Dualities and Symmetries in String Theory

Albrecht Klemm
Physikalisches Institut
Universität Bonn
Nussallee 12
53115 Bonn
Mathematische Arbeitstagung June 5-11, 2009
Max-Planck-Institut für Mathematik, Bonn, Germany

1 Exposition of the problem

In string theory one considers maps

$$
\begin{equation*}
X: \Sigma_{g} \rightarrow \hat{M} \tag{1}
\end{equation*}
$$

from a Riemann surface Σ_{g} to a target space \hat{M}. For simplicity we focus on orientable closed Riemann surface of genus g. The standard supersymmetric string theory, called type II string, has desirable symmetries at quantum level if $\operatorname{dim}_{R}(\hat{M})=10$. This is called the critical dimension and to describe a four dimensional gravity theory, or more precisely a four dimensional $N=2$ supergravity theory, one considers $\hat{M}=M \times M_{4}$. Here M_{4} is a large space of signature (3,1), which is to be identified with our universe, while M is a three complex dimensional Calabi-Yau manifold and its typical radii are so small that according to Heisenbergs uncertainty principle one needs higher energy scales then presently explored to detect it directly in experiments. Physical amplitudes are given by variational integrals, the simplest one is the vacuum amplitude

$$
\begin{equation*}
Z(M)=\int \mathcal{D} X \mathcal{D} \chi e^{-S(X, \chi, M)}, \tag{2}
\end{equation*}
$$

where the action S is schematically

$$
\begin{equation*}
S=\int_{\sigma} G^{\mu \nu} \partial_{\alpha} X_{\mu} \partial^{\alpha} X_{\nu}+i B^{\mu \nu} \epsilon^{\alpha \beta} \partial_{\alpha} X_{\mu} \partial_{\beta} X_{\nu}+\text { supersymmetric completion } \tag{3}
\end{equation*}
$$

Here χ stands for fermionic partners of the bosonic coordinate X, which occur in the supersymmetric completion.

Note that the variational integral over the worldsheet metric does not appear since it trivializes due to the special symmetries in the critical dimension.

On the other hand the metric $G^{\mu \nu}$ and the antisymmetric 2 -form field $B^{\mu \nu}$ on M are not varied over, so that Z depends on them as well as on other properies of M, which determines the nature of physics in M_{4}. The main interest in this
talk are the invariances of Z if we modify its argument M. These are called spacetime dualities.

Note that the first term in S is equivalent to area of the image curve and the critical sets of S can be identified with the holomorphic maps.

Due to supersymmetric localization there exists a truncation of the theory to these critical bosonic configurations. The truncated theory is called the topological A-model. In the truncated theory Z collapses to Z_{A}, which is given by infinite sum over topological sectors labelled by g and the class of the image curve $\beta \in H_{2}(M, \mathbb{Z})$. The variational integral collapses in each sector into a mathematically welldefined integral over the finite dimensional moduli space of the holomophic maps $\overline{\mathcal{M}_{g}(M, \beta)}$. The A-model truncation is best decribed by nilpotent BRST operators, which allow to define a cohomological theory whose finite dimensional Hilbert spaces is spanned by states, which are in one to one correspondence with the de Rahm cohomology groups $H^{i, i}(M), i=0, \ldots, 3$. Its correlators are the cassical intersections deformed by contributions of the holomorphic maps.

The decisive A-model quantity is the free energy

$$
\begin{equation*}
F(\lambda, t)=\log \left(Z_{A}\right)=\sum_{g=0}^{\infty} \lambda^{2 g-2} F_{g}(t) \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{g}(t)=\text { classical }+\sum_{\beta \in H_{2}(M \mathbb{Z})} r_{\beta}^{g} q^{\beta} . \tag{5}
\end{equation*}
$$

Here

$$
\begin{equation*}
r_{\beta}^{g}=\int_{\overline{\mathcal{M}_{g}(M, \beta)}} c_{b}^{v i r}(M, \beta) \in \mathbb{Q} \tag{6}
\end{equation*}
$$

are the Gromov-Witten invariants. They are defined as the integral of a virtual fundamental class over the compactifications of the moduli space of the holomorphic maps. The virtual dimension of the moduli space follows from an index theorem

$$
\begin{equation*}
\operatorname{viim}_{\mathbb{C}} \overline{\mathcal{M}_{g}(M, \beta)}=\int_{\beta} c_{1}+(\operatorname{dim}-3)(1-g) \tag{7}
\end{equation*}
$$

We note that Calabi-Yau threefolds are the critical cases as $\operatorname{vdim}_{\mathbb{C}} \overline{\mathcal{M}_{g}(M, \beta)}=$ 0 . This implies that generically a point counting problem in a moduli stack yields $r_{\beta}^{g} \neq 0$. The variable $q^{\beta}=\exp \left(t_{\beta}\right)$, where $t_{\beta}=2 \pi i \int_{\beta}(b+\omega)$ is the complexified Kähler parameter. It is a complex variable build from linear deformation of the 2 -form field $b=\delta B$ and the real Kähler form $\omega=i \delta G_{i \bar{\jmath}} \mathrm{~d} z^{i} \wedge \mathrm{~d} \overline{z^{\bar{j}}}$. Both take values in $H^{1,1}(M, \mathbb{R})$. We note that $q^{\beta} \rightarrow 0$ in the limit of large volume. I.e. the large volume limit suppresses the contributions of the holomorphic maps. The classical terms are constant map contributions which are of course independed of the volume. An important feature is, that the A-model, does not depend on the pure deformations of the metric $\delta G_{i j}$ and $\delta G_{\bar{\imath} \bar{\jmath}}$, which parametrize the complex structure deformations of M.
$F(\lambda, t)$ is a generating function for Gromov-Witten invariants. The problem that we pose here is how to calculate it and the main point of this lecture is to explain how $F(\lambda, t)$ can be reconstructed using dualities and symmetries of (2).

2 Other symplectic invariants and integrality conjectures

Before we focus on the main topic we notice that the mathematically well defined rational Gromov-Witten invariants r_{β}^{g} are conjecturally related to integral BPS invariants n_{β}^{g}, which are physically motivated to be an index on the cohomology of the moduli space of $D 2-D 0$ branes. The relation between the $n_{\beta}^{g} \in \mathbb{Z}$ and the r_{β}^{g} are defined by
$Z_{A}^{\prime}(Q, q)=\prod_{\beta}\left[\left(\prod_{r=1}^{\infty}\left(1-Q^{r} q^{\beta}\right)^{r n_{\beta}^{0}}\right) \prod_{g=1}^{\infty} \prod_{l=0}^{2 g-2}\left(1-Q^{g-l-1} q^{\beta}\right)^{(-1)^{g+r}\left(2_{l}^{2-2}\right) n_{\beta}^{g}}\right]$,
where $Q=e^{i \lambda}$ and the prime indicates that we are omitting the constant map contributions.

To get an impression about the key properties of the BPS invariants we listed the complete information up degree $d=11$ in table 1 for M the quintic hypersurface in $\mathbb{P}^{4} . d \in \mathbb{Z}$ represents β, in the one dimensional $H_{2}(M, \mathbb{Z})$ lattice. One important property is that within a fixed class d there is a bound $g_{\max }$ on g so that $n_{d}^{g}=0$ for $g \geq g_{\max }(d)$. The bound $g_{\max }$ growth assymtotically like $g_{\max }(d) \propto d^{2}$. This a simple consequence of the adjunction formula, which implies that there are no embedded curves of genus g if the degree is not high enough. The important difference between r_{β}^{g} and n_{β}^{g} is that the latter is a property of the embedded curve in m rather then a property of the map to M. Puting it differently all information about the multi covering of the map into a given curve class is encoded in (8).

A simple example of the index definition of n_{β}^{g} can be stated for smooth curves C, where $n_{\beta}^{g}=(-1)^{\operatorname{dim} \mathcal{M}_{\mathcal{C}}} e\left(\mathcal{M}_{\mathcal{C}}\right)$. Here \mathcal{M}_{C} is the deformation space. For $d=5$ and $d=10$ and maximal genus those smooth curves are complete intersections and a simple calculation of their moduli space yields $n_{5}^{6}=10$ and $n_{10}^{16}=-50$.

A further relation links the above invariants to the Donaldson-Thomas invariants, which are integrals over the moduli space of ideal sheafs on M. Let

$$
\begin{equation*}
Z_{D T}(Q, q)=\sum_{\beta, k \in \mathbb{Z}} m_{\beta}^{k} Q^{k} q^{\beta} \tag{9}
\end{equation*}
$$

define a generating series for the Donaldson-Thomas invariants $m_{\beta}^{k} \in \mathbb{Z}$ then the relation is given by

$$
\begin{equation*}
Z_{D T}(-Q, q)=Z_{A}^{\prime}(Q, q) M(-Q)^{e(M)}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
M(Q)=\prod_{n \geq 1} \frac{1}{\left(1-q^{n}\right)^{n}} \tag{11}
\end{equation*}
$$

is the McMahon function.

Table 1: BPS invariants n_{β}^{g} on the Quintic hypersurface in \mathbb{P}^{4}

3 The duality symmetries

3.1 Mirror symmetry

Mirror symmetry can be summarized by the statement that

$$
\begin{align*}
Z_{A}(M, \lambda, t) & =Z_{B}(W, \lambda, \hat{t}) \\
Z_{A}(W, \lambda, t) & =Z_{B}(M, \lambda, \hat{t}) \tag{12}
\end{align*}
$$

here (W, M) are mirror pairs of manifolds with

$$
\begin{equation*}
H^{3-k, p}(M)=H^{k, p}(W) \tag{13}
\end{equation*}
$$

for $k, p=0, \ldots, 3$. B stands for the topological B-model. It emerges by a different localisation of the full variational integral $Z(M)$ to constant maps albeit with a more complicated measure. Mirror symmetry identifies the A model on M with the B-model on W and vice versa. The topological states of the B model are in correspondence with the cohomology groups dual (13) to ones which define the states of the A-model. The B-model depends only on the complex structure variations \hat{t} of the corresponding manifold. The latter are encoded in period integrals over the holomorphic (3,0)-form. Studying the latter at a point of maximal degeneration yields also a concrete expression for the mirror map $\hat{t}(t)$ in (12). It should be noted that (12) is a specialized version of mirror symmetry, which is designed to be mathematically controllable. The physical expectation is simply that string theory on M and on W are indistiguishable.

The construction of mirror manifolds is understood conceptually in symplectic geometry, by the SYZ conjecture, which states that every Calabi-Yau manifold is a (degenerate) Lagrangian T^{3} fibration over a 3 -dim base and that the mirror can be constructed by dualizing the T^{3} torus fibrewise. Pragmatically thousands of mirror pairs can be easily constructed within the framework of algebraic geometry as anticanonical hypersurfaces in pairs of toric varities defined by pairs of reflexive polyhedra as pointed out by Batyrev

3.2 Periods and monodromy

We discuss now the monodromy of one paramter family of mirror quintics $W(\hat{t})$,

$$
\begin{equation*}
W(\hat{t})=\left\{p=\sum_{i=1}^{5} x_{i}^{5}-5 e^{-\frac{\hat{t}}{5}} \prod_{i=1}^{5} x_{i}=0 \text { in } \mathbb{P}^{4}\right\} \tag{14}
\end{equation*}
$$

It can be obtained as orbifold M / \mathbb{Z}_{5}^{3} of the original quintic M, where the \mathbb{Z}_{5} 's are generated by phase rotations on the homogeneous coordinates \mathbb{P}^{4}

$$
\begin{equation*}
x_{i} \rightarrow \exp \left(2 \pi i g_{i}^{(\alpha)} / 5\right) x_{i}, \quad \alpha=1,2,3, \quad i=1, \ldots, 5 \tag{15}
\end{equation*}
$$

with $g^{(1)}=(1,4,0,0,0), g^{(2)}=(1,0,4,0,0)$ and $g^{(3)}=(1,0,0,4,0)$. We identify $z=e^{\hat{t}}$ and notice that the complex moduli space is parametrized by z as $\mathcal{M}=\mathbb{P} \backslash\{z=0,1, \infty\}$.

The holomorphic $(3,0)$-form is locally $\Omega=\frac{z^{-\frac{1}{5}} x_{i} \wedge_{k \neq i, j} \mathrm{~d} x_{k}}{\partial_{j} p}$. There is a flat connection on the period vector

$$
\begin{equation*}
\Pi=\binom{\int_{A^{I}} \Omega=X^{I}}{\int_{B_{I}} \Omega=P_{I}=\frac{\partial F_{0}}{\partial X^{I}}}, \quad, I=0, \ldots, 3 \tag{16}
\end{equation*}
$$

expressed by the PIcard-Fuchs equation

$$
\begin{equation*}
\left[\theta^{4}-5 z \prod_{k=1}^{4}(\theta+k)\right] \Pi(z)=0, \quad \theta=z \frac{\mathrm{~d}}{\mathrm{~d} z} \tag{17}
\end{equation*}
$$

which undergoes the monodromies $\Pi \mapsto M_{i} \Pi$ with $M_{z=z_{i}} \in S P(4, \mathbb{Z})$

$$
M_{0}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \tag{18}\\
1 & 1 & 0 & 0 \\
5 & -3 & 1 & -1 \\
-8 & -5 & 0 & 1
\end{array}\right), \quad M_{1}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

generate the monodromy group Γ_{M}, where the loops are schematically

Mirror quintic family

$3.3 g=0$

The first sucess of mirror symmetry is that

$$
\begin{equation*}
F_{0}(t)=\text { class. }+\sum_{d=1} n_{d}^{0} \mathrm{Li}_{3}\left(q^{d}\right) \tag{19}
\end{equation*}
$$

where the mirror map at large complex strcuture $(C S) z=0$ is

$$
\begin{equation*}
t=\frac{X^{1}}{X^{0}}(z), \tag{20}
\end{equation*}
$$

where $X^{0}=1+$ holom and $\frac{1}{2 \pi i}\left(X^{0} \log (z)+\right.$ holom. $)$ are completly determined from (17).

In the complex moduli space one has special geometry, with Kählerpotential $e^{-K}=i \int \Omega \wedge \bar{\Omega}, C_{i j k}=\int \Omega \partial_{i} \partial_{j} \partial_{k} \Omega=D_{i} D_{j} D_{K} F_{0}$ and the integrability condition

$$
\begin{equation*}
R_{k \bar{l} m}^{i}=\delta_{k}^{i} g_{\bar{l} m}+\delta_{m}^{i} g_{\bar{l} k}+C_{k m j} \bar{C}_{\bar{l}}^{i j} \tag{21}
\end{equation*}
$$

with $\bar{C}_{\bar{l}}^{i j}=\bar{C}_{\bar{l} \bar{l} l} g^{\bar{m} i} g^{\bar{k} j} e^{2 K}$.

$3.4 g=1$

The genus one amplitude is a Ray-Singer-Torsion family index over \mathcal{M} and fullfills

$$
\begin{equation*}
\partial_{i} \bar{\partial}_{\bar{\jmath}} F_{1}=\frac{1}{2} \bar{C}_{\bar{\jmath}}^{m n} C_{i m n}-\left(\frac{e(m)}{24}-1\right) g_{i \bar{\jmath}} \tag{22}
\end{equation*}
$$

It can be fixed by the boundary behaviour $F_{1} \sim \frac{1}{12} \log \left(t_{c}\right)$, where t_{c} is the flat coordinate near the conifold and $F_{1} \sim 50 \frac{t}{24}$ near large complex strcuture.

$3.5 \quad g>1$

For higher genus the F_{g} fullfill the holomorphic anomaly equation

$$
\begin{equation*}
\partial_{\bar{\imath}} F_{g}=\frac{1}{2} \bar{C}_{\bar{\imath}}^{m n}\left(D_{m} D_{n} F_{g-1}+\sum_{r=1}^{g-1} D_{m} F_{r} D_{n} F g-r\right) \tag{23}
\end{equation*}
$$

It has an holomorphic function as an ambiguity. The latter can be fixed by the fact that F_{g} is modular invariant and physical boundary conditions. The first fact implies that the F_{g} are finetly generated by a ring which can be viewed as the generalization of the ring of almost holomorphic modular forms from elliptic curves to Calabi-Yau manifolds.

In local flat coordinates the leading behaviour at the boundaries is as follows

- Expansion around the conifold point $z=1$:

$$
\begin{aligned}
F_{0}^{\mathrm{c}} & =-\frac{5}{2} \log \left(\hat{t}_{c}\right) \hat{t}_{c}^{2}+\frac{5}{12}\left(1-6 b_{1}\right) \hat{t}_{D}^{3} \\
& +\left(\frac{5}{12}\left(b_{1}-3 b_{2}\right)-\frac{89}{1440}-\frac{5}{4} b_{1}^{2}\right) \hat{t}_{c}^{4}+\mathcal{O}\left(\hat{t}_{c}^{5}\right) \\
F_{1}^{\mathrm{c}} & =-\frac{\log \left(\hat{t}_{c}\right)}{12}+\left(\frac{233}{120}-\frac{113 b_{1}}{12}\right) \hat{t}_{c} \\
& +\left(\frac{233 b_{1}}{120}-\frac{113 b_{1}{ }^{2}}{24}-\frac{107 b_{2}}{12}-\frac{2681}{7200}\right) \hat{t}_{c}^{2}+\mathcal{O}\left(\hat{t}_{c}^{3}\right) \\
F_{2}^{\mathrm{c}} & =\frac{1}{240 \hat{t}_{c}^{2}}-\left(\frac{120373}{72000}+\frac{11413 b_{2}}{144}\right) \\
& +\left(\frac{107369}{150000}-\frac{120373 b_{1}}{36000}+\frac{23533 b_{2}}{720}-\frac{11413 b_{1} b_{2}}{72}\right) \hat{t}_{c}+\mathcal{O}\left(\hat{t}_{c}^{2}\right) \\
F_{3}^{\mathrm{c}} & =\frac{1}{1008 \hat{t}_{c}^{4}}-\left(\frac{178778753}{32400000}+\frac{2287087 b_{2}}{43200}+\frac{1084235 b_{2}^{2}}{864}\right)+\mathcal{O}\left(\hat{t}_{c}\right) \\
F_{4}^{\mathrm{c}} & =\frac{1}{1440 \hat{t}_{c}^{6}}-\left(\frac{977520873701}{3402000000000}+\frac{162178069379 b_{2}}{3888000000}\right. \\
& \left.+\frac{5170381469 b_{2}^{2}}{2592000}+\frac{490222589 b_{2}^{3}}{15552}\right)+\mathcal{O}\left(\hat{t}_{c}\right) . \\
F_{g}^{\mathrm{conifold}} & =\frac{(-1)^{g-1} B_{2 g}}{2 g(2 g-2)\left(\hat{t}_{c}\right)^{2 g-2}}+\mathcal{O}\left(\hat{t}_{c}^{0}\right) .
\end{aligned}
$$

I.e. at the conifold we have the gap condition that the $2 g-2$ subleading coefficients are absent.

- Expansions around the orbifold point $\frac{1}{z}=0$

$$
\begin{aligned}
F_{0}^{\mathrm{o}} & =\frac{5 s^{3}}{6}+\frac{5 s^{8}}{1008}+\frac{5975 s^{13}}{10378368}+\frac{34521785 s^{18}}{266765571072}+\ldots \\
F_{1}^{\mathrm{o}} & =-\frac{s^{5}}{9}-\frac{163 s^{10}}{18144}-\frac{85031 s^{15}}{46702656}-\frac{6909032915 s^{20}}{20274183401472}+\ldots \\
F_{2}^{\mathrm{o}} & =\frac{155 s^{2}}{18}-\frac{5 s^{7}}{864}+\frac{585295 s^{12}}{14370048}+\frac{1710167735 s^{17}}{177843714048}+\ldots \\
F_{3}^{\mathrm{o}} & =\frac{488305 s^{4}}{9072}-\frac{3634345 s^{9}}{979776}-\frac{1612981445 s^{14}}{7846046208}-\frac{2426211933305 s^{19}}{116115777662976}+\ldots \\
F_{4}^{\mathrm{o}} & =\frac{48550 s}{567}+\frac{36705385 s^{6}}{163296}+\frac{16986429665 s^{11}}{603542016}+\frac{341329887875 s^{16}}{70614415872}+\ldots
\end{aligned}
$$

I.e. at the orbifold point we have the constion that F_{g} behaves regular. The coefficients of the expansion in the flat coordinate s are the orbifold Gromov-Witten invariants and some checks using direct computations of the latter have been made.

It can be shown that these boundary conditions fix $\left[\frac{2 g-1}{5}\right]+2 g-2$ constant in the holomorphic or modular ambiguity, which is parametrized by $3 g-3$ coeffcients. If one uses the fact that $n_{d}^{g}=0$ for $g>g_{\max }$ one can solve the equation (22) up to genus 51 as can be seen from the follwing figure

References

[HKQ] M. x. Huang, A. Klemm and S. Quackenbush, "Topological String Theory on Compact Calabi-Yau: Modularity and Boundary Conditions," Lect. Notes Phys. 757 (2009) 45 [arXiv:hep-th/0612125].

