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BIG IMAGES OF TWO-DIMENSIONAL PSEUDOREPRESENTATIONS

ANDREA CONTI, JACLYN LANG, AND ANNA MEDVEDOVSKY

Abstract. For an odd prime p, we study the image of a continuous 2-dimensional (pseudo)representation
ρ of a profinite group with coefficients in a local pro-p domain A. Under mild conditions, Belläıche has
proved that the image of ρ contains a nontrivial congruence subgroup of SL2(B) for a certain subring B
of A. We prove that the ring B can be slightly enlarged and then described in terms of the conjugate
self-twists of ρ, symmetries that naturally constrain its image; hence this new B is optimal. We use this
result to recover, and in some cases improve, the known large-image results for Galois representations
arising from elliptic and Hilbert modular forms due to Serre, Ribet and Momose, and Nekovář, and p-adic
Hida or Coleman families of elliptic modular forms due to Hida, Lang, and Conti–Iovita–Tilouine.

1. Introduction

Let p be an odd prime, A a local pro-p domain with maximal ideal m and residue field F := A/m,

and Π a profinite group. Let ρ : Π → GL2(A) be a continuous representation(i) with the property
that the residual representation ρ := ρ mod m is residually multiplicity-free: either absolutely
irreducible, or a sum of two distinct characters to F×. Our goal is to study the image of ρ from an
algebraic perspective, with an eye towards applications to modular forms and their p-adic families.
In those settings Π is a Galois group and A is a finite extension of Zp or of ZpJX1, . . . , XnK for some
n ≥ 1. Roughly, the objective is to show that the image of ρ is as big as possible.

Note that if ρ, or its restriction to an index-2 subgroup of Π, is reducible, then the image of ρ is
both well understood and not big. Similarly, one cannot expect a big-image result when the image
of ρ is isomorphic to that of ρ, as happens when ρ arises from a modular form of weight one. Let
us call these three kinds of representations a priori small.

Suppose now that ρ is not a priori small. How big can we expect its image to be? We cannot
expect ρ to be surjective as its determinant need not be surjective. Nor can we expect the image
of ρ to contain SL2(A) unless the image of ρ contains SL2(F). We settle on the idea of fullness.
If B is any ring and b is any nonzero ideal of B, the subgroup of SL2(B) given by the kernel of
reduction modulo b is a congruence subgroup of SL2(B) (of level b):

ΓB(b) := ker
(

SL2(B)→ SL2(B/b)
)
.

If the image of ρ, up to conjugation, contains a congruence subgroup for some subring B of A, we
say that ρ is B-full. In the special case where A is a finite extension of Zp, the representation ρ is
A-full if and only if it contains an open subgroup of SL2(A).

It turns out that ρ may have symmetries that prevent it from being A-full. If σ is an auto-
morphism of the Galois closure of A and χ is a character of Π, the pair (σ, χ) is a conjugate
self-twist of ρ if applying the automorphism gives the same representation as twisting by the char-
acter: σρ ∼= χ ⊗ ρ. If (σ, χ) is a conjugate self-twist of ρ, then ρ cannot be A-full: indeed, since
σ
(

tr ρ(g)
)

= tr σρ(g) = χ(g) tr ρ(g), the trace of ρ(g) is an eigenvector for σ viewed as a linear map
over the scalars fixed by σ. But the trace of a congruence subgroup of A is not so constrained.

2010 Mathematics Subject Classification. 11F11, 11F80, 11F85.
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representations.
(i)In fact we consider 2-dimensional pseudorepresentations, but we content ourselves with true representations for

the purposes of this introductory section.
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Therefore, the best we can hope for is fullness with respect to AΣρ , the subring of A fixed by the
conjugate self-twists of ρ.

If ρ comes from a classical or Hilbert modular form or a Hida family, we know that ρ is AΣρ-full
from work of Ribet, Momose, Nekovář, and the second author of the present work (see Theorems
1.1 and 1.2 below). For technical reasons, in the general case it is easier to work with a different
subring of A with the same field of fractions as AΣρ : let A0 = A0(ρ) be the closed subring of A
topologically generated by the set {

(tr ρ(g))2

det ρ(g)
: g ∈ Π

}
.

It is clear that A0 depends on ρ only up to twist. In fact, A0 is the closed algebra generated
by the trace of ad ρ. The main theorem of this paper (Theorem 1.4 below) states that under mild
conditions, if ρ is not a priori small, then ρ is A0-full. The result is optimal in the sense that, if ρ
is B-full for some subring B of A, then the field of fractions of B must be contained in the field of
fractions of A0.(ii)

1.1. History. We survey the known big-image results, using the terminology introduced above.

1.1.1. Classical modular forms. The big-image line of inquiry began in the late 60s, when Serre
showed that if ρ comes from the p-adic Tate module (including for p = 2) of a non-CM elliptic
curve over a number field F , so that Π = Gal(F/F ) and A = A0 = Zp, then ρ is Zp-full [Ser68,

Theorem IV.2.2].(iii)

In the 80s, Ribet and Momose generalized Serre’s theorem to elliptic modular forms. Let f be a
cuspidal non-CM eigenform of weight at least 2. Given a prime p and an embedding ιp : Q ↪→ Qp,

one can associate to f a 2-dimensional Galois representation ρ = ριp of Π = Gal(Q/Q) over a finite
extension A of Zp.

Theorem 1.1 ([Mom81, Theorem 4.1], [Rib85, Theorem 3.1]). For all but finitely many primes p,

the representation ρ is AΣρ-full. Hence it is also A0-full.(iv)

More recently, Nekovář generalized Theorem 1.1 to representations coming from Hilbert modular
forms, in which case Π is the absolute Galois group of a totally real number field and A is still a
finite extension of Zp [Nek12, Appendices B.3–B.6].

1.1.2. Families of p-adic modular forms. Although we have stated the work of Serre, Ribet, Mo-
mose, and Nekovář for a fixed prime p to better fit our p-adic framework, all of these theorems are
actually adelic open-image results proved using geometric methods. Much work has been done to
generalize such theorems to groups other than GL2, but that is not the direction that interests us.
Rather, we are interested in fixing p and deforming representations p-adically, which necessitates
a completely different approach. There has been some progress in this direction in special cases.
Recall that we are assuming throughout that p 6= 2.

(ii)We do not know whether ρ is AΣρ -full in general. If AΣρ is finitely generated as an A0-module, then ρ is AΣρ -full
by Lemma 2.16. This condition can be verified when ρ comes from a classical modular form or a Hida family. On
the other hand, AΣρ -fullness always implies A0-fullness.

(iii)Serre’s result is better known as an open-image theorem; and in fact he shows much more: the image of all the
p-adic Tate modules for all p, including p = 2, at once is open adelically.

(iv)Like Serre, Ribet and Momose prove stronger adelic big-image results, including for p = 2. In particular, for
the finitely many primes p where the statement of Theorem 1.1 fails, Im ρ∩SL2(A) contains, with finite index and up
to conjugation, an open subgroup of the norm-one elements of the maximal order in the nonsplit quaternion algebra
over the fraction field of A0.
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First we suppose that ρ arises from a non-CM cuspidal Hida family. In this case Π = Gal(Q/Q)

and A is a domain that is finite over Λ := ZpJXK.(v) When A is a constant extension of Λ and the
image of ρ contains SL2(Fp), Boston [MW86, Proposition 3] and Fischman [Fis02, Theorem 4.8]
show that the image of ρ contains SL2(AΣρ). In particular, ρ is A0-full. More recently, Hida proved
that if ρ is locally-at-p multiplicity-free then ρ is Λ-full [Hid15, Theorem I], but his work did not
relate Λ to A0 or conjugate self-twists of ρ. The second author of the present article then improved
Hida’s result from Λ-fullness to A0-fullness under the assumption that ρ is absolutely irreducible,
proving the following result.

Theorem 1.2. [Lan16, Theorem 2.4] Assume that F 6= F3. If ρ arises from a non-CM cuspidal
Hida family, and ρ is absolutely irreducible and multiplicity free when restricted to a certain finite-
index subgroup of the decomposition group at p, then ρ is AΣρ-full. Therefore it is A0-full.

The case when ρ arises from a Coleman family was studied by the first author of the present
work with Iovita and Tilouine in [CIT16]. In this case we again have Π = Gal(Q/Q) and A is
a domain over Λ. In [CIT16, Theorem 6.2] it is proved that, under hypotheses similar to those
in Theorem 1.2, a certain Lie algebra attached to Im ρ contains the Lie algebra of a congruence
subgroup of AΣ′ρ , where Σ′ρ denotes the conjugate self-twists of ρ that fix Λ. This strongly suggests

that ρ should be AΣ′ρ-full, though this statement does not follow from [CIT16]. We do not know
whether Σ′ρ = Σρ; see Question 6.3 and the surrounding discussion.

Both Hida and the first author of the present work with Iovita and Tilouine consider questions
related to the level of a representation – that is, the largest congruence subgroup contained in the
image. Although our techniques are amenable to such questions, we do not discuss them in this
paper.

1.1.3. General p-adic families. Both [Hid15] and [Lan16] rely in a key way on results of Pink
[Pin93] classifying, for odd p, pro-p subgroups of SL2(A) in terms of a correspondence with purely
algebraically defined “Pink-Lie” algebras. The analogous role in [CIT16] is played by traditional
rigid-analytic Lie theory (whence also the different form of the conclusion in that case). Although
the big-image theorems in all three of [Hid15, Lan16, CIT16] are stated in terms of pure algebra
— a feature that is most clear in the fullness results of [Hid15] and [Lan16] — nonetheless all of
these results are fundamentally arithmetic in nature: they rely on special information about the
restriction of ρ to the local Galois group at p, and they all use the classical results of Ribet and
Momose as input.

In contrast, Belläıche in [Bel18] studies the image of ρ : Π→ GL2(A) in a purely algebraic way.
More precisely, he systematically applies Pink’s theory from [Pin93] to images of 2-dimensional
(pseudo)representations. His main application is to density results for mod-p modular forms, but
along the way he also proves the following theorem.

Theorem 1.3. [Bel18, Theorem 7.2.3] Assume that Π satisfies Mazur’s p-finiteness condition(vi).
Assume further the following regularity condition: Im ρ contains an element with eigenvalues in
F×p whose ratio is not ±1. If ρ has constant determinant (i.e., det ρ ∼= det ρ) and is not a priori
small, then there is a subring AB of A such that ρ is AB-full.

See Theorem 2.31 and the discussion following it for the definition of the ring AB appearing in
Theorem 1.3.

Unfortunately, it is not straightforward to relate Belläıche’s ring AB to the rings A0 or AΣρ

from previous results. Indeed, there appears to be no conceptual interpretation of Belläıche’s ring

(v)When ρ is reducible, ρ may be realizable only over the field of fractions of A. Hida in [Hid15] avoids this by
assuming that ρ is realized over A; we work with generalized matrix algebras, following Belläıche [Bel18], and hence
do not need this assumption.

(vi)See Definition 2.7.
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AB. The goal of the present work is to refine the definition of AB and then give it a conceptual
interpretation. Under mild assumptions we thus recover, and in the case of p-adic families improve,
the results mentioned above in a uniform and purely algebraic way. See Theorem 1.4 for the mild
hypotheses we impose on ρ. We point out that prior to Belläıche’s work, Hida’s work was the only
fullness result when ρ is reducible and ρ comes from a p-adic family of modular forms. In the case
of Coleman families, a true fullness result was not previously known.

1.2. The main result. Recall that p is a fixed odd prime. From now on assume that Π (a profinite
group) satisfies Mazur’s p-finiteness condition. Also recall that A is a local pro-p domain with
residue field F, and that ρ : Π→ GL2(A) is a continuous, residually multiplicity-free representation.

Let E denote the residue field of A0. We say that ρ is regular if there is some g0 ∈ Π such that

ρ(g0) has eigenvalues λ0, µ0 ∈ F×p with λ0µ
−1
0 ∈ E× \ {±1}. (See Remark 2.28 for an analysis of

this condition.)
Let ζn denote a primitive n-th root of unity. The main theorem of this paper is the following.

Theorem 1.4. Assume that ρ is regular. If the projective image of ρ is isomorphic to S4, assume
further that ρ is good(vii). If ρ is not a priori small, then ρ is A0-full.

In fact we prove something slightly more general in that we can replace ρ by a pseudodeformation
(t, d) : Π→ A of ρ. See Theorem 5.17 for the most general statement of the main result.

Broadly speaking, there are two main steps in the proof of Theorem 1.4. First, we modify
Belläıche’s ring AB in a fairly minor way. His ring is defined as the subring of A given by some
generators. We consider instead the W (E)-subalgebra of A generated by the same elements. We
denote by A′B our modification of AB for the purposes of this introduction. We prove a theorem
analogous to Theorem 1.3 with A′B in place of AB; see Corollary 3.8 for the precise statement.
Although this is a small improvement, it is crucial for the second step. It also allows our regularity
hypothesis to be weaker than that of Belläıche.

The second step in the proof is to relate A′B to the subring AΣρ of A fixed by conjugate self-twists
of ρ (see Definition 2.32). These two rings coincide when ρ is regular, has constant determinant,
and has no conjugate self-twists; see the first paragraph of Section 5. In general, we prove that
they have the same field of fractions and that AΣρ is finite as a module over A′B. (This is the
“conceptual interpretation” of AB to which we referred above.) As we show in Lemma 2.16, if
A1 ⊆ A2 are domains with the same field of fractions such that A2 is a finite type A1-module, a
representation ρ is A2-full if and only if it is A1-full. Thus we reach the conclusion of Theorem 1.4
from the modified fullness result of Belläıche found in the first step.

Let us point out some features of the statement of Theorem 1.4. First, the group Π can be quite
general. For that reason, representations coming from Hilbert modular forms and their p-adic
families are no more difficult than representations coming from elliptic modular forms or their p-
adic families. Similarly, since Π need not be the absolute Galois group of a number field, the notion
of oddness does not play a role in the paper. In particular, Theorem 1.4 applies to deformations of
ρ when ρ is even.

Finally, we note that Theorem 1.4 gives optimal fullness results for certain arithmetically inter-
esting families. For instance, if ρ arises from a Coleman family, or more generally from a p-adic
family of Hilbert modular eigenforms, and if ρ satisfies the hypothesis of Theorem 1.4, then our
result is an optimal fullness result, which was not previously known in any of these cases. By
optimal, we mean that if ρ is full with respect to any ring B, then the field of fractions of B must
be contained in that of A0.

1.3. Structure of the paper. The article is organized as follows. In Section 2 we give defini-
tions and results about pseudorepresentations, generalized matrix algebras, Pink-Lie algebras, and

(vii)See Definition 4.10.
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a summary of Belläıche’s results from [Bel18]. We also introduce the notions of regularity and
conjugate self-twists, which play a central role in the paper.

In both this paper and that of Belläıche [Bel18], the key object of study is a certain Pink-Lie
algebra L attached to Im ρ. The Lie algebra L is a priori only a module over Zp, even when the ring
A has dimension greater than one. In Section 3 we show that in fact L is always a W (E)-module.
Moreover, we give minor conditions on ρ that ensure that L is a module over a ring that is, in
general, much bigger ring than W (E). We end Section 3 with the first main step of the proof. That
is, we obtain a fullness result, analogous to Belläıche’s Theorem 1.3 above, with respect to the ring
A′B under a regularity assumption.

Section 4 is systematic study of conjugate self-twists of pseudorepresentations, especially their
lifting properties to universal pseudodeformation rings and how they interact with regularity. These
results are crucial when we relate A′B to AΣρ . Section 4 is almost entirely independent of Section
3; only Proposition 3.1 is used.

The second main step of the proof, and the technical heart of the paper, is Section 5. The main
goal is to prove that A′B has the same field of fractions as AΣρ , the ring fixed by conjugate self-twists.
This turns out to be intimately related to the question of whether conjugate self-twists of ρ lift to
conjugate self-twists of ρ, which explains the need for many of the results from Section 4. Although
much of Sections 3 and 5 are written under the assumption that ρ has constant determinant, in
Section 5.5 we explain how to deduce fullness for nonconstant-determinant representations; see
Theorem 5.17.

Finally, in Section 6 we show how to deduce the results cited at the beginning of this introduction
from Theorem 1.4. We also obtain an improvement on Theorem 1.4 when the image of ρ is very
large in Section 6.3.

Since the paper is rather long, we relegate a variety of lemmas about representation theory and
commutative algebra to the appendix. We hope this improves the flow of the arguments presented
in this paper while keeping it fairly self-contained.
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2. Background

We begin by establishing some notation and conventions that will be in force throughout the
paper. All rings are unital. Given any ring R (not necessarily commutative), we will let R× denote
the multiplicative group of invertible elements in R. If R is a domain, then Q(R) denotes its field
of fractions. For any positive integer n, let ζn denote a primitive n-th root of unity. Given a finite
field F, the ring of Witt vectors will be denote by W (F), which is isomorphic to Zp[ζq−1], where q is
the size of F. Let s : F× → W (F)× be the Teichmüller lift. We shall extend it to s : F→ W (F) by
defining s(0) := 0. If A is a W (F)-algebra, we will often use W (F) to denote the image of W (F) in A
under the structure map. In particular, s will often be viewed as having values in A by composing
with the structure map.

Throughout the paper we fix a prime p 6= 2. Unless otherwise noted, A will always denote a
local pro-p commutative ring with maximal ideal m and residue field F. Thus we can take square
roots of elements x ∈ 1 + m via the formula

√
x :=

∞∑
n=0

(
1/2

n

)
(x− 1)n.

In particular, when we write
√
x, we always choose the root congruent to 1 modulo m.

If M is a subset of a W (F)-module N , then we will write W (F)N for the W (F)-linear span of
M in N .

Whenever we conjugate an element x by g, we mean g−1xg (as opposed to gxg−1).
Finally, if ρ : Π → GL2(F) is a representation over a finite field F, we can compose ρ with the

natural projection P : GL2(F)→ PGL2(F). We shall refer to the image of Π under the composition
P ◦ ρ as the projective image of ρ. It is well known that the projective image of ρ is either cyclic,
dihedral, or isomorphic to A4, S4, A5 or one of PSL2(F′) or PGL2(F′) for some subfield F′ of F
[Dic58, Chpater XII]. If Pρ(Π) ∼= A4 (respectively, S4, A5), we say that ρ is tetrahedral (respectively,
octahedral, icosahedral). If ρ is tetradhedral, octahedral, or icosahedral, then we say that ρ is
exceptional. If Pρ(Π) contains PSL2(Fp) and ρ is not exceptional, then we say that ρ is large. Be
warned that there are exceptional isomorphisms PSL2(F3) ∼= A4,PGL2(F3) ∼= S4,PSL2(F5) ∼= A5.

2.1. Pseudorepresentations. In this section we give the introductory definitions and notation
related to pseudorepresentations. Although equivalent definitions go back to work of Taylor and
Wiles, which was formalized by Rouquier, our notation follows most closely that of Chenevier since
we consider a pseudorepresentation to have both a “trace” and a “determinant” (see for instance
[Che14, Example 1.8]). Let Π be a group and A a local pro-p commutative ring.

Definition 2.1. A 2-dimensional pseudorepresentation of Π with values in A is a pair of functions
t : Π→ A and d : Π→ A× such that

(1) d(gh) = d(g)d(h) for all g, h ∈ Π;
(2) t(gh) = t(hg) for all g, h ∈ Π;
(3) t(1) = 2;
(4) t(gh) + d(h)t(gh−1) = t(g)t(h) for all g, h ∈ Π.

If Π is a topological group, we say that a pseudorepresentation (t, d) : Π→ A is continuous if t and
d are continuous.

If 2 ∈ A× and (t, d) : Π → A is a pseudorepresentation, then d(g) = t(g)2−t(g2)
2 . Furthermore,

if ρ : Π → GL2(A) is a (continuous) representation, then (tr ρ, det ρ) is a (continuous) pseudorep-
resentation. It is straightforward to check that if (t, d) : Π → A is a pseudorepresentation and
χ : Π → A× is a character, then (χt, χ2d) is also a pseudorepresentation, called the twist of (t, d)
by χ. The following definition takes familiar properties of representations and translates them into
properties of pseudorepresentations.
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Definition 2.2. Let (t, d) : Π→ A be a pseudorepresentation.

(1) We say (t, d) is reducible if t = χ1 + χ2 with χi : Π → A× characters. Otherwise we say that
(t, d) is irreducible.

(2) We say (t, d) is dihedral if it is irreducible and there is a nontrivial character η : Π→ A× such
that (ηt, η2d) = (t, d).

(3) We say that (t, d) is a priori small if it is irreducible, not dihedral, and s(t) 6= t, where s : F→ A
is the Teichmüller lift.

Occasionally it will be convenient to assume that d is a finite order character whose order is a
power of 2. This can be achieved when 2 ∈ A× by multiplying the pseudorepresentation with a
character, as the following lemma demonstrates.

Lemma 2.3. Assume that 2 ∈ A×. Let d : Π → A× be a character. Then there is a character
χ : Π→ A× such that the order of dχ2 is a power of 2.

Proof. Let d : Π → F× the reduction of d modulo m. Let d0 := ds(d)−1 : Π → 1 + m. Write
s(d) = d1d2 for characters di : Π→ s(F×) such that d1 has odd order a and d2 has order a power of

2. Since A is local and 2 ∈ A×, it follows that the function d
1/2
0 : Π→ A× given by g 7→

√
d0(g) is

a character such that (d
1/2
0 )2 = d0. Then the character χ := (d

a+1
2

1 d
1/2
0 )−1 satisfies the lemma. �

Let R be a topological ring and S a subring of R. We will say that S is topologically generated
by at set X if S is the smallest closed subring of R containing X. Similarly, we can talk about
an additive subgroup or a W (F)-algebra topologically generated by a set. If (t, d) : Π → A is a
pseudorepresentation, we call the subring of A topologically generated by t(Π) the trace algebra of
(t, d).

Definition 2.4. Let (t, d) : Π → A be a pseudorepresentation. We write A0(t), or just A0 when
(t, d) is clear, for the subring of A topologically generated by {t(g)2/d(g) : g ∈ Π}. When A = F,
we write E for A0.

Definition 2.5. If F′ is a subfield of F, then we say that a semisimple representation ρ is multiplicity-
free over F′ if either ρ is absolutely irreducible or ρ ∼= χ1⊕χ2 such that χ1, χ2 : Π→ F′× are distinct
characters.

Fix a continuous representation ρ : Π→ GL2(F) that is multiplicity-free over F.

Definition 2.6. A pseudorepresentation (t, d) : Π → A is a pseudodeformation of ρ if (t, d) ≡
(tr ρ,det ρ) mod m. A pseudodeformation satisfying d = s(det ρ) is said to have constant determi-
nant.

Let C be the category of local pro-p commutative rings with residue field F, which have a
natural W (F)-algebra structure, and with morphisms being local continuous W (F)-algebra homo-
morphisms. We are interested in the deformation functors

F : C → SETS

A 7→ {(t, d) : Π→ A pseudodeformation of ρ}.
and

G : C → SETS

A 7→ {(t, d) ∈ F (A) : d = s(det ρ)}.
These functors are always representable. In order for the representing ring to be Noetherian, we

need to impose a finiteness condition on Π du to Mazur, which we now recall.

Definition 2.7. [Maz89] A profinite group Π satisfies the p-finiteness condition if, for every open
subgroup Π0 of Π, the set Hom(Π0,Fp) is finite.

7



It is well known that F is represented by a pro-p local Noetherian W (F)-algebra Ã whenever Π is
a profinite group that satisfies Mazur’s p-finiteness condition. See, for example, [Che14, Proposition

3.3] or [Böc13, Proposition 2.3.1]. Let (tuniv, duniv) : Π→ Ã be the universal pseudodeformation of
ρ. It is easy to see that the constant-determinant condition is a deformation condition. Indeed,
let a be the ideal of Ã topologically generated by {duniv(g)− s(det ρ(g)) : g ∈ Π}. Then A := Ã/a
represents G. In particular, A is also a pro-p local Noetherian W (F)-algebra with residue field F.
We shall often use (T, d) : Π→ A to denote the universal constant-determinant pseudodeformation.

The following notion of admissibility was introduced by Belläıche in [Bel18] and plays a central
role in his work.

Definition 2.8. [Bel18, Section 5.2] A tuple (Π, ρ, t, d) is an admissible pseudodeformation over A
if the following conditions are satisfied:

(1) Π is a profinite group that satisfies the p-finiteness condition;
(2) ρ : Π→ GL2(F) is a continuous representation that is multiplicity-free over F;
(3) (t, d) : Π→ A is a continuous pseudodeformation of ρ;
(4) d(g) ∈ s(F×) for all g ∈ Π;
(5) A is topologically generated by t(Π) as a W (F)-algebra.

2.2. GMAs and (t, d)-representations. It is natural to ask when a given pseudodeformation
(t, d) : Π→ A arises as the trace and determinant of an actual representation ρ : Π→ GL2(A). This
has been studied in great generality; see the introduction of Chenevier’s [Che14] for a thorough
history. Belläıche and Chenevier [BC09, Section 1.4] have shown that the answer is that (t, d)
always comes from a representation if one allows something more general than matrix algebras
for the target. In Section 2.2 we summarize Belläıche’s [Bel18, Section 2], where he specializes
Chenevier’s work specifically to the 2-dimensional setting. All proofs that can be found Belläıche’s
work are omitted.

Definition 2.9. A generalized matrix algebra (GMA) over a commutative ring A is given by a tuple
of data (A,B,C,m), where B and C are A-modules, m : B × C → A is a morphism of A-modules
satisfying

m(b, c)b′ = m(b′, c)b and m(b, c′)c = m(b, c)c′ for all b, b′ ∈ B, c, c′ ∈ C.
Given such data, define R := A⊕B ⊕ C ⊕A =

(
A B
C A

)
and give R a ring structure via(

a b
c d

) (
a′ b′

c′ d′

)
:=
(
aa′+m(b,c′) ab′+bd′

a′c+dc′ dd′+m(b′,c)

)
,

where a, a′, d, d′ ∈ A, b, b′ ∈ B, c, c′ ∈ C. We refer to the GMA given by (A,B,C,m) simply by R.
If A is a topological ring and B,C are topological A-modules, then R inherits a natural topology,
and we call R a topological GMA if m is continuous. We say that R is faithful if m is nondegenerate
as a pairing of A-modules.

The following lemma shows that when A is a domain, faithful GMAs can be embedded into a
matrix algebra over the field of fractions of A.

Lemma 2.10. [Bel18, Lemmas 2.2.2, 2.2.3] Assume that A is a domain with field of fractions
K and that R =

(
A B
C A

)
is a faithful GMA over A. Then there exist embeddings of A-modules

B,C ↪→ K such that (identifying B,C with their images in K), m : B × C → A is induced by
multiplication in K. In particular, if BC 6= 0, then R ⊗A K is isomorphic over K as a GMA to
M2(K).

We recall the following result of Belläıche, which explains that any pseudorepresentation can be
realized as the trace of a GMA-valued representation.

Proposition 2.11. [Bel18, Proposition 2.4.2] Let ρ : Π → GL2(F) be multiplicity-free over F. Let
(t, d) : Π→ A be a pseudodeformation of ρ.
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(1) There exists a faithful GMA R over A and a morphism of groups ρ : Π → R× such that
tr ρ = t,det ρ = d, and Aρ(Π) = R.

(2) If (ρ,R) and (ρ′, R′) are as in (1), then there is a unique isomorphism of A-algebras Ψ: R→ R′

such that Ψ ◦ ρ = ρ′.
(3) If g0 ∈ Π such that ρ(g0) has distinct eigenvalues λ0, µ0 ∈ F×, then there exists (ρ,R) as in (1)

such that ρ(g0) is diagonal and ρ(g0) ≡
(
λ0 0
0 µ0

)
mod m, where m is the maximal ideal of A.

(4) If g0 ∈ Π and (ρ,R), (ρ′, R′) are as in (3), then the unique isomorphism of A-algebras Ψ: R→
R′ such that Ψ ◦ ρ = ρ′ is an isomorphism of GMAs.

(5) If ρ is irreducible and (ρ,R) is as in (1), then R = (A,B,C,m,R) is isomorphic to M2(A) as
a GMA over A. If ρ is reducible, then BC ⊂ m.

(6) Assume that A is Noetherian and Π satisfies the p-finiteness condition. If (t, d) is continuous,
then for (ρ,R) as in (1), R is of finite type as an A-module. If R is given its unique topology
as an A-algebra, then ρ is continuous.

Following Belläıche, we make the following definitions.

Definition 2.12. [Bel18, Definition 2.4.3] A representation ρ : Π→ R× satisfying condition (1) in
Proposition 2.11 is called a (t, d)-representation. If in addition ρ satisfies condition (3), then we
say that ρ is adapted to (g0, λ0, µ0).

In fact, it is often useful to have the following strengthening of Proposition 2.11(3).

Lemma 2.13. Let ρ : Π→ GL2(F) be multiplicity-free over F and λ0 6= µ0 ∈ F× be the eigenvalues
of an element in Im ρ. Let (t, d) : Π → A be a pseudodeformation of ρ. Then there exists g0 ∈ Π

and a (t, d)-representation ρ adapted to (g0, λ0, µ0) such that ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
.

Proof. Let g′0 ∈ Π be any element such that ρ(g′0) has eigenvalues λ0, µ0. Then Proposition 2.11(3)
guarantees the existence of a (t, d)-representation ρ : Π → R× adapted to (g′0, λ0, µ0). By [Bel18,

Theorem 6.2.1], it follows that
(
s(λ0) 0

0 s(µ0)

)
∈ Im ρ. Let g0 be any element in ρ−1

(
s(λ0) 0

0 s(µ0)

)
.

Then ρ is a (t, d)-representation adapted to (g0, λ0, µ0) and ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
. �

2.3. Fullness. In Section 2.3 we define the notion of fullness for a pseudorepresentation, which will
be our measure for the size of its image. Recall that A is a pro-p local ring. We assume throughout
Section 2.3 that A is a domain with field of fractions K. For any nonzero A-ideal a, let

ΓA(a) := ker(SL2(A)→ SL2(A/a)) =
{(

1+a b
c 1+d

)
∈ SL2(A) : a, b, c, d ∈ a

}
,

the congruence subgroup of SL2(A).

Definition 2.14. Let A′ is a subring of A. Let R be a faithful GMA over A, and consider it as
a subalgebra of M2(K) via Lemma 2.10. Let G be a subgroup of R×. We say that G is A′-full if
there exists a nonzero A′-ideal a′ and x ∈ GL2(K) such that

xGx−1 ⊇ ΓA′(a
′),

where we also consider ΓA′(a
′) inside of M2(K) via the natural inclusion SL2(A′) ↪→ M2(K).

If ρ : Π → R× is a representation, we say that ρ is A′-full if ρ(Π) is A′-full. We say that a
pseudorepresentation (t, d) : Π→ A is A′-full if there exists a (t, d)-representation that is A′-full.

Remark 2.15. Fullness is a well-defined notion for pseudorepresentations in the sense that if there
exists a (t, d)-representation ρ : Π→ R× that is A′-full, then every (t, d)-representation ρ′ : Π→ R′×

is A′-full. To see this, we just have to verify that the A-algebra isomorphism Ψ: R→ R′ such that
ρ′ = Ψ ◦ ρ from Proposition 2.11 is given by conjugation by an element of GL2(K). Consider
Ψ ⊗ 1: R ⊗A K → R′ ⊗A K and recall that R ⊗A K ∼= M2(K) ∼= R′ ⊗A K by Lemma 2.10. By
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the Skolem-Noether theorem, it follows that Ψ⊗ 1 (and hence Ψ) is conjugation by an element of
GL2(K).

The notion of fullness is meant to replace Belläıche’s notion of congruence large-image [Bel18,
Definition 7.2.1]. The advantage of our definition is that, given an admissible pseudodeformation
(Π, ρ, t, d) over A whose image we wish to study, we do not have to create an admissible pseudode-
formation over a subring A′ of A in order to conclude that it is A′-full (cf. [Bel18, Theorem 7.2.3]).
The disadvantage of Definition 2.14 is that it relies on the fact that A is a domain in order to
embed R into M2(K) and thus to be able to compare subgroups of R× with congruence subgroups
of subrings of A. We remark however that Belläıche’s Theorem 1.3 is also only valid for domains
[Bel18, Theorem 7.2.3].

In general a pseudorepresentation is A′-full for more than one choice of A′. The next lemma
shows that there is not a single optimal ring for fullness results. It plays a key role in our arguments
in Section 5.

Lemma 2.16. Let A1 ⊆ A2 be domains. The following conditions are equivalent:

(1) A1 contains a nonzero ideal of A2;
(2) there exists y ∈ A1 \ {0} such that yA2 ⊆ A1;
(3) every nonzero ideal of A1 contains a nonzero ideal of A2.

These equivalent conditions imply that A2 and A1 have the same field of fractions. If moreover A1

is Noetherian, then conditions (1,2,3) are equivalent to:

(4) Q(A2) = Q(A1) and A2 is a finitely generated A1-module.

Proof. For (1) implies (2), take y to be any nonzero element of the nonzero ideal of A2 contained
in A1. If (2) holds, then an arbitrary nonzero ideal a of A1 contains (yA2)a, which is a nonzero
ideal of A2, implying (3). Clearly (3) implies (1).

To see that Q(A2) = Q(A1) under either of (1,2,3), note that any x ∈ A2 can be written as
(yx)/y ∈ Q(A1) with y as in (2).

For the rest of the proof, assume that A1 is Noetherian. Suppose first that either of (1,2,3) holds.
If I is a non-zero ideal of A2 contained in A1, then it has a finite set of generators as an ideal of
A1, since A1 is Noetherian. In particular, I is a finitely generated A1-module. By replacing I with
a smaller A2-ideal, we can assume that I is principal in A2, that is, I = bA2 for some b ∈ A1.
Now choose a finite set of generators {bx1, . . . , bxn} of bA2 as an A1-module, with x1, . . . , xn in A2.
Then, for every y in A1, by is a linear combination

∑
i aibxi for some ai ∈ A1, which means that

y =
∑

i aixi, so the set {x1, . . . , xn} generates A2 as an A1-module.
Conversely, suppose that (4) is satisfied. Let x1, . . . , xn be generators for A2 as an A1-module.

Write xi = bi1/bi2 with bij ∈ A1 \ {0}. Set b =
∏n
i=1 bi2 ∈ A1 \ {0}. Then bxi ∈ A1 for all i, and it

follows that bA2 ⊆ A1, proving (2). �

Lemma 2.16 shows that if A1, A2 are subrings of A with the same field of fractions such that A2

is a finitely generated A1-module, then a pseudorepresentation is A1-full if and only if it is A2-full:
indeed, if I1 is an arbitrary nonzero ideal of A1, Lemma 2.16 provides us with an ideal I2 of A2

contained in I1, so that ΓA2(I2) ⊂ ΓA1(I1). It is even easier to pass fullness from a ring to a subring
so long as they have the same field of fractions, as the following lemma shows.

Lemma 2.17. Assume that A1 ⊆ A2 are domains with the same field of fractions. If a is a nonzero
A2-ideal, then a ∩A1 is a nonzero A1-ideal.

Proof. It is clear that a ∩ A1 is an A1-ideal. To see that it is nonzero, fix e ∈ a \ {0}. Then
any element a ∈ Q(A1) = Q(A2) can be written in the form αe with α ∈ Q(A2). Assume that
a ∈ A1 \ {0}, and write α = α1/α2 with αi ∈ A2 \ {0}. Then we have

α1e = α2a.
10



But α1e ∈ a and α2a ∈ A1 \ {0}. �

Remark 2.18. When A is a Noetherian domain and A′ is a closed (in particular local and complete)
subring of A, an A-valued pseudorepresentation (t, d) is A′-full if and only if it is (A′)nm ∩ A-full,
where (A′)nm denotes the normalization of A′. This follows from Lemmas 2.16 and 2.17, and the fact
that the normalization of a complete local Noetherian domain A′ is of finite type as an A′-module.

2.4. Pink-Lie algebras. In Section 2.4 we recall Pink’s theory relating pro-p subgroups of SL2(A)
to closed Lie subalgebras of sl2(A) [Pin93]. In fact, we use Belläıche’s generalization to GMAs
[Bel18, Section 4].

Recall that A is a local pro-p ring with p 6= 2. The assumption that p 6= 2 is critical for
Pink’s theory. Fix a compact topological GMA R =

(
A B
C A

)
over A. (The compactness condition is

satisfied, for instance, when R is of finite type as an A-module.) Write

SR× := {r ∈ R× : det r = 1}.
Let radR be the Jacobson radical of R, and R1 := 1 + radR. We let SR1 := SR× ∩R1, which is a
closed normal pro-p subgroup of R×. See [Bel18, Remark 4.2.1] for an explicit description of these
objects. Given any subset S of R, we write

S0 := {s ∈ S : tr s = 0}.
Then (radR)0 has a Lie algebra structure with bracket given by [r1, r2] := r1r2 − r2r1.

For any topological group G and closed subgroup H of G, write (G,H) for the smallest closed
subgroup of G containing {g−1h−1gh : g ∈ G, h ∈ H}. Fix a closed subgroup Γ ⊆ SR1. Recall that
the lower central series of Γ is defined by Γ1 := Γ and define Γn+1 := (Γ,Γn). We describe how
Pink associates a filtration of Lie algebras to Γ [Pin93, Section 2].

Define a function

Θ: R× → R0

r 7→ r − tr r

2
,

where (tr r)/2 is regarded as a scalar via the structure morphism A → R. Let L(Γ) = L1(Γ) be
the (additive) subgroup of (radR)0 topologically generated by Θ(Γ). For n ≥ 2, define Ln(Γ)
recursively as the subgroup of (radR)0 topologically generated by the set

{xy − yx : x ∈ L1(Γ), y ∈ Ln−1(Γ)}.
Although the Ln(Γ) are a priori only subgroups of (radR)0, Pink shows that they are closed under
Lie brackets and form a descending filtration, as summarized in the following proposition, which
is due to Pink when R = M2(A) [Pin93, Proposition 3.1, Proposition 2.3] and to Belläıche in the
GMA case [Bel18, Proposition 4.7.1].

Proposition 2.19. For all n ≥ 1, we have Ln+1(Γ) ⊆ Ln(Γ). In particular, each Ln(Γ) is a Lie
subalgebra of (radR)0.

We emphasize that, a priori, each Ln(Γ) is just a Zp-module, even if the ring A is very large.
The point of Section 3 is to prove that, under mild conditions, Ln(Γ) is in fact an algebra over an
(in general) much larger ring.

Conversely, given a closed Lie subalgebra L of (radR)0, define H(L) := Θ−1(L) ∩ SR1. Let
Hn := H(Ln(Γ)). A priori, H(L) is only a subset of SR1. However, we have the following theorem
of Pink [Pin93, Proposition 2.4, Theorem 2.7], which was generalized to GMAs by Belläıche [Bel18,
Theorem 4.7.3].

Theorem 2.20. We have that Hn is a pro-p subgroup of SR1. Furthermore, Γ is a normal subgroup
of H1, and H1/Γ is abelian. For n ≥ 2, we have Hn = Γn.
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Remark 2.21. Pink’s construction satisfies the following two important properties.

(1) It is functorial with respect to surjective ring homomorphisms. Namely, let a be a closed ideal
of A and ϕ : R→ R/aR the natural projection. Then for all n ≥ 1 we have

ϕ(Ln(Γ)) = Ln(ϕ(Γ)).

(2) Pink’s Lie algebra Ln(Γ) is closed under conjugation by the normalizer of Γ in R×. This follows
easily from the definitions since Θ is invariant under conjugation.

Let us give an example in the case when R = M2(A). For a nonzero A-ideal a, define

sl2(a) :=
{(

a b
c −a

)
: a, b, c ∈ a

}
.

Lemma 2.22. Let a be a closed ideal of A. Then ΓA(a) is a closed pro-p subgroup of GL2(A) and
Ln(ΓA(a)) = sl2(an).

Proof. For x =
(

1+a b
c 1+d

)
∈ ΓA(a) one has Θ(x) =

(
a−d

2
b

c d−a
2

)
∈ sl2(a), so L1(ΓA(a)) ⊆ sl2(a).

In particular, for any b, c ∈ a, we have Θ
(

1 b
0 1

)
=
(

0 b
0 0

)
and Θ ( 1 0

c 1 ) = ( 0 0
c 0 ). For a ∈ a we have(

1+2a −2a
2a 1−2a

)
∈ ΓA(a), and so

Θ
(

1+2a −2a
2a 1−2a

)
=
(
a −2a
2a −a

)
=
(
a 0
0 −a

)
+ Θ

(
1 −2a
0 1

)
+ Θ ( 1 0

2a 1 ) .

It follows that sl2(a) is contained in the additive subgroup generated by Θ(ΓA(a)). Since sl2(a) is
closed in sl2(A), it follows that sl2(a) = L1(ΓA(a)).

It is straightforward to calculate by induction on n that the subgroup topologically generated by

{xy − yx : x ∈ sl2(a), y ∈ sl2(an)}
is sl2(an+1). That is, Ln(ΓA(a)) = sl2(an) for all n ≥ 1. �

Corollary 2.23. Let a be a closed A-ideal different from A. Then (ΓA(a),ΓA(a))′ = ΓA(a2). This
holds even for a = A so long as F has more than three elements.

Proof. First assume that a 6= A. By Theorem 2.20,

(ΓA(a),ΓA(a)) = Θ−1(L2(ΓA(a))) ∩ ΓA(m).

By Lemma 2.22, L2(ΓA(a)) = sl2(a2).
Clearly ΓA(a2) ⊆ Θ−1(sl2(a2)) ∩ ΓA(m). We compute Θ−1

(
a b
c −a

)
∩ ΓA(m) for

(
a b
c −a

)
∈ sl2(a2).

If
(
α β
γ δ

)
∈ Θ−1

(
a b
c −a

)
∩ ΓA(m) then we must have β = b, γ = c, α − δ = 2a, and 1 = αδ − βγ.

From this one calculates that α = a ±
√

1 + a2 + bc and δ = −a ±
√

1 + a2 + bc. But only one of
these possibilities has α ≡ 1 ≡ δ mod m and thus is in ΓA(m). That is, there is a unique element
in Θ−1

(
a b
c −a

)
∩ ΓA(m). It follows that Θ−1(sl2(a2)) ∩ ΓA(m) = ΓA(a2), as desired.

We now prove that (SL2(A),SL2(A)) = SL2(A) when #F > 3. By the first statement in the
corollary, we know that ΓA(m2) ⊆ (SL2(A),SL2(A)), so we may assume that m2 = 0. Furthermore,
the residual image of (SL2(A),SL2(A)) is (SL2(F),SL2(F)), which is equal to SL2(F). Therefore, it
suffices to show that

(
1+a b
c 1−a

)
∈ (SL2(A),SL2(A)) for any with a, b, c ∈ m. Since m2 = 0, we can

decompose (
1+a b
c 1−a

)
=
(

1+a 0
0 1−a

) (
1 b
c 1

)
.

Let x ∈ A× such that x2 6≡ 1 mod m, which exists since #F > 3. Note that for any β, γ ∈ m we
have(

1 b
c 1

)
=
(

1 b(1−x2)−1

c(1−x−2)−1 1

) (
x 0
0 x−1

) ( 1 −b(1−x2)−1

−c(1−x−2)−1 1

) (
x−1 0

0 x

)
∈ (SL2(A),SL2(A))

and (
1+a 0

0 1−a
)

=
(

1+a
2

0

0 1−a
2

) (
0 1
−1 0

) ( 1−a
2

0

0 1+a
2

) (
0 −1
1 0

)
∈ (SL2(A), SL2(A)).
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It follows that ΓA(m) ⊆ (SL2(A),SL2(A)) and hence that SL2(A) is its own topological derived
subgroup. �

Remark 2.24. In practice we will apply Lemma 2.22 and Corollary 2.23 not to A itself, but to a
closed subring A′ of A. That is, if a′ is a closed ideal of A′, then ΓA′(a

′) is a pro-p subgroup of
GL2(A), and Ln(ΓA′(a

′)) = sl2((a′)n). This follows easily from Lemma 2.22 since A′ and a′ are
closed in A.

Corollary 2.23 can be used to show that fullness does not change if we twist a pseudorepresen-
tation by a character. Indeed, we have the following lemma.

Lemma 2.25. Let Π be a profinite group and A a domain. Let (t, d) : Π → A be a continuous
pseudorepresentation and χ : Π → A× a continuous character. Let A′ ⊆ A be a closed subring.
Then (t, d) is A′-full if and only if (χt, χ2d) is A′-full.

Proof. Let Π0 := kerχ. It suffices to show that (t|Π0 , d|Π0) is A′-full if (t, d) is A′-full. Let ρ : Π→
R× be a (t, d)-representation such that Im ρ contains ΓA′(a

′) for some nonzero A′-ideal a′. Write
G := ρ(Π).

Note that Π0 is a closed subgroup of a compact group and hence compact. Since Π/Π0
∼= Imχ,

and hence G/ρ(Π0), is abelian, it follows that ρ(Π0) contains G′, the topological derived subgroup
of G. But G ⊇ ΓA′(a

′), and so G′ contains the derived subgroup of ΓA′(a
′), which is ΓA′((a

′)2) by
Corollary 2.23. Since A is a domain and a′ 6= 0, it follows that (a′)2 6= 0 and hence (t|Π0 , d|Π0) is
A′-full. �

2.5. Decomposability and regularity. In order to prove fullness theorems, it is useful to be able
to decompose Pink’s Lie algebra according to its entries. In Section 2.5 we define this precisely and
then define regularity, which will turn out to be ensure that the Lie algebras of the representations
we work with are decomposable.

Definition 2.26. [Bel18, Section 4.9] Let R be a GMA over A and L a closed subspace of (radR)0.
We say that L is decomposable if(

a b
c −a

)
∈ L implies that

(
a 0
0 −a

)
∈ L and

(
0 b
c 0

)
∈ L.

We say that L is strongly decomposable if L is decomposable and(
a b
c −a

)
∈ L implies that

(
0 b
0 0

)
∈ L and ( 0 0

c 0 ) ∈ L.

If Ln(Γ) ⊆ R =
(
A B
C A

)
is decomposable, we write

In(Γ) := {a ∈ A :
(
a 0
0 −a

)
∈ Ln(Γ)},

∇n(Γ) := {
(

0 b
c 0

)
∈ Ln(Γ)},

Bn(Γ) := {b ∈ B : ∃c ∈ C such that
(

0 b
c 0

)
∈ Ln(Γ)},

Cn(Γ) := {c ∈ C : ∃b ∈ B such that
(

0 b
c 0

)
∈ Ln(Γ)}.

Eventually, L will be a Pink-Lie algebra associated to some admissible pseudodeformation of
ρ : Π → GL2(F). Regularity is a condition on ρ that will allow us to decompose L, as we will see
in Section 3.

Recall that E is the subfield of F generated by {(tr ρ(g))2/ det ρ(g) : g ∈ Π}. If λg, µg are the
eigenvalues of ρ(g), then we see that (tr ρ(g))2/ det ρ(g) = λgµ

−1
g +λ−1

g µg+2. Hence E is generated
over Fp by the set

(1) {λµ−1 + λ−1µ : λ, µ are the eigenvalues of ρ(g) for some g ∈ Π}.
In particular, g will not contribute to E if the multiplicative order of λgµ

−1
g is strictly less than

5. Using this reasoning, it is straightforward to calculate E when ρ exceptional. Namely, ρ is
tetrahedral or octahedral, then E = Fp. If ρ is icosahedral, then E = Fp(ζ5 + ζ−1

5 ) = Fp(
√

5).
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Definition 2.27. Let ρ : Π→ GL2(F) be a semisimple representation. We say that ρ is regular if

there exists g0 ∈ Π such that ρ(g0) has eigenvalues λ0, µ0 ∈ F×p satisfying λ0µ
−1
0 ∈ E× \ {±1}. We

call g0 a regular element for ρ. If in addition λ0, µ0 ∈ E×, then we say that ρ is strongly regular.

Definition 2.27 is weaker than Belläıche’s definition of regularity [Bel18, Definition 7.2.1]. Given
g ∈ Π, write λ, µ for the eigenvalues of ρ(g). By writing tr g = λ + µ and det ρ(g) = λµ, we see
that λµ−1 + λ−1µ ∈ E. Thus the only way ρ can fail to be regular is if, for every matrix in Im ρ
with eigenvalues λ, µ, either λµ−1 = ±1 or the unique quadratic extension of E is E(λµ−1).

Remark 2.28. Let us analyze regularity depending on the projective image of ρ. With notation
as in Definition 2.27, note that the order of λ0µ

−1
0 in E× corresponds to the order of ρ(g0) in the

projective image of ρ.

(1) If ρ is large, then ρ is regular. Indeed, Pρ(Π) contains PSL2(E) up to conjugation. Since ρ is
not exceptional, E× contains an element x such that x2 6= ±1. Then the image of ρ contains,
up to conjugation, a scalar multiple of

(
x 0
0 x−1

)
, which satisfies the regularity property.

(2) If ρ is tetrahedral and p > 3, then a regular element must map to a 3-cycle in the projective
image of ρ, since the other elements of A4 have order at most 2. Thus in this case regularity
is equivalent to ζ3 ∈ E = Fp, which is equivalent to p 6≡ 2 mod 3. By a similar argument we
see that if ρ is octahedral and p > 3, then regularity is equivalent to one of ζ3 or ζ4 being in
E = Fp, which is equivalent to p 6≡ 11 mod 12. If ρ is icosahedral and p 6= 5, then regularity is

equivalent to one of ζ3 or ζ5 being in E = Fp(
√

5), which is equivalent to p 6≡ 14 mod 15.
(3) If ρ ∼= ε⊕ δ, then we will see in Lemma 4.3 that ρ is regular if and only if εδ−1 takes values in

E×.
(4) If ρ = IndΠ

Π0
χ is dihedral, then elements in Π \Π0 have projective order 2, and so any regular

element must lie in Π0. Furthermore, elements in Π \ Π0 have trace 0, and so the field E
associated to ρ is the same as the field E associated to ρ|Π0 . Hence we are reduced to the
previous case when ρ is reducible.

(5) If the projective image of ρ is isomorphic to Z/2Z or (Z/2Z)2, or if E = F3, then ρ is never
regular. In particular, if p = 3 and ρ is tetrahedral or octahedral, then ρ is not regular. If p = 5
and ρ is icosahedral, then Pρ(Π) is conjugate to PSL2(F5). Thus E = F5 and any potential
regular element has eigenvalues in (F×5 )2 = {±1}, so ρ is not regular in this case.

2.6. Belläıche’s results. The purpose of this section is to state Belläıche’s main results that form
the basis for our work in this paper. We state them in slightly less generality than [Bel18, Section
6]. As before, A denotes a pro-p local ring with maximal ideal m and residue field F. In particular,
A is naturally a topological W (F)-algebra.

If R is a faithful GMA over A, we define s : R/ radR→ R by

s

(
a b
c d

)
:=


(
s(a) s(b)
s(c) s(d)

)
if R = M2(A)(

s(a) 0
0 s(s)

)
else.

Note that in the latter case, we have a priori that b = c = 0.
Let us fix an admissible pseudodeformation (Π, ρ, t, d) over A. If p = 3, let us assume that ρ is

not tetrahedral. By Proposition 2.11, there exists a (t, d)-representation ρ : Π→ R×. Given such a
(t, d)-representation, write G = Gρ := ρ(Π) and Γ = Γρ := G∩SR1. Furthermore, let G denote the

image of G modulo radR. (Note that the image of G under an embedding R/ radR→ GL2(F) is a
conjugate of ρ(Π).) We will write Ln(ρ) := Ln(Γρ) and analogously for In(ρ),∇n(ρ), Bn(ρ), Cn(ρ).

Belläıche chooses his (t, d)-representations very carefully in order to give a nice description of
their Pink-Lie algebras. How this is done depends upon the projective image of ρ. Since ρ is

multiplicity-free over F, we can let λ0 6= µ0 ∈ F×p be the eigenvalues of a matrix x0 ∈ Im ρ chosen
such that the following conditions are satisfied:
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• if ρ is large, then (λ0µ
−1
0 )2 6= 1 and λ0, µ0 ∈ F×p ;

• if p = 3 and ρ is octahedral, then λ0µ
−1
0 is a primitive fourth root of unity;

• if p = 5 and ρ is icosahedral, then λ0µ
−1
0 is a primitive third root of unity;

• if ρ is exceptional and does not belong to one of the previous to scenarios, then λ0µ
−1
0 is a

primitive third, fourth, or fifth root of unity;
• otherwise, the multiplicative order of λ0µ

−1
0 is equal to the maximal order of an element in the

projective image of ρ.

Definition 2.29. Suppose (Π, ρ, t, d) is an admissible pseudodeformation. We say that a (t, d)-
representation ρ is well adapted if

(1) ρ is adapted to an element g0 such that ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
, where λ0, µ0 satisfy the relevant

property listed above (cf. Lemma 2.13);
(2) if the projective image of ρ is dihedral and nonabelian, then G contains a matrix of the form(

0 b
c 0

)
with bc−1 ∈ F×p and s(G) ⊆ Im ρ.

Belläıche shows that well-adapted (t, d)-representations always exist, provided that one is willing
to replace F by a quadratic extension in the dihedral case [Bel18, Proposition 6.3.2, Lemma 6.8.2].

Define Fq as in Table 1. We will see in Lemma 4.3 that if ρ is regular and reducible or dihedral,
then Fq can be taken to be E. If ρ is not projectively cyclic or dihedral, then Fq ⊆ E by definition.

(In the A5 case, this follows from the calculation that E = Fp(
√

5) prior to Definition 2.27.)

Remark 2.30. Our definition of Fq differs from that of Belläıche when ρ is exceptional. If ρ is
tetrahedral, then Belläıche defines Fq = Fp(ζ3). If ρ is octahedral, he defines Fq to be Fp(ζ3) if the

ratio λ0µ
−1
0 chosen prior to Definition 2.29 has order 3 and Fp(ζ4) if that ratio has order 4. If ρ is

icosahedral, then he defines Fq = Fp(ζ5). The key property that Belläıche needs is that ρ can be

conjugate so that its image lies in Z GL2(Fq) and
(
λ0 0
0 µ0

)
∈ Im ρ, where Z is the group of scalar

matrices in F (cf. [Bel18, Lemma 6.8.5]). This change of definition will be justified in Lemma 4.12.

Table 1. Definition of Fq

the projective image of ρ is Fq
cyclic of order m or dihedral of order 2m any subfield of F such that (m, q − 1) > 2
exceptional E(λ0µ

−1
0 )

otherwise Fp

The following theorem summarizes Belläıche’s results describing the structure of W (Fq)L1(ρ)
from [Bel18, Section 6].

Theorem 2.31 (Belläıche). Let (Π, ρ, t, d) be an admissible pseudodeformation such that the projec-
tive image of ρ is not isomorphic to Z/2Z nor (Z/2Z)2. Then every well-adapted (t, d)-representation
ρ : Π→ R× with R =

(
A B
C A

)
has the following properties:

(1) L1(ρ) is decomposable;
(2) the ring A is equal to{

W (F) +W (F)I1(ρ) +W (F)I1(ρ)2 +W (F)B1(ρ) if ρ is projectively dihedral

W (F) +W (F)I1(ρ) +W (F)I1(ρ)2 otherwise;

(3) W (F)C1(ρ) = C and W (F)B1(ρ) = B;
15



(4) up to possibly replacing ρ with its conjugate by a certain matrix ( 1 0
0 a ) with a ∈ A× when ρ is

exceptional or large, W (Fq)L1(ρ) is equal to(
W (Fq)I1(ρ) W (Fq)B1(ρ)
W (Fq)C1(ρ) W (Fq)I1(ρ)

)0

.

Furthermore

(i) (W (Fq)I1(ρ))3 ⊆W (Fq)I1(ρ);
(ii) if ρ is not reducible, then W (Fq)C1(ρ) = W (Fq)B1(ρ);

(iii) if ρ is exceptional or large, then W (Fq)B1(ρ) = W (Fq)I1(ρ) and (W (Fq)I1(ρ))2 ⊂W (Fq)I1(ρ).

For a subfield F′ of F, we shall often refer to the W (F′)-subalgebra of A generated by I1(ρ). We
will denote it by W (F′)[I1(ρ)], which is simply equal to W (F′)+W (F′)I1(ρ)+W (F′)I1(ρ)2 whenever
Fq ⊆ F′. When ρ is not reducible or dihedral, we have W (F′)[I1(ρ)] = W (F′) + W (F′)I1(ρ) by
Theorem 2.31(ii).

Belläıche uses Theorem 2.31 to deduce that, under certain hypotheses, the representation ρ is
AB := Zp[I1(ρ)]-full. See Theorem 1.3 or [Bel18, Theorem 7.2.3] for a precise statement of his
result.

2.7. Conjugate self-twists. The goal of this paper is to understand Belläıche’s ring AB in terms
of conjugate self-twists. Here we give the definitions and notation related to conjugate self-twists
of pseudorepresentations. As usual, A is a pro-p local ring.

If σ is a ring automorphism of A and f : Π → A is a function, we write σf : Π → A for the
function σf(g) := σ(f(g)).

Definition 2.32. Let (t, d) : Π→ A be a constant-determinant pseudodeformation such that A is
the trace algebra of (t, d). A conjugate self-twist (CST) of (t, d) is a pair (σ, η), where σ is a ring
automorphism of A and η : Π→ A× is a continuous character such that (σt, σd) = (ηt, η2d).

It is easy to see that if (σ, η) is a conjugate self-twist of (t, d), then σ is determined by η.
Furthermore, the pairs (σ, η) of conjugate self-twists of a pseudodeformation (t, d) form a group
with the group law given by

(2) (σ, η) · (τ, χ) := (σ ◦ τ, σχ · η).

Let Σpairs
t denote the group of all conjugate self-twists of (t, d).

There is a natural group homomorphism Σpairs
t → AutA given by (σ, η) 7→ σ. Let Σt denote the

image of this map and let Σdi
t denote the kernel of this map. Thus we have an exact sequence

1→ Σdi
t → Σpairs

t → Σt → 1.

Since (t, d) is has constant determinant, it is straightforward to check that Σt is an abelian group.
We will write AΣt for the subring of A that is fixed (pointwise) by every element in Σt. When

(t, d) = (tr ρ,det ρ) for a representation ρ : Π → GL2(A), we will write Σpairs
ρ and Σρ in place of

Σpairs
t and Σt.
Throughout most of the paper, we work with admissible pseudodeformations, which are constant-

determinant pseudorepresentations for which A is the trace algebra. However, in applications one
often wants to remove the constant-determinant condition. We still need a notion of conjugate-self
twist in this setting, but the naive generalization of Definition 2.32 has some problems, as Example
2.35 below illustrates. We therefore make the following definition specifically in the case when A
is a domain.

Definition 2.33. Let A be a domain with field of fractions K and Ksep a separable closure of K.
Let (t, d) : Π → A be a pseudorepresentation. A generalized conjugate self-twist of (t, d) is a pair
(σ, η), where σ : Ksep → Ksep is a field automorphism (not necessarily fixing K) and η : Π→ Ksep×

is a group homomorphism such that (σt, σd) = (ηt, η2d).
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Lemma 2.34. Let A be a domain. If (t, d) : Π→ A is a constant-determinant pseudorepresentation
such that A is the trace algebra of (t, d), then every generalized conjugate self-twist is a conjugate
self-twist.

Proof. Note that for any generalized conjugate self-twist we have η2 = σdd−1. If d = s(det ρ), then
d takes values in the roots of unity in the image of W (F) inside A. Thus σ must act by some
integral power on d, and we find that η2 is a power of d. It follows that η must be equal to a
quadratic character times a power of d by the same argument as in [Mom81, Lemma 1.5] or [Lan16,
Lemma 3.10]. In particular, η takes values in A×. Since A is generated as a W (F)-module by the
values of t, it follows that σ is an automorphism of A. �

The following example shows that when a pseudorepresentation does not have constant deter-
minant, it is necessary to consider generalized conjugate self-twists to understand the image of a
(t, d)-representation.

Example 2.35. Let p 6= 2 be a prime. Let Π be the subgroup of GL2(Zp[ p
√
p]) generated by GL2(Zp)

and the scalar matrix p
√
p. Then GL2(Zp) is a normal subgroup of Π. Let ρ : Π → GL2(Zp[ p

√
p])

be the natural inclusion. There are no nontrivial Zp-algebra automorphisms of Zp[ p
√
p], but the

pseudorepresentation (t, d) attached to ρ admits nontrivial generalized conjugate self-twists. Indeed,
consider σ : Z[ p

√
p]→ Z[ p

√
p] sending p

√
p to ζp p

√
p and the character η : Π→ Zp[ p

√
p, ζp]

× with kernel
GL2(Zp) such that η( p

√
p) = ζp. Then (σ, η) is a generalized conjugate self-twist of (t, d) that is not

a conjugate self-twist. Furthermore, it is clear by inspection that Zp is the largest ring with respect
to which ρ is full.

If A is a domain and (t, d) : Π → A is a pseudorepresentation, let Σgen,pairs
t denote the group of

all generalized conjugate-self twists of (t, d), with group law as in (2), and Σgen
t the image of the

natural map Σgen,pairs
t → Aut(Ksep). Slightly abusing notation, we will write KΣgen

t for the largest

subfield of K pointwise fixed by all the elements of Σgen
t . That is, KΣgen

t := (Ksep)Σgen
t .

3. Rings acting on Pink-Lie algebras

Throughout this section we fix a local pro-p ring A with residue field F. Let ρ : Π→ GL2(F) be a
continuous representation that is multiplicity-free over F. Fix a pseudodeformation (t, d) : Π→ A of
ρ, not necessarily admissible. Let A0 be the subring of A topologically generated by {t(g)2/d(g) : g ∈
Π} and E the residue field of A0. We let ad0 : GL2(Ksep)→ GL3(Ksep) denote the representation
of GL2(Ksep) on sl2(Ksep) := {x ∈M2(Ksep) : trx = 0} by conjugation.

3.1. Conjugate self-twists and the adjoint representation. In Section 3.1, we assume that
A is a domain with field of fractions K. Fix a separable closure Ksep of K. The goal of Section
3.1 is to relate A0 to the subfield of Ksep fixed by (generalized) conjugate self-twists. This is done
in Proposition 3.1, but the main technical result that we need is Proposition 7.10, which can be
found in the Appendix. In particular, we deduce a that E = FΣρ .

Proposition 3.1. The field of fractions of A0 is equal to KΣgen
t . In particular, if χ : Π→ A× is a

character, then KΣgen
t = KΣgen

χt .

Proof. First we show that for all g ∈ Π, the element t(g)2/d(g) is fixed by every σ ∈ Σgen
t . Indeed,

for (σ, η) ∈ Σgen,pairs
t , we have

σt(g)2

σd(g)
=
η(g)2t(g)2

η(g)2d(g)
=
t(g)2

d(g)
.

Thus if K0 is the field of fractions of A0, then K0 ⊆ (Ksep)Σgen
t .

Choose a σ in Aut(Ksep) that fixes K0 pointwise. We will show that σ ∈ Σgen
t , and thus

K0 = (Ksep)Σgen
t . Since A is a domain, by Lemma 2.10 we can choose a (t, d)-representation
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ρ : Π→ GL2(K). Since σ fixes t(g)2/d(g) for all g ∈ Π, it follows from Lemma 7.3 that tr ad0 σρ =
tr ad0 ρ.

Let g ∈ Π. We claim that if tr ad0 σρ(g) = tr ad0 ρ(g), then ad0 σρ(g) and ad0 ρ(g) have the same
characteristic polynomials. (This is clear from tr ad0 σρ = tr ad0 ρ if the characteristic of K is not
3.) Write λ(g), µ(g) ∈ (Ksep)× for the eigenvalues of ρ(g), and let αg := λ(g)/µ(g). Then the

eigenvalues of ad0 ρ(g) are 1, αg, α
−1
g . It follows that the eigenvalues of σρ(g) are 1, σαg,

σα−1
g . Hence

the characteristic polynomial of ad0 ρ(g) is

X3 − (1 + αg + α−1
g )X2 + (1 + αg + α−1

g )X − 1,

and the characteristic polynomial of ad0 σρ(g) is

X3 − (1 + σαg + σα−1
g )X2 + (1 + σαg + σα−1

g )X − 1.

We have already seen that tr ad0 σρ(g) = tr ad0 ρ(g), so σαg + σα−1
g = αg +α−1

g . Thus ad0 σρ(g) and

ad0 ρ(g) have the same characteristic polynomials.
Note that ad0 ρ is semisimple since ρ is. By the Brauer-Nesbitt theorem, it follows that ad0 σρ ∼=

ad0 ρ over Ksep. By Proposition 7.10 there is a continuous character η : Π → (Ksep)× such that
σρ ∼= η ⊗ ρ. �

In particular, Proposition 3.1 implies that E = FΣρ . We shall often make use of this characteriza-
tion of E in the rest of the paper. Furthermore, we can use Proposition 3.1 to show that A0-fullness
can be deduced from fullness with respect to a certain ring fixed by conjugate self-twists.

Corollary 3.2. Let χ : Π→ A× be a continuous character such that (t′, d′) := (χt, χ2d) has constant
determinant. Let A′ be the trace algebra of (t′, d′). If (t′, d′) is (A′)Σt′ -full, then (t, d) is A0-full.

Proof. Note that A0 ⊆ (A′)Σt′ and that the two rings have the same field of fractions by Proposition
3.1. By Lemma 2.17, it follows that (t′, d′) is A0-full. The corollary then follows from Lemma
2.25. �

3.2. L2(ρ) is a W (E)-module. For the rest of Section 3 we fix an admissible pseudodeformation
(Π, ρ, t, d) over A. Recall that, a priori, Pink’s construction only gives Lie algebras that are Zp-
modules. The goal of Section 3.2 is to show that if ρ is a (t, d)-representation, then in fact its
associated Lie algebras are modules over W (E) (Proposition 3.4). Although this is a minor im-
provement on Zp (indeed, it may be no improvement at all if W (E) = Zp), it is an essential input
for proving the results of Section 5.

We assume throughout Section 3.2 that the eigenvalues of ρ(g) are in F× for all g ∈ Π. This
requires at most replacing F by its unique quadratic extension.

Let λ 6= µ ∈ F× be the eigenvalues of a matrix in Im ρ. By Lemma 2.13, there is a (t, d)-
representation ρλ,µ : Π→ R×λ,µ and gλ,µ ∈ Π such that

ρλ,µ(gλ,µ) =

(
s(λ) 0

0 s(µ)

)
.

Recall that Gρλ,µ := Im ρλ,µ,Γρλ,µ := Gρλ,µ ∩ SR1
λ,µ, and Ln(ρλ,µ) := Ln(Γρλ,µ). Since λ 6= µ, the

Lie algebra L1(ρλ,µ) is decomposable [Bel18, Corollary 6.2.2].

Lemma 3.3. With the notation introduced at the beginning of Section 2.6, we have

(1) ∇1(ρλ,µ) and L2(ρλ,µ) are W (Fp(λµ−1 + λ−1µ))-modules;
(2) if L1(ρλ,µ) is strongly decomposable, then B1(ρλ,µ), C1(ρλ,µ) are W (Fp(λµ−1 +λ−1µ))-modules;
(3) if the projective image of ρ contains PSL2(Fp) and p ≥ 7, then I1(ρλ,µ) is a W (Fp(λµ−1 +

λ−1µ))-module; after possibly replacing ρλ,µ with its conjugate by a certain

(
1 0
0 a

)
with a ∈ A×,

one has that L1(ρλ,µ) is a W (Fp(λµ−1 + λ−1µ))-module.
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Proof. Note that

L2(ρλ,µ) =
[
I1(ρλ,µ)

(
1 0
0 −1

)
,∇1(ρλ,µ)

]
+ [∇1(ρλ,µ),∇1(ρλ,µ)].

Furthermore, if L1(ρλ,µ) is strongly decomposable, then ∇1(ρλ,µ) ∼= B1(ρλ,µ)⊕C1(ρλ,µ). Therefore
the first statement implies the second, and it suffices to show that ∇(ρλ,µ) is a W (Fp(λµ−1+λ−1µ))-
module.

To prove that
(s(λ)s(µ)−1 + s(λ)−1s(µ))∇1(ρλ,µ) ⊆ ∇1(ρλ,µ),

recall that L1(ρλ,µ) is closed under conjugation by Gρλ,µ (in fact, by any element in the normalizer

of Γρλ,µ). In particular, it is closed under conjugation by
(
s(λ) 0

0 s(µ)

)
and

(
s(λ)−1 0

0 s(µ)−1

)
. Using

this, a short matrix calculation shows that if
(

0 b
c 0

)
∈ ∇1(ρλ,µ) then(

0 s(λ)s(µ)−1b

s(λ)−1s(µ)c 0

)
,
(

0 s(λ)−1s(µ)b

s(λ)s(µ)−1c 0

)
∈ ∇1(ρλ,µ).

Therefore (s(λ)s(µ)−1 + s(λ)−1s(µ))∇1(ρλ,µ) ⊆ ∇1(ρλ,µ).
Finally, if the projective image of ρ contains PSL2(Fp) and p ≥ 7, then by Theorem 2.31, up to

replacing ρλ,µ with its conjugate by a certain ( 1 0
0 a ) with a ∈ A×, we have

L1(ρλ,µ) =
(
I1(ρλ,µ) I1(ρλ,µ)

I1(ρλ,µ) I1(ρλ,µ)

)0
,

and thus B1(ρλ,µ) = I1(ρλ,µ) = C1(ρλ,µ). (Note that conjugation by ( 1 0
0 a ) with a ∈ A× does not

change I1(ρλ,µ).) In particular, L1(ρλ,µ) is strongly decomposable. By the second statement of the
lemma, we see that I1(ρλ,µ) is a W (Fp(λµ−1 + λ−1µ))-module. The above description of L1(ρλ,µ)
shows that it is also a W (Fp(λµ−1 + λ−1µ))-module. �

Proposition 3.4. Let ρ : Π→ R× be a (t, d)-representation. Then Ln(ρ) is a W (E)-module for all
n ≥ 2. If the projective image of ρ contains PSL2(Fp) and p ≥ 7, then L1(ρ) is a W (E)-module.

Proof. By (1) in Section 2.5, it suffices to show that Ln(ρ) is closed under multiplication by

s(λ)s(µ)−1 + s(λ)−1s(µ) for all λ, µ ∈ F×p that are distinct eigenvalues of an element in Im ρ.

Fix such λ, µ. Let ρλ,µ : Π → R×λ,µ be the (t, d)-representation over A described prior to Lemma

3.3. Let us assume furthermore that, in the case when ρ is not projectively cyclic or dihedral,
that we have already replaced ρλ,µ by its relevant diagonal conjugate so that the description of
W (Fq)L1(ρλ,µ) from Theorem 2.31 applies to ρλ,µ.

Since ρ : Π → R× and ρλ,µ : Π → R×λ,µ are both (t, d)-representations over A, it follows from

Proposition 2.11 that there is a unique A-algebra isomorphism Ψ: Rλ,µ → R such that ρ = Ψ◦ρλ,µ.
We claim that this implies that Ln(ρ) = Ψ(Ln(λ, µ)) for all n ≥ 1. If this is true, then L2(ρ) is
closed under multiplication by s(λ)s(µ)−1 + s(λ)−1s(µ) ∈ A since L2(ρλ,µ) is by Lemma 3.3 and
Ψ is an A-algebra homomorphism. Since L2(ρ) is a W (E)-module, it follows immediately from the
definition that Ln(ρ) is a W (E)-module for all n ≥ 2. Furthermore, the argument in this paragraph
applies to L1(ρ) under the assumption that the projective image of ρ contains PSL2(Fp) for p ≥ 7.

To see that Ln(ρ) = Ψ(Ln(ρλ,µ)), note that Gρ = GΨ◦ρλ,µ = Ψ(Gρλ,µ). Since Ψ is an algebra
morphism, it follows that Ψ(radRλ,µ) = radR. Furthermore, since ρ and ρλ,µ are both (t, d)-
representations, it follows that Ψ preserves determinants. Therefore Ψ(SR1

λ,µ) ⊃ SR1. Since Ψ is a

continuous algebra homomorphism, it follows directly from the definition of Θ that Ψ(L1(ρλ,µ)) =
L1(ρ) and hence Ψ(Ln(ρλ,µ)) = Ln(ρ) for all n ≥ 1. �

3.3. L2(ρ) is a W (E)[I1(ρ)]-module. In Section 3.3 we use Belläıche’s work to show that, for any
well-adapted (t, d)-representation ρ, Ln(ρ) is a module over a ring comparable to A. This is the
key input into Corollary 3.8, which is our improvement on Belläıche’s fullness theorem.

Proposition 3.5. Let ρ be a (t, d)-representation adapted to (g0, λ0, µ0). Then
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(1) L2(ρ) is a module over W (E)[I1(ρ)2] := W (E) +W (E)I1(ρ)2;
(2) if n ≥ 1 and Ln(ρ) is strongly decomposable, then Ln+1(ρ) is a module over W (E)[I1(ρ)];
(3) if the projective image of ρ contains PSL2(Fp) for p ≥ 7, then up to replacing ρ with its

conjugate by some ( 1 0
0 a ) with a ∈ A×, L1(ρ) is a module over W (E)[I1(ρ)].

Proof. Since ρ is adapted to (g0, λ0, µ0), it follows that L1(ρ) is decomposable [Bel18, Corollary
6.2.2]. Note that [I1(ρ)

(
1 0
0 −1

)
,∇1(ρ)] ⊂ ∇1(ρ) since L1(ρ) is a Lie algebra. That is, for all a ∈ I1(ρ)

and
(

0 b
c 0

)
∈ ∇1(ρ), we have 2a

(
0 b
−c 0

)
∈ ∇1(ρ). To prove the first statement, we can apply this fact

a second time to α ∈ I1(ρ) and 2a
(

0 b
−c 0

)
to see that 4aα

(
0 b
c 0

)
∈ ∇1(ρ). Therefore ∇1(ρ) is closed

under multiplication by I1(ρ)2. Since

L2(ρ) =
[
I1(ρ)

(
1 0
0 −1

)
,∇1(ρ)

]
+ [∇1(ρ),∇1(ρ)],

we see that L2(ρ) is closed under multiplication by I1(ρ)2.
For the second statement, if Ln(ρ) is strongly decomposable, then we can write

Ln(ρ) = In(ρ)
(

1 0
0 −1

)
⊕Bn(ρ)

(
0 1
0 0

)
⊕ Cn(ρ)

(
0 0
1 0

)
.

By calculating
[(

1 0
0 −1

)
, ( 0 1

0 0 )
]

and
[(

1 0
0 −1

)
, ( 0 0

1 0 )
]
, we find that I1(ρ)Bn(ρ) = Bn+1(ρ) ⊂ Bn(ρ)

and I1(ρ)Cn(ρ) = Cn+1(ρ) ⊂ Cn(ρ). Therefore Bn(ρ), Cn(ρ) are closed under multiplication by
I1(ρ). Since

Ln+1(ρ) = [Bn(ρ)
(

0 1
0 0

)
, Cn(ρ)

(
0 0
1 0

)
] + [I1(ρ)

(
1 0
0 −1

)
, Bn(ρ)

(
0 1
0 0

)
] + [I1(ρ)

(
1 0
0 −1

)
, Cn(ρ)

(
0 0
1 0

)
],

it follows that Ln+1(ρ) is closed under multiplication by I1(ρ).
The first two results now follow from Proposition 3.4. The last statement follows from Theorem

2.31 and Proposition 3.4. �

Remark 3.6. It would be nice to remove the assumption that L1(ρ) is strongly decomposable and
still conclude that L2(ρ) is a W (E)[I1(ρ)]-module, but we do not see a way to do this.

3.4. Regularity implies W (E)[I1(ρ)]-fullness. The goal of Section 3.4 is to establish a slightly
stronger version of [Bel18, Theorem 7.2.3], which is Belläıche’s Theorem 1.3 of the introduction.
We do so in Corollary 3.8 below. Our result is different from that of Belläıche mainly in that we
can weaken his definition of regularity and enlarge his ring Zp[I1(ρ)] to W (E)[I1(ρ)].

Throughout Section 3.4 the ring A will be a local pro-p domain with residue field F and field of
fractions K. We fix an admissible pseudodeformation (Π, ρ, t, d) over A throughout this section.
If ρ is a (t, d)-representation that is adapted to some (g0, λ0, µ0), then L1(ρ) is decomposable by
[Bel18, Corollary 6.2.2]. Thus I1(ρ) is defined. We write K1 for the field of fractions of W (E)[I1(ρ)].

Proposition 3.7. Assume that ρ is regular. Let ρ : Π → R× be a (t, d)-representation adapted to

(g0, λ0, µ0) for a regular element g0 such that ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
. If B1(ρ), C1(ρ) 6= 0, then ρ is

W (E)[I1(ρ)]-full.

Proof. It is easy to see that the eigenvalues of ρ(g0) =
(
s(λ0) 0

0 s(µ0)

)
acting on Ln(ρ) by conjugation

are 1, s(λ0)s(µ−1
0 ), s(λ−1

0 )s(µ0), which are distinct elements of W (E)× since g0 is a regular element.
Since Ln(ρ) is a W (E)-module for n ≥ 2 by Proposition 3.4, it follows that Ln(ρ) is the direct sum
of the eigenspaces for the conjugation action of ρ(g0). Thus, Ln(ρ) is strongly decomposable for
n ≥ 2. By Proposition 3.5, it follows that Ln(ρ) is an W (E)[I1(ρ)]-module for n ≥ 3.

Since A is a domain, we may view R inside of M2(K) by Lemma 2.10. Note that if B1(ρ), C1(ρ) 6=
0, then since In(ρ), Bn(ρ), Cn(ρ) ⊂ K, it follows that In(ρ), Bn(ρ), and Cn(ρ) are nonzero for all
n ≥ 1. In particular, I3(ρ), B3(ρ), C3(ρ) are nonzero W (E)[I1(ρ)]-modules.

Define

R1 :=
(
W (E)[I1(ρ)] B3(ρ)

C3(ρ) W (E)[I1(ρ)]

)
.
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Then R1 is a faithful GMA over W (E)[I1(ρ)]. By the proof of [Bel18, Lemma 2.2.2], if 0 6= b0 ∈
B3(ρ) and x =

(
1 0
0 b0

)
, it follows that xR1x

−1 ⊆ GL2(K1). Thus, by replacing ρ with xρx−1, which

is still a (t, d)-representation adapted to (g0, λ0, µ0) that sends g0 to
(
s(λ0) 0

0 s(µ0)

)
, we may assume

that B3(ρ), C3(ρ) ⊆ K1. (Note that I1(ρ) = I1(xρx−1).)
Note that any nonzero W (E)[I1(ρ)]-submodule of K1 contains a nonzero element of W (E)[I1(ρ)]

and thus contains a non-zero W (E)[I1(ρ)]-ideal. Therefore there exists a nonzero W (E)[I1(ρ)]-ideal
a contained in I3(ρ) ∩ B3(ρ) ∩ C3(ρ). Hence sl2(a) ⊆ L3(ρ). Using Theorem 2.20 we deduce that
ΓW (E)[I1(ρ)](a) ⊂ Im ρ and ρ is W (E)[I1(ρ)]-full. �

Corollary 3.8. Assume that ρ is regular. Let ρ be a well-adapted (t, d)-representation adapted to

(g0, λ0, µ0) for a regular element g0 such that ρ(g0) =
( s(λ0) 0

0 s(µ0)

)
. If (t, d) is not a priori small,

then (t, d) is W (E)[I1(ρ)]-full.

Proof. By Proposition 3.7 it suffices to show that B1(ρ), C1(ρ) 6= 0. We do this by analyzing the
different possibilities for ρ. By Lemma 7.5, we see that either ρ is reducible, dihedral, or ad0 ρ is
irreducible. The proof is easiest in the last case. Indeed, the assumption that t 6= s(t) implies that
Γ := Γρ is not trivial. Recall that Γ is equipped with a filtration

Γn := Γ ∩ ΓA(mn)

such that Γn/Γn+1 ↪→ sl2(F). This embedding is equivariant with respect to the adjoint action of
G. Since Γ is nontrivial, there is some n such that Γn/Γn+1 contains a nontrivial element. Since
ad0 ρ is irreducible, it follows that we must have Γn/Γn+1

∼= sl2(F). In particular, B1(ρ), C1(ρ) 6= 0.
Now suppose that ρ is reducible. Since ρ is well adapted by assumption, it follows that ρ

is adapted to (g0, λ0, µ0), where ρ(g0) generates the projective image of ρ. In particular, ρ is
automatically adapted to a regular element. Suppose for contradiction that C1(ρ) = 0 (respectively,
B1(ρ) = 0). Then Γρ is contained in the upper (respectively, lower) triangular matrices. By [Bel18,

Theorem 6.2.1], we know that s(G) ⊂ Gρ since ρ is well adapted. Thus Gρ = s(G)Γρ. But then Gρ is
contained in the upper (respectively, lower) triangular matrices, and hence ρ is reducible. Therefore
t is the sum of two continuous characters Π → A×, a contradiction. Thus B1(ρ), C1(ρ) 6= 0 if ρ is
reducible.

Finally suppose that ρ is dihedral. By Lemma 7.7 there is a unique subgroup Π0 of index 2 in
Π such that ρ ∼= IndΠ

Π0
χ for some character χ : Π0 → F×. Applying the reducible case to ρ|Π0 , we

see that either ρ|Π0 is reducible or B1(ρ|Π0), C1(ρ|Π0) 6= 0. The first possibility is not allowed by
hypothesis, so we must have B1(ρ|Π0), C1(ρ|Π0) 6= 0. But B1(ρ|Π0) ⊆ B1(ρ) and C1(ρ|Π0) ⊆ C1(ρ),
which proves the desired result when ρ is dihedral. �

Remark 3.9. Although fullness with respect to a particular ring is a property of the pseudorep-
resentation (t, d) (as discussed in Remark 2.15), Corollary 3.8 does not imply that any (t, d)-
representation ρ is W (E)[I1(ρ)]-full. We just know that there exists one (call it ρ), and any other
(t, d)-representation ρ′ is W (E)[I1(ρ)]-full. The point is that the ring W (E)[I1(ρ)] depends on the
choice of ρ. Part of the advantage of relating W (E)[I1(ρ)] to AΣt and A0 (which will be done in
Section 5) is that the latter rings can be defined in terms of (t, d), independent of a choice of ρ.

4. Conjugate self-twists

In Section we analyze conjugate self-twists of admissible pseudodeformations. Section 4.1 is
devoted to understanding conjugate self-twists of ρ. In Section 4.2 we introduce the notion of a good
octahedral representation and explain how to choose a good basis for ρ that will be used in Section
5. In Section 4.3 we show that any conjugate self-twist of an admissible pseudodeformation lifts to
a conjugate self-twist of the universal constant-determinant pseudorepresentation (T, d) : Π → A
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defined in Section 2.1. Finally, Section 4.4 contains a lemma concerning residually trivial conjugate
self-twists.

4.1. Residual conjugate self-twists. Fix a representation ρ : Π → GL2(F) that is multiplicity

free over F. It will be important to have a good understanding of the group Σpairs
ρ of conjugate

self-twists of ρ. Indeed, we will see in Section 4.3 that Σpairs
ρ controls the conjugate self-twists of

any constant-determinant pseudodeformation of ρ.

We begin by studying Σdi
ρ and use that to show that Σpairs

ρ is finite.

Lemma 4.1.

(1) If the projective image of ρ is not dihedral or cyclic of order 2, then Σdi
ρ is trivial.

(2) If the projective image of ρ is either a nonabelian dihedral group or has order 2, then Σdi
ρ has

order 2.
(3) If the projective image of ρ is isomorphic to (Z/2Z)2, then Σdi

ρ is isomorphic to (Z/2Z)2.

Proof. Recall that P : GL2(F) → PGL2(F) denotes the natural projection. We claim that if ρ is
irreducible, then the following sets are in bijection:

(a) Σdi
ρ \ {(1, 1)};

(b) subgroups Π0 of Π such that [Π: Π0] = 2 and ρ(Π0) is abelian;
(c) subgroups H of Pρ(Π) such that [Pρ(Π): H] = 2 and H is abelian.

Indeed, the maps between them can be described as follows. Given (1, η) ∈ Σdi
ρ \ {(1, 1)}, let

Π0 := ker η. The fact that [Π: Π0] = 2 follows from Lemma 7.7, and Lemma 7.6 shows that ρ(Π0)
is abelian. Conversely, given Π0 as in (b), let ηΠ0 : Π → Π/Π0

∼= {±1} be the natural projection.
Note that ρ|Π0 is reducible since ρ(Π0) is abelian. Let χ : Π0 → F× be a constituent of ρ|Π0 . Then

ρ ∼= IndΠ
Π0
χ by Frobenius reciprocity since ρ is irreducible. Thus (1, ηΠ0) ∈ Σdi

ρ \{(1, 1)} by Lemma
7.7.

Given Π0 as in (b), let H := Pρ(Π0). Given H as in (c), let Π0 := Pρ−1(H). It is clear that
[Π: Π0] = 2. That ρ(Π0) is abelian follows from the fact that H is abelian and scalar matrices
commute with everything.

When ρ is irreducible, the lemma now follows from counting subgroups as in (c) in each of the
possible projective images of ρ. (The fact that elements in Σdi

ρ have order at most 2 follows from

the fact that det ρ = η2 det ρ and so η2 = 1.)
Finally, suppose that ρ = ε ⊕ δ. If (1, η) ∈ Σdi

ρ and η is nontrivial, then we must have ηε = δ
and ηδ = ε. Thus

εδ−1 = η = δε−1,

which implies that εδ−1 has order 2. But the projective image of ρ is isomorphic to the image of
εδ−1. Thus Σdi

ρ is trivial unless the projective image of ρ has order 2, in which case there is one
nontrivial element. �

Corollary 4.2. If ρ : Π→ GL2(F) is a multiplicity-free representation, then Σpairs
ρ is finite.

Proof. Since F is a finite field, there are only finitely many automorphisms of F. Fix σ ∈ Σρ. We

need to show that there are only finitely many characters η : Π→ F× such that (σ, η) ∈ Σpairs
ρ . But

if (σ, η1), (σ, η2) ∈ Σpairs
ρ , then (id, η1η

−1
2 ) ∈ Σdi

ρ , and Σdi
ρ is finite by Lemma 4.1. �

Recall that E is the subfield of F generated by {(tr ρ(g))2/det ρ(g) : g ∈ Π}, and ρ is regular if

Im ρ contains an element with eigenvalues λ0, µ0 ∈ F× such that λ0µ
−1
0 ∈ E× \ {±1} (Definition

2.27). We now show that if ρ is reducible and regular, then one can eliminate the conjugate
self-twists of ρ by twisting ρ by a character.
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Lemma 4.3. Suppose that ρ = ε⊕ δ and ρ is regular. If (σ, η) ∈ Σpairs
ρ , then σε = ηε and σδ = ηδ.

In particular, εδ−1 takes values in E.

Proof. It suffices to show that if ρ is regular then we cannot have σε = ηδ and σδ = ηε. If this were
true, then we would have σεδ−1 = η = σδε−1, which implies that

(3) σ(εδ−1) = δε−1.

Since ρ is regular, there is some g ∈ Π such that ε(g)δ(g)−1 ∈ E \ {±1}. As E is fixed by σ by
Proposition 3.1, it follows from (3) that ε(g)δ(g)−1 = ±1, a contradiction.

The last sentence in the statement of the lemma follows from the fact that, for any σ ∈ Σρ =
Gal(F/E), we have σεε−1 = η = σδδ−1 and hence εδ−1 is fixed by Gal(F/E). �

Corollary 4.4. Suppose ρ = ε⊕δ and ρ is regular. Then ρ′ := ρ⊗δ−1 has no conjugate self-twists.

Proof. Since ρ is regular, its projective image cannot have order 2. Therefore it suffices to show
that Σρ′ is trivial by Lemma 4.1. Let F′ be the extension of Fp generated by the trace of ρ′. Then

Σρ′ = Gal(F′/E), so it suffices to show that F′ ⊆ E. But F′ is generated by the values of εδ−1,
which takes values in E by Lemma 4.3. �

Define

(4) Π0(ρ) :=
⋂

(σ,η)∈Σpairs
ρ

ker η.

Note that Π0(ρ) is sensitive to twisting ρ by a character since this operation can change Σpairs
ρ .

In Section 5 it will be important to understand what happens to ρ when it is restricted to Π0(ρ),
especially when ρ is absolutely irreducible and regular. We investigate these properties now.

Lemma 4.5. Assume that ρ is exceptional or large. If the order of det ρ is a power of 2, then
ρ|Π0(ρ) is absolutely irreducible.

Proof. If (σ, η) ∈ Σpairs
ρ , then η2 is equal to a power of det ρ. Thus it follows from the hypothesis

in the lemma that the order of η is a power of 2. Hence [Π: Π0(ρ)] is a power of 2 and Π/Π0(ρ) is
abelian.

By hypothesis, the projective image of ρ is isomorphic to one of A4, S4, A5,PSL2(E),PGL2(E).
None of A4, A5,PSL2(E) has a subgroup of 2-power index with abelian quotient. Both S4 and
PGL2(E) have a unique proper 2-power index subgroup with abelian quotient, namely A4 and
PSL2(E), respectively. Therefore the projective image of ρ|Π0(ρ) is one ofA4, S4, A5,PSL2(E),PGL2(E).
It follows that ρ|Π0(ρ) is absolutely irreducible. �

Note that by Lemma 2.3 we may always twist ρ by a character to assume that the order of det ρ
is a power of 2.

It remains to treat the case when ρ is dihedral.

Proposition 4.6. Assume that ρ is regular dihedral, say ρ = IndΠ
Π0
χ. Then ρ|Π0(ρ) is multiplicity

free over E. Furthermore, given g ∈ Π0, we have g ∈ Π0(ρ) if and only if χ(g) ∈ E×.

Proof. Since ρ is regular, it follows from Lemma 7.7 that there is a unique subgroup Π0 of Π of
index 2 such that ρ ∼= IndΠ

Π0
χ for some character χ : Π0 → F×. For any h ∈ Π, define χh : Π0 → F×

by χh(g) := χ(h−1gh). The character χh only depends on the class of h in Π/Π0. Fix an element

c ∈ Π \ Π0. Fix a generator σ ∈ Σρ = Gal(F/E), and choose η such that (σ, η) ∈ Σpairs
ρ . (Note

that there are two choices for η, and they differ by the character η0 : Π � Π/Π0
∼= {±1}.) Then

Π0(ρ) = ker η0 ∩ ker η since σ generates Σρ. Therefore Π0(ρ) = ker η|Π0 .
Note that any regular element for ρ must be in Π0 since elements in Π\Π0 have projective order

2. By applying Lemma 4.3 to ρ|Π0 , we find that σχ = ηχ and σχc = ηχc. Hence η|Π0 = σχχ−1, so
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g ∈ Π0(ρ) if and only if χ(g) ∈ E×. In particular, kerχ ⊆ Π0(ρ). Furthermore, using the fact that
σχχ−1 = η|Π0 = σχc(χc)−1, we find that the character χ/χc takes values in E×.

We know that ρ|Π0(ρ) is multiplicity free over E if and only if there is some g ∈ Π0(ρ) such that
χ(g) 6= χc(g). If kerχ 6= kerχc, then we can choose g ∈ kerχ \ kerχc. Then χ(g) = 1 6= χc(g) and
g ∈ Π0(ρ) by the previous paragraph. Therefore we may assume that kerχ = kerχc.

Let n denote the order of χ. Since kerχ = kerχc, we have that χc = χa for some a ∈ (Z/nZ)×.

Note that χc
2

= χ since c2 ∈ Π0. Therefore

χ = χc
2

= (χc)c = (χa)c = (χc)a = (χa)a = χa
2
.

Fix g0 ∈ Π0 such that ρ(g0) generates the projective image of ρ(Π0). We will show that h := ga−1
0 ∈

Π0(ρ) and χ(h) ∈ E× with χ(h) 6= χc(h). First we calculate, using the fact that χa
2

= χ,

χc(h) = χa(ga−1
0 ) = χa

2
(g0)χ−1(g0) = 1.

Hence h ∈ kerχc = kerχ ⊆ Π0(ρ). On the other hand,

χ(h) = χ(ga−1
0 ) = χc(g0)χ−1(g0).

We saw in the second paragraph that χ/χc is an E-valued character. Furthermore, χc(g0)/χ(g0) 6= 1
since g0 was chosen has a generator of the projective image of ρ(Π0), which is isomorphic to the
image of χ/χc. �

Let us note a useful consequence of Proposition 4.6.

Corollary 4.7. Assume that ρ is regular and dihedral and that the order of det ρ is a power of 2.

Let σ be a generator of Σρ and η : Π→ F× a character such that (σ, η) ∈ Σpairs
ρ . Then either Σρ is

trivial or ρ|ker η is absolutely irreducible.

Proof. Write ρ = IndΠ
Π0
χ and fix c ∈ Π\Π0. We shall make frequent use of Lemma 7.7 in this proof

without referencing it every time. We saw in the proof of Proposition 4.6 that Π0(ρ) = Π0 ∩ ker η.
Thus Proposition 4.6 implies that χ|Π0∩ker η 6= χc|Π0∩ker η.

If ker η 6= Π0∩ker η, then [ker η : Π0∩ker η] = 2 since [Π: Π0] = 2. Thus ρ|ker η
∼= Indker η

Π0∩ker η χ|Π0∩ker η.

Since χ|Π0∩ker η 6= χc|Π0∩ker η it follows that ρ|ker η is irreducible.
If ker η = Π0 ∩ ker η then Π0 ⊇ ker η and Π/ ker η is a cyclic group whose order is a power of

2 since η2 is a power of det ρ. If Π0 6= ker η, then there is a subgroup ker η ⊆ Π′ ⊂ Π0 such that
[Π0 : Π′] = 2. Note that χ|Π′ 6= χc|Π′ since χ|ker η 6= χc|ker η. Then ρ|Π0

∼= IndΠ0
Π′ χ|Π′ is irreducible,

a contradiction since ρ ∼= IndΠ
Π0
χ. Thus we must have Π0 = ker η. Therefore ρ ∼= ρ ⊗ η and so σ,

and hence Σρ, is trivial. �

In Section 5 we will assume that the order of det ρ is a power of 2, which is possible by twisting
by Lemma 2.3. A large part of the reason for that assumption is that it guarantees that [F : E]
can be taken to be a power of 2 as well, as the next lemma shows. We need this in an induction
argument in Section 5. Given any F-valued function f and any subfield F′ of F, let us write F′(f)
for the subfield of F generated over F′ by the values of f .

Lemma 4.8. Assume that the order of det ρ is a power of 2. Then the degree of Fp(tr ρ) over E is
a power of 2.

Proof. Let d := det ρ. Since the order of d is a power of 2, the degree of E(d) over E is a power of
2. But, for an arbitrary g′ ∈ Π, the extension E(tr ρ(g′)) is at most quadratic over E(d) because
tr ρ(g′) satisfies

d(g′)x2 − (tr ρ(g′))2/d(g′) ∈ E(d)[x].

The field Fp(tr ρ) is obtained from E(d) by adding the values of tr ρ on finitely many elements of
Π. �
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In Section 5 we will be interested in gradings coming from conjugate self-twists. To be able to
apply Lemma 7.19 in those situations, we now verify one of the hypotheses.

Lemma 4.9. Assume that both the order of det ρ and [F : E] are powers of 2. If n = #Σρ, then F
contains a primitive n-th root of unity. In particular, condition (∗) from Section 7.3 is satisfied.

Proof. Let d := det ρ, and write 2s for the order of d. We have that E(d) contains a primitive 2s-th
root of unity. If [F : E(d)] = 2r, then F contains a primitive 2r+s-th root of unity. On the other
hand,

n = #Σρ = [F : E] = 2r[E(d) : E].

Since d has order 2s, it follows that [E(d) : E] divides 2s−1. Thus n divides 2r+s−1, and so F contains
a primitive n-th root of unity. �

4.2. A good basis for ρ. In Section 5 we will need to carefully choose a basis for ρ that has many
good properties. In this section we explain how to find this basis when ρ is exceptional or large.
Let us first define an extra condition on octahedral representations.

Definition 4.10. We say a regular octahedral representation ρ is good if one of the following
properties is satisfied:

(1) p ≡ 1 mod 3;
(2) ρ is strongly regular;
(3) there is a regular element g0 ∈ Π such that g2

0 ∈ Π0(ρ).

We shall need to know that if ρ is good, then twisting away the odd part of the determinant of
ρ gives a representation that is also good.

Lemma 4.11. Let ρ : Π → GL2(F) be a good representation. Let χ : Π → F× be the unique odd-
order character such that the order of χ2 det ρ is a power of 2. Then ρ⊗ χ is good.

Proof. First note that twisting by any character does not change the projective image, so ρ⊗ χ is
octahedral. Regularity is also invariant under twisting. The claim is clear if p ≡ 1 mod 3, so we
assume that p ≡ 2 mod 3. The regularity assumption then implies that ζ4 ∈ Fp by Remark 2.28.
As in the proof of Lemma 2.3, decompose det ρ = d1d2, where di : Π→ F× are characters such that
the order of d1 is odd and the order of d2 is a power of 2.

First suppose that ρ is strongly regular. Then there is a matrix g0 ∈ Π such that ρ(g0) has
eigenvalues λ0, µ0 ∈ E× such that λ0µ

−1
0 = ζ4. We have λ0µ0 = det ρ(g0) = d1(g0)d2(g0). Note

that any σ ∈ Gal(F/E) fixes λ0µ0 since λ0, µ0 ∈ E. Therefore σ(d1(g0)d2(g0)) = d1(g0)d2(g0). But
since d1(g0) is an odd order root of unity and d2(g0) is a 2-power order root of unity, it follows that

σ must fix both d1(g0) and d2(g0). Write a for the order of d1. Then χ = d
−(a+1)/2
1 by the proof

of Lemma 2.3. In particular, χ(g0) ∈ E×. Thus the eigenvalues χ(g0)λ0 and χ(g0)µ0 of (ρ⊗ χ)(g0)
are in E. Thus g0 is a strongly regular element for ρ⊗ χ, as desired.

Finally, suppose that there is a regular element g0 ∈ Π such that g2
0 ∈ Π0(ρ). Let σ be a

generator for Gal(F/E) and let η : Π → F× such that (σ, η) ∈ Σpairs
ρ . Then Π0(ρ) = ker η and

Π0(ρ⊗ χ) = ker σχχ−1η. Since g2
0 ∈ Π0(ρ) and σdet ρ = η2 det ρ, it follows that det ρ(g0) ∈ E. But

det ρ(g0) = d1(g0)d2(g0), and since d1(g0) is an odd order root of unity and d2(g0) has 2-power

order, it follows that both d1(g0) and d2(g0) are in E. Therefore χ(g0) = d
−(a+1)/2
1 (g0) ∈ E. Thus

g2
0 ∈ ker σχχ−1η = Π0(ρ⊗ χ). �

Finally we describe the basis of ρ that we shall want to work with in Section 5. Let Z denote the
group of scalar matrices in GL2(F). The following lemma justifies our definition of Fq in Section
2.6 for exceptional representations.
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Lemma 4.12. Up to conjugation, the image of ρ is contained in Z GL2(E). If Fq is an extension

of E and λ0, µ0 ∈ F×p are eigenvalues of a matrix in the image of ρ such that λ0µ
−1
0 ∈ Fq, then we

may further conjugate ρ to assume that
(
λ0 0
0 µ0

)
∈ Im ρ and Im ρ ⊆ Z GL2(Fq).

Proof. By Proposition 3.1, E = FΣρ . First we show that ρ can be conjugated to land in Z GL2(E).
Let σ ∈ Gal(F/E) be a generator and η a character such that (σ, η) ∈ Σρ. Then there is some
x ∈ GL2(F) such that for all g ∈ Π, we have σρ(g) = x−1η(g)ρ(g)x. By a theorem of Serge Lang
[Lan56, Corollary to Theorem 1], it follows that there is some y ∈ GL2(F) such that x = σyy−1.
Thus σ(y−1ρ(g)y) = η(g)(y−1ρ(g)y). Replacing ρ by its conjugate by y, we have that the projective
image of ρ is fixed by Gal(F/E), and hence the image of ρ lands in Z GL2(E), as desired.

If Fq, λ0, µ0 are as in the statement of the lemma, then ρ can be further conjugated such that(
λ0 0
0 µ0

)
∈ Im ρ while preserving the property that the image of ρ is in Z GL2(Fq). �

Proposition 4.13. Let ρ : Π → GL2(F) be exceptional or large and regular. If ρ is octahedral,
assume further that ρ is good. Assume that the order of det ρ is a power of 2. Then there is a
regular element g0 ∈ Π and a basis for ρ such that the following are simultaneously true:

(1) Im ρ ⊆ Z GL2(E)

(2) ρ(g0) =
(
λ0 0
0 µ0

)
;

(3) if p ≥ 7 and ρ is large, then λ0, µ0 ∈ F×p ;
(4) there is a positive integer n such that g0 ∈ Π0(ρ) and ρ(gn0 ) is not scalar.

Proof. By Lemma 4.12 we can always conjugate ρ so that Im ρ ⊆ Z GL2(E). If g0 ∈ Π is a
regular element and λ0 and µ0 are the eigenvalues of ρ(g0), then we may assume further that

ρ(g0) =
(
λ0 0
0 µ0

)
.

If ρ is large, then up to conjugation, Im ρ ⊇ SL2(Fp). Indeed, up to conjugation we may assume
that the projective image of ρ contains PSL2(E). Therefore there is some λ ∈ F× such that
λ
(

1 1
0 1

)
∈ Im ρ. Note that the n-th power of this matrix is λn

(
1 n
0 1

)
. Since λ ∈ F×, its order m is

prime to p. Therefore we can write 1 = am+ bp ≡ am mod p for some a, b ∈ Z. Thus(
1 1
0 1

)
= λam

(
1 am
0 1

)
= (λ

(
1 1
0 1

)
)am ∈ Im ρ.

Similarly,
(

1 0
1 1

)
∈ Im ρ. Since

(
1 1
0 1

)
and

(
1 0
1 1

)
generate SL2(Fp), it follows that SL2(Fp) ⊆ Im ρ.

If p ≥ 7, then we can choose α ∈ F×p such that α2 6= ±1. Then any g0 ∈ Π such that ρ(g0)

has eigenvalues α, α−1 satisfies the first three conditions. Note that Pρ(g0) ∈ PSL2(E). Recall
that Π0(ρ) is a normal subgroup of 2-power index in Π since the order of det ρ is a power of 2.
Furthermore, Π/Π0(ρ) is abelian. Therefore Pρ(Π0(ρ)) is either PGL2(E) or PSL2(E). In either
case, we can find g0 ∈ Π0(ρ) such that ρ(g0) has eigenvalues α, α−1. Thus all of the properties of
the proposition are satisfied for this choice of g0.

Next suppose that ρ is either tetrahedral or icosahedral. Once again, Pρ(Π0(ρ)) is a normal
subgroup of Pρ(Π) with 2-power index and abelian quotient. Since Pρ(Π) is isomorphic to one of
A4 or A5, it follows that Pρ(Π0(ρ)) = Pρ(Π). In particular, one can choose the regular element g0

to be in Π0(ρ), and the resulting representation satisfies all of the desired conditions.
Finally, suppose that ρ is octahedral and good. If p ≡ 1 mod 3 then any g0 ∈ Π such that Pρ(g0)

has order 3 is a regular element. Since Pρ(Π0(ρ)) is a normal subgroup of Pρ(Π) with 2-power
index and abelian quotient, it follows that Π0(ρ) contains an element g0 such that Pρ(g0) has order
3. Such a g0 satisfies all of the necessary conditions.

Next suppose that p ≡ 2 mod 3 and that ρ is strongly regular. Let g0 ∈ Π be a strongly regular
element. Then ρ(g0) =

(
λζ4 0
0 λ

)
for some λ ∈ E×. (Note that ζ4 ∈ Fp since ρ is regular and

p ≡ 2 mod 3.) We claim that g0 ∈ Π0(ρ). Indeed, let σ be a generator of Gal(F/E) and η a

character such that (σ, η) ∈ Σpairs
ρ . Then Π0(ρ) = ker η. Since λ, ζ4 ∈ E× we have

λ(ζ4 + 1) = σ(λ(ζ4 + 1)) = σtr ρ(g0) = η(g0) tr ρ(g0) = η(g0)λ(ζ4 + 1).
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As ζ4 + 1 6= 0 it follows that η(g0) = 1, and so g0 ∈ Π0(ρ), as claimed. Therefore g0 satisfies all of
the necessary conditions.

Finally suppose that p ≡ 2 mod 3 and there is a regular element g0 ∈ Π such that g2
0 ∈ Π0(ρ).

Note that Pρ(g0) has order 4 since p 6≡ 1 mod 3. Therefore Pρ(g2
0) is nontrivial, so ρ(g2

0) is not
scalar. Therefore g0 satisfies all of the conditions of the proposition. �

Note that the g0 chosen in Proposition 4.13 satisfies all of the conditions prior to Definition
2.29. In particular, if (t, d) : Π → A is any admissible pseudodeformation of ρ, then any (t, d)-
representation that is adapted to the element g0 from Proposition 4.13 is well adapted.

4.3. Lifting conjugate self-twists. Let Π be a profinite group satisfying the p-finiteness condi-
tion. Fix a multiplicity-free representation ρ : Π→ GL2(F). Recall from Section 2.1 that there is a
local pro-p Noetherian W (F)-algebra A with maximal ideal mA and residue field F and a pseudo-
deformation (T, d) : Π → A that is universal among all constant-determinant pseudodeformations
of ρ. The purpose of Section 4.3 is to show that every conjugate self-twist of ρ, and in fact of every
constant-determinant pseudodeformation of ρ, can be lifted to a conjugate self-twist of (T, d) (see
Proposition 4.14 and Corollary 4.15 below).

Since we are working only with constant-determinant pseudodeformations, we shall identify any
F-valued character η with the W (F)-valued character s(η). Furthermore, we will consider η as
being valued in any W (F)-algebra via the structure map. If σ is an automorphism of F, we write
W (σ) the automorphism of W (F) induced by σ.

We introduce some notation that will be used in the proof of Proposition 4.14. For any W (F)-
algebra A, let Aσ := A ⊗W (F),W (σ) W (F), where W (F) is considered as a W (F)-algebra via W (σ).
We can equip Aσ with two different W (F)-algebra structures by letting W (F) act either on the
first or second factor of the tensor product. In what follows, we refer to these actions respectively
as the first or second W (F)-algebra structure on Aσ. Let ι(σ,A) : A → Aσ be the natural map
given by ι(σ,A)(a) = a ⊗ 1. It is an isomorphism of rings with inverse given by ι(σ−1, Aσ) since

(Aσ)σ
−1

can be naturally identified with A as a W (F)-algebra. Furthermore, ι(σ,A) is a morphism
of W (F)-algebras with respect to the first structure on Aσ. Note that if we view Aσ with respect
to its second W (F)-algebra structure, its residue field is F ⊗F,σ F, which is identified with F via
x ⊗ y 7→ σ(x)y. The proof of the following proposition is a more streamlined treatment of the
arguments in [Lan16, Section 2].

Proposition 4.14. Let (σ, η) ∈ Σpairs
ρ . Then there is an automorphism σ̃ of A such that (σ̃, η) ∈

Σpairs
T and σ̃ induces σ modulo mA. Furthermore, for any w in the image of W (F) in A, we have

σ̃(w) = W (σ)(w).

Note that any such σ̃ is necessarily unique, because it is determined by the character η.

Proof. Note that ηT : Π→ A is the universal constant-determinant pseudodeformation of η ⊗ ρ ∼=
σρ. We claim that, considering Aσ−1

with its second W (F)-algebra structure, ι(σ−1,A) ◦ (ηT ) is
a constant-determinant pseudodeformation of ρ. Indeed, reducing ι(σ−1,A) ◦ (ηT ) modulo the

maximal of ideal of Aσ−1
gives

ι(σ−1,F) ◦ (η tr ρ) = σtr ρ⊗F,σ−1 1 = 1⊗ tr ρ,

which is identified with tr ρ under the identification of F ⊗F,σ−1 F with F discussed prior to the
proposition.

By universality, there is a unique W (F)-algebra homomorphism α : A → Aσ−1
, where Aσ−1

is
given its second W (F)-algebra structure, such that

α ◦ T = ι(σ−1,A) ◦ (ηT ).
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Since ι(σ,Aσ−1
) is the inverse of ι(σ−1,A), we have that

(5) ι(σ,Aσ−1
) ◦ α ◦ T = ηT.

Define σ̃ := ι(σ,Aσ−1
) ◦ α, which is a ring endomorphism of A. The relation (5) implies that σ̃ is

an automorphism of A since the image of T topologically generates A as a W (F)-module [Bel18,

Proposition 5.3.3] and η takes values in W (F). The relation (5) also shows that (σ̃, η) ∈ Σpairs
T .

Finally, let w ∈ W (F). Since α is a W (F)-algebra homomorphism with respect to the second

W (F)-algebra structure on Aσ−1
, we have that

σ̃(w) = ι(σ,Aσ−1
) ◦ α(w) = ι(σ,Aσ−1

)(1⊗ w) = ι(σ−1,A)−1(W (σ)(w)⊗ 1) = W (σ)(w).

�

For the rest of Section 4.3, fix a local profinite W (F) algebra A with residue field F and a
constant-determinant pseudodeformation (t, d) : Π → A of ρ. Assume that A is the W (F)-algebra
generated by t(Π). Let αt : A → A be the unique W (F)-algebra homomorphism such that α◦T = t
given by universality. The following corollary shows that conjugate self-twists of (t, d) also lift to
conjugate self twists of (T, d).

Corollary 4.15. Given (σ, η) ∈ Σpairs
t , there is a unique (σ̃, η) ∈ Σpairs

T such that αt ◦ σ̃ = σ ◦ αt.

Proof. Let σ denote the automorphism of F induced by σ. Let σ̃ be the automorphism of A given
by Proposition 4.14 lifting σ to A. Then we just have to show that αt ◦ σ̃ = σ ◦ αt. Note that σ
acts by W (σ) on the image of W (F) in A, so σ−1 ◦ α ◦ σ̃ is a W (F)-algebra homomorphism. Thus
by universality, it suffices to show that t = σ−1 ◦αt ◦ σ̃ ◦ T . Since η takes values in W (F) and αt is
a W (F)-algebra homomorphism, we have that

σ−1 ◦ αt ◦ σ̃ ◦ T = σ−1 ◦ αt(ηT ) = σ−1(ηt) = σ−1(σ(t)) = t.

�

We end Section 4.3 with some observations about the consequences of Proposition 4.14 and
Corollary 4.15. They give the following commutative diagram with exact lines.

1 // Σdi
t

//
� _

��

Σpairs
t

//
� _

��

Σt
//

� _

��

1

1 // Σdi
T

//
� _

��

Σpairs
T

//

∼=
��

ΣT
//

����

1

1 // Σdi
ρ

// Σpairs
ρ

// Σρ
// 1

We write

βt : Σt → Σρ

for the composition of the vertical maps on the right in the above diagram. It is induced by the

composition β̃t : Σpairs
t → Σpairs

ρ of the middle maps, which reflects the fact that every conjugate

self-twist of (t, d) induces a conjugate self-twist of ρ. Combining Corollary 4.15 with Corollary 4.2,

we see that Σpairs
t is a finite group for any constant-determinant pseudodeformation (t, d) of ρ.

In this paper, we will only be concerned with pseudodeformations (t, d) of ρ that are not a priori
small. Under this assumption, if t 6= tr ρ then Σdi

t = 1 and Σdi
T = 1 by Lemma 4.1(1). In particular,

Σpairs
t = Σt and Σpairs

T = ΣT , so (except for ρ) a conjugate self-twist (σ, η) is determined uniquely
by the automorphism σ.
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4.4. The action of kerβt on I1(ρ) and B1(ρ). Nontrivial elements in kerβt will complicate
matters in Section 5. Lemma 4.16 explains how a nontrivial element τ ∈ kerβt interacts with I1(ρ)
and B1(ρ) for a well-adapted (t, d)-representation ρ when ρ is projectively dihedral and nonabelian.
For ε ∈ {+,−}, let

Aε := {a ∈ A : τa = εa}.

Lemma 4.16. Assume that ρ is projectively dihedral and nonabelian. Suppose there exists 1 6=
τ ∈ kerβt. If ρ : Π → GL2(A) is a well-adapted (t, d)-representation, then A+ is generated by
Zp + I1(ρ) + I1(ρ)2 as a W (F)-module and A− is generated by B1(ρ) as a W (F)-module.

Proof. Since A = A+ ⊕ A− and A is generated by Zp + I1(ρ) + I1(ρ)2 + B1(ρ) as a W (F)-module
by Belläıche’s Theorem 2.31, it suffices to show that τ acts trivially on I1(ρ) and by −1 on B1(ρ).
Let η : Π→ {±1} be the unique quadratic character such that ρ ∼= ρ⊗ η. (It is unique by Lemma
4.1 since the projective image of ρ is not isomorphic to (Z/2Z)2). Since τ ∈ kerβt, it follows that

η must be the character such that (τ, η) ∈ Σpairs
t .

We first prove that I1(ρ) is fixed by τ . As usual, let Γ := Im ρ∩ΓA(m). Recall that by definition
I1(ρ) is the Zp-module topologically generated by {α − δ :

(
1+α b
c 1+δ

)
∈ Γ}. Let g ∈ ker η. Since ρ

is well adapted, we can write

ρ(g) = γ ·
(
s(λ0) 0

0 s(µ0)

)
for some γ ∈ Γ and λ0, µ0 ∈ F×. Write γ =

(
1+α b
c 1+δ

)
with α − δ = 2a,

(
a b
c −a

)
∈ L1(ρ) and

0 = α+ δ + αδ − bc. Then we have

ρ(g) =

(
s(λ0)(1 + α) s(µ0)b

s(λ0)c s(µ0)(1 + δ)

)
.

Since g ∈ ker η, it follows that

s(λ0)(1 + α) + s(µ0)(1 + δ) = tr ρ(g) = τ(tr ρ(g)) = s(λ0)(1 + τα) + s(µ0)(1 + τδ),

since τ acts trivially on W (F). Thus, we obtain

s(λ0µ
−1
0 )(α− τα) = τδ − δ

for all λ0, µ0 such that
(
λ0 0
0 µ0

)
∈ Im ρ. As the projective image of ρ is not isomorphic to Z/2Z

or (Z/2Z)2, it follows that λ0µ
−1
0 takes at least two distinct values in F×. Thus it follows that

α − τα = 0 = τδ − δ. Since I1(ρ) is generated by α − δ with α, δ as above, it follows that I1(ρ) is
fixed by τ .

The proof that τ acts by −1 on B1(ρ) is similar. Namely, recall that B1(ρ) is topologically
generated by {b, c ∈ A :

(
1+α b
c 1+δ

)
∈ Γ}. Let g ∈ Π \ ker η. Again since ρ is well adapted, we can

write

ρ(g) = γ ·
(

0 s(λ0)
s(µ0) 0

)
for some γ ∈ Γ, λ0, µ0 ∈ F×. As above, write γ =

(
1+α b
c 1+δ

)
. Then we have

ρ(g) =

(
s(µ0)b s(λ0)(1 + α)

s(µ0)(1 + δ) s(λ0)c

)
.

Since g 6∈ ker η, it follows that

s(µ0)b+ s(λ0)c = tr ρ(g) = −τ(tr ρ(g)) = −s(µ0)τb− s(λ0)τc.

Thus

s(µ0λ
−1
0 )(b+ τb) = −(c+ τc)
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for all
(

0 λ0
µ0 0

)
∈ Im ρ. Once again, since the projective image of ρ is not isomorphic to Z/2Z or

(Z/2Z)2, it follows that λ0µ
−1
0 takes at least two distinct values in F×. Therefore b+ τb = 0 = c+ τc.

Since B1(ρ) is generated by such b and c, it follows that τ acts on B1(ρ) by −1. �

5. Relating W (E)[I1(ρ)] and AΣt

With the exception of Section 5.5, throughout Section 5 we fix a local pro-p domain A and an
admissible pseudodeformation (Π, ρ, t, d) over A. In view of Corollary 3.2 and Corollary 3.8, we
want to relate AΣt to W (E)[I1(ρ)] for some well chosen (t, d)-representation ρ. Let us point out an
easy case when this is possible. If ρ has no conjugate self-twists, then E = F by Proposition 3.1

and Σt = 1 by the diagram following Corollary 4.15. Furthermore, the assumption that Σpairs
ρ = 1

implies that ρ is not dihedral and so A = W (F)[I1(ρ)] by Theorem 2.31. Therefore we have

W (E)[I1(ρ)] = W (F)[I1(ρ)] = A = AΣt .

The goal of Section 5 is to prove that (t, d) is AΣt-full. The case when ρ is reducible is easily done
in Proposition 5.1, so from Section 5.2 onwards we always assume that ρ is irreducible. In light of
Corollary 3.8, the strategy is to prove that, under certain conditions on ρ and a good choice of a
(t, d)-representation ρ, the two rings W (E)[I1(ρ)] and AΣt have the same fields of fractions and AΣt

is finitely generated as a W (E)[I1(ρ)]-module. This is done in Corollary 5.15, although key parts
of it are proved in Corollary 5.9 and Proposition 5.14. Lemma 2.16 then implies that ρ is AΣt-full
whenever ρ is W (E)[I1(ρ)]-full. In Corollary 5.16, we combine Corollary 3.8, which established
W (E)[I1(ρ)]-fullness, with Corollary 5.15 to show that (t, d) is AΣt-full under mild assumptions on
ρ.

Let us now establish some assumptions on our fixed residual representation ρ : Π → GL2(F).
Assume that ρ is regular and, after Section 5.1, absolutely irreducible. Whenever ρ is absolutely
irreducible, assume further that det ρ is a power of 2, which can always be achieved by twisting ρ
by a character by Lemma 2.3. Furthermore, the twisting operation does not change the field E by
Proposition 3.1. Assume that [F : E] is a power of 2, which is possible by Lemma 4.8. Note that
we do not require F to be the trace algebra of ρ since one may need to make a quadratic extension
of the trace algebra in order to make representations well-adapted in the dihedral case.

5.1. The reducible case. When ρ is reducible, we can use Corollary 3.8 to show that (t, d) is
AΣt-full.

Proposition 5.1. Suppose that ρ = ε⊕ δ and that ρ is regular. Let (t, d) be a pseudodeformation
of ρ that is not a priori small. Then (t, d) is AΣt-full.

Proof. Let (t′, d′) = (s(δ−1)t, s(δ−1)2d), which is a pseudodeformation of ρ′ := ρ ⊗ δ−1. Let A′ be
the subring of A topologically generated by t′(Π). Note that the residue field of A′ is E since ρ′ has
no conjugate self-twists by Corollary 4.4. Then (Π, ρ′, t′, d′) is an admissible pseudorepresentation
over A′. Note that (t′, d′) is not a priori small since (t, d) is not. By Corollary 3.8, there is a
well-adapted (t′, d′)-representation ρ′ such that (t′, d′) is W (E)[I1(ρ′)]-full. But A′ = W (E)[I1(ρ′)]
by Theorem 2.31. Since ρ′ has no conjugate self-twists by Corollary 4.4, it follows that Σt′ is trivial.
Thus (A′)Σt′ = A′ = W (E)[I1(ρ′)].

By Lemma 2.25 it follows that (t, d) is (A′)Σt′ -full. We know that AΣt and (A′)Σt′ have the same
fields of fractions by Proposition 3.1. Furthermore A is obtained by adjoining the values of s(δ)
to A′. Therefore A, and hence AΣt , is finitely generated over A′. Therefore (t, d) is AΣt-full by
Lemma 2.16. �
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5.2. Choosing a good (t, d)-representation. Throughout Sections 5.2–5.4 we fix an absolutely
irreducible regular representation ρ : Π→ GL2(F) such that the order of det ρ is a power of 2. We
assume that [F : E] is a power of 2 by Lemma 4.8. If ρ is octahedral, we assume further that ρ is
good. Furthermore, we fix a good basis for ρ as follows. If ρ is exceptional or large, choose a basis
and a regular element g0 ∈ Π such that Proposition 4.13 holds. If ρ = IndΠ

Π0
χ is dihedral, assume

that ρ(Π0) is diagonal and Im ρ contains a matrix
(

0 b
c 0

)
such that bc−1 ∈ Fp, which is possible by

[Bel18, Proposition 6.3.2].
Recall that (T, d) : Π → A is the universal constant-determinant pseudorepresentation. Part of

our arguments will require appealing to a universal (T, d)-representation. This requires choosing a
good (T, d)-representation ρuniv and also choosing our (t, d)-representation to be compatible with
ρuniv. In particular, we want I1(ρuniv) to be fixed by all conjugate self-twists of (T, d). In Section
5.2 we make these choices and compatibilities precise.

Fix a generator σ1 of Σρ = Gal(F/E). We want to choose a character η1 : Π → F× such that

(σ1, η1) ∈ Σpairs
ρ . There is a unique choice for η1 when ρ is not dihedral. If ρ is dihedral and Σt = 1,

choose η1 to be the trivial character. Recall from the end of Section 4.3 that βt : Σt → Σρ is given
by reducing automorphisms of A modulo m. If ρ is dihedral and kerβt = 1 but Σt 6= 1, then

there is a unique complement to Σdi
ρ in Σpairs

ρ that contains β̃t(Σ
pairs
t ). Choose η1 such that (σ1, η1)

generates that complement. Otherwise, when ρ is dihedral, we may take η1 to be either of the two

characters such that (σ1, η1) ∈ Σpairs
ρ . Recall from (4) in Section 4.1 that Π0(ρ) is the intersection

of the kernels of all characters that occur in conjugate self-twists of ρ. Define

Π1 :=

{
ker η1 if ρ is dihedral

Π0(ρ) else.

Let A1 be the subring of A topologically generated by t(Π1). Note that ρ|Π1 is absolutely irreducible
by Lemma 4.5 and Corollary 4.7.

Proposition 5.2. There exists a well-adapted (t, d)-representation ρ : Π→ GL2(A) such that ρ|Π1

takes values in GL2(A1) and such that ρ is adapted to a regular element.

Proof. With the exception of the well-adaptedness statement, the proof is well known since ρ|Π1 is
absolutely irreducible. Indeed, a theorem of Rouquier [Rou96, Theorem 5.1] and Nyssen [Nys96]
tells us that there are representations ρ : Π → GL2(A) and ρ1 : Π1 → GL2(A1) such that tr ρ = t
and tr ρ1 = t|Π1 . By a theorem of Carayol and Serre, ρ|Π1 and ρ1 are conjugate by a matrix in
GL2(A) [Car94, Théorème 1].

For the well-adapteness statement, let us first assume that ρ is not dihedral. Choose ρ adapted to
g0 and ρ1 adapted to gn0 with g0 and n as in Proposition 4.13. Then the matrix M ∈ GL2(A) such

that M−1ρ|Π1M = ρ1 commutes with ρ(gn0 ) =
( s(λn0 ) 0

0 s(µn0 )

)
= ρ1(gn0 ). Since λn0 6= µn0 by Proposition

4.13, it follows that M must be diagonal. In particular, M commutes with ρ(g0). Hence M−1ρM
is still adapted to g0 and satisfies the properties in the statement of the proposition.

The idea is similar when ρ is dihedral, except we can no longer assume that ρ1 is adapted to
the g0 ∈ Π0 such that ρ(g0) generates the unique index-2 subgroup of the projective image of ρ,
because g0 may not be in Π1. Let ρ be a well-adapted (t, d)-representation, say adapted to g0 with

ρ(g0) =
( s(λ0) 0

0 s(µ0)

)
.

Since ρ is regular, it follows that ρ|Π0(ρ) is multiplicity free over E by Proposition 4.6. Therefore,

since ρ is well adapted, the image of ρ contains a matrix of the form
( s(λ) 0

0 s(µ)

)
with λ 6= µ and

λ, µ ∈ E×. Let h ∈ Π such that ρ(h) =
( s(λ) 0

0 s(µ)

)
.

We claim that h ∈ Π1. It suffices to prove that h ∈ Π0(ρ) since Π0(ρ) = Π0∩ker η1 ⊂ ker η1 = Π1.
Note that h ∈ Π0 since ρ(h) is diagonal. By Proposition 4.6, h ∈ Π0(ρ) if and only if the eigenvalues
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of ρ(h) are in E×. But the eigenvalues of ρ(h) are λ, µ, which were chosen to be in E×. Therefore
h ∈ Π1.

By [Bel18, Proposition 2.4.2] we may assume that ρ1 in the first paragraph of this proof is
adapted to h. Therefore the matrix M ∈ GL2(A) such that M−1ρ|Π1M = ρ1 commutes with

ρ(h) =
( s(λ) 0

0 s(µ)

)
= ρ1(h). Since λ 6= µ, it follows that M is a diagonal matrix. Note that the

second property in Definition 2.29 is unchanged by conjugation by a diagonal matrix. Therefore
M−1ρM is still well adapted and satisfies the statement of the proposition. �

Corollary 5.3. There exists a well-adapted (t, d)-representation ρ : Π→ R× such that I1(ρ) ⊆ AΣt.
If ρ is dihedral and σ ∈ Σt such that σ and kerβt generate Σt, then we may assume furthermore
that B1(ρ) is pointwise fixed by σ.

Proof. Let ρ be the (t, d)-representation from Proposition 5.2. Since the order of det ρ is a power
of 2, it follows that [Π: Π0(ρ)] is a power of 2. Since Γ is pro-p and p 6= 2, it follows that
Γ ⊆ ρ(Π0(ρ)) ⊆ GL2(A1). Therefore L1(ρ) ⊆ sl2(A1), and so I1(ρ), B1(ρ) ⊆ A1.

Let (σ, η) ∈ Σpairs
t such that Π1 ⊆ ker η. Then for all g ∈ Π1 we have

σt(g) = η(g)t(g) = t(g),

and thus A1 is contained in the subring of A fixed by σ.

If kerβt = 1, then every (σ, η) ∈ Σpairs
t satisfies Π1 ⊆ ker η by definition of Π1. Thus if kerβt = 1,

then A1 ⊆ AΣt , and hence I1(ρ), B1(ρ) ⊆ AΣt .

Now suppose that ρ is dihedral and kerβt 6= 1. Then half of the elements (σ, η) ∈ Σpairs
t satisfy

ker η ⊆ ker η1 = Π1, namely all those in the preimage under βt of the subgroup generated by (σ1, η1)

in Σpairs
ρ . This proves the statement about B1(ρ) in the dihedral case. To see that I1(ρ) is fixed by

all conjugate self-twists, it remains to show that I1(ρ) is fixed by the nontrivial element in kerβt.
This follows from Lemma 4.16. �

In light of Corollary 5.3, let us fix a well-adapted (T, d)-representation ρuniv : Π→ GL2(A) such
that I1(ρuniv) ⊆ AΣT . Assume furthermore in the case when the projective image of ρ is not
dihedral that we have conjugated ρuniv by the relevant diagonal element so that Theorem 2.31
applies to ρuniv, and thus to any quotient of ρuniv. In the case when ρ is dihedral, we need to
choose a complement to kerβT in ΣT , whose generator we will denote by ν. We choose ν such that

(ν, η1) ∈ Σpairs
T , where η1 is the character fixed prior to Proposition 5.2. By Corollary 5.3, we may

and do assume that B1(ρuniv) is fixed by ν.
The universal property of (A, (T, d)) gives a surjective W (F)-algebra homomorphism αt : A → A.

Let ρt := αt ◦ ρuniv : Π → GL2(A). It is a (t, d)-representation such that I1(ρt) ⊆ AΣt by the
diagram following Corollary 4.15. Furthermore, if ρ is dihedral and kerβt = 1, then B1(ρt) ⊆ AΣt

as well. By the functoriality of Pink-Lie algebras with respect to quotient maps, we have that
αt(I1(ρuniv)) = I1(ρt) and αt(B1(ρuniv)) = B1(ρt). All of our theorems below will be specifically
for this well-chosen representation ρt.

Recall that by Theorem 2.31

A =

{
W (F)[I1(ρt)] +W (F)B1(ρt) if ρ is dihedral

W (F)[I1(ρt)] else.

By Lemma 4.16 and the fact that B1(ρt) ⊆ AΣt if ρ is dihedral and kerβt = 1, it follows that

AΣt =

{
W (Fβt(Σt))[I1(ρt)] +W (Fβt(Σt))B1(ρt) if ρ dihedral and kerβt = 1

W (Fβt(Σt))[I1(ρt)] else.
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We therefore define

J = J(ρt) :=

{
W (E)I1(ρt) +W (E)I1(ρt)

2 +W (E)B1(ρt) if ρ is dihedral and kerβt = 1

W (E)I1(ρt) +W (E)I1(ρt)
2 else.

We claim that J ⊂ m is a multiplicatively closed W (E)-module by Theorem 2.31. The key is to
note that, since ρ is regular and ρt is well adapted, it follows that Belläıche’s field Fq from Table
1 is contained in E. Therefore it follows from Theorem 2.31 that (W (E)I1(ρt))

3 ⊆ W (E)I1(ρt)
and W (E)I1(ρt)B1(ρt) ⊆ W (E)B1(ρt) and (W (E)B1(ρt))

2 ⊆ W (E)I1(ρt), which proves that J is
multiplicatively closed. Define

A := W (F) +W (F)J.

We have A = A unless 1 6= kerβt, in which case A = A+ by Lemma 4.16.

Remark 5.4. The rings W (E) + J and AΣt differ only in their constants, W (E) versus W (Fβt(Σt)).
Furthermore, W (E) + J is often equal to W (E)[I1(ρt)], and the goal of this section is to relate
W (E)[I1(ρt)] with AΣt . Assume for a moment that W (E) + J = W (E)[I1(ρt)]. Then the difference
between W (E)[I1(ρt)] and AΣt is entirely governed by understanding which elements of Σρ lift to
elements in Σt under βt. In particular, when there are elements in Σρ that do not lift to Σt, we

will be interested in writing the extra elements in W (Fβt(Σt)) as quotients of elements in J to show
that Q(W (E)[I1(ρt)]) = Q(AΣt).

5.3. Lifting conjugate self-twists to A. In Section 5.3 we study a condition on J , called small-
ness (Definition 5.6), that dictates which conjugate self-twists of ρ lift to conjugate self-twists of
(t, d). This study culminates in Theorem 5.8. As a consequence, we prove in Corollary 5.9 that
under such a smallness assumption, AΣt = W (E)[I1(ρt)]. The reader is advised that, with the
exception of the motivational remark following Definition 5.6, the assumption that A is a domain
is never used in Section 5.3.

Throughout Section 5.3, fix a subgroup Σ ⊆ Σρ, and let F′ := FΣ. Write W := W (F) and
W ′ := W (F′). For an arbitrary ring R and a finite group X of ring automorphisms of R, for any
ϕ ∈ Hom(X,R×), we write

Rϕ := {s ∈ R : σs = ϕ(σ)s, ∀σ ∈ X}.

As explained at the beginning of Section 5, we assume that [F : E] is a power of 2. By Lemma
4.9 we may apply Lemma 7.19 to conclude that F = ⊕ϕ∈Σ∗Fϕ, where Σ∗ := Hom(Σ,F×). Note
that since Σ = Gal(W/W ′), it follows that this decomposition lifts to W . More precisely, viewing
elements of Σ as automorphisms of W and elements of Σ∗ as valued in W× by composing with the
Teichmüller map, we can define Wϕ for each ϕ ∈ Σ∗. Then Lemma 7.19 gives W = ⊕ϕ∈Σ∗W

ϕ.
For all ϕ ∈ Σ, define

A(ϕ) := Wϕ +WϕJ,

where WϕJ := {
∑

i αiji|αi ∈ Wϕ, ji ∈ J}. Since A = W + WJ it follows immediately that
A =

∑
ϕ∈Σ∗ A(ϕ). We will be interested in understanding when this sum is direct, because in that

case we will show that it is possible to find lifts of elements of Σ in Σt. If a is an ideal of A and
ϕ ∈ Σ∗, let a(ϕ) := A(ϕ) ∩ a and let (A/a)(ϕ) ⊂ A/a be the image of A(ϕ) under the natural
projection A→ A/a.

Lemma 5.5. The following are equivalent:

(1) A = ⊕ϕ∈Σ∗A(ϕ).
(2) For every A-ideal a such that a = ⊕ϕ∈Σ∗a(ϕ), we have A/a = ⊕ϕ∈Σ∗(A/a)(ϕ). Furthermore,

there exists at least one such ideal a.
(3) There exists an A-ideal a such that a = ⊕ϕ∈Σ∗a(ϕ) and A/a = ⊕ϕ∈Σ∗(A/a)(ϕ).
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Proof. First we show that (1) implies (2). We can take a = 0 for the existence statement in (2).
Now suppose that a is an A-ideal such that a = ⊕ϕ∈Σ∗a(ϕ). If

∑
ϕ∈Σ∗ aϕ = 0 ∈ A/a with each

aϕ ∈ (A/a)(ϕ), then letting aϕ ∈ A(ϕ) be a lift of aϕ, we see that
∑

ϕ∈Σ∗ aϕ ∈ a = ⊕ϕ∈Σ∗a(ϕ).

Thus, there are αϕ ∈ a(ϕ) such that
∑

ϕ∈Σ∗ aϕ =
∑

ϕ∈Σ∗ αϕ. Since A = ⊕ϕ∈Σ∗A(ϕ), it follows that

aϕ = αϕ for all ϕ ∈ Σ∗. Thus aϕ = 0 ∈ A/a for all ϕ ∈ Σ∗ and hence A/a = ⊕ϕ∈Σ∗(A/a)(ϕ).
The fact that (2) implies (3) is trivial.
To see that (3) implies (1), suppose that a is an A-ideal such that a = ⊕ϕ∈Σ∗a(ϕ) and A/a =

⊕ϕ∈Σ∗(A/a)(ϕ). For each ϕ ∈ Σ∗ fix a set Sϕ ⊂ A(ϕ) of representatives of (A/a)(ϕ) such that
0 ∈ Sϕ. Suppose that

∑
ϕ∈Σ∗ aϕ = 0 with aϕ ∈ A(ϕ). Then there is a unique way to write each aϕ

as

aϕ = sϕ + αϕ

with sϕ ∈ Sϕ and αϕ ∈ a(ϕ). Modulo a, we see that∑
ϕ∈Σ∗

sϕ = 0.

Since A/a = ⊕ϕ∈Σ∗(A/a)(ϕ), it follows that sϕ = 0 for all ϕ. As 0 ∈ Sϕ, it follows that sϕ = 0
for all ϕ ∈ Σ∗. Therefore aϕ = αϕ ∈ a(ϕ). As a = ⊕ϕ∈Σ∗a(ϕ), it follows that each aϕ = 0. Thus
A = ⊕ϕ∈Σ∗A(ϕ). �

Definition 5.6. Let L2 ⊂ L1 be subfields of F. We say that J is small with respect to L1/L2 if

ker(W (L1)⊗W (L2) W (L2)J →W (L1)J) = 0,

where the map is given by multiplication inside A. Otherwise, we say that J is big with respect to
L1/L2.

To motivate Definition 5.6, recall from Remark 5.4 that we need to be able to write elements of
W (Fβt(Σt)) as quotients of elements in J whenever Fβt(Σt) 6= E. Suppose that L2 = E,L1 = Fβt(Σt),
and [L1 : L2] = 2. Write L1 = L2(α). Then W (L1) = W (L2)⊕ s(α)W (L2) and so

W (L1)⊗W (L2) W (L2)J = W (L2)J ⊕ (s(α)W (L2)⊗W (L2) W (L2)J).

If J is big with respect to L1/L2, then we can find x, y ∈ W (L2)J \ {0} such that x + s(α)y = 0.
Thus s(α) = x/y, and hence W (L1) is in the field of fractions of any domain containing W (L2)J .
In contrast, the following proposition shows that when J is small with respect to F/F′, elements of
Σ can be lifted to automorphisms of A.

Proposition 5.7. If J is small with respect to F/F′, then A = ⊕ϕ∈Σ∗A(ϕ). In this case, every
σ ∈ Σ can be lifted to an automorphism σ of A such that σ acts trivially on J , and a lift with this
property is unique.

Proof. Note that a := WJ is an A-ideal since A = W + WJ and J is multiplicatively closed as
discussed prior to Remark 5.4. The assumption that J is small with respect to F/F′ implies that
WJ = ⊕ϕ∈Σ∗W

ϕJ . Indeed,⊕
ϕ∈Σ∗

(Wϕ ⊗W ′ W ′J) =
(⊕
ϕ∈Σ∗

Wϕ
)
⊗W ′ W ′J = W ⊗W ′ W ′J ↪→WJ,

and the image of Wϕ ⊗W ′ W ′J is exactly WϕJ . Since WJ =
∑

ϕ∈Σ∗W
ϕJ , it follows that the

multiplication map is an isomorphism and thus WJ is graded by Σ∗. Note that a(ϕ) = WϕJ , so
a = ⊕ϕ∈Σ∗a(ϕ).

By Lemma 5.5, for the first statement of the proposition it suffices to show that A/WJ =
⊕ϕ∈Σ∗(A/WJ)(ϕ). Note that

A/WJ = (W +WJ)/WJ ∼= W/(W ∩WJ)
34



and W ∩WJ is a closed W -submodule of pW since J ⊆ mA. Thus we have W ∩WJ = pnW and
A/WJ ∼= W/pnW for some 1 ≤ n ≤ ∞, where p∞W := {∞}. Since W is graded by Σ∗, it follows
from Lemma 5.5 that W/pnW is graded by Σ∗ as well. Therefore A = ⊕ϕ∈Σ∗A(ϕ).

For the second statement, we let σ act by W (σ) on W and trivially on J . The only question is
to verify that this is well defined. Since A = ⊕ϕ∈Σ∗A(ϕ), it suffices to show that σ is well defined
on each A(ϕ). That is, we must show

n∑
i=1

αiji = 0 =⇒
n∑
i=1

W (σ)(αi)ji = 0,

where αi ∈Wϕ, ji ∈ J . Since J is small with respect to F/F′,
∑n

i=1 αiji = 0 implies that
∑n

i=1 αi⊗
ji = 0 ∈W ⊗W ′ W ′J . Since αi ∈Wϕ, we know that W (σ)(αi) = s(ϕ(σ))αi for all i. Hence

0 =

n∑
i=1

αi ⊗ ji =⇒ 0 = s(ϕ(σ))

n∑
i=1

αi ⊗ ji.

Therefore
∑n

i=1W (σ)(αi)ji = 0, since it is the image of s(ϕ(σ))
∑n

i=1 αi⊗ ji under W ⊗W ′W ′J →
WJ . �

Now that we have lifted elements of Σ to automorphisms of A under the smallness assumption,
we would like to verify that the lifts are conjugate self-twists of (t, d) when A = A and that they
come from conjugate self-twists when A = A+. (Recall that A+ is only defined when kerβt is
nontrivial; see Lemma 4.16.)

Theorem 5.8. If J is small with respect to F/F′ then Σ is contained in the image of βt : Σt → Σρ.
Furthermore, every lift of σ ∈ Σ to Σt acts trivially on J .

Proof. Fix σ ∈ Σ. By Proposition 5.7, there is a unique σ ∈ AutA that acts as W (σ) on W and
fixes J . If kerβt = 1, then A = A. If kerβt 6= 1, then A = A+ and we need to extend σ to
A = A+ ⊕ A−. We do this by declaring that σ fixes A−; we will still denote the automorphism of
A by σ. We already know that σ acts trivially on J , so it is enough to prove that σ ∈ Σt.

Our strategy is to show that σ comes from an appropriate element of ΣT . More precisely, we

claim that there is some (σ̃, η) ∈ Σpairs
T such that σ ◦αt = αt ◦ σ̃, where αt : A → A is the W -algebra

homomorphism given by universality. If this is true, then for all g ∈ Π we have
σt(g) = σ ◦ αt(T (g)) = αt ◦ σ̃(T (g)) = αt(η(g)T (g)) = η(g)αt(T (g)) = η(g)t(g)

since αt is a W -algebra homomorphism and η(g) ∈W . Thus σ ∈ Σt.
First suppose that ρ is not dihedral. Then there is a unique lift σ̃ of σ in ΣT by Lemma 4.1

and Proposition 4.14. By Proposition 4.14, we know that σ̃ acts as W (σ) on the image of W in A.
Furthermore, σ̃ acts trivially on I1(ρuniv) by our fixed choice of ρuniv after Corollary 5.3. Since ρ
is not dihedral, it follows that A = W + WJ(ρuniv). By the construction of ρuniv and ρt, we have
αt(I1(ρuniv)) = I1(ρt) and thus αt(J(ρuniv)) = J(ρt) = J . Recall that σ acts trivially on J . Both σ̃
and σ act on W by W (σ). Thus for any

∑n
i=1 aixi with ai ∈W,xi ∈ J(ρuniv) ∪ {1}, we have

σ ◦ αt

(
n∑
i=1

aixi

)
=

n∑
i=1

W (σ)(ai)αt(xi) = αt ◦ σ̃

(
n∑
i=1

aixi

)
.

If ρ is dihedral, then there are two lifts of σ in ΣT by Lemma 4.1 and Proposition 4.14. One
acts on A− by +1 and the other acts by −1 by Lemma 4.16 and since we chose ρuniv such that
B1(ρuniv) is fixed by ν, which generates a complement of kerβT . Let σ̃ ∈ ΣT be the lift of σ that
is in 〈ν〉. Thus σ̃ acts trivially on J(ρuniv) and B1(ρuniv). Then an argument similar to that in the
previous paragraph shows that σ ◦ αt = αt ◦ σ̃. �

Corollary 5.9. If J is small with respect to F/E then AΣt = W (E) + J . Suppose furthermore that
either ρ is not dihedral or kerβt 6= 1. Then AΣt = W (E)[I1(ρt)].
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Proof. By Theorem 5.8 applied to Σ = Σt, the map βt is a surjection and Σt acts trivially on J . If
kerβt = 1, then A = A = W +WJ , so AΣt = W (E) + J .

If kerβt 6= 1, then A = W +WI1(ρt)+WI1(ρt)
2 +WB1(ρt) and J = W (E)I1(ρt) +W (E)I1(ρt)

2.
Note that AΣt ⊆ A+ = W + WJ since the nontrivial element in kerβt acts by −1 on B1(ρt) by
Lemma 4.16. As above, we have that

AΣt = (W +WJ)Σt = W (E) + J.

The last sentence in the statement of the corollary follows from the definition of J . �

Remark 5.10. Note that none of the arguments in Section 5.3 require that A is a domain. In
particular, when J is small with respect to F/E and either ρ is not dihedral or kerβt 6= 1, Corollary
5.9 gives a conceptual interpretation of the ring W (E)[I1(ρt)].

5.4. When J is big with respect to F/E. Corollary 5.9 requires the assumption that J is small
with respect to F/E. We do not always expect this to be true. The purpose of Section 5.4 is to show
that AΣt and W (E)[I1(ρt)] have the same field of fractions and AΣt is a finite type W (E)[I1(ρt)]-
module even without the smallness assumption. This is done in Corollary 5.15, although the two
key inputs to that theorem are Propositions 5.13 and 5.14. Then we can apply Lemma 2.16 and
Corollary 3.8 to conclude that ρt, and thus (t, d), is AΣt-full in Corollary 5.16.

The discussion following Definition 5.6 shows why one may expect to getQ(AΣt) = Q(W (E)[I1(ρt)])

when smallness fails and [Fβt(Σt) : E] = 2. Unfortunately, the assumption that [Fβt(Σt) : E] = 2 is
rather critical to that argument. This is the primary reason we insist that [F : E] be a power of 2

throughout this section. It allows us to split up the extension Fβt(Σt)/E into a series of quadratic
extensions, and thus we can apply the argument following Definition 5.6 inductively. This is the
essential idea of the argument; we now prepare some notation to formalize it.

Write [Fβt(Σt) : E] = 2n for some n ≥ 0. Let us define some notation related to the intermediate

fields between Fβt(Σt) and E. For integers 0 ≤ i ≤ n, let Ei be the unique extension of E of degree
2i. In particular, E0 = E and En = Fβt(Σt), and [Ei : Ei−1] = 2 for all 1 ≤ i ≤ n. For 0 ≤ i ≤ n, let
Wi denote the image of W (Ei) in A. Define

Ai := Wi +WiJ ⊆ A.

In particular, A0 = W (E) + J and An = W (Fβt(Σt)) +W (Fβt(Σt))J . Since A is a domain, so are all
of the Ai, and we write Q(Ai) for the field of fractions of Ai.

In the case when A = A+, there is a 2-to-1 group homomorphism Σt → AutA+ given by
restricting elements of Σt to A+. Let Σt(A) denote the image of this map when A = A+, and
otherwise (that is, whenever kerβt = 1) let Σt(A) = Σt. In either case we can, and do, identify Σt(A)

with a subgroup of Σρ via βt and we have En = Fβt(Σt(A)). We write Σt(A)∗ := Hom(Σt(A),A×).
We begin with two preliminary lemmas about the relationship between smallness and the Ei.

Lemma 5.11. We have that J is small with respect to F/En; that is, ker(W⊗WnWnJ →WJ) = 0.

Proof. Recall that WJ is an A-ideal that is stable under the action of Σt(A) since Σt fixes J by
the construction of ρt. By Lemma 4.9, we can apply Lemma 7.19 with X = Σt(A). Therefore

WJ =
⊕

ϕ∈Σt(A)∗

(WJ)ϕ,

where (WJ)ϕ := {x ∈ WJ : σx = ϕ(σ)x, ∀σ ∈ Σt(A)}. Recall that WϕJ was defined prior to
Lemma 5.5. We claim that

(WJ)ϕ = WϕJ.

Clearly (WJ)ϕ ⊇WϕJ since Σt(A) acts trivially on J . On the other hand,

WJ =
⊕

ϕ∈Σt(A)∗

(WJ)ϕ =
∑

ϕ∈Σt(A)∗

(WJ)ϕ ⊇
∑

ϕ∈Σt(A)∗

WϕJ = WJ,
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so we must have equality.
For each ϕ ∈ Σt(A)∗, choose xϕ ∈ Fϕ \ {0}. Then {s(xϕ) : ϕ ∈ Σt(A)∗} is a Wn-basis for W .

Thus we have
W ⊗Wn WnJ =

⊕
ϕ∈Σt(A)∗

Wns(xϕ)⊗Wn WnJ.

If x ∈ ker(W ⊗Wn WnJ →WJ), then we can write

x =
∑

ϕ∈Σt(A)∗

s(xϕ)⊗ yϕ

for some yϕ ∈WnJ . Then we have

0 =
∑

ϕ∈Σt(A)∗

s(xϕ)yϕ

and s(xϕ)yϕ ∈ WϕJ . Since WJ = ⊕ϕ∈Σt(A)∗W
ϕJ , it follows that each s(xϕ)yϕ = 0. As A is a

domain and s(xϕ) 6= 0, it follows that yϕ = 0 for all ϕ ∈ Σt(A)∗. �

Lemma 5.12. We have

ker(W ⊗Wn−1 Wn−1J →WJ) = W ⊗Wn ker(Wn ⊗Wn−1 Wn−1J →WnJ).

Proof. Let K := ker(Wn ⊗Wn−1 Wn−1J →WnJ). We have an exact sequence of Wn-modules

0→ K →Wn ⊗Wn−1 Wn−1J →WnJ → 0.

Since W is free over Wn, tensoring with W over Wn gives an exact sequence

0→W ⊗Wn K →W ⊗Wn−1 Wn−1J →W ⊗Wn WnJ → 0.

We can identify the last nonzero term in this sequence with WJ by Lemma 5.11. Thus W ⊗WnK =
ker(W ⊗Wn−1 Wn−1J →WJ). �

Proposition 5.13. If J is big with respect to F/E then Q(An) = Q(An−1).

Proof. We claim that J is big with respect to En/En−1. Indeed, if J were small with respect to
En/En−1, then J would be small with respect to F/En−1 by Lemma 5.12. Therefore we could apply
Theorem 5.8 with Σ = Gal(F/En−1), which implies that En ⊆ En−1, a contradiction.

Let {1, α} be an En−1-basis for En. Then {1, s(α)} is a Wn−1-basis for Wn and so

Wn ⊗Wn−1 Wn−1J = (Wn−1 ⊗Wn−1 Wn−1J)⊕ (Wn−1s(α)⊗Wn−1 Wn−1J).

Since J is big with respect to En/En−1, there exist x, y ∈Wn−1J \ {0} such that

x+ s(α)y = 0.

Thus, s(α) = −x/y ∈ Q(An−1). It follows that Wn ⊂ Q(An−1) and hence Q(An) = Q(An−1). �

Finally, we descend from Q(An) to Q(A0) by induction on n.

Proposition 5.14. For all 2 ≤ k ≤ n, if Q(Ak) = Q(Ak−1) then Q(Ak−1) = Q(Ak−2). In
particular, if J is big with respect to F/E, then Q(AΣt) = Q(W (E) + J).

Proof. Note that for any k ≥ 1 we have Q(Ak) = Q(Ak−1) if and only if Wk ⊆ Q(Ak−1). Assume
that Q(Ak) = Q(Ak−1) for some k, 2 ≤ k ≤ n. Choose α ∈ Ek−2, β ∈ Ek−1 such that Ek−1 =

Ek−2(
√
α) and Ek = Ek−1(

√
β). Define α := s(α) and β := s(β), so Wk−1 = Wk−2(

√
α) and

Wk = Wk−1(
√
β). It suffices to show that

√
α ∈ Q(Ak−2).

Since Q(Ak) = Q(Ak−1), we can write
√
β = x/y with x, y ∈ Ak−1 \ {0}. By multiplying x and

y by any nonzero element of Wk−1J , we may assume that x, y ∈Wk−1J \ {0}.
Note that we can write y = i1 +

√
αi2 with i1, i2 ∈Wk−2J . If i1−

√
αi2 6= 0, then by multiplying

x and y by i1−
√
αi2, we may assume that y ∈Wk−2J \{0}. If i1−

√
αi2 = 0 and y /∈Wk−2J , then
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we must have i2 6= 0 since y 6= 0 and
√
α = i1/i2 ∈ Q(Ak−2), as desired. We assume henceforth

that y ∈Wk−2J .
Write x = a+ b

√
α for some a, b ∈Wk−2J . Then we have y

√
β = a+ b

√
α and thus

(6) y2β = a2 + αb2 + 2ab
√
α.

Since β ∈ Wk−1, we may write β = e + f
√
α for some e, f ∈ Wk−2. Note that f 6≡ 0 mod p since

[Ek : Ek−1] = 2 and Ek = Ek−1(
√
β). Substituting this into equation (6), we see that

(y2f − 2ab)
√
α = a2 + αb2 − y2e ∈Wk−2J.

Note that y2f −2ab ∈Wk−2J since all of y, f, a, b ∈Wk−2J . If y2f −2ab 6= 0, then we can conclude
that

√
α ∈ Q(Ak−2) as desired.

Henceforth, assume that y2f = 2ab. Then we also have y2e = a2+αb2. Thus 2f−1eab = a2+αb2.
Note that a, b 6= 0 since 2ab = y2f and we know y, f 6= 0. Then we have

2f−1e =
a

b
+ α

b

a
.

Therefore a
b is a root of t2−2f−1et+α ∈Wk−2[t]. The discriminant of this polynomial is 4(f−2e2−

α). We claim that Wk−1 ⊇Wk−2(
√
f−2e2 − α). Note that since β = s(β) and s is multiplicative we

have that e2− f2α = s(NEk−1/Ek−2
(β)), and therefore

√
e2 − f2α = s(

√
NEk−1/Ek−2

(β)) ∈ s(E×k−1).

Therefore a
b ∈Wk−1. Thus we can write

√
β = x/b

y/b =
a
b

+
√
α

y/b , and so

y

b
=
(a
b

+
√
α
)√

β
−1
.

Note that a
b +
√
α 6= 0 since y 6= 0. It follows that (ab +

√
α)
√
β
−1

generates Wk over Wk−1 since
a
b +
√
α ∈ Wk−1 and

√
β generates Wk over Wk−1. Thus (ab +

√
α)
√
β
−1

= y
b ∈ Q(Ak−2) and so

Wk ⊂ Q(Ak−2). Therefore Q(Ak) = Q(Ak−2).
For the second statement of the proposition, note that by Proposition 5.13 we have Q(An) =

Q(A0) for all 0 ≤ k ≤ n. We have A0 = W (E) + J by definition. Since Σt acts trivially on J , it
follows that

AΣt = AΣt(A) = Wn +WnJ = An.

�

Corollary 5.15. We have

(1) AΣt ⊇W (E)[I1(ρt)];
(2) AΣt is a finitely generated W (E)[I1(ρt)]-module;
(3) AΣt has the same field of fractions as W (E)[I1(ρt)].

Proof. The fact that AΣt ⊇W (E)[I1(ρt)] follows from the definition of E and Corollary 5.3.
If either ρ̄ is not dihedral or kerβt 6= 1, then AΣt = W (F)Σt [I1(ρt)], which is finitely generated

over W (E)[I1(ρt)] since W (F)Σt is finitely generated over W (E). In the case when ρ̄ is dihedral
and kerβt = 1 we have to appeal to the commutative algebra results in Section 7.2. Recall from
Lemma 4.16 that the universal constant-determinant pseudodeformation ring A decomposes as
A = A+ ⊕A−, where the grading is given by the nontrivial element in kerβT . By Lemma 4.16 we
have thatA+ = W (F)[I1(ρuniv)] andA− = W (F)B1(ρuniv). Recall from the discussion in Section 2.1
that A is Noetherian. Thus, by Lemma 7.13 and Proposition 7.15 it follows that A+ is Noetherian
ring and A is a Noetherian A+-module. Therefore, A− is a Noetherian A+-module. The natural
map αt : A → A sends A+ onto W (F)[I1(ρt)] and A− onto W (F)B1(ρt) since αt(I1(ρuniv)) = I1(ρt)
and αt(B1(ρuniv)) = B1(ρt). Thus it follows that W (F)[I1(ρt)] is a Noetherian ring and W (F)B1(ρt)
is a Noetherian W (F)[I1(ρt)]-module. Since W (F) is a Noetherian W (E)-module, it follows that
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A = W (F)[I1(ρt)] +W (F)B1(ρt) is a Noetherian W (E)[I1(ρt)]-module. Hence AΣt is a Noetherian
(and thus finitely generated) W (E)[I1(ρt)]-module.

The third point has largely been established already. When J is small with respect to F/E, it
follows from Corollary 5.9. When J is big with respect to F/E and either ρ is not dihedral or
kerβt 6= 1, this follows from Proposition 5.14 since in those cases W (E) + J = W (E)[I1(ρt)]. Thus
we may assume that ρ is dihedral, kerβt = 1, and J is big with respect to F/E. Then we have

Q(AΣt) = Q(W (E) + J)

by Proposition 5.14. Consider the ring A′ := W (E) +J(ρuniv) +W (E)B1(ρuniv), a local Noetherian
subring of A. By Lemma 4.16, the nontrivial element in kerβT is an involution on A′. The natural
map αt : A → A restricts to a surjection A′ → W (E) + J . The image of (A′)+ in W (E) + J is
W (E)[I1(ρt)]. Applying Proposition 7.16 to the quotient A′ →W (E)+J , it follows that Q(W (E)+
J) = Q(W (E)[I1(ρt)]). Thus

Q(AΣt) = Q(W (E) + J) = Q(W (E)[I1(ρt)]).

�

We now have the following corollary, which summarizes the most general theorem we have for
images of admissible pseudodeformations.

Corollary 5.16. Let ρ : Π → GL2(F) be a regular representation such that the order of det ρ is
a power of 2. If ρ is octahedral, assume furthermore that ρ is good. Let A be a domain and
(t, d) : Π → A an admissible pseudodeformation of ρ. If (t, d) is not a priori small, then (t, d) is
AΣt-full.

Proof. By Corollary 3.8, ρt is W (E)[I1(ρt)]-full. By Corollary 5.15 and Lemma 2.16, it follows that
ρt is AΣt-full. �

5.5. Nonadmissible pseudorepresentations. The results of [Bel18] and of the previous sections
depend on the assumption that the pseudodeformations in question have constant determinant
whose order is a power of 2. Having in mind applications to Galois representations arising from
geometry, we want to transfer the results of the previous sections, specifically Corollary 5.16, to
representations that do not have constant determinant.

Theorem 5.17. Let p be an odd prime and A a local pro-p domain with residue field F. Let Π
be a profinite group satisfying Mazur’s p-finiteness condition. Let ρ : Π → GL2(F) be a regular
semisimple representation. If ρ is octahedral, assume further that ρ is good. If (t, d) : Π → A is a
pseudodeformation of ρ that is not a priori small, then (t, d) is A0-full.

Proof. Let χ : Π → A× be a character such that (t′, d′) := (χt, χ2d) is a constant-determinant
pseudorepresentation, and write ρ′ := χ ⊗ ρ, where χ : Π → F× is the reduction of χ modulo m.
Assume that χ is chosen such that ρ′ has no conjugate self-twists if ρ is reducible and the order of
det ρ′ is a power of 2 if ρ is absolutely irreducible. This is possible by Corollary 4.4 in the reducible
case and Lemma 2.3 in the absolutely irreducible case. Furthermore, note that if ρ is octahedral
and good, then so is ρ′ by Lemma 4.11. Let A′ be the subring of A topologically generated by
t′(Π). We have seen in Proposition 5.1 and Corollary 5.16 that if ρ′ is regular (and under the further
assumption that ρ is good when ρ is octahedral) and (t′, d′) is not a priori small, then (t′, d′) is
(A′)Σt′ -full. This is sufficient by Corollary 3.2. �

Remark 5.18. Recall that if (t, d) : Π→ A is an admissible pseudorepresentations, then A is topo-
logically generated by t(Π) as a W (F)-algebra. We remark that this property is not stable under
the twisting operation used in the proof of Theorem 5.17: given (t, d) and (t′, d′) as in the proof of
Theorem 5.17, such that A is generated by t(Π) as a W (F)-algebra, it is not true in general that
A is also generated by t′(Π) as a W (F)-algebra. Take for instance Π = Zp, A = ZpJT K, ρ̄ trivial
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and t the trace of the representation ρ(g) :=
(

1+T 0
0 1+T

)g
for all g ∈ Zp. Then A is topologically

generated as a Zp-algebra by the image of t, but not by the image of t′.

6. Applications

In this section we specialize Theorem 5.17 to some arithmetic settings, more specifically to
representations coming from elliptic or Hilbert cuspidal eigenforms (Section 6.1) and cuspidal p-
adic families of elliptic eigenforms (Section 6.2). We show how to recover, and in some cases improve,
the results already present in the literature. We also show that one can obtain exceptionally strong
fullness results when the image of ρ contains SL2(E) (Section 6.3).

6.1. Galois representations attached to non-CM cuspidal elliptic or Hilbert modular
eigenforms. Let F be a totally real field (possibly equal to Q) and f a non-CM cuspidal Hilbert
modular eigenform over F all of whose weights are at least 2. Fix an algebraic closure F of F , and let
GF := Gal(F/F ). Fix a prime p > 2 and an embedding ιp : Q ↪→ Qp. Let ρf,ιp : GF → GL2(Qp) be
the Galois representation attached to f in the usual way. We may, up to conjugation, view ρf,ιp as

taking values in GL2(O) for some finite extension O of Zp. Let O0 be the ring of integers of Q
Σgen
ρf,ιp

p ,
which is contained in O. It is known that for all but finitely many primes p, the representation
ρf,ιp is O0-full [Mom81, Rib85, Nek12]. The goal of this subsection is to show that our results
recover these classical fullness results, at least when ρf,ιp satisfies the hypotheses necessary for our
methods. In particular, since our methods are entirely agnostic about the group Π, they show that
the classical fullness results can be obtained purely algebraically, that is, without any arithmetic
input such as local information at the places where ρf,ιp is ramified. (Note, however, that our
methods are purely p-adic and thus say nothing about adelic openness, which is covered by the
theorems in [Mom81, Rib85, Nek12].)

Let F be the residue field of O and ρ : GF → GL2(F) the semisimplification of the reduction of
ρf,ιp modulo mO.

Theorem 6.1. Assume that ρ is regular. If ρ is octahedral, assume further that ρ is good. Then
ρf,ιp is O0-full.

Proof. Let (t, d) := (tr ρf,ιp ,det ρf,ιp). Then (t, d) is not reducible since f is cuspidal, (t, d) is not
dihedral since f is not CM, and t 6= s(t) since the weights of f are greater than 2. By Theorem
5.17, there exists a (t, d)-representation ρ that is A0-full, where A0 is the subring of O topologically

generated by
{ t(g)2

d(g) : g ∈ GF
}

. By Proposition 3.1, A0 and O0 have the same field of fractions.

Furthermore, A0 ⊆ O0 and O0 is a finite A0-module since both A0 and O0 are finite Zp-modules.
Therefore ρ is O0-full by Lemma 2.16. Hence ρf,ιp is O0-full by Remark 2.15. �

Remark 6.2. Our regularity condition is designed in part to rule out the representations at the
finitely many primes where Momose, Ribet and Nekovář do not prove the fullness of ρf,ιp . In order
to make this point clear, we recall the result of Momose and Ribet. (Nekovář’s result in the Hilbert
case is analogous.) Let f be a cuspidal elliptic eigenform. Write K for the finite extension of Q
containing the eigenvalues of f under the Hecke operators, and let K0 be the subfield of K fixed
by the group of generalized conjugate self-twists of ρf,ιp . Let

H :=
⋂

(σ,η)∈Σpairs
ρf,ιp

ker η.

It is an open subgroup of GQ. Momose and Ribet define a quaternion algebra D over K0 that
splits over K and satisfies the following property: for the place p of K above p defined by ιp, the
image of the representation ρf,ιp : H → GL2(Kp), up to conjugation in GL2(Kp), takes values in

40



the unit group O×D of an order OD of D(Kp) and contains an open subgroup of O×D as a finite index
subgroup. In particular, ρf,ιp is not full if D(Kp) is not split. In this case the residual representation
attached to ρf,ιp does not satisfy the regularity assumption: for a uniformizer π of OD, a matrix

in O×D/(1 + πOD) cannot have distinct eigenvalues with ratio in E.

6.2. Galois representations attached to p-adic families of modular forms.

6.2.1. A question about pseudorepresentations arising from p-adic families of modular forms. There
is a rather subtle question in the case when (t, d) arises from a p-adic family of elliptic or Hilbert
modular forms. In that case, Π = Gal(F/F ) for a totally real number field F , and the ring A
is naturally an algebra over a power series ring Λ. The number of variables in Λ depends on the
arithmetic of F . When F = Q, we have Λ = ZpJXK.

Question 6.3. If (t, d) : Gal(F/F ) → A arises from a p-adic family of modular forms, is Λ con-
tained in the field of fractions of A0? In other words, is Λ fixed by all generalized conjugate
self-twists of ρ?

The two questions above are equivalent by Proposition 3.1. Note that the answer to Question
6.3 must use the meaning of Λ in the setting of p-adic families of modular forms. Indeed, it is not
difficult to construct an abstract continuous representation ρ : Gal(F/F )→ GL2(ZpJXK) such that
the automorphism X 7→ −X is a conjugate self-twist of ρ.

We answer Question 6.3 positively when F = Q and ρ is ordinary (see Proposition 6.6), but we
do not treat any other case (Coleman families when F = Q or families of Hilbert modular forms).
We now make Question 6.3 more precise for Coleman families, but we leave it open.

The rigid analytic space attached to (the formal scheme obtained from) a Hida family carries
a map to a weight space, given by a disjoint union of p-adic wide open unit discs. Such a map
induces the usual Λ-algebra structure of a Hida family, because Λ can be identified with the ring
of rigid analytic functions bounded in norm by 1 on a connected component of the weight space.
Coleman families (i.e. p-adic families of modular eigenforms of finite slope) are not defined over
all of weight space in general. One can take as a domain of definition for a Coleman family a wide
open disc D in the weight space, that is, a disc given by an increasing union of closed affinoid discs.
Let O(D) be the ring of rigid analytic functions on D bounded in norm by 1; it is a Noetherian
Zp-algebra. Restricting functions from a connected component of the weight space to D gives an
embedding Λ ↪→ O(D). Given a Coleman family over D, one can attach to it a pseudorepresentation
(t, d) : GQ → A for an O(D)-algebra A that is finite as an O(D)-module. The pseudorepresentation
(t, d) encodes the systems of eigenvalues of an abstract Hecke algebra acting on a space of “p-adic
overconvergent modular forms with weight in D”, of some fixed tame level and of arbitrary level
at p. We then ask Question 6.3 for (t, d). If the answer is positive, our big image result implies a
significant improvement on [CIT16, Theorem 6.2], where only a big image result for a Lie algebra
attached to (t, d) is given, and only in the case when the residual representation of (t, d) is absolutely
irreducible.

We point out that regardless of what the answer to Question 6.3 ends up being in the case of
Coleman families, the fullness results we obtain in this paper are optimal, both for representations
attached to Coleman families as well as any other representation that fits into our framework. In
other words, if Λ is not fixed by some generalized conjugate self-twist of (t, d), then (t, d) cannot
be full with respect to the ring used in [CIT16]. This is not incompatible with [CIT16, Theorem
6.2] because of the way the Lie algebra there is defined.

In Section 6.2.2, we work with a pseudorepresentation (t, d) : Π → A, where A is a local pro-
p domain. We give a criterion that can help determine when certain elements of A are fixed
by generalized conjugate self-twists. This criterion can be useful in answering Question 6.3, as
demonstrated in Section 6.2.3, where we use it to answer the question positively in the case of Hida
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families. This allows us to recover and improve upon the main theorem of the second author in
[Lan16, Theorem 2.4].

6.2.2. A criterion for being fixed by generalized conjugate self-twists. Let A be a local pro-p domain.
Fix a semisimple representation ρ : Π→ GL2(F) and (t, d) : Π→ A a pseudodeformation of ρ, not
necessarily constant determinant.

Lemma 6.4. Assume that ρ is regular. If ρ is octahedral, assume further that ρ is good. Then
there exists a (t, d)-representation ρ such that L1(ρ) ⊆M2((Ksep)Σgen

t ).

Proof. Let χ : Π→ A× be the character described in the proof of Theorem 5.17, and let (t′, d′) :=
(χt, χ2d) and ρ′ := χ ⊗ ρ, where χ := χ mod m. In particular, ρ′ has no conjugate self-twists if ρ
is reducible, and the order of det ρ′ is a power of 2 if ρ is irreducible. Write A′ for the subring of
A topologically generated by t′(Π) and K ′ for the field of fractions of A′. We claim that it suffices
to show that there exists a (t′, d′)-representation ρ′ : Π → (R′)× such that L1(ρ′) ⊆ M2((K ′)Σt′ ),
where we are viewing R′ ⊆ M2(K ′) by Lemma 2.10. Indeed, letting R be the A-span of R′ in
GL2(K), we see that twisting ρ′ by χ−1 gives a (t, d)-representation ρ := ρ′ ⊗ χ−1 : Π → R×. Let
Γ := Γ(ρ) and Γ′ := Γ(ρ′). Note that Γ ⊆ Γ′ since elements in Γ have determinant 1 and Γ is a
pro-p group while the finite order part of χ has prime-to-p order. Therefore by Proposition 3.1 we
have

L1(Γ) ⊆ L1(Γ′) ⊆M2((K ′)Σt′ ) = M2((Ksep)Σgen
t ).

If ρ is reducible, note that Σt′ = 1 since ρ′ has no conjugate self-twists. Thus in this case ρ′

exists by [Bel18, Proposition 2.4.2, Lemma 2.2.2].
Next assume that ρ is absolutely irreducible. Let ρt′ : Π→ GL2(A′) be the (t′, d′)-representation

given by Corollary 5.3. If kerβt′ = 1, then Corollary 5.3 guarantees that L1(ρ′) ⊆ M2((K ′)Σt′ ).
Thus we may assume that ρ is dihedral and kerβt′ 6= 1.

If B1(ρt′) = 0, then L1(ρt′) =
( I1(ρt′ ) 0

0 I1(ρt′ )

)0
satisfies the desired conditions by Corollary 5.3.

Thus we may assume that B1(ρt′) 6= 0. The problem with ρt′ is that B1(ρt′) is not fixed by the
nonidentity element τ ∈ kerβt′ . By Lemma 4.16, we know that τ acts on B1(ρt′) by −1. Let

0 6= b ∈ B1(ρt′), and let ρ′ be the conjugate of ρt′ by
(
b 0
0 1

)
. Then L1(ρ′) =

( I1(ρt′ ) b−1B1(ρt′ )
bB1(ρt′ ) I1(ρt′ )

)0
.

Since τ acts on B1(ρt′) by −1, it follows that L1(ρ′) ⊆M2((K ′)Σt′ ), as desired. �

Note that in the case when ρ is dihedral and kerβt′ 6= 1, the representation ρ′ found in the proof
of Lemma 6.4 is not well adapted. Thus there is no contradiction with Lemma 4.16.

Corollary 6.5. Let a ∈ A. If there exists a (t, d)-representation ρ and n ≥ 1 such that aLn(ρ) ⊆
L1(ρ) and Ln(ρ) 6= 0, then σa = a for all σ ∈ Σgen

t .

Proof. We claim first that in fact aLn(ρ) ⊆ L1(ρ) for any (t, d)-representation ρ. Indeed, by [Bel18,
Proposition 2.4.2] any other (t, d)-representation ρ1 differs from ρ by an A-algebra isomorphism Ψ.
In particular, Ψ(Ln(ρ)) = Ln(ρ1) and thus

aLn(ρ1) = aΨ(Ln(ρ)) = Ψ(aLn(ρ)) ⊆ Ψ(L1(ρ)) = L1(ρ1).

By Lemma 6.4, we can find a (t, d)-representation ρ1 such that L1(ρ1) ⊆ M2((Ksep)Σgen
t ). If

0 6= x ∈ Ln(ρ1), then we have ax ∈ L1(ρ1). In particular, both ax and x are fixed by every

σ ∈ Σgen
t . Letting xij be any nonzero entry in x, we find that a = (axij)/xij ∈ (Ksep)Σgen

t . �

6.2.3. Application to Hida families. Finally, let (t, d) : GQ → A be the pseudorepresentation at-
tached to a non-CM cuspidal Hida family, and let ρ : GQ → GL2(F) be the semisimplification
of the residual representation. Recall that (t, d) is unramified outside a finite set of primes S of
Q. Let Π be the Galois group of the maximal extension of Q unramified outside the primes in
S, which satisfies the p-finiteness condition by the Hermite-Minkowski theorem. We view (t, d)
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as a pseudorepresentation on Π. Recall that A0 is the subring of A topologically generated by{ t(g)2

d(g) : g ∈ Π
}

.

Proposition 6.6. Assume that ρ|GQp is regular. If ρ is octahedral, assume furthermore that ρ is

good. Then (t, d) is A0-full, and Q(A0) contains Λ = ZpJXK.

Proof. Note that (t, d) is not reducible since the Hida family is cuspidal, and (t, d) is not dihedral
since the Hida family is not CM. The fact that t 6= s(t) follows from the fact that a Hida family has
classical specializations of weight at least 2. Therefore we know that (t, d) is A0-full by Theorem

5.17. We just need to verify that Q(A0), which is equal to KΣgen
t by Proposition 3.1, contains Λ.

That is, we must show that X is fixed by Σgen
t .

Since ρ|GQp is regular and (t, d) arises from a Hida family, there is a (t, d)-representation ρ such

that ρ|GQp = ( ε ∗0 δ ) with δ unramified and ε(g0) =
(

1+X ∗
0 1

)
for some g0 in the inertia subgroup at p.

By Corollary 6.5 it suffices to show that XL3(ρ) ⊆ L3(ρ). As in [Lan16, Lemma 7.6] it follows

that Im ρ is normalized by
( s(ε(g)) 0

0 s(δ(g))

)
, where g ∈ GQp is a regular element. In particular, L2(ρ)

is strongly decomposable by Proposition 3.4 since s(ε(g))s(δ(g))−1 ∈ E× \ {±1}.
Furthermore, we have ρ(g0) =

(
1+X u

0 1

)
. Conjugating by this matrix and its inverse shows that

B2(ρ), C2(ρ) are closed under multiplication by X. Since L3(ρ) = [I2(ρ), B2(ρ)]⊕ [B2(ρ), C2(ρ)]⊕
[I2(ρ), C2(ρ)], it follows that L3(ρ) is closed under multiplication by X. By Corollary 6.5, it suffices

to show that L3(ρ) 6= 0. But this is clearly true since ρ is A0-full. Therefore X ∈ (Ksep)Σgen
t . �

6.3. Determining the image in the residually full case. In this section we briefly study
the image of “residually full” representations. That is, we assume that ρ : Π → GL2(A) is a
continuous representation such that Im ρ ⊇ SL2(E). Under this assumption we have a more precise
understanding of the image of ρ than simply fullness.

Let ρ : Π → GL2(A) be a continuous representation such that Im ρ ⊇ SL2(E). Let χ : Π → A×

be the character described in the proof of Theorem 5.17, and let ρ′ := χ ⊗ ρ. Assume that ρ is
conjugated in such a way that Theorem 2.31 applies to ρ′.

Proposition 6.7. Assume p ≥ 7. Then

(1) Im ρ′ ⊇ SL2(W (E)[I1(ρ′)]) as a finite index subgroup;
(2) Im ρ ⊇ SL2(W (E)[I1(ρ′)]);

(3) W (E)[I1(ρ)] is the largest subring Ã of A for which Im ρ ⊇ SL2(Ã).

Proof. For ease of notation, let us write A1 := W (E)[I1(ρ′)] and m1 := mA1 .
Since Im ρ′ ⊇ SL2(E), it follows that Im ρ′ ⊇ SL2(W (E)) by [Man15, Main Theorem]. In par-

ticular, p ∈ I1(ρ′) and so m1 = I1(ρ′) by Theorem 2.31. Let G̃′ be the subgroup of G′ := Im ρ′

generated by Γ = Γ(ρ′) and SL2(W (E)). Then G̃′ is a finite index subgroup of G′ since Γ is.

We claim that G̃′ = SL2(A1). Indeed, note that Γ = ΓA1(m1) by [Bel18, Corollary 6.8.3] and the

fact that m1 = I1(ρ′). In particular, this shows that G̃′ ⊆ SL2(A1). In fact, G̃′ is a subgroup of

SL2(A1) such that G̃′/Γ = SL2(E) = SL2(A1)/Γ. Thus we must have equality.

Now suppose that Im ρ′ ⊇ SL2(Ã) for some subring Ã of A. Then Γ ⊇ ΓÃ(mÃ), which implies

that I1(ρ′) ⊇ mÃ. On the other hand, if Im ρ′ ⊇ SL2(Ã) then Im ρ′ ⊇ SL2(Ã/mÃ). By definition
of E, we know that E is the largest subfield of F such that Im ρ′ ⊇ SL2(E). Thus we must have

Ã/mÃ ⊆ E. It follows that Ã ⊆W (E)[I1(ρ′)].
To see the statements about ρ, note that there is a character χ̃ : Im ρ → A× such that Im ρ′ =

{xχ̃(x) : x ∈ Im ρ}. Now χ̃ must be trivial on SL2(Ã) for any ring Ã whose residue field has more
than three elements by Corollary 2.23. Therefore Im ρ and Im ρ′ contain the same copies of SL2. �

Remark 6.8. In the forthcoming work [AB19], Aryas-de-Reina and Böckle prove a large image result
for a residually full representation Π → G(A), where G is an adjoint group and A is the ring of
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definition of the representation. It does not seem hard to recover Proposition 6.7 by applying their
result to the projective representation Pρ : Π → PGL2(A) attached to ρ, and using the fact that
the ring of definition of Pρ is the ring fixed by the conjugate self-twists of ρ.

7. Appendix

7.1. Representations with isomorphic adjoint differ by a character. Throughout Section
7.1, let G be a compact topological group and K an algebraically closed topological field. All
representations are assumed to be continuous. Let sln(K) denote the K-vector space of n × n-
matrices of trace 0 and ad0 : GLn(K)→ GLn2−1(K) the representation obtained by letting GLn(K)
act on sln(K) by conjugation. The primary goal of this section is to prove that if ρ1, ρ2 : G →
GL2(K) are semisimple representations such that ad0 ρ1

∼= ad0 ρ2, then ρ1
∼= ρ2 ⊗ η for some

character η : G → K×. This is done in Proposition 7.10. The proof is easier when either K has
characteristic 2 or when the ρi are not dihedral. These cases are treated first in Section 7.1.1.
Section 7.1.2 is an analysis of dihedral representations that allows us to conclude Proposition 7.10
in full generality. The results of this section are probably well known to experts, but we give
proofs for lack of a reference in the generality we need. We were guided by the MathOverflow
answer [Ven]. In the nondihedral case, this result can be found in [KMP00, Lemma 2.9]. When
the representations ρ1 and ρ2 arise from classical modular forms, the result can be found in [DK00,
Appendix].

7.1.1. The nondihedral case. Given a representation ρ : G → GLn(K), we write ρ∗ for its dual
representation. That is, if V is the representation space of ρ, then V ∗ := Hom(V,K) is the
representation space of ρ∗ with G-action given by (gϕ)(v) := gϕ(g−1v). In terms of matrices, if we
fix a basis for V and take the dual basis for V ∗, then ρ∗(g) is the inverse transpose of ρ(g).

If ρ is 2-dimensional, then an explicit calculation shows that ρ∗ ∼= ρ ⊗ Λ2ρ∗, where Λ2 denotes
the second exterior power of ρ. (The conjugating matrix can be taken to be

(
0 −1
1 0

)
.) We have that

1⊕ ad0 ρ ∼= ρ⊗ ρ∗.
In particular, ad0 ρ is self dual. Furthermore,

1⊕ ad0 ρ ∼= ρ⊗ ρ∗ ∼= ρ⊗ ρ⊗ Λ2ρ∗ ∼= 1⊕ (Sym2 ρ⊗ Λ2ρ∗),

and so ad0 ρ ∼= Sym2 ρ⊗ Λ2ρ∗ = Sym2 ρ⊗ det ρ−1.
The following lemma is essentially a version of Schur’s lemma that will be useful in what follows.

Lemma 7.1. If ρ : G → GLn(K) is a semisimple representation such that ad0 ρ does not contain
a copy of the trivial representation, then ρ is reducible.

Proof. Let V be the K-vector space on which G acts via ρ. Then EndV is the representation space
for 1 ⊕ ad0 ρ, where 1 is the trivial representation, which corresponds to scalar endomorphisms of
V . If ad0 ρ contains a copy of the trivial representation, then there is a nonscalar ϕ ∈ EndV that
commutes with the action of G. By Schur’s lemma, ρ must be reducible. �

Proposition 7.2. Let ρ1, ρ2 : G → GL2(K) be semisimple representations. Assume that either
both ρi are reducible or both ad0 ρi are irreducible. If ad0 ρ1

∼= ad0 ρ2, then there is a character
η : G→ K× such that ρ1

∼= η ⊗ ρ2.

Proof. First suppose that both ρi are reducible. Write ρi ∼= λi⊕µi for i = 1, 2 and λi, µi : G→ K×

group homomorphisms. It is straightforward to calculate

λ1µ
−1
1 ⊕ 1⊕ λ−1

1 µ1
∼= ad0 ρ1

∼= ad0 ρ2
∼= λ2µ

−1
2 ⊕ 1⊕ λ−1

2 µ2.

Thus, up to switching λ2 and µ2, we must have λ1µ
−1
1 = λ2µ

−1
2 . Set η = µ1µ

−1
2 . Then

ρ1
∼= λ1 ⊕ µ1 = λ2µ1µ

−1
2 ⊕ µ1 = (µ1µ

−1
2 )⊗ (λ2 ⊕ µ2) ∼= η ⊗ ρ2.
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Now assume that both ad0 ρi are irreducible. We begin by showing that ρ1⊗ρ2 must be reducible
(which does not make use of the assumption that ad0 ρi is irreducible). Indeed, by Lemma 7.1 if
ρ1 ⊗ ρ2 were irreducible then its endomorphism ring would contain a single copy of the trivial
representation. But

End(ρ1 ⊗ ρ2) = (ρ1 ⊗ ρ2)⊗ (ρ1 ⊗ ρ2)∗ ∼= (ρ1 ⊗ ρ∗1)⊗ (ρ2 ⊗ ρ∗2)

∼= (1⊕ ad0 ρ1)⊗ (1⊕ ad0 ρ2)

∼= 1⊕ ad0 ρ1 ⊕ ad0 ρ1 ⊕ (ad0 ρ1 ⊗ ad0 ρ1)

∼= 1⊕ ad0 ρ1 ⊕ ad0 ρ1 ⊕ (ad0 ρ1 ⊗ (ad0 ρ1)∗),

and ad0 ρ1 ⊗ (ad0 ρ1)∗ ∼= End(ad0 ρ1) contains a copy of the trivial representation, a contradiction.
Next we show that ρ1 ⊗ ρ2 cannot be the sum of two 2-dimensional representations. Indeed,

suppose that ρ1 ⊗ ρ2
∼= r1 ⊕ r2, where r1, r2 : G → GL2(K) are representations. Take the second

exterior product on both sides. We have

Λ2(ρ1 ⊗ ρ2) ∼= (Λ2ρ1 ⊗ Sym2 ρ2)⊕ (Sym2 ρ1 ⊗ Λ2ρ2)

and
Λ2(r1 ⊕ r2) ∼= Λ2r1 ⊕ Λ2r2 ⊕ (r1 ⊗ r2).

Since ad0 ρi ∼= Sym2 ρi ⊗ Λ2ρ∗i , we have Sym2 ρ1 ⊗ Λ2ρ2
∼= Sym2 ρ2 ⊗ Λ2ρ1. But if

(Λ2ρ1 ⊗ Sym2 ρ2)⊕2 ∼= Λ2r1 ⊕ Λ2r2 ⊕ (r1 ⊗ r2),

then this contradicts irreducibility of ad0 ρi. Thus ρ1 ⊗ ρ2 must contain a 1-dimensional represen-
tation; call it χ. Then we claim that ρ2

∼= ρ∗1 ⊗ χ ∼= ρ1 ⊗ det ρ−1
1 ⊗ χ, and so ρ1 and ρ2 differ by a

twist.
To see that ρ2

∼= ρ∗1 ⊗ χ, recall that ρ1 ⊗ ρ2
∼= Hom(ρ∗1, ρ2). Thus having a 1-dimensional G-

stable subspace corresponds to a nonzero linear map ϕ : ρ∗1 → ρ2 such that gϕ = λ(g)ϕ for some
λ(g) ∈ K× for all g ∈ G. Define f : ρ∗1 → ρ2 ⊗ χ−1 by v 7→ ϕ(v) ⊗ e, where e is a basis for the
1-dimensional vector space on which G acts by χ. Note that f 6= 0 since ϕ 6= 0. It is straightforward
to check that f(gv) = gf(v) for all g ∈ G. Therefore Hom(ρ∗1, ρ2⊗χ−1) 6= 0. Since ρ∗1 and ρ2⊗χ−1

are irreducible, it follows that they must be isomorphic. �

The following observation can be checked easily via a direct calculation on 2× 2-matrices.

Lemma 7.3. For any g ∈ GL2(K) with (not necessarily distinct) eigenvalues λ, µ, the eigenvalues
of ad0 g are 1, λµ−1, λ−1µ. In particular, we have

tr ad0 g =
tr(g)2

det(g)
− 1.

We now give a different proof of Proposition 7.2 that works without any assumptions on ρi or
ad0 ρi in the case when K has characteristic 2. (This is not needed anywhere in the paper since we
must avoid characteristic 2 for other reasons.)

Proposition 7.4. Assume that the characteristic of K is 2. Let ρ1, ρ2 : G→ GL2(K) be semisimple
representations. If ad0 ρ1

∼= ad0 ρ2, then there is a character η : G→ K× such that ρ1
∼= ρ2 ⊗ η.

Proof. Let η2 : G→ K× be given by η2(g) := det ρ1(g) det ρ2(g)−1. Note that since K has charac-
teristic 2, there is a unique square root of η2(g) in K; call it η(g). The uniqueness of square roots
in characteristic 2 implies that the function η : G→ K× is multiplicative.

To see that ρ1
∼= ρ2 ⊗ η, it suffices to prove that tr ρ1 = η tr ρ2 by the Brauer-Nesbitt theorem

since ρ1 and ρ2 are semisimple. For this, we need another description of η.
Fix g ∈ G, and let ai, bi be the eigenvalues of ρi(g). By Lemma 7.3, it follows that {a1b

−1
1 , a−1

1 b1} =

{a2b
−1
2 , a−1

2 b2}. Note that if aib
−1
i 6= a−1

i bi, then up to switching the names of a2 and b2, we may
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assume that a1b
−1
1 = a2b

−1
2 . In fact, we may always assume this since K has characteristic 2.

Indeed, if aib
−1
i = a−1

i bi, then (aib
−1
i )2 = 1, which has a unique solution in K. In this case ai = bi.

Therefore in any case, given a1, b1, we may choose a2 and b2 such that a1a
−1
2 = b1b

−1
2 . Therefore

η(g) =
√

det ρ1(g) det ρ2(g)−1 =

√
a1b1a

−1
2 b−1

2 = a1a
−1
2 = b1b

−1
2 .

Now we can verify that

η(g) tr ρ2(g) = η(g)a2 + η(g)b2 = (a1a
−1
2 )a2 + (b1b

−1
2 )b2 = a1 + b2 = tr ρ1(g).

�

7.1.2. The dihedral case. In Section 7.1.2 we assume for simplicity that the characteristic of K
is not equal to 2. The goal of Section 7.1.2 is to remove the assumption that either both ρi are
reducible or both ad0 ρi are irreducible from Proposition 7.2. We begin with a lemma that shows
that, in light of Proposition 7.2, we only need to consider the case when both ρ1 and ρ2 are dihedral
representations.

Lemma 7.5. If ρ : G→ GL2(K) is irreducible but ad0 ρ is reducible, then ρ is dihedral.

Proof. If ad0 ρ is reducible, then so is Sym2 ρ and Sym2 ρ∗ since ad0 ρ ∼= Sym2 ρ ⊗ det ρ−1. But
Sym2 ρ∗ can be identified with the action of G on the K-vector space of quadratic forms on K2.
Thus, there is a quadratic form Q on which G acts by a scalar. Since K is algebraically closed and
charK 6= 2, all quadratic forms are equivalent. In particular, we may assume that Q(x, y) = xy.
But one checks immediately that the only matrices that preserve Q up to scalars are diagonal and
antidiagonal. Thus ρ must be dihedral. �

The rest of this section is devoted to an analysis of dihedral representations.

Lemma 7.6. Assume that ρ : G → GL2(K) is a nonscalar and semisimple representation. If
ρ ∼= η ⊗ ρ for some nontrivial character η : G→ K×, then the image of ρ|ker η is abelian.

Proof. This argument essentially comes from [Rib77, Proposition 4.4].
Note that det ρ = η2 det ρ and so η2 = 1. Set H := ker η. Thus [G : H] = 2 since η is nontrivial.

By assumption, there is a matrix M ∈ GL2(K) such that Mρ(g)M−1 = η(g)ρ(g) for all g ∈ G. In
particular, ρ(H) is contained in the commutant of M .

We claim that M is semisimple. It suffices to show that M has distinct eigenvalues. Up to a
change of basis for ρ, we may assume that M is upper triangular, say M =

(
a b
0 c

)
. The eigenvalues of

M acting on M2(K) by conjugation are 1, 1, ac−1, a−1c by Lemma 7.3. Note that for any g ∈ G\H,
we have

Mρ(g)M−1 = −ρ(g).

Thus −1 = ac−1, which implies that a 6= c and thus M has distinct eigenvalues, as claimed.
Therefore M is semisimple and so its commutant, and hence ρ(H), is abelian. �

If H is a subgroup of G of index 2, then we shall always use c to denote a fixed element in
G \H. For a character χ : H → K× and g ∈ G, we write χg : H → K× for the character defined
by χg(h) := χ(g−1hg). It is not difficult to check that χg depends only on the coset of g in G/H.
Set χ− := χ/χc. We will write ηH : G → G/H ∼= {±1} for the canonical projection map. With
this notation, we recall an explicit description of IndGH χ. Namely, IndGH χ is isomorphic to the
representation

(7) g 7→



(
χ(g) 0

0 χc(g)

)
if g ∈ H(

0 χ(gc)

χc(gc−1) 0

)
otherwise.

.
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Using Frobenius reciprocity it is easy to see that IndGH χ is irreducible if and only if χ 6= χc.

Lemma 7.7.
(1) If ρ = IndGH χ for a character χ : H → K× and [G : H] = 2, then ρ ∼= ρ⊗ ηH .
(2) Conversely, if ρ : G→ GL2(K) is a dihedral representation, then there is a subgroup H of G of

index 2 and a character χ : H → K× such that ρ ∼= IndGH χ and χ 6= χc.
(3) Furthermore, H as in (2) is unique unless χ2 = (χc)2.
(4) If χ2 = (χc)2 then there are exactly three index 2 subgroups Hi of G for i = 1, 2, 3 for which

there exist characters χi : Hi → K× such that ρ ∼= IndGHi χi.

Proof. For the first point, note that χ is a constituent of (ρ⊗ηH)|H = ρ|H . By Frobenius reciprocity
and dimension counting, it follows that IndGH χ

∼= ρ⊗ ηH .
If ρ is dihedral, then there is a nontrivial character η : G → K× such that tr ρ = η tr ρ and

det ρ = η2 det ρ. In particular, η2 = 1 and so η is a quadratic character. Let H := ker η. Then H
is a subgroup of G of index 2 and ρ|H is reducible by Lemma 7.6. Let χ : H → K× be one of the
constituents of ρ|H . By Frobenius reciprocity, IndGH χ is a constituent of ρ and we deduce equality
for dimension reasons. Thus we have ρ|H = χ⊕χc. Since ρ is irreducible by the definition of being
dihedral, it follows by Frobenius reciprocity that χ 6= χc. This finishes the proof of the second
point.

For the third point, suppose that ρ = IndGH′ χ
′ for some character χ′ : H ′ → K× and [G : H ′] = 2.

Let c′ ∈ G \H ′. Then by restricting to H we have χ ⊕ χc = (ηH′)|H · χ ⊕ (ηH′)|H · χc. Thus we
either have χ = (ηH′)|H · χ or χ = (ηH′)|H · χc. In the first case, we see that H = ker ηH′ = H ′. In
the second case we conclude that χ2 = (χc)2 since ηH′ is quadratic.

Finally, suppose that χ2 = (χc)2. Then H0 := ker(χ/χc) is a subgroup of index 2 in H. We
claim that H0 is normal in G. Recall that χc is independent of the choice of c ∈ G \H. If h ∈ H0

and g ∈ G \H then

χ(g−1hg)/χc(g−1hg) = χ(g−1hg)/χg(g−1hg) = χg(h)/χ(h) = (χ/χg)(h)−1 = (χ/χc)(h)−1 = 1.

Furthermore, the above calculation shows that the class of c generates a subgroup of G/H0 of
order 2 distinct from H. Thus G/H0 is isomorphic to (Z/2Z)2. We claim that if H ′ is any
of the three subgroups of G of index 2 containing H0, then there is a character χ′ : H ′ → K×

such that ρ ∼= IndGH′ χ
′. By Frobenius reciprocity, it suffices to show that ρ|H′ is reducible. Since

ρ|H0 = χ|H0⊕χc|H0 , it follows from Frobenius reciprocity that ρ|H′ = IndH
′

H0
χ|H0 . But χ|H0 = χc|H0

and so it follows (again by Frobenius reciprocity) that ρ|H′ is reducible. �

Combining the following lemma with Frobenius reciprocity, we see that the irreducibility of
IndGH χ is related to the question of whether the character χ : H → K× extends to a character of
G.

Lemma 7.8. Let H be a subgroup of G of index 2 and χ : H → K× a character. Then χ extends
to a character of G if and only if χ = χc. If χ extends to a character of G, then there are exactly
two different extensions, and they differ by ηH .

Proof. If such an an extension exists, then certainly χ = χc. On the other hand, since c2 ∈ H, we
know that χ(c2) is well defined. Since K is algebraically closed, we may choose a square root r of
χ(c2). Define a new character χ̃ : G→ K× by

χ̃(g) :=

{
χ(g) if g ∈ H
rχ(c−1g) if g 6∈ H.

To see that χ̃ is a character, it suffices to verify that it is multiplicative. That is, one must check
that χ̃(h)χ̃(ch′) = χ̃(hch′) and χ̃(ch)χ̃(ch′) = χ̃(chch′) for h, h′ ∈ H. It is easy to see by direct
computation that these are satisfied if χ = χc. If the characteristic of K is not 2, there are exactly
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two choices of square root of χ(c2), which give two different characters χ̃ differing exactly by ηH ;
in characteristic 2 there are no choices and only one extension. �

Lemma 7.9. Let ρ = IndGH χ be a dihedral representation. Then ad0 ρ ∼= ηH ⊕ IndGH χ
−. If ad0 ρ

is the sum of three characters, then χ2 = (χc)2 and ad0 ρ ∼= ηH1 ⊕ ηH2 ⊕ ηH3, where the Hi are the
index 2 subgroups of G given in Lemma 7.7.

Proof. The first claim is an explicit calculation. Let e1 :=
(

1 0
0 −1

)
, e2 := ( 0 1

0 0 ) , e3 := ( 0 0
1 0 ). Assume

that ρ is given by (7). Then with respect to the basis e1, e2, e3 we see that

ad0(g) =


(

1 0 0
0 χ−(g) 0

0 0 χ−(g)−1

)
if g ∈ H(−1 0 0

0 0 χ−(gc)

0 χ−(gc−1)−1 0

)
otherwise.

We observe that ηH appears in the upper left corner. Furthermore, (χ−)c = (χ−)−1. Therefore the
lower right 2× 2-matrix in ad0 ρ is isomorphic to IndGH χ

− by (7). Thus ad0 ρ ∼= ηH ⊕ IndGH χ
−.

If ad0 ρ is the sum of three characters, then IndGH χ
− is reducible and thus χ− = (χ−)c. That

is, χ2 = (χc)2. By Lemma 7.7, it follows that there are exactly three subgroups Hi of G of index
2 for which ρ ∼= IndGHi χi. By the above calculation, each ηHi must be a constituent of ad0 ρ. By

counting dimensions, we find that ad0 ρ ∼= ηH1 ⊕ ηH2 ⊕ ηH3 . �

Proposition 7.10. Let ρ1, ρ2 : G → GL2(K) be semisimple representations. If ad0 ρ1
∼= ad0 ρ2

then there is a character η : G→ K× such that ρ1
∼= η ⊗ ρ2.

Proof. By Proposition 7.4, we may assume that the characteristic of K is not equal to 2. By
Proposition 7.2 and Lemma 7.5 we may assume that both ρ1 and ρ2 are dihedral. By Lemma
7.9 there are index-2 subgroups Hi of G and characters χi : Hi → K× such that ρi ∼= IndGHi χi.

Note that Hi can be read off from ad0 ρi since ηHi is a constituent of ad0 ρi by Lemma 7.9 and
Hi = ker ηHi . In particular, since ad0 ρ1

∼= ad0 ρ2, we may assume that H := H1 = H2. By Lemma

7.9 we have IndGH χ
−
1
∼= IndGH χ

−
2 . By restricting to H it follows that χ−1 ⊕ (χ−1 )c ∼= χ−2 ⊕ (χ−2 )c, and

so up to replacing χ2 with χc2 (which is okay since IndGH χ2
∼= IndGH χ

c
2), it follows that χ−1 = χ−2 .

That is, χ1χ
−1
2 = (χ1χ

−1
2 )c. By Lemma 7.8 there is a character η : G→ K× such that η|H = χ1χ

−1
2 .

We claim that ρ1
∼= η ⊗ ρ2. Indeed, this is true upon restriction to H since

ρ1|H = χ1 ⊕ χc1 = η|H ⊗ (χ2 ⊕ χc2) = (η ⊗ ρ2)|H .
Therefore ρ1

∼= η ⊗ ρ2 by Frobenius reciprocity since ρ1 is irreducible and thus χ1 6= χc1. �

7.2. Rings with involution. Throughout Section 7.2, let A be a commutative Noetherian ring
equipped with an involution ∗. Note that we will need to apply the results in this section to
the universal constant-determinant pseudodeformation ring A, so we cannot assume that A is a
domain. Let Aε = {a ∈ A : a∗ = εa} for ε ∈ {+,−}. We will assume throughout that ∗ is not the
identity on A so that A− 6= 0. It is easy to see that A+ is a subring of A and A− is an A+-module.
The following results have been adapted from [Lan75] and [CL77], where they are presented in the
context when A may be noncommutative.

Definition 7.11. We say that an A-ideal a is a ∗-ideal if a∗ = a. We say that A is ∗-prime if
whenever a and b are ∗-ideals such that ab = 0 then either a = 0 or b = 0.

Lemma 7.12. If A is ∗-prime then A is reduced.

Proof. Let 0 6= a ∈ A be nilpotent. Then there is a smallest integer n > 1 such that an = 0.
Let a = aA and b = an−1A. Note that a 6= 0 and b 6= 0 by the minimality of n. If a and b are
∗-ideals then we have reached a contradiction since ab = anA = 0. In particular, if a+ a∗ = 0 then
a∗ = −a ∈ aA and so a, b are ∗-ideals.
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If a + a∗ 6= 0, then a + a∗ is still nilpotent since A is commutative. By replacing a with a + a∗

in the above argument, we find that a and b are ∗-ideals and thus we reach a contradiction. �

Lemma 7.13. If A is a Noetherian commutative ring such that 2 ∈ A×, then A+ is a Noetherian
ring.

Proof. The following argument comes from [CL77, Lemma]. Let I1 ⊆ I2 ⊆ · · · be an ascending
chain of ideals in A+. Then I1A ⊆ I2A ⊆ · · · is an ascending chain of ideals in A. Since A is
Noetherian, there is some n such that InA = ImA for all m ≥ n.

Fix m ≥ n and a ∈ Im ⊆ A+. Since a ∈ ImA = InA we may write

a =
∑
i

bixi

with bi ∈ In and xi ∈ A. Applying the involution ∗ yields

a = a∗ =
∑
i

bix
∗
i .

Thus

2a =
∑
i

bi(xi + x∗i ).

Since xi+x∗i ∈ A+ and 2 ∈ A× it follows that a = 1
2

∑
i bi(xi+x∗i ) ∈ In. In particular, Im = In. �

We would like to show that A is finitely generated as an A+-module, which is equivalent to A
being a Noetherian A+-module since A+ is a Noetherian ring by Lemma 7.13. The following lemma
follows the proof of [Lan75, Lemma 6].

Lemma 7.14. If there is an element d ∈ A− that is not a zero divisor in A, then A is Noetherian
as an A+-module.

Proof. Since d is not a zero divisor, it follows that A is isomorphic to dA as an A+-module. On
the other hand, for any a ∈ A we can write

da =
1

2
(d(a− a∗)) +

1

2
(d(a+ a∗)) ∈ A+ + dA+.

Thus dA is a submodule of the finitely generated A+-module A+ + dA+. Since A+ is Noetherian
by Lemma 7.13, it follows that dA, and hence A, is a finitely generated (and hence Noetherian)
A+-module. �

Proposition 7.15. If A is a commutative Noetherian ring with 2 ∈ A×, then A is a Noetherian
A+-module.

Proof. This proof combines elements of the proofs of [CL77, Theorem] and [Lan75, Theorem 7].
Suppose not. Let a0 be the largest ∗-ideal of A such that A/a0 is not a Noetherian A+-module,

which exists since A is a Noetherian ring and is not Noetherian as an A+-module. Thus, by
replacing A with A/a0, we may assume that A/a is a Noetherian A+-module for any ∗-ideal a 6= 0.

We claim that, under this assumption, A is reduced. It suffices to show that A is ∗-prime by
Lemma 7.12. Suppose that a and b are nonzero ∗-ideals of A such that ab = 0. Note that we
can view a as an A/b-module since ab = 0. We know that a is Noetherian as an A/b-module
since a is Noetherian as an A-module. Furthermore, A/b is a Noetherian A+-module since b 6= 0.
Thus a is Noetherian as an A+-module. We also know that A/a is a Noetherian A+-module since
a 6= 0. Therefore A is a Noetherian A+-module, a contradiction. Therefore A is ∗-prime and hence
reduced.
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Since A is a Noetherian ring, it has only finitely many minimal prime ideals; call them p1, . . . , pn.
Since A is reduced, we have that

n⋂
i=1

pi = 0.

Note that n = 1 corresponds to the case when A is a domain, and in that case we have already
seen that A is a Noetherian A+-module by Lemma 7.14. Thus we assume henceforth that n > 1
and thus each pi 6= 0.

If p∗i ∩ pi 6= 0, then pi ∩ p∗i is a ∗-ideal and so A/(pi ∩ p∗i ) is a Noetherian A+-module. If every
pi satisfies pi ∩ p∗i 6= 0 then we can view A as a subring of

⊕ni=1A/(pi ∩ p∗i ),

which is Noetherian as an A+-module. In particular, A is a Noetherian A+-module, a contradiction,
which proves the proposition.

Suppose there is some k such that pk ∩ p∗k = 0. It is easy to check that p∗k is another minimal
prime ideal of A. We claim that n = 2 in this case. Indeed, if p is any minimal prime ideal of A,
then we have pkp

∗
k ⊆ pk ∩ p∗k = 0 and thus

pkp
∗
k = 0 ∈ p.

Thus p = pk or p = p∗k.
Let us write p = pk henceforth. We can embed A into A/p × A/p∗ by identifying a ∈ A with

(a + p, a + p∗). Note that A+ ∩ p = 0 since if a ∈ A+ ∩ p then a = a∗ ∈ p∗ ∩ p = 0. Similarly,
A+ ∩ p∗ = 0. In particular, A+ injects into A/p and is therefore a domain.

Note that by Lemma 7.14, we may assume that every element of A− is a zero divisor in A.
However, both A/p and A/p∗ are domains, so the only zero divisors in A/p × A/p∗ are elements
of the form (a + p, p∗) or (p, a + p∗). Recall that (A−)2 ⊆ A+. In particular, if (a + p, p∗) ∈ A−,
then (a2 + p, p∗) ∈ A+. That is, there is some a+ ∈ A+ such that a+ − a2 ∈ p and a+ ∈ p∗. But
we have already seen that A+ ∩ p∗ = 0. Similarly, any (p, a + p∗) ∈ A− must be trivial. In other
words, A− = 0, a contradiction. Therefore A must be Noetherian as an A+-module. �

Given any ideal a of A, we define aε := a ∩Aε. We call a a graded ideal if a = a+ ⊕ a−.

Proposition 7.16. Let A be a commutative local Noetherian ring such that A and A+ have the
same residue field. Assume that 2 ∈ A×. If A′ is the quotient of A by a nongraded prime ideal,
then A′ has the same field of fractions as the image of A+ in A′.

Proof. Write f : A → A′ for the quotient map. It suffices to show that every element of f(A−)
can be written as a quotient of elements in f(A+). Since the prime ideal p = ker f is assumed to
be nongraded, it follows that there is some a ∈ p such that, if we decompose a = a+ + a− with
a+ ∈ A+ and a− ∈ A−, then neither a+ nor a− is in p. It follows that f(a−) = −f(a+), and so
f(a−) ∈ f(A+). Note that f(a−) 6= 0 since a− 6∈ p. For any x ∈ A− we have that xa− ∈ A+ since
(A−)2 ⊆ A+. Thus f(x) = f(xa−)/f(a−) ∈ Q(f(A+)), as desired. �

7.3. Automorphisms and gradings. We recall how ring automorphisms give rise to gradings.
The following lemma is standard, but we include a brief proof for the convenience of the reader.

Let A be a complete local ring andX a finite abelian subgroup of the group of ring automorphisms
of A. Given a character ϕ : X → A×, we define

Aϕ := {a ∈ A : σa = ϕ(σ)a,∀σ ∈ X}.
We write µn(A) := {a ∈ A× : an = 1}.

Lemma 7.17. Let F be a finite field of characteristic p and A a pro-p local ring with residue field
F. If p - n, then µn(A) = s(µn(F)).
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Proof. Suppose p - n and a ∈ µn(A). Then a ∈ µn(F). Write a = s(a) +m for some m ∈ m. Then
1 = (s(a) +m)n implies that

0 =
n∑
i=1

(
n

i

)
s(a)n−imi = m

(
ns(a)n−1 +

n∑
i=2

(
n

i

)
s(a)n−imi

)
.

Note that ns(a)n−1 +
∑n

i=2

(
n
i

)
s(a)n−imi ≡ ns(a)n−1 6= 0 mod m since p - n. Thus ns(a)n−1 +∑n

i=2

(
n
i

)
s(a)n−imi ∈ A× and so m = 0. This shows that µn(A) ⊆ s(µn(F)). The other containment

is clear. �

Assume the following:

(∗) for every positive integer n, if X contains an element of order n, then #µn(A) = n.

Then one has #X = # Hom(X,A×). (It is easily checked when X is cyclic, and then for general
X one applies the structure theorem of finite abelian groups.)

Corollary 7.18. Assume (∗). If p - #X, then for any 1 6= σ ∈ X we have∑
ϕ∈Hom(X,A×)

ϕ(σ) = 0.

Proof. First suppose that X is cyclic of order n and σ is a generator for X. Then Hom(X,A×) is
cyclic, generated by any ϕ0 such that ϕ0(σ) is a primitive n-th root of unity. Let H := 〈ϕk0〉 be a
nontrivial subgroup of Hom(X,A×). Then by Lemma 7.17 we have∑

ϕ∈H
ϕ(σ) =

n/k∑
i=0

ϕki0 (σ) =
∑

ω∈µn/k(A)

ω =
∑

ω∈µn/k(F)

s(ω) = 0.

Now we allow X to be any finite abelian group such that p - #X and σ any nontrivial element
of X. Then we have an exact sequence

0→ Hom(X/〈σ〉, A×)→ Hom(X,A×)→ Hom(〈σ〉, A×).

Thus
∑

ϕ∈Hom(X,A×) ϕ(σ) is an integral multiple of∑
ϕ∈H

ϕ(σ),

where H is the image of Hom(X,A×) in Hom(〈σ〉, A×). This sum is 0 by the first paragraph of the
proof. �

Lemma 7.19. Let A and X be as above. Assume that #X ∈ A× and that condition (∗) holds.
Then A admits a grading given by A = ⊕ϕ∈Hom(X,A×)A

ϕ. Furthermore, any Z[1/#X][X]-submodule
M ⊆ A decomposes as

M = ⊕ϕ∈Hom(X,A×)M
ϕ,

where Mϕ := M ∩Aϕ.

Proof. For ϕ ∈ Hom(X,A×), define

eϕ :=
1

#X

∑
σ∈X

ϕ(σ)σ−1 ∈ Z
[

1

#X

]
[X].

A straightforward computation shows that {eϕ : ϕ ∈ Hom(X,A×)} is an orthogonal system of
idempotents in Z[1/#X][X]. (Note that Corollary 7.18 is needed to show that

∑
ϕ eϕ = 1.) There

is a natural ring homomorphism

Z
[

1

#X

]
[X]→ EndA,

and pushing forward the eϕ’s to EndA gives the result. �
51



References
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