check that the condition above describes a lagrangian sphere:
since the antidiagonal embedding of CP2 to the direct product CP2 × CP2 is
lagrangian, the subset {[x0 : x1 : x2] × [y0 = x̄0 : y1 = x̄1 : y2 = −x̄2]}
is Hamitonian isotopic to the antidiagonal embedding thus is lagrangian as
well, and the intersection of this subset and X is cotransversal one deduces
that it is lagrangian. On the other hand SGZ is described by the condition
|x0|2 + |x1|2 − |x2|2 = 0 in CP2 therefore it is isomorphic to 3 - sphere.

Since the same is true for the case when minus in the formula (*) is placed
not before x̄0 but before any other x̄i we get another lagrangian sphere of the
same type, namely

S0 = {[x0 : x1 : x2]× [−x̄0 : x̄1 : x̄2]}, S1 = [x0 : x1 : x2]× [x̄0 : −x̄1 : x̄2]},

and S2 = SGZ — all are lagrangian spheres, which are Hamiltonian isotopic
in X. At the same time the homology class [Si] ∈ H3(X,Z) is trivial since
H3(X,Z) is trivial itself.

We would like to describe the moduli space M̃SBS for the following topolog-
ical data: our S is isomorphic to 3 - sphere homologically trivial in X. Note that
in this case every lagrangian sphere must be exact having trivial fundamental
group, which drastically simplify the analysis.

We start with an irreducible divisor D ∈ |L| and our aim is to find the classes
of lagrangian spheres in the complement X\D up to Hamiltonain isotopies. For
this first study the homotopy type of the complement X\D. Being a hyper-
surface in the direct product CP2 × CP2 our flag variety admits the canonical
projection to the first summand πx : X → CP2, whose fibers are projective
lines in the second projective plane. Any irreducible D ⊂ X gives a section of
this projection plus three fibers, therefore the complement X\D is given by a
complex line bundle over CP2\{p1, p2, p3} where pi is a point in this projective
plane. To illustrate it we can take say the following D ⊂ X:

D = {x0y0 − x1y1 + ix2y2 = 0, x0y0 + x1y1 + x2y2 = 0} ⊂ X.

It is equivalent to conditions (1 − i)x0y0 = (1 + i)x1y1 = −x2y2 therefore for
each [x0 : x1 : x2] we either have exactly one point in π−1

x ([x0 : x1 : x2]) if at
least two coodrinates are non zero or whole the fiber if two coordinates are zero.
Therefore X\D is naturally isomorphic to the product

(CP2\{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]})× C.

Contracting the punctured fibers we get that X\D is homotopic to the comple-
ment CP2\{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. Note that for any irreducible divisor
the picture is essentially the same.

Exclusion of three distinct points from CP2 generates non trivial homotopy
group π3(CP2\{p1, p2, p3}) equals to Z⊕Z; thus H3(X\D,Z) is the same Z⊕Z,
and one can expect that certain classes from this lattice can be realized by
smooth lagrangian spheres.
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This is indeed the case: we claim that for each i = 0, 1, 2 lagrangian sphere
Si defined above:

i) does not intersect divisor D;
ii) lies in a non trivial class ai ∈ H3(X\D,Z) such that ai 6= aj for i 6= j;
iii) no other classes of lagrangian spheres do exist.
First check item i): since our divisor is given by the conditions (1− i)x0y0 =

(1 + i)x1y1 = −x2y2 substitute there y0 = −x̄0, y1 = x̄1, y2 = x̄2 as it is for S0.
This leads to the condition (1 − i)|x0|2 = (1 + i)|x1|2 = −|x2|2 which can take
place if and only if x0 = x1 = x2 = 0 but such a point does not exist on the
projective plane. Therefore D ∩ S0 = ∅. The same arguments work for S1 and
S2 as well.

Further, consider the projections of Si under πx to the first projective plane.
Note that the projection realizes the contraction of X to CP2; the image of S0

is given by the equation πx(S0) = {−|x0|2 + |x1|2 + |x2| = 0} ⊂ CP2, it is a
smooth 3 - dimensional sphere which divides the projective plane into two open
parts. These parts are described by the sign of the value of the real function

F0 =
−|x0|2 + |x1|2 + |x2|2∑2

i=0 |xi|2
,

which maps CP2 to the segment [−1, 1]. Thus function has non degenerated
critical point at [1 : 0 : 0] and degenerated critical set at the line x0 = 0. The
value F0 = 0 is non critical, therefore S0 is a smooth sphere. At the same
time at points [1 : 0 : 0] and [0 : 1 : 0], [0 : 0 : 1] the function F0 has different
signs, consequently S0 lies in a non trivial class in π3(X\D) since πx realizes a
homotopy X\D 7→ CP2\{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} and πx(S0) represents a
non trivial class.

The same arguments show that S1 does represent a non trivial class as well,
but it is a different class from H3(X\D,Z) since it is projected to a different
class for the punctured projective plane. Indeed, S0 is “centered” in [1 : 0 : 0]
and the resting points lie “outside” of S0; at the same time S1 is “centered” in
[0 : 1 : 0] and the resting points [1 : 0 : 0], [0 : 0 : 1] lie “outside” of it; the same
is true for S2. The basis in H3(X\D,Z) can be choosen in such a way that
S0, S1, S2 represent the classes (1, 0), (0, 1) and (1, 1) respectively. In particular
this fact ensures us that Si and Sj are not Hamiltonian isotopical for i 6= j.

For momentary prove of iii) we need the Soft Eliashberg Conjecture; how-
ever if one knows that SGZ is essentially unique lagrangian sphere in F 3 up to
Hamiltonian isotopy it were possible to establish the fact without references to
SEC.

Thus we can say that for irreducible divisors the classes can be described
by triple of points p1, p2, p3 ∈ CP2; below we present an algebraic way to define
this attachment. Now we consider reducible divisors from the geometrical poitn
of view.

A reducible divisor D ∈ |L| is presented by pair of sections of O(1) on each
copy of the projective planes: therefore we can represent it by two projective
lines lx ⊂ CP2

x, ly ⊂ CP2
y, and the divisor D ⊂ X is given by the union of

π−1
x (lx) ∪ πy(ly). These two components of D in X are isomorphic the Hirze-

bruch surface F1, and if we study the projection πx : X → CP2
x then the first

component is given by the fibers over lx while the second component presents
a section of this projection plus the fiber over a point which corresponds to the
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porjective line ly (thus it is isomorphic to the projective plane with one point
blown up). Therefore we have two different situations: in more general case the
point, corresponding to ly does not lie on lx in CP2

x, in more specific case the
point lies on lx.

In the first case the homotopy type of X\D is the same as of C2\{pt}:
indeed, after the cancelation of the first component we get a projective bundle
over CP2

x\lx which means the projective bundle over C2; then the cancelation
of the second component removes one point in each fiber and removes totally
one fiber over the point which corresponds to ly. Therefore X\D is isomorphic
to (C2\{pt})× C, and consequently H3(X\D,Z) = Z. Now we can again show
that there exists unique up to Hamitonian isotopy smooth lagrangian sphere
in the complement X\D, which is projected by πx to a 3 - sphere in C2\{pt}
“centered” exactly in this point. This point p characterizes the sphere, and
we attach to this point the corresponding class of lagrangian spheres up to
Hamiltonian isotopy.

The last case when lx and ly are related by the condition that the point in
CP2

x, corresponding to ly, lies on lx, gives trivial set of lagrangian spheres since
in this case X\D is isomorphic to C2×C therefore H3(X\D,Z) is trivial. Here
again we use SEC, but it is possible to verify by hands, that for this case every
Gelfand - Zeytlin sphere intersects the divisor.

Summing up, we see that the moduli space M̃SBS can be described as a
subset of the direct product |L|×CP2

x: for each element of |L| ∼= CP7 the classes
of smooth lagrangian spheres are given by the “centers” of their projections to
CP2

x; and the complete linear system |L| is stratified by the conditions “three
points in CP2

x”, “one point in CP2
x” and “ no points in CP2

x. Note that the picture
looks quite similiar to the first example of this section, for X = CP1, L = O(3),
discussed above.

The detailed analysis shows that the answer even closer to the result for
X = CP1, L = O(3).

Study the situation algebracally: with respect to the fixed homogenious
coordinates [x0 : x1 : x2], [y0 : y1 : y2] every divisor D from |L| is given by

two equations:
∑2
i=0 xiyi = 0,

∑
i,j aijxiyj = 0 where in the last expression i

and j are taken from 0,1 or 2. The representation of D by the numbers {aij}
is not unique since we can add any λ to a00, a11 and a22 without changing of
the system and as well we can scale the numbers aij therefore we normalize the
matrix

A = (aij)

such that trA = 0 and consider it up to scaling.
For a given divisor D write the defining system as

x0y0 + x1y1 + x2y2 = 0
(a00x0 + a10x1 + a20x2)y0 + (a01x0 + a11x1 + a21x2)y1

+(a02x0 + a12x1 + a22x2)y2 = 0

For a particular choice of [x0 : x1 : x2] understood as parameters the last system
looks like a system of linear equations in three variables y0, y1, y2, which has a
unique up to scale non zero solution if and only if the system

(a00x0 + a10x1 + a20x2) = λx0

(a01x0 + a11x1 + a21x2) = λx1

(a02x0 + a12x1 + a22x2) = λx2

∗∗
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does not admit non zero solution for any λ. It implies that any divisor D rep-
resents a section of the projection πx : X → CP2

x over the subset NA ⊂ CP2
x

consists of such [x0 : x1 : x2] that the system (**) does not admit non zero
solutions. But it is exactly the condition that vector (x0, x1, x2) is not an eigen-
vector for the matrix A with an eigenvalue λ. It follows that the divisors from
the complete linear system |L| can be combined with respect to the following
stratified conditions:

1) (generic case) the matrix A has three eigenvectors with different eigenval-
ues λ1, λ2, λ3, λi 6= λj , therefore we have three distinct points p1, p2, p3 ∈ CP2

x

— and thus three different classes of smooth lagrangian spheres;
2) the matrix A has one multiple eigenvalue, say λ1 = λ2, and admits one

eigenvector and one eigenspace, therefore we have one distinct point p and the
corresponding line lx in the projective space CP2

x such that p does not lie on lx,
— and for such a divisor we have one class of lagrangian spheres;

3) the matrix A has one multiple eigenvalue, say λ1 = λ2, but admits two
eigenvectors and no eigenspace (the case of Jordan cell), therefore after the
projection by πx we get CP2

x\{p1, p2} but π3(CP2
x\{p1, p2}) = Z, — therefore

we again as in the case 2) get only one class of lagrangian spheres;
4) the matrix A has λ1 = λ2 = λ3 = 0 and is presented by one Jordan cell,

so it admits a single eigenvector, — this corresponds to absence of lagrangian
spheres in X\D since π3(CP2

x\{pt}) = 0;
5) the matrix A has λ1 = λ2 = λ3 = 0 and contains 2× 2 Jordan cell, thus

we have just an eigenspace of dimension 2 and no separate eigenvector, so this
is the case discussed above when lx and ly are related, and — in this case no
lagrangian spheres in the complement.

Summing up the cases 1) - 5) we see that the classes of lagrangian spheres
correspond to single eigenvalues of the matrix A. Indeed, in the case 1) we have
three single eigenvalues — and three classes of lagrangian spheres; in the cases
2) and 3) we have one single eigenvalue λ3 — and unique class of lagrangian
sphere; at finally in the cases 4) and 5) we do not have lagrangian spheres in
the complement X\D.

These arguments leads to the following realization of the modified moduli
space M̃SBS : in the direct sum H0(X,O(1, 1)|X)⊕C = C8⊕C consider an affine
hypersurface given in the affine coordinates (aij , z)|a00 + a11 + a22 = 0 by the
cubic equation det(A − zI) = 0 which is homogenious since the multiplication
of matrix A by a constant leads to the multiplication of the eigenvalues by the
same constant. Therefore this equation defines a projective cubic hypersurface
Y ⊂ P(H0(X,O(1, 1)|X) ⊕ C) = CP8 definig a finite covering of the complete
linear system |L|. The ramification divisor ∆ ⊂ Y is described by the following
condition: since det(A − zI) = −z3 − az + b where a has degree 2 in the
homogenious coordinates in |L| and b = detA has degree 3, then the multiple
eigenvalues correspond to non trivial solutions of the system

2z3 + az − b =0,

(z3 + az − b)′z =3z2 + a = 0.

Therefore ∆ ⊂ Y ⊂ CP8 is a divisor from the complete linear system |O(2)|Y |
(note that 3z2 + a = 0 is homogenious of degree 2 in H0(X,O(1, 1)|X)⊕ C).

Proposition 11. The modified moduli space for the lagrangian 3- spheres
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in the flag variety F 3 and the line bundle K
− 1

2

F 3 is isomorphic to

M̃SBS = Y \∆.

In particular it admits a natural compactification, isomorphic to Y .
It is very interesting result since we get again the geometrical data of the

same form (algebraic variety, very ample divisor). In particular we can attach

to our given pair (F 3,K
− 1

2

F 3 ) either the Weinstein sceleton of Y \∆ or thew finite
set of the smooth exact lagrangian submanifolds of Y \∆ up to Hamiltionian
isotopies.

4 Problems

The studies of special Bohr - Sommerfeld submanifolds and cycles lead to certain
natural questions about numerical invariants related to lagrangian geometry.

The first problem is stated for the simplest possible algebraic variety —
complex projective line CP1. For this base variety consider the series of positive
bundles O(k), k > 0. Fixing an approriate hermitian structure |.|1 on O(1)
we automatically get the corresponding hermitian structures |.|k on its powers
O(k). Then for any holomorphic section α ∈ H0(CP1,O(k)) we can construct
the function

Ψα = −ln|α|k,

which is subharmonic thus it admits critical points of two types: minima and
saddle points (for special α this function admits critical subsets, but we consider
generic sections). The numbers of minimal and saddle points, denoted as m
and s correspondingly, are realted by the Euler characteristic relation since the
number of infinite maxima equals to k so

m− s+ k = 2,

but it is not clear what is the number m = m(k) itself. It should be the same
for generic sections therefore if one takes the generating function

W0 =

∞∑
k=1

mkq
k,

it should reflect certain properties of our given base manifold CP1. At least
asymptotic behavior of such W is interesting to know.

We can reformulate this problem using the realization of holomorphic sec-
tions by homogenious polynomials: consider in C2 with the standard hermitian
structure <,>, take the quadratic function F (ψ) =< ψ,ψ >, given in some
approriate coordinate system (z1, z2) as F (z1, z2) = |z1|2 + |z2|2, generic ho-
mogenious polynomial Pk(z1, z2); take in C2 the surface Σc = {Pk(z1, z2) = c}
for certain c ∈ C∗ and restrict the function F to Σc. The restriction F |Σc is not
Morse: each critical set must be invariant under the phase cyrcle action, but
it is possible to define the index of the critical subset distinguishing “minima”
and “saddle” critical subsets.

There are other equivalent reformulations of this problem.
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Next problem is related to the previous one: we can extend the question
posted above to the case of Riemann surfaces of positive genus. For this exten-
sion we leave our main framework of simply connected symplectic manifolds.

Let Σ be a compact smooth Riemann surface of genus g > 1 and I be a
complex structure on it. Then one can take the unique compatible riemannian
metric G of constant negative curvature, normalizing the corresponding Kahler
form Ω such that

∫
σ

Ω = 2g − 2. Then the Kahler triple (G, I,Ω) induces a
hermitian structure h1 on the cotangent bundle T ∗Σ and thus on all the tensor
powers of it. For a generic holomorphic k - differential α ∈ H0(Σ, (T ∗Σ)k)
take the function Ψα as above and ask the same question as above: what is the
number of local minima of Ψα? It seems that this number should be independent
on I which leads to the definition of generating function

Wg =

∞∑
k=1

mkq
k;

it is interesting to find it (even on the asympotitc level).
Now for any algebraic variety X, smooth compact and simply connected, one

can formulate a natural problem related to the questions of lagrangian geometry.
For such an X take any very ample line bundle L→ X which exists by the

very definition. Fix an appropriate hermitian structure on L and for generic
holomorphic section α ∈ H0(X,L) take smooth exact lagrangian submanifolds
modulo Hamiltonian isotopies. According to SEC, the number of classes is finite,
and we denote it as m1 = m(L). Here it is possible to classifiy the submanifolds
distinguishing the topological types, classes from Hn(X,Z) etc, but the most
generic way is to take the global number m1 of the classes of smooth exact
lagrangian submanifolds modulo Hamiltonian isotopies. This number should be
independent on the choice of generic holomorphic section and even more — on
the choice of an appropriate hermitian structure on L. Thus we get a number
defined in the framework of lagrangian geometry but which does depend on the
algebraic variety and very ample line bundle only. Note that it is not the rank
of the group Hn(X\Dα,Z), the number m1 is different even in the simplest
cases: when X = CP1 and L = O(3) as we have seen above (and for L = O(4)
the situation is even more complicated). Therefore it is not just a topological
question although non vanishing number m1 implies non triviality of the rank.

Now we can repeat the question for any positivie power of L since the very
amplness of L implies the same for Lk for positive integer k; applying the same
procedure we get numbers m2 for L2, m3 for L3 et cetera... Totally it gives us
a generating function

F (L) =

∞∑
k=1

mkq
k.

This function depends on X and L only. The coefficients mk characterize our
moduli spaces M̃SBS since their dimensions can be calculated using the Rie-
mann - Roch formula (since it is the same as h0(Lk)−1), and mk is the covering
degree at generic point over the projective space |Lk|. At the same time we can
comletely forget about our moduli space, Bohr - Sommerfeld conditions and
study this problem just as it is stated above. Moreover we can omitt the con-
dition on the fundamental group of X since the definition of exact lagrangian
submanifold needs a hermitian structure on L only.
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Thus globally for a smooth compact algebraic variety X we can attach to any
very ample line bundle the corrresponding generating function; the properties of
the generating functions look quite interesting from the Mirror Symmetry point
of view understood as a duality between complex and symplectic geometries.
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