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RENEWAL PROCESSES ON TOPOLOGICAL SPACES
I

WITH UNIFORM ACTION GROUPS

Dao Trong Tru

Introduction

Renewal processes on topological groups were studied in depth in mJ~papers (see, for

example J [1] I [2]). Trus article is devoted to the renewal theory on topological spaces

with transformation groups. An essential obstacle in establishing and proving basic results,

concerning the finiteness of the renewal function J is the possible appearance of noncompact

stationary subgroups at points of the space. Generally, the study of randorn processes on

topological spaces with transformation groups (in particular) on homogeneaus spaces) is

much more complicated than on topological groups and same open problems still exist in

this area. For instance) the Loynes dichotomy theorem is not true for induced randorn

walks on homogeneous spaces in general, although it holds under certain assumptions ( [3] J

[5], [8]). Some reasons of this observation were discussed in [8]) [9].

In this paper we consider uniform actions of locally compact groups on topological

spaces and investigate some basic questions of renewal processes induced by these actions

on the corresponding topological spaces.

The paper was written when the author was staying at the Max-Planck-Institut für
Mathematik in Bann.
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§ 1. Uniform actions of groups

Let M be a topological space, G a topological group with the unit element e. We

say that G acts (continuously) on M if given a continuous map f: G )( M --. M

satisfying the following canditions:

(i) Far any g E G the map g: M -----t M , sending each point x E M &&iIiI

to the point f(g,x) is a homeomorphism. In this case we write

gx = f(g,x) .

(ii) (gh(x) = g(Hx) for any g,h E G and any x E M .

(iii) ex = x for any x E M .

For each point x E M the set

H = {g E G I gx = x}x

\s~rou~
is a close~ 0f G I called the stationary subgroup at the point x. It is easy to check that if

Y=gx then H =gH g-1={ghg-1lhEH}.
Y x x

The set

Gx = {gx EM I g E G}

is called the orbit of the point x under the action G . G is a closed subset of M , homeo
x

morphic to the homogeneous spave G IR .
x

Definition 1.1. An action of a topological graup G on a tapological space M !L
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called uniform at a point x E M if for any 'neighborhood U Qf x there exists a neighbor

hood U I of x such that h(U ') CU for aU h E Hx . An action G on M is called

uniform if it is uniform at each point of M .

Proposition 1.2. If an action of a topological group G

a topological space M is unirorrn at a point x E M , then it is uniform at each point of the

Proof. Assume that x E M is uniform point of the action G , that is for any neigh

borhood U of x there exists a neighborhood U I of x such that h(U ') C U for every

h EH. Letting y = gx E G ,we have H = gH g-1 . Suppose now that V is anx x y x

arbitrary neighborhood of y . Set U = g-l(V) . According to the assumption one can

choose a neighborhood U I of x such that H (U ') CU. Put V' = g(U ') . We have
x

H (V ') = gH g-l(V ') = gH (U ') Cg(U) = V . This completed the proof.
y x x

Corollary 1.3. Suppose the action G on M is transitive. Then it is uniform if and

only if it is uniform at a point of M .

For any two points x)y EM consider the set

H(x,y) = {g E G I gx = y} .

Clearly, H(x,y) *~ if and only if x and y belang to the same orbit, i.e. G = G .x y
Assume that H(x,y) *~ and y = gx . Then h E H(x)y) if and only if h.x = gx cr

g-lhx := x . This means that g-lh E H or h E gH . Thus, H(x,y) := gH . Similarly)x x x

H(x,y) = Hg. From the definition it follows that
y
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H(x,y)-1 = H(y,x) for any . x,y E M .

Now, let U and. V be subsets of M and put

H(U,V) = U H(x,y) .
(x,y) EUxV

We note that if U is a neighborhood of x or V is a neighborhood of y ,then H(U,V)

is a neighborhood of H(x,y) in G. From (1.) it follows that

(1.2) H(U,V)-1 = H(V,U) for any U,V C M .

Theorem 1.4. Let a topological group G act uniformlyon a topological space M.

Then for any x E M and any open subsets V, V' such that V CV' and V is compact,

there exists a neighborhood U of x such that H(U,V) C H(x,V / ) .

From Theorem 1.4 and the equality (1.2) it follows immediately the following

Corollary 1.5. Given an uniform action of a topological graup G on a topological

space M. Then for any y E M and any open subsets U , U I such that U CU I ~

compact. there exists a neighborhood V of y such that H(U,V) C ~(U I ,y) .

To prove Theorem 1.4 we need the following lemmas

Lemma 1.6. Let the action G on M be uniform. Suppose x,y E M are arbitrary

,points. Then for any neighborhood V of y there exists a neighborhood U of x such

that h(U) C V for a11 h E H(x,y) .
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Proof. If H(x,y) = t/J , then the statement of the lemma is obvio4S. Assu~e that

H(x,y) '* r/J and let y = gx . As noted above we have H(x,y) = gHx . Suppose now that

V is a neighborhood of y . We put U = g-l(V) . By definition there exists a neighbor

hood VI of x such that H (VI) CU. Hence H(x,y)(U / ) = gH (U I) C g(U) = V ,x x

completing the proof.

Lemma 1.7. Given an uniform action G on M. Let x E M be an arbitrary point,

V and V I open snbsets in M such that V C V I and V is compact. Then there exists

a neighborhood U of x such that h(U) C V I for any h E H(x,V) .

Proof. If V n Gx = t/J , i.e. H(x,V) = t/J , then the statement of the lemma is ob

vious. Assume that V n G :f t/J . Suppose z E V n G . Each element h E H(x,V) can bex x

expressed in the form h = gh I ,where h I E H(x,z), g E H(z,V) . From the continuity of

the action G on M it follows that thcre exists a ncighborhood V of z in M and az

neighborhood K of the unit e in G such that g(V ) CVI for any g E K . Choose az z z

neighborhood Wz of z in M such that Wz CVz and Gx n Wz C {gz I g E Kz} . By

Lemma 1.6 there exists a neighborhood U of x in M such that h(U ) CW for anyz z z

h E H(x,z) . Since V n G is compact (because V is compact), one can select a finite. x
k

covering {W }l('(k of V n G . Set U = n U . We prove that U is a neededz· 1 X . 1 z·
I - - 1= I

neighborhood of x . Really, suppose h E H(x,V) (= lI(x, V n G )) and let. x

h E H(x,W ). As noted above, h has the form h = gh I ,where h I E H(x,z.), g E K .
Z. 1 z·

1 1

Then h(U) = gh I (U) Cgh I (Uz) C g(Wz) C g(Vz) C V I . The proof is complete.
1 I 1

Proof of Theorem 1.4. A neighborhood U C M is said to be symmetrie at a point
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x E U if gx E U implies g-lx E U for any g E G . Clearly, for any neighborhood U of

x in M one ean find a neighborhood U leu, sy:mmetrie at x (sueh,neighbo,rhoods ean

be obtained from symmetrie neighborhoods oI the unit e in the group G).

Now, suppose Y I y l are open subsets in M such that Y C V C yl and Y is

eompaet. Aecording to Lemma 1.7 one ean ehoose a neighborhood U of x such that

h(U) C yl for any h E H(x,Y) . Moreover, by virtue of the above rem~rk U ean be

supposed to be symmetrie at the point x. Let y EU, y = gx . Then g-lx EU. For any

g E H(y,Y) we have g = hg-1 ,where h E H(x,V) . Hence, gx = hg-lx E h(U) C y l
,

i.e. gE H(x,y / ). Consequently, H(U,Y) C H(x,V / ). The proofis cOInpleted.

§ 2. The renewal funetions of the action

Suppose now M is a loeally compact normal topological space and G is a locally

eompact normal topological group, acting uniformlyon M. Consider the u-fields on M

and G, consisting of Borel subsets (that is thc u-fields generated by compact subsets on

M and G respectively).

Let p be aRadon measure on M and q aRadon measure on G. The convolution

of p. and q is defined to be aRadon measure p * q on M given by the formula

(2.1) p * q(X) = JP(g-lX)q(dg)

G

for any Borel subset X on M. In particular, if M = G then we have the convolution of

two Radon measures on G. It is easy to veriry that

(2.2)
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for a~y Radon fI?easure p on M and any Radon measure q1 and q2 ,on G . In parti

cular, the equality (2.2) makes it possible to define the convolution powers

*nq = q * q * ... * q (n times) of aRadon measure q on G.

Now, suppose that q is a normalizcd positive measure (Le. probability distribu
*.

tions). Then so are its convolution powers q 1 • The sums

CD n
\' q*i \' *i

Q = L l Qn = L q

i=O i=O

* '
where q 0 = 1 denotes the normalized measure concentrated at e, are called the renewal

functions of the action G l associated to q.

Definition 2.1. Suppose z E M . A point x E M is said to be finite with respect to

(z,q) (or simply, (z,q)-finite) if there exists a neighborhood Wz of z in M such that

Q(H(Wz,x)) < CD •

Remark 2.2. If z ~ G then there exists a neighborhood W of z such thatx z
Wz n Gx = t/J l Le. H(WZlx) = t/J . This means that x is (z,q)-finite.

Theorem 2.3. If x E M is a (z,q)-finite point, then there exists a neighborhood U

of x in M, consisting of (z,q)-finite points.

Proof. Assume that x is (z,q)-finite. Ey definition there exists a neighborhood W

of z such that Q(H(W,x)) < CD • Choose a neighborhood W l of z, W I CWand W I
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is c.ompact . .Ä:ccor.ding to Corollary l,:Sone 'can find a neighbo,rhood U· of x ) satisfying'

the condition H(W' ,U) CH(W,x) . For any y E U we have :

H(W' ,y). C H(W.' ,U) C H(W,x) . Consequently, Q(H(W' ,y) ~ Q(H(W,x) < w . This

means that y is a (z,q)-finite point. Thus, the theorem has been proved.

Definition 2.4. Suppose z E M . A point x E M is called infinite with respect to

(z,q) (or simply (z,q)-infinite) ifit is not (z,q)-finite.

Definition 2.5. A (z,q)-finite point x E M is called (z,q)-positive if

Q(H(W,x)) > 0 for any neighborhood W of the point z. In thc converse case x is called

(z,q)-trivial.

Clearly, M splits inta the (z,q)-positive, (z,q)-trivial and (z,q)-infinite points.

Theorem 2.6. Suppose z E M . A point x E M is (z,q)-trivial if and onlr if

x ~ {x = gz I g E Supp(Q)} .

CD *.
PrQof. First Qr all we note that Supp(Q) is the closure of U Supp( q 1) . Setting

i=ü

*.
Si = {x = gz I g E Supp(q I)}

S= {x = gz I g E Supp(Q)}

CD *.
we have S = (U S.). Supposc x E S. 1 i.e. x = gz , where g E Supp(q 1) . 'fhen for any

i=ü 1 1

neighborhood W of z the set H(W,x) contains a neighborhood of g in G and there
*.

fore q I(H(W,x)) > 0 . Consequently, Q(H(W,x)) > ü . Suppose x E Sand let W be a
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neighborhood of z : Ey force of Corollary 1.5 II(W,x) J H(W ' ,U) for ,a neighborhood

W I of z and a neighborhood U of x . On the other hand, U _contaiI1s a point
.' '

w w

x' E U S., say, x' E S.. Obviously, H(W/,U) ) H(W ' ,x') . By using the fact proved
. 0 I I
1=

above we have Q(H(W,x) ~ Q(H(W I ,x ')) > 0 . Thus, all the points of S are not

(z,q)-trivial. Suppose now x ~ S . There exists a neighborhood U of x such that
1:0 Theorem

uns = r/J . This mcans that II(z,U) n Supp(Q) = r/J ) i.e. Q(H(z,U)) = 0 . Accordingi1.4

H(W,x) C H(z,U) for a neighborhood W of z . Hence, Q(H(W,x)) = 0 . Consequently, x

is (z,q)-trivial. The proof is cornplete.

Remark 2.7. It is easy to see that Supp(Q) eoincides with the c10sed semigroup in

G , generated by Supp(q) .

Theorem 2.8. Suppose that a point z E M is (z,q)-finite. Then every point of Gz is

(z,q)-fi ni te.

PraoL The assumption of the theorem means that Q(H(W,z)) < (ll for a neighbor

hood W of z . Replacing W by a smaller neighborhood if necessary one can assurne, by

virtue of Carollary 1.5, that Q(H(W,W)) < CD • Consider asymmetrie neighborhood U oI

z , satisfying the conditions: U CU CW , U is compact. According to the Urysohn's

Lemma, there exists a continuous function rp(x) on M such that 0 5 rp(x) SI, rp(x) = 1

on U and rp(x)::::: 0 on M\\"1 . Consider the functions:

ipn(x) = f ip(g-lx)Qn(dg), n = 0,1,2, .....

G

We have
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cpn(X) - f cp(g-lx)Qn(dg) + I cp(g-lX)Qn(dg)

H(W,x) G\H(W,x)

= f cp(g-lX)Qn(dg) ~ Qn(H(W,x)) .
H(W)x)

~ence, if x E W then

(2.3)

On the other hand,

cpn(X) = f cp(g-lx)Qn(dg) =

G

f 1 *0 f 1 *= <p(g- x)q (dg) + <p(g- x)Qn-1 q( dg)
G G

= cp(x) + f cp(g-lxHf Qn_l(h-1dg)q(dh))

G G

Putting s = h-lg , we have g = hs, g-1 = s-lh-1 ; and the expression above has the

form

cpn(X) = cp(x) + f(f cp(s-1(h-1x))Qn_l(ds))q(dh)

GG

= cp(x) + f CPn_l(h-1x)q(dh)
G
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= 'P(X) + f 'Pn_l(g-lX)q(dg)

G

In particular) if x ~ W then <p(x) = 0 , and we have

(2.4) 'Pn(x) = f lpn-l(g-lx)q(dg) .

G

Now we prove by induction that

(2.5) <pn(x) ~ c = max{Q(H(W)W)),l} .

Really, for n = 0 we have <PO(x) = <p(x) ~ 1 . Assurne that (2.5) is true for n-l . If

x.E W then <pn(x) ~ Q(H(W)W)) ~ c by force of (2.3). If x ~ W then fr~m (2.4) and the

assumption of the induction it f~llows that <Pn (x) ~ c . Ey that way (2.5) ia true for n.

Furthermore, for any x E G we havez

(2.6) 'Pn(x) = f <p(g-lx)Qn(dg) ~ r 'P(g-lx)Qn(dg)

G II(~,x)

From (2.5) and (2.6) it follows that Q(H(U)x)) ~ c < CD • Consequently) x is a (z,q)-finite

point. The proof is completed.

Theorem 2.9. Suppose that a point z E11 is (z,q)-infinite. Then every point of

S = {x = gz I g E Supp(Q)} is (z,q)-infinite.
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Proof. The assumption of the theorem means that Q(H(~,W)) --: w for any neigh-

borhood W of z" .. Choose a neighborhood U of z such that,.U (U (.W and U is

compact. Consider an Urysohn's function cp defined as in the praaf of Theorem 2.6. We

have

(2.7) tpn(x) = JI{J(g-lx)Qn(dg) = J tp(g-lx) Qn(dg)

G II(VV,x)

~ r cp(g-lx)Qn(dg) = Qn(lI(U,x))

H(&,x)

Now we eonstruet asymmetrie neighborhood V of z such that H(z,V) C H(U,x) for any

x E V . Ghoose asymmetrie neighborhood V 1 of z such that Hz(V1) CU. V 1 n Gz can

be expressed in the form {gz I g E A} ,where A is asymmetrie neighborhood of e in

G . Further, take V so that V n G = {gz I g E B} für B being asymmetrie neighbor
z

hood of e such that B2 CA. We veriry that V satisfies our requirement. Really,

suppose that x E V n Gz and g E H(z,V) . We have x:= b1z (bI E B) and

( ( )
--"1 -1 -1 '

gz = b2z E V b2 E B) . Therefore, g = b2h h E Hz and g x = h b2 bIz E U

beeause b;lbIz E U1 . Consequently, g E H(U,x) . By using Theorem 1.4 one eau find a

neighborhood VI oi z such that H(V I ,VI) C H(z,V) . Thus, hom (2.7) it follows that

(2.8)

We use the following formula

(2.9) tpn(x) = tp(x) + Jtpn-l(g-lx)q(dg) I

G
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derived in the proof of Theorem ~.6. For each x E SI = {x = gz I g E Supp(q)} we have

q(H(V,x)) > 0 . Then

'Pn(x) ~ f 'Pn-1(g-lx)q(dg) ----; (l) (n ----; (l)) .
H(V,x)

From (2.9) one can obtain the following formula

(2.10) 'Pn(x) = 'P(x) + f 'P(g-lx)q(dg) + f 'Pn-2(g-lx)q*2(dg) .

G G

*2 *2
For each x E S2 = {x = gz I g E Supp(q )} we have q (H(V,x)) > 0 . Therefore,

*.
Similarly, one can prave that <p (x) ----i CD far any x E S. = {x = gz I g E Supp(q l)} ,n 1

CD

i = 0,1,2) ... Consequently, <pn(x) ----i CD for any x E U S..
. 0 11=

On the other hand we have

'Pn(x) = f 'P(g-lx)Qn(dg) + I 'P(g-lX )Qn( dg)

H(WJx) G\H(WJx)

f 'P(g-lX)Qn(dg) ~ Qn(II(W,x))

H(W,x)

. w
Thus, for each x E U S. we have Qn(H(W,x)) ----i CD far any neighborhood W af z.

. 0 1
1=
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CD

Cons~qucntly, x is a (z,q)-infinitc point. If x E S = U S., then any ncighborhood Ux'1 1
1=

CD

of x intersects U S. at a point x' . Therefore, Q (H(W, U )) ~ Q (H(W,x')).-+ CD
. 1 1 n x n
1=

for any neighborhood W of z . Choosing a suitable neighborhood W' C W we have

Qn(H(W,x)) ~ Qn(H(W' ,Ux)) .-+ w for any W . By that x is a (z,q)-infinite point.

Now let us surn up thc results of this scction. It turns out that from Theorems

2.6 - 2.9 it follows a complete description of trivial, positive aJ;ld infinite points.

Theorem 2.10. a) If a point z E M is (z,q)-finite (Le. Q(H(W,W)) < OJ for a

neighborhood W of z ), then every point x E M is (z,q)-finite. Moreover. the points of

S = {x = gz I g E Supp(Q)} are (z,q)-positive and thc points of M\S are (z,q)-trivial.

. b) If a point z E M is (z,q)-infinite (i.e. Q(R(W,W)) = OJ for any neighborhood W

of z), then every point of S= {x = gz I g E Supp(Q)} is (z,q)-infinite and every point

of M\S is (z,q)-trivial.

§ 3. The renewal functions oe the space

Let p be a positive measure on M and q a normalized positive measure on G.
*.

Then the measures p * q 1 (i = 0,1,2, ... ) are positive. The sums

*.
p*Q= l p*q 1

i=ü

n
*.

p * Qn = l p * q 1

i=O

are called the renewal functions of thc space M , associated to p and q.

Definition 3.1. A point x E M is said to be finite with respect to (p,q) (cr simply
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. "

(p,q)-finite) if it is (z,q)-finite for anY· z E Supp(p) . In the converse case x is called

infinite with respect to (p,q) (or simply (p,q)-infinite).

Rernark 3.2. Ir z ~ G then there cxists a ncighborhood W of z such thatx z

W n G = r/J , Le. H(W ,x) = (J . Consequently, x is (z,q)-finite. This means, in particu-z x z

lar, that for a point x E M to be (p,q)-finite it suffices that x is (z,q)-finite for each

z E Gx n Supp{p) .

Theorem 3.3. Suppose all the points of G
x

n Supp(p) are {p,q)-finite. Then every

point of Gx is (p)q)-finite.

PreeL Let y E G
x

and z E Gx n Supp(p) . Since z is {p,q)-finite it is, in particu

lar, (z,q)-finite. Then by force of Theorem 2.10 y is (z)q)-finite too. Taking Remark 3.2

into account we can conclude that y is a (p,q)-finite point. The prüof is, complete.

Thcorcrn 3.4. SlIPPOSC that G n Supp(p) contairls (p,q)-infinite points. 'fhcnx

every point of the set

R = U {y = gz I g E Supp(Q)} )
z

where the surn runs through thc set {z E Gx n Supp(p) I z is {z,q)-infinite} , is

(p,q)-infinite. The points of G \R are {p,q)-finite.
x

. PreeL According to Theorem 2.10 for each (z,q)-infinite point z E G
x

n Supp(p)

the points of {x = gz I g E Supp(Q)} are (z,q)-infinite. Therefore, all the points of R

are (p,q)-infinite. Suppose x ~ R . Applying Theorem 2.10 again we see that x is
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[i (z,~)~tri~ial forany (Z,q)-infinit~p~:~~'~ E Sup~(p) . CO~s~qilntlY: ~ 18 a (p,q)-finit~: .
'1' .', . :' .

. .

'. point and that .campleted the pfaaf. , .

Note that from the pfoof of Theorem 3.3 it follows the following useful fact

Corollary 3.5. All the points of G n Supp(p) are (p,q)-finite if and only if each
x

point Z L G
x

n Supp(p) is (z,q)-finite.

. Theorem 3.6. Assurne that Supp(p) is compact and let x be a (Plq)-finite point.

Then there exists a neighborhood W Q.f Supp(p) and a neighborhood U of x in M

such that Q(H(W,U)) < OJ •

Proor. Assume that x is (p,q)-fini te. For each z E Supp(p) one can find a neigh

borhood W of z such that Q(H(W ',x)) < CD • Choose a neighborhood W' of z ,z z Z .

W~ C Wz and W~ is compact. Ey force of Corollary 1.5 there masts a neighb.orhood Uz

of x such that H(W' JU ) C H(W IX) . Since Supp(p) is compact one can select a finitez z z
k k

covering {W' }l<·<k of Supp(p) . Setting W = U W' and U = n U ,we have
z. 1 • 1 z· . 1 z·

1 - - 1= 1 1= 1

k k k
H(W,V) = U H(W' IV) C U H(W' ,V ) C U H(W ,x). Hence,

. 1 z· . 1 z· z· . 1 z·1= 1 1= 1 1 1= 1

Q(H(W,V)) ~ l Q(H(Wz.,x)) < CD • The proof is completed.
. 1 1
1=

From Theorem 3.6 it follows immediately the following result.

Corollary 3.7. Assume that Supp(p) is compact and let x be a (Plq)-finite point.

Then there exists a ncighborhood U of x 1 consisting of (p,q)-finite points.
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Theorem 3.8. Assume that Supp(p) is compact and let A be a compact subset of

M , consisting of (p,q)-finite points. Then

a) There exists a neighborhood W of Supp(p) and a neighborhood U of A such

that Q(H(\V,U)) < CD •

b) p * Q(A) ~ p * Q{U) < CD •

Proar. Ey force of Theorem 3.6 each point x E A has a neighborhood U such thatx

Q(H(Wx,Ux)) < CD ,where Wx is a neighborhood of Supp(p) . Since A is compact one

k
can cover it by a finite number of subsets U (i = l,2, ... ,k) . Setting U = U U and

Xi i=l Xi
k k

W = n W we have H(W,U) C U H(W ,V ). Hence
. 1 x· . 1 x· X.
1= 1 1= I I

proving the staternent a). Further, we have

p * Q(U) = f p(g-lU)Q(dg) = . f p(g-lU)Q(dg)

G H(Supp(p),U)

~ J Q(dg) = Q(H(Supp(p),U)

H(Supp(p), U)

~ Q(H{W,U)) < CD •

Thus, the proof is completed.

Rernark 3.9. Ir G is a compact group then Q(lI(z,G )) = Q(G) = CD for anyz
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;'-:1. " q ,I,:'!.", ., ..,",: \.; '" ,

'z' E. M .,.F~om Theorem 3.. 8 it fo~laws immediately that there is n?:orbit, intersecting
. . . .

Supp(p) and consisting of (p,q)-fini te points.

Theorem 3.10. If x is a (p,q)-infinite point of M l then p * Q(U) = CD for any

neighborhood U of x .

Proof. Assume x is (p,q)-infinite and let z E Supp(p) such that x is (z,q)-infi

nite. Suppose U is a neighborhood of x. Choosc a ncighborhood U I of x such that

U leu. According to Lemma 1.7 one can find a neighborhood V of z so that g(V) CU.

for any g E H(z,U I) . Since z E Supp(p) we have p(V) > 0 . Further we have

p * Q(U) = Jp(g-lU)Q(dg) ~ J p(g-lU)Q(dg) ,
G H(Z,U / ) .

where p(g-l U) ~ p(V) because V C g-lU for any g E H(z, U ') . Therefore,

p * Q(U) ~ p(V)Q(H(z,U I)) ~ p(V)Q(H(W,x)) = 00 ,

where W is a neighborhood of z . By that the praof is completed.

§ 4. The renewal eguations

Let f be a continuous function on M. We define Radon measures F on M by
n

setting
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(4.1)

for any Borel subset X C M . Since Q = 1 + Q 1 * q one can transform the formulan n-

(4.1) as follows

Fn(X) = J [J f(g-lx)p(g-ldx)]l(dg)

G X

.. -1 -1 -1-1
Substltutlng h g = sand therefore g = hs, g = s h we have

Hence, we have the iterative formula

(4.2)
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We caU the following equation

(4.3) F(X) = Jf(x)p(dx) + JF(g-lX)q(dg) ,
X G

where F is aRadon measure on M and X is any Borel subset of M , the renewal

equation with respect to the function f.

From Corollary 3.7 it follows that if Supp(p) is compact, then the union of all

*orbits, consisting of (p,q)-finite points, is an open subset in M. We denote it by M .

Theorem 4.1. Assume that Supp(p) is compact and continuous function. vanishing

*on M\M . Then the measure F, given by setting

(4.4)

for any Borel snbset X C M , satisfies the equation (4.3).

*Proof. First of all we note the F(X) = F(X n M ) for any Borel subset X C M ,

*because f = 0 on M\M . Therefore, without lost of generality we may suppose that

* *X C M . Let X be a compact subset of M . By force of Theorem 3.8 Q(H(W,U)) < ro

for a neighborhood W of Supp(p) and a neighborhood U of X . The sequence

{Qn(H(W,U))} is non-decreasing and bounded by Q(H(WJU)). HenceJ

Qn(H(W,U)) ---t Q(H(W,U)) when n ---t ro . On the other hand we have
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5 c [Q(H(W,U))-Qn(H(W,U))] ----i 0 ,

where c = max f(x). Consequendy, F (X) ----i F(X) for any compact subset X.
xES upp(p) n

This means that F ----i F . Now, letting n ----i w in the formula (4.2) we obtain
n

F(X) = If(x)p(dx) + bF(g-lX)q(dg) ,

completing thc proof.
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